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Abstract—Current literature predominantly analyzes the ef-
fects of Variable Renewable Energy (VRE) forecasts on Optimal
Power Flow (OPF) by presuming static line capacities, neglecting
their variability with respect to temperature and wind speed.
This study investigates the effect of probabilistic VRE forecasts
on OPF, considering dynamic line rating (DLR) under scenarios
of high VRE integration and variable weather conditions. Using
various machine learning methods, VRE forecasts with different
accuracy and prediction intervals (PIs) are generated. These
forecasts are incorporated into a Monte Carlo-based probabilistic
OPF (POPF) framework to evaluate the impact of probabilistic
VRE forecasts on POPF, in contrast to OPF using actual
generation data. Case studies using a modified IEEE 118-bus
system demonstrate that while improvements in VRE forecast
accuracy yield limited improvements to POPF reliability, DLR
implementation significantly enhances OPF reliability.

Index Terms—Dynamic Line Rating, probabilistic renewable
generation forecasts, probabilistic optimal power flow

NOMENCLATURE

β, λ Solar absorptivity, and Air dynamic viscosity

ε, δ, kf Emissivity, Air density, and Air thermal conductivity

φ,W Angle between wind and OHLs, and Wind speed (m/s)

θ Effective incidence angle of solar ray

Ap Conductor (OHLs) projected area

C1
r , C

0
r Cost efficiencies of renewable generation

C2
s , C

1
s , C

0
s Cost efficiencies of synchronous generations

D Diameter of conductor (OHLs)

Nl, Nd Number of transmission lines, and loads

Ns, Nr Number of synchronous and renewable generations

Qd, Pd Reactive and active power of loads

Ql, Pl Reactive and active power loss on OHLs

Qr, Pr Reactive and active power of renewable generation

Qs, Ps Reactive and active power of conventional generation

qconv, qse Convective heat loss and solar radiation flux rates

qrad, qsun Radiated heat loss rate, Heat gain rate from sun

RTc
AC resistance of conductor at temperature Tc

Tc, Ta Conductor temperature, Ambient air temperature (C◦)

I. INTRODUCTION

The increasing integration of VRE, and their inherent uncer-

tainties, introduce novel challenges to power system operations

and planning. Existing literature [1]–[6] shows that an accurate

forecast of VRE can substantially address those challenges

by mitigating the impacts of VRE uncertainties on power

systems. Besides, extensive research [7]–[14] demonstrates

that DLR crucially influences OPF, and offers a robust so-

lution to address the discrepancies arising from increased

VRE integration levels. The thermal capacity limits of over-

head lines (OHLs) are traditionally considered static, based

on maximum-allowable conductor temperatures under ideal

weather conditions. However, meteorological conditions are

dynamic, often leading to enhanced conductor cooling effects

and higher thermal capacities than those estimated using static

line ratings (SLR). Consequently, utilizing VRE forecasts and

DLR becomes essential in optimizing OPF. Studies analyzing

the impact of VRE forecast accuracy and prediction intervals

(PIs) on POPF considering DLR, especially under different

weather scenarios, are absent in the existing literature. This

gap signifies a lack of understanding regarding DLR’s role in

integrating probabilistic VRE forecasts into OPF analyses.

The Federal Energy Regulatory Commission (FERC)’s Or-

der 881 underscores the benefits of DLR, advocating for

further studies on its necessity in enhancing transmission

reliability and security [15]. This paper aims to address the

need for such studies by the following contributions:

1) Using probabilistic VRE forecasts from various Machine

Learning (ML) models, the impact of VRE forecast

accuracies and PI on POPF is investigated;

2) Investigated the combined impact of VRE forecasts and

DLR on POPF for VRE penetration levels from 20% to

80%, using VRE data under diverse load conditions.

II. RELEVANT STUDIES

This section provides a comprehensive review of the state-

of-the-art on how 1) VRE forecasts or 2) DLR enhances

the efficiency and reliability of OPF. Recent studies have

demonstrated that OPF models incorporating VRE uncertainty

can enhance power system reliability. Specifically, a reversed

accumulated percentage model was developed by authors

in [1] to capture wind generation uncertainty on the IEEE

39-bus system. A parametric distribution OPF method de-

signed in [2], integrating with analytical functions for optimal

dispatch relative to renewable outputs, demonstrated superior

computational and reliability performance compared to stan-

dard policies that linearly adjust control actions in response to

system state changes and uncertainties. In another work [3], a

quasi-Monte Carlo simulation (QMCS) with copula functions

is developed to account for wind generation uncertainties in
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POPF. The study in [4] introduces a day-ahead coordinated

dispatch method for distribution networks, optimizing reactive

power outputs of distributed generators (DGs) by using DG

forecast errors. Additional studies on how VRE forecasts

facilitate and improve OPF can be found in [5], [6].

The authors have previously demonstrated that incorporat-

ing DLR into OPF effectively reduces both line congestion and

system costs [7]. In a similar work [8], a weather-based OPF

model is developed by considering DLR, with case studies

evidencing that DLR can maximize transmission capacity and

reduce costs. DLR is also integrated with security constraint

OPF (SCOPF) by authors in [9], proving that DLR can

enhance system security and minimize the cost. In another

work [10], DLR is combined with transmission switching

to formulate an improved Linear AC OPF. Authors in [11]

developed a constrained quadratic program method for the

OPF problem considering DLR, which demonstrates that DLR

increases system economic efficiency. In addition, DLR is

integrated into a multi-period security-constrained OPF based

on particle swarm optimization in [12]. Similar studies can

be found in [13], [14], where DLR is integrated with OPF to

produce an effective solution to improve system security and

minimize operations costs.

The previous research efforts offer limited insights into the

comprehensive impact of probabilistic VRE forecasts on POPF

considering DLR. This study addresses this gap, rigorously

evaluating the impact under scenarios of peak load, high VRE

penetration, and varying weather conditions.

III. OPTIMAL POWER FLOW CONSIDERING DLR AND

VRE FORECASTS

A. Dynamic Line Rating

DLR essentially adapts the current limit for OHLs based on

environmental conditions, affecting their thermal capacity and

the maximum power transmission capability [8]. The DLR

of OHLs can be calculated based on IEEE Standard 738-

2006 [16], which provides the heat balance equation for OHLs:

qconv + qrad = qsun + ploss (1)

Given ploss = I2RTc
, the current flowing in OHLs can be

obtained as [16]:

I =

√
qconv + qrad − qsun

RTc

(2)

where
qsun = βqsesin(θ)Ap ; Ap = Dcos(θ)

qrad = 0.0178×Dε[
(Tc + 273

100
)4 − (Ta + 273

100
)4]

(3)

The forced convection heat loss rate [16], qconv =⎧⎨
⎩
[0.0119

(
DδW

λ

)0.6
]kfKa(Tc − Ta) , W ≤ 4.47

[1.01 + 0.0372
(
DδW

λ

)0.52
]kfKa(Tc − Ta) , W > 4.47

(4)

where Ka = 1.194 − cos(φ) + 0.194 × cos(2φ) + 0.368 ×
sin(2φ). Upon substituting (3) and (4) into (2), the current

in OHLs can be articulated as a function of meteorological

parameters Ta,W, θ, φ. In this work, OHL midpoints are

chosen for GPS coordinates to obtain meteorological data

such as temperature, wind speed, wind direction, and zenith

angle. Specifically, θ is set as equal to the zenith angle, and

φ denotes the angle difference between wind speed and line

direction. The benchmark ISLR from SLR is ascertained at

Ta = 40(C◦), Tc = 80(C◦), and wind speed of zero [17]. The

time-varying IDLR is derived from forecasted meteorological

data for each line, thereby modulating the thermal capacity for

each line based on prevailing weather conditions.

B. Probabilistic VRE Forecasts using ML methods

Recent literature highlights ML as the primary method for

VRE forecast, with foundational studies outlined in [18]–

[21]. This research critically examines probabilistic forecasting

models developed based on 1) Persistence Ensemble (PeEn),

2) Quantile Regression (QR), 3) Feed Forward Neural Net-

works (FFNN), and 4) Long Short-Term Memory networks

(LSTM), to generate probabilistic predictions in VRE output.

1) Persistence Ensemble (PeEn): In this study, the proba-

bilistic PeEn model leverages historical data at hour t for fu-

ture predictions at the same hour. Denoting yt as the observed

value at hour t, historical data for this hour is aggregated to

construct a distribution function ft(y), which is applied to

provide probabilistic forecasts for hour t.
2) Quantile Regression (QR): The τ -th quantile estimated

by the QR method is denoted as ŷτ = xT α̂(τ). To consider

the non-linear nature of meteorological variables, each mete-

orological variable x is first converted to polynomial format:

xpoly = [x, x2]. For each specified quantile τ , the QR seeks

to minimize the sum of asymmetrically weighted absolute

residuals. The solution for the τ -th quantile [22] is:

α(τ) = argmin
α

n∑
i=1

ρτ (τ)
(
yi − xT

poly,iα(τ)
)

(5)

where ρτ (u) = u(τ −1) if (u < 0) or ρτ (u) = uτ if (u < 0),
and u = yi − xT

poly,iα(τ)
3) Feed Forward Neural Networks (FFNN): In this study,

the FFNN is structured specifically to yield probabilistic

forecasts by estimating the parameters of a predefined Normal

distribution, N(μ, σ2). The implemented FFNN architecture

incorporates two distinct nodes within its dense layer, dedi-

cated separately to predicting the mean (μ) and standard devi-

ation (σ) of the distribution. Given the predicted distribution

and observations y, the loss function for training the FFNN is

the negative log-likelihood of the observed data:

L = −
∑

logN(yi|μi, σ
2
i ) (6)

4) Long Short-Term Memory networks (LSTM): LSTM is

a specialized kind of Recurrent Neural Network (RNN) that

is distinguished by its unique structure comprising memory

cells, input gates, output gates, and forget gates [23]. In this

work, the output is predefined as Normally distributed, and

the two nodes in the LSTM dense layer predict the mean (μ)

and standard deviation (σ).
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C. Probabilistic OPF based on Monte Carlo Method

Given the obtained distribution of VRE generation forecasts

using methods discussed in Section III-B, MC simulation is

applied to generate random samples from these distributions.

For each set of random samples, a deterministic OPF is

formulated to minimize generation costs while maintaining

generation-load balance and adhering to safety constraints. The

objective function of the OPF is expressed as:

minimize

Ns∑
i=1

(C2
siP

2
si + C1

siPsi + C0
si) +

Nr∑
i=1

(C1
riPri + C0

ri)

(7)

Subject to

Ns∑
i=1

Qsi +

Nr∑
i=1

Qri =

Nl∑
i=1

Qli +

Nd∑
i=1

Qdi (8)

Ns∑
i=1

Psi +

Nr∑
i=1

Pri =

Nl∑
i=1

Pli +

Nd∑
i=1

Pdi
(9)

Psi,min ≤ Psi ≤ Psi,max (10)

Qsi,min ≤ Qsi ≤ Qsi,max (11)

Pri ≤ Pri,max (12)

Vi,min ≤ Vi ≤ Vi,max (13)

Li ≤ Li,max (14)

Eq. (7) breaks down the cost into two parts: the cost from the

conventional generation and the cost from VRE. Eq. (8) and

(9) define the active and reactive power balance constraints,

(10) and (11) set the active and reactive power limits for

conventional generators, and (12) sets the maximum power

output for VRE. MC samples of VRE forecasts are used to

adjust the maximum power values Pri,max. Bus voltage limits

are expressed in (13), setting the upper and lower limits at

1.05 and 0.95 per unit, respectively. The DLR is included in

the OPF analysis by changing OHLs capacity limits Li,max.

The deterministic OPF is repeated numerous times until

further increasing the sample size would not change the

results significantly. To balance the effectiveness of results and

running time, the sample size is tested and set as 1,000 for the

case studies introduced in the next section. Given line loading

Li as an example, the POPF results are thus obtained using

the empirical probability distribution function (EPDF):

fLi
(l) =

1

dL
· 1
n

n∑
i=1

1{Lli ≤ L}d(L) (15)

IV. CASE STUDIES

A. A Modified IEEE 118-bus Case and Data Description

The POPF methodologies were evaluated using a modified

IEEE 118-bus system [24] with 181 lines, 99 loads, 8 solar

generators, 6 wind generators, 30 synchronous generators, and

a slack bus. Real load and VRE data for summer 2023 were

sourced from ERCOT’s 60-Day SCED Disclosure Reports [25]

and adjusted to fit the modified system. The layout of load and

VRE is modeled based on their real-world locations. Notably,

the spatial arrangement of solar and wind generation sites were

intentionally separated, based on their geographic coordinates,

to mitigate any potential correlation in the output of different

VREs. Meteorological data used to train forecasting models

and estimate the DLR of OHLs is derived from the High-

Resolution Rapid Refresh (HRRR) model [26]. The variables

derived for training include temperature, relative humidity,

dew points, wind speed, wind degree, wind gusts, air pres-

sure, cloud cover, and zenith angle. Two case studies were

conducted: a summer peak-load day (Aug 11th- sunny and

high temperature) and a summer off-peak day (Jul 2nd-rain

in several regions). The developed QR, FFNN, and LSTM

models are trained using the previous two months of test data.

The PeEn model was trained using the previous week’s data

as it tends to be more accurate than those using more data.

B. Evaluation Criteria

To assess the impact of probabilistic VRE on POPF, a

comparison is drawn between the OPF utilizing real generation

data and the POPF using VRE forecasts, both with and

without DLR. Real load data are used for all scenarios. The

deviation between VRE predictions and actual outputs, as well

as the discrepancy between real OPF results and the POPF

using forecasts, is measured using the normalized Continuous

Ranked Probability Score (nCRPS) (16):

nCRPS(F, y) =
1

ymax

∫ ∞

−∞
(F (ŷ)− 1y≤ŷ)

2dŷ× 100% (16)

C. Day-ahead Probabilistic VRE forecasts

For the summer peak day, VREs generated more power

compared to the off-peak day. This difference is mainly due

to heavy rains during the off-peak day. In each scenario, this

study tests four VRE penetration levels: 20%, 40%, 60%,

and 80%. The study does not concentrate on optimizing the

locations of VREs; rather, higher VRE penetration ratios are

simulated by enhancing the capacity of existing VRE facilities.

Day-ahead VRE forecasts utilizing the PeEn, QR, FFNN,

and LSTM models are detailed in Table I, where ”Solar”

is the mean nCRPS from eight solar generation forecasts,

”Wind” is the mean nCRPS for six wind generation forecasts,

and the ”Mean” is the average nCRPS of all VREs. The

values in Table I are calculated using normalized VRE outputs,

i.e., dividing each by its maximum output. This implies that

minor errors in normalized forecasts become larger when the

forecasts are rescaled to their original values, particularly

impacting POPF analyses in high VRE penetration scenarios.

TABLE I
NCRPS OF VRE FORECASTS FOR A SUMMER PEAK AND OFF-PEAK DAY

Summer peak-load day Summer off-peak-load day
PeEn QR FFNN LSTM PeEn QR FFNN LSTM

Solar (%) 2.2 5.5 6.4 5.7 10 16.8 13.6 7.3
Wind (%) 11 8.2 7.5 6.4 24 15 10.1 8.5
Mean (%) 5.9 6.7 6.9 6.0 16.2 16 12.1 7.8

Table I indicates that LSTM generally outperforms other

models in forecast accuracy. Rainy conditions reduce off-peak

load day forecast accuracy compared to peak day forecasts.
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This study extends beyond a general evaluation of the impact

of various VRE forecasts on POPF by also making two

key comparisons. Firstly, Fig. 1 shows the comparison of

LSTM and PeEn forecasts for the peak-load day. Despite their

similar overall forecast accuracy (Table I), notable differences

exist in their solar and wind forecast accuracies, with PeEn

outperforming LSTM in solar but lagging in wind forecast.

This comparison aims to discern whether solar or wind power

forecasts have a more significant influence on POPF. Secondly,

Fig. 2 illustrates forecasts from the FFNN and QR models

for the off-peak day. While the FFNN model shows higher

accuracy than the QR model (Table I), the QR model’s

forecasts exhibit a narrower PI. This comparative analysis is

employed to evaluate how the forecast PI impacts POPF.

(a) LSTM solar power forecasts (b) PeEn solar power forecasts

(c) LSTM wind power forecasts (d) PeEn wind power forecasts
Fig. 1. Comparing LSTM and PeEn Forecasts for Summer Peak Load Day

(a) FFNN solar power forecasts (b) QR solar power forecasts

Fig. 2. Comparing FFNN and QR Forecasts for Summer Off Peak Load Day

D. POPF using VRE forecasts without DLR

The day-ahead POPF with VRE forecasts is compared with

OPF using actual VRE data. The precision of the day-ahead

POPF is analyzed by quantifying the discrepancy in line

loadings across all lines and comparing results from the OPF

using actual generation data with those using VRE forecasts.

nCRPS∗ in Table II presents the hourly average nCRPS for

line loadings across all lines. The values are computed as the

hourly mean of nCRPS for each line loading, which is the

average nCRPS across all lines for each hour.

nCRPS∗ =
1

Nl

Nl∑
i=1

∗ 1

24

24∑
j=1

nCRPSi,j (17)

A higher value indicates greater deviations between POPF line

flows and OPF results using actual VRE.

TABLE II
nCRPS∗ FOR LINE LOADINGS FROM DAY-AHEAD POPF WITHOUT DLR

POPF Summer peak-load day Summer off-peak-load day
with PeEn QR FFNN LSTM PeEn QR FFNN LSTM

20%* 2.69 2.66 2.66 2.62 1.63 1.62 1.69 1.55
40%* 4.71 4.64 4.64 4.54 2.39 2.28 2.47 2.17
60%* 6.58 6.5 6.49 6.36 3.25 3.06 3.28 2.94
80%* 8.23 8.06 8.1 7.9 4.13 3.93 4.12 3.75

*20%, 40%,60%, and 80% refer to VRE penetration ratio of the system

Based on Table II, improved accuracy in VRE forecasts

leads to more reliable POPF. However, the gains from im-

proved forecast accuracy are limited. For example, a notable

improvement in LSTM and PeEn forecast accuracy for an off-

peak day (nCRPS reduced from 16.2% to 7.8%) leads to only

a slight reduction in line flow error in 80% VRE penetration

scenarios (from 4.13% to 3.75%). Moreover, compared to the

peak day, the POPF shows greater reliability on off-peak days

due to smaller deviations in line loadings, even though VRE

forecasts are less precise during the day. This is due to the

reduced demand volatility inherent to off-peak days.

For the first comparison discussed earlier, POPF with LSTM

forecasts yields higher precision than that with PeEn for

peak days, suggesting that precise wind generation forecasts

are more crucial for POPF accuracy than solar generation

forecasts. The second comparison offers further insights. De-

spite the higher accuracy of FFNN forecasts compared to QR

for an off-peak day, POPF utilizing QR forecasts is more

precise. This indicates that narrower PIs with fairly accurate

VRE forecasts enhance POPF reliability more effectively than

higher-accuracy forecasts with wider PIs. This could be due

to the impact of tail events on POPF, in VRE forecasts with

broader PIs, potentially compromising its reliability.

E. POPF using VRE forecasts with DLR

In addition to forecasts, this section integrates DLR into

the POPF to evaluate the effect of probabilistic VRE forecasts

in conjunction with DLR. As outlined in Section IV-A, the

DLR for POPF utilizes data from the HRRR model, while the

DLR for the baseline OPF is based on reanalysis data from the

ERA5 model [27]. It is important to note that the primary focus

of this research is not on the precision of DLR in OPF, but

rather on comparing the performance of POPF with forecast

data against OPF with real data.

Based on Table III, the inclusion of DLR enhances the re-

liability of POPF. This enhancement is more pronounced than

the improvements by refining ML-based forecast models. Even

the simpler PeEn VRE forecast model, when combined with

DLR, leads to more dependable POPF outcomes compared

to using advanced LSTM forecasts alone. Furthermore, DLR

tends to amplify the positive impact of accurate VRE forecasts

on POPF, suggesting that DLR results in more reliable POPF

when coupled with precise VRE output predictions.

Fig. 3 shows the comparative analysis of POPF performance

with VRE forecasts and DLR integration at varied VRE pen-
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TABLE III
nCRPS∗ FOR LINE LOADINGS FROM DAY-AHEAD POPF WITH DLR

POPF Summer peak-load day Summer off-peak-load day
with PeEn QR FFNN LSTM PeEn QR FFNN LSTM

20%* 2.32 2.26 2.29 2.2 1.58 1.58 1.63 1.5
40%* 3.88 3.75 3.84 3.65 2.14 2.05 2.21 1.96
60%* 5.24 5.1 5.17 4.97 2.76 2.62 2.82 2.54
80%* 6.82 6.6 6.71 6.43 3.46 3.34 3.50 3.23

*20%, 40%,60%, and 80% refer to VRE penetration ratio of the system

Fig. 3. Comparative Analysis of POPF Performance

etration ratios. Notably, a simple PeEn forecast model, when

coupled with DLR, provides more reliable POPF outcomes

than those sorely using a sophisticated LSTM forecast.

V. CONCLUSION

This study examines the effect of VRE forecasts on POPF

considering DLR. Various ML-based probabilistic VRE fore-

cast methods, such as LSTM, FFNN, QR, and PeEn, are con-

sidered. By comparing day-ahead POPFs that employ different

VRE forecasts using actual historical generation data, the study

assesses the improvement in POPF precision resulting from

advancements in VRE forecast accuracy and applying DLR.

Case studies on a modified IEEE 118-bus system show

that the inclusion of DLR significantly enhances the reliabil-

ity of POPF results. This enhancement indicates that while

increasing the accuracy of VRE forecasts contributes to a

more reliable POPF, incorporating DLR can further amplify

this effect. The study also notes the impact of forecast PIs on

POPF: wider PIs, due to the potential for significant tail events,

may reduce POPF reliability. The case studies also underline

that accurate wind power forecasts are more influential than

solar power forecasts in enhancing POPF reliability.

Future research can investigate the potential role of more

reliable computing methodologies in mitigating the adverse

effects of forecasting errors. Such research could investigate

how advanced computational strategies and robust optimiza-

tion models can enhance the resilience and reliability of POPF

outcomes in the face of forecast inaccuracies.
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