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Abstract—Current literature predominantly analyzes the ef-
fects of Variable Renewable Energy (VRE) forecasts on Optimal
Power Flow (OPF) by presuming static line capacities, neglecting
their variability with respect to temperature and wind speed.
This study investigates the effect of probabilistic VRE forecasts
on OPF, considering dynamic line rating (DLR) under scenarios
of high VRE integration and variable weather conditions. Using
various machine learning methods, VRE forecasts with different
accuracy and prediction intervals (PIs) are generated. These
forecasts are incorporated into a Monte Carlo-based probabilistic
OPF (POPF) framework to evaluate the impact of probabilistic
VRE forecasts on POPF, in contrast to OPF using actual
generation data. Case studies using a modified IEEE 118-bus
system demonstrate that while improvements in VRE forecast
accuracy yield limited improvements to POPF reliability, DLR
implementation significantly enhances OPF reliability.

Index Terms—Dynamic Line Rating, probabilistic renewable
generation forecasts, probabilistic optimal power flow

NOMENCLATURE

B,A  Solar absorptivity, and Air dynamic viscosity

€,6,ky Emissivity, Air density, and Air thermal conductivity
¢, W  Angle between wind and OHLs, and Wind speed (m/s)
0 Effective incidence angle of solar ray

A, Conductor (OHLs) projected area

C}, Y Cost efficiencies of renewable generation
C2,0L,CY Cost efficiencies of synchronous generations

D Diameter of conductor (OHLSs)

N, Ny Number of transmission lines, and loads

N, N, Number of synchronous and renewable generations
Qq4, Py Reactive and active power of loads

@1, P, Reactive and active power loss on OHLs

@, P. Reactive and active power of renewable generation
Qs, Ps Reactive and active power of conventional generation
Qeonv, se Convective heat loss and solar radiation flux rates
Grads 9sun Radiated heat loss rate, Heat gain rate from sun
Ry AC resistance of conductor at temperature 7

T.,T, Conductor temperature, Ambient air temperature (C°)

I. INTRODUCTION

The increasing integration of VRE, and their inherent uncer-
tainties, introduce novel challenges to power system operations
and planning. Existing literature [1]-[6] shows that an accurate
forecast of VRE can substantially address those challenges
by mitigating the impacts of VRE uncertainties on power
systems. Besides, extensive research [7]-[14] demonstrates
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that DLR crucially influences OPF, and offers a robust so-
lution to address the discrepancies arising from increased
VRE integration levels. The thermal capacity limits of over-
head lines (OHLs) are traditionally considered static, based
on maximume-allowable conductor temperatures under ideal
weather conditions. However, meteorological conditions are
dynamic, often leading to enhanced conductor cooling effects
and higher thermal capacities than those estimated using static
line ratings (SLR). Consequently, utilizing VRE forecasts and
DLR becomes essential in optimizing OPF. Studies analyzing
the impact of VRE forecast accuracy and prediction intervals
(PIs) on POPF considering DLR, especially under different
weather scenarios, are absent in the existing literature. This
gap signifies a lack of understanding regarding DLR’s role in
integrating probabilistic VRE forecasts into OPF analyses.

The Federal Energy Regulatory Commission (FERC)’s Or-
der 881 underscores the benefits of DLR, advocating for
further studies on its necessity in enhancing transmission
reliability and security [15]. This paper aims to address the
need for such studies by the following contributions:

1) Using probabilistic VRE forecasts from various Machine
Learning (ML) models, the impact of VRE forecast
accuracies and PI on POPF is investigated;

2) Investigated the combined impact of VRE forecasts and
DLR on POPF for VRE penetration levels from 20% to
80%, using VRE data under diverse load conditions.

II. RELEVANT STUDIES

This section provides a comprehensive review of the state-
of-the-art on how 1) VRE forecasts or 2) DLR enhances
the efficiency and reliability of OPF. Recent studies have
demonstrated that OPF models incorporating VRE uncertainty
can enhance power system reliability. Specifically, a reversed
accumulated percentage model was developed by authors
in [1] to capture wind generation uncertainty on the IEEE
39-bus system. A parametric distribution OPF method de-
signed in [2], integrating with analytical functions for optimal
dispatch relative to renewable outputs, demonstrated superior
computational and reliability performance compared to stan-
dard policies that linearly adjust control actions in response to
system state changes and uncertainties. In another work [3], a
quasi-Monte Carlo simulation (QMCS) with copula functions
is developed to account for wind generation uncertainties in
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POPF. The study in [4] introduces a day-ahead coordinated
dispatch method for distribution networks, optimizing reactive
power outputs of distributed generators (DGs) by using DG
forecast errors. Additional studies on how VRE forecasts
facilitate and improve OPF can be found in [5], [6].

The authors have previously demonstrated that incorporat-
ing DLR into OPF effectively reduces both line congestion and
system costs [7]. In a similar work [8], a weather-based OPF
model is developed by considering DLR, with case studies
evidencing that DLR can maximize transmission capacity and
reduce costs. DLR is also integrated with security constraint
OPF (SCOPF) by authors in [9], proving that DLR can
enhance system security and minimize the cost. In another
work [10], DLR is combined with transmission switching
to formulate an improved Linear AC OPF. Authors in [11]
developed a constrained quadratic program method for the
OPF problem considering DLR, which demonstrates that DLR
increases system economic efficiency. In addition, DLR is
integrated into a multi-period security-constrained OPF based
on particle swarm optimization in [12]. Similar studies can
be found in [13], [14], where DLR is integrated with OPF to
produce an effective solution to improve system security and
minimize operations costs.

The previous research efforts offer limited insights into the
comprehensive impact of probabilistic VRE forecasts on POPF
considering DLR. This study addresses this gap, rigorously
evaluating the impact under scenarios of peak load, high VRE
penetration, and varying weather conditions.

III. OPTIMAL POWER FLOW CONSIDERING DLR AND
VRE FORECASTS

A. Dynamic Line Rating

DLR essentially adapts the current limit for OHLs based on
environmental conditions, affecting their thermal capacity and
the maximum power transmission capability [8]. The DLR
of OHLs can be calculated based on IEEE Standard 738-
2006 [16], which provides the heat balance equation for OHLs:

Qeonv + Grad = Qsun + Ploss (D

Given pjoss = I?Rr,, the current flowing in OHLs can be
obtained as [16]:

Geonv + Qrad — sun
I = 2
\/ Rr. (2)
h
v ?ereun - ﬁqseSin(e)Ap 3 Ap = DCOS(G)
(T.+273., (T, +273., )
rad — Y. 1 —
Graa = 0.0178 x De[*=225) )]

The forced convection heat loss rate [16], qecony =
[0.0119 (239 "°) Ko (To — T,) W <447

[1.01 +0.0372 (2295 "1 K, (T — T,) , W > 4.47

“)
where K, = 1.194 — cos(¢) + 0.194 x cos(2¢) + 0.368 x
sin(2¢). Upon substituting (3) and (4) into (2), the current
in OHLs can be articulated as a function of meteorological

parameters T,,W,0,¢. In this work, OHL midpoints are
chosen for GPS coordinates to obtain meteorological data
such as temperature, wind speed, wind direction, and zenith
angle. Specifically, 0 is set as equal to the zenith angle, and
¢ denotes the angle difference between wind speed and line
direction. The benchmark Igrr from SLR is ascertained at
T, =40(C°), T, = 80(C®), and wind speed of zero [17]. The
time-varying Iprr is derived from forecasted meteorological
data for each line, thereby modulating the thermal capacity for
each line based on prevailing weather conditions.

B. Probabilistic VRE Forecasts using ML methods

Recent literature highlights ML as the primary method for
VRE forecast, with foundational studies outlined in [18]-
[21]. This research critically examines probabilistic forecasting
models developed based on 1) Persistence Ensemble (PeEn),
2) Quantile Regression (QR), 3) Feed Forward Neural Net-
works (FFNN), and 4) Long Short-Term Memory networks
(LSTM), to generate probabilistic predictions in VRE output.

1) Persistence Ensemble (PeEn): In this study, the proba-
bilistic PeEn model leverages historical data at hour ¢ for fu-
ture predictions at the same hour. Denoting y; as the observed
value at hour ¢, historical data for this hour is aggregated to
construct a distribution function f;(y), which is applied to
provide probabilistic forecasts for hour t.

2) Quantile Regression (QR): The 7-th quantile estimated
by the QR method is denoted as ¢, = x7a(7). To consider
the non-linear nature of meteorological variables, each mete-
orological variable x is first converted to polynomial format:
Tpoty = |z, 2?]. For each specified quantile 7, the QR seeks
to minimize the sum of asymmetrically weighted absolute
residuals. The solution for the 7-th quantile [22] is:

a(r) = argmianT (1) (yi - xg)ly,ia(T)) (5)
* =1

where p,(u) = u(t —1) if (v < 0) or p,(u) = ur if (u < 0),
and u = y; — Xg;ly’ia(’l')

3) Feed Forward Neural Networks (FFNN): In this study,
the FFNN is structured specifically to yield probabilistic
forecasts by estimating the parameters of a predefined Normal
distribution, N (u,0?). The implemented FFNN architecture
incorporates two distinct nodes within its dense layer, dedi-
cated separately to predicting the mean (1) and standard devi-
ation (o) of the distribution. Given the predicted distribution
and observations y, the loss function for training the FFNN is
the negative log-likelihood of the observed data:

L==> logN(yilui,o7) (6)

4) Long Short-Term Memory networks (LSTM): LSTM is
a specialized kind of Recurrent Neural Network (RNN) that
is distinguished by its unique structure comprising memory
cells, input gates, output gates, and forget gates [23]. In this
work, the output is predefined as Normally distributed, and
the two nodes in the LSTM dense layer predict the mean ()
and standard deviation (o).
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C. Probabilistic OPF based on Monte Carlo Method

Given the obtained distribution of VRE generation forecasts
using methods discussed in Section III-B, MC simulation is
applied to generate random samples from these distributions.
For each set of random samples, a deterministic OPF is
formulated to minimize generation costs while maintaining
generation-load balance and adhering to safety constraints. The

objective function of the OPF is expressed as:
NT

N
minimize Z(CEPE +CLP, +CY)+ Z(C,l,iPri +C2)

i=1 i=1

(7

Ny N,. N, Na

D Qu+Y Q=Y Qu+> Qi  ®
Noom N

> P+> P=) P+ P ©)
=1 =1 =1 =1

Subject to

Py, min < Ps; < Ps; max (10)
Qs; min < Qs; < Qs; max (11)
P, < Pr, mas (12)
Vimin < Vi < Vimaz (13)
L; < Limaa (14)

Eq. (7) breaks down the cost into two parts: the cost from the
conventional generation and the cost from VRE. Eq. (8) and
(9) define the active and reactive power balance constraints,
(10) and (11) set the active and reactive power limits for
conventional generators, and (12) sets the maximum power
output for VRE. MC samples of VRE forecasts are used to
adjust the maximum power values P, ,,,q,. Bus voltage limits
are expressed in (13), setting the upper and lower limits at
1.05 and 0.95 per unit, respectively. The DLR is included in
the OPF analysis by changing OHLs capacity limits L; pqq-

The deterministic OPF is repeated numerous times until
further increasing the sample size would not change the
results significantly. To balance the effectiveness of results and
running time, the sample size is tested and set as 1,000 for the
case studies introduced in the next section. Given line loading
L; as an example, the POPF results are thus obtained using
the empirical probability distribution function (EPDF):

fr, () = diL . %Zl{Lli < L}d(L) (15)
=1

IV. CASE STUDIES
A. A Modified IEEE 118-bus Case and Data Description

The POPF methodologies were evaluated using a modified
IEEE 118-bus system [24] with 181 lines, 99 loads, 8 solar
generators, 6 wind generators, 30 synchronous generators, and
a slack bus. Real load and VRE data for summer 2023 were
sourced from ERCOT’s 60-Day SCED Disclosure Reports [25]
and adjusted to fit the modified system. The layout of load and
VRE is modeled based on their real-world locations. Notably,
the spatial arrangement of solar and wind generation sites were

intentionally separated, based on their geographic coordinates,
to mitigate any potential correlation in the output of different
VREs. Meteorological data used to train forecasting models
and estimate the DLR of OHLs is derived from the High-
Resolution Rapid Refresh (HRRR) model [26]. The variables
derived for training include temperature, relative humidity,
dew points, wind speed, wind degree, wind gusts, air pres-
sure, cloud cover, and zenith angle. Two case studies were
conducted: a summer peak-load day (Aug 11th- sunny and
high temperature) and a summer off-peak day (Jul 2nd-rain
in several regions). The developed QR, FFNN, and LSTM
models are trained using the previous two months of test data.
The PeEn model was trained using the previous week’s data
as it tends to be more accurate than those using more data.

B. Evaluation Criteria

To assess the impact of probabilistic VRE on POPF, a
comparison is drawn between the OPF utilizing real generation
data and the POPF using VRE forecasts, both with and
without DLR. Real load data are used for all scenarios. The
deviation between VRE predictions and actual outputs, as well
as the discrepancy between real OPF results and the POPF
using forecasts, is measured using the normalized Continuous
Ranked Probability Score (nCRPS) (16):

nCRPS(F,y) = ! / (F () — 1,<4)%dj x 100% (16)

Ymazx J—co
C. Day-ahead Probabilistic VRE forecasts

For the summer peak day, VREs generated more power
compared to the off-peak day. This difference is mainly due
to heavy rains during the off-peak day. In each scenario, this
study tests four VRE penetration levels: 20%, 40%, 60%,
and 80%. The study does not concentrate on optimizing the
locations of VREs; rather, higher VRE penetration ratios are
simulated by enhancing the capacity of existing VRE facilities.

Day-ahead VRE forecasts utilizing the PeEn, QR, FFNN,
and LSTM models are detailed in Table I, where “Solar”
is the mean nCRPS from eight solar generation forecasts,
”Wind” is the mean nCRPS for six wind generation forecasts,
and the "Mean” is the average nCRPS of all VREs. The
values in Table I are calculated using normalized VRE outputs,
i.e., dividing each by its maximum output. This implies that
minor errors in normalized forecasts become larger when the
forecasts are rescaled to their original values, particularly
impacting POPF analyses in high VRE penetration scenarios.

TABLE I
NCRPS OF VRE FORECASTS FOR A SUMMER PEAK AND OFF-PEAK DAY

Summer peak-load day Summer off-peak-load day

PeEn QR FFNN LSTM || PeEn QR FFNN LSTM
Solar (%) | 22 55 64 5.7 10 168 13.6 73
Wind (%) | 11 82 75 6.4 24 15 10.1 8.5
Mean (%) | 59 6.7 69 6.0 162 16 12.1 7.8

Table I indicates that LSTM generally outperforms other
models in forecast accuracy. Rainy conditions reduce off-peak
load day forecast accuracy compared to peak day forecasts.
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This study extends beyond a general evaluation of the impact
of various VRE forecasts on POPF by also making two
key comparisons. Firstly, Fig. 1 shows the comparison of
LSTM and PeEn forecasts for the peak-load day. Despite their
similar overall forecast accuracy (Table I), notable differences
exist in their solar and wind forecast accuracies, with PeEn
outperforming LSTM in solar but lagging in wind forecast.
This comparison aims to discern whether solar or wind power
forecasts have a more significant influence on POPF. Secondly,
Fig. 2 illustrates forecasts from the FFNN and QR models
for the off-peak day. While the FFNN model shows higher
accuracy than the QR model (Table I), the QR model’s
forecasts exhibit a narrower PI. This comparative analysis is
employed to evaluate how the forecast PI impacts POPF.
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Fig. 2. Comparing FFNN and QR Forecasts for Summer Off Peak Load Day

D. POPF using VRE forecasts without DLR

The day-ahead POPF with VRE forecasts is compared with
OPF using actual VRE data. The precision of the day-ahead
POPF is analyzed by quantifying the discrepancy in line
loadings across all lines and comparing results from the OPF
using actual generation data with those using VRE forecasts.
nCRPS* in Table II presents the hourly average nCRPS for
line loadings across all lines. The values are computed as the
hourly mean of nCRPS for each line loading, which is the
average nCRPS across all lines for each hour.

N; 24

nCRPS" = — > ! > nCRPS; ;

- 17
N, 2794 4 an
i=1 Jj=1

A higher value indicates greater deviations between POPF line
flows and OPF results using actual VRE.

TABLE II
nCRPS™* FOR LINE LOADINGS FROM DAY-AHEAD POPF wiTHOUT DLR

POPF Summer peak-load day Summer off-peak-load day
with | PeEn QR FFNN LSTM || PeEn QR FFNN LSTM
20%* | 2.69 2.66 2.66 2.62 1.63 1.62 1.69 1.55
40%* | 471 4.64 4.64  4.54 239 228 247 2.17
60%* | 6.58 6.5 6.49 6.36 325 3.06 3.28 2.94
80%* | 823 8.06 8.1 7.9 413 393 4.12 3.75

*20%, 40%,60%, and 80% refer to VRE penetration ratio of the system

Based on Table II, improved accuracy in VRE forecasts
leads to more reliable POPF. However, the gains from im-
proved forecast accuracy are limited. For example, a notable
improvement in LSTM and PeEn forecast accuracy for an off-
peak day (nCRPS reduced from 16.2% to 7.8%) leads to only
a slight reduction in line flow error in 80% VRE penetration
scenarios (from 4.13% to 3.75%). Moreover, compared to the
peak day, the POPF shows greater reliability on off-peak days
due to smaller deviations in line loadings, even though VRE
forecasts are less precise during the day. This is due to the
reduced demand volatility inherent to off-peak days.

For the first comparison discussed earlier, POPF with LSTM
forecasts yields higher precision than that with PeEn for
peak days, suggesting that precise wind generation forecasts
are more crucial for POPF accuracy than solar generation
forecasts. The second comparison offers further insights. De-
spite the higher accuracy of FFNN forecasts compared to QR
for an off-peak day, POPF utilizing QR forecasts is more
precise. This indicates that narrower PIs with fairly accurate
VRE forecasts enhance POPF reliability more effectively than
higher-accuracy forecasts with wider PIs. This could be due
to the impact of tail events on POPF, in VRE forecasts with
broader PIs, potentially compromising its reliability.

E. POPF using VRE forecasts with DLR

In addition to forecasts, this section integrates DLR into
the POPF to evaluate the effect of probabilistic VRE forecasts
in conjunction with DLR. As outlined in Section IV-A, the
DLR for POPF utilizes data from the HRRR model, while the
DLR for the baseline OPF is based on reanalysis data from the
ERAS model [27]. It is important to note that the primary focus
of this research is not on the precision of DLR in OPF, but
rather on comparing the performance of POPF with forecast
data against OPF with real data.

Based on Table III, the inclusion of DLR enhances the re-
liability of POPF. This enhancement is more pronounced than
the improvements by refining ML-based forecast models. Even
the simpler PeEn VRE forecast model, when combined with
DLR, leads to more dependable POPF outcomes compared
to using advanced LSTM forecasts alone. Furthermore, DLR
tends to amplify the positive impact of accurate VRE forecasts
on POPF, suggesting that DLR results in more reliable POPF
when coupled with precise VRE output predictions.

Fig. 3 shows the comparative analysis of POPF performance
with VRE forecasts and DLR integration at varied VRE pen-
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TABLE III
nC RPS™ FOR LINE LOADINGS FROM DAY-AHEAD POPF wiTH DLR

POPF Summer peak-load day Summer off-peak-load day
with | PeEn QR FFNN LSTM || PeEn QR FENN LSTM
20%* | 232 226 2.29 22 1.58 158 1.63 1.5
40%* | 3.88 3.75 3.84 3.65 2.14 205 221 1.96
60%* | 524 5.1 5.17 4.97 276 2.62 282 2.54
80%* | 6.82 6.6 6.71 6.43 346 334 350 3.23
*20%, 40%,60%, and 80% refer to VRE penetration ratio of the system
BTy
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Fig. 3. Comparative Analysis of POPF Performance

etration ratios. Notably, a simple PeEn forecast model, when
coupled with DLR, provides more reliable POPF outcomes
than those sorely using a sophisticated LSTM forecast.

V. CONCLUSION

This study examines the effect of VRE forecasts on POPF
considering DLR. Various ML-based probabilistic VRE fore-
cast methods, such as LSTM, FFNN, QR, and PeEn, are con-
sidered. By comparing day-ahead POPFs that employ different
VRE forecasts using actual historical generation data, the study
assesses the improvement in POPF precision resulting from
advancements in VRE forecast accuracy and applying DLR.

Case studies on a modified IEEE 118-bus system show
that the inclusion of DLR significantly enhances the reliabil-
ity of POPF results. This enhancement indicates that while
increasing the accuracy of VRE forecasts contributes to a
more reliable POPF, incorporating DLR can further amplify
this effect. The study also notes the impact of forecast PIs on
POPF: wider PIs, due to the potential for significant tail events,
may reduce POPF reliability. The case studies also underline
that accurate wind power forecasts are more influential than
solar power forecasts in enhancing POPF reliability.

Future research can investigate the potential role of more
reliable computing methodologies in mitigating the adverse
effects of forecasting errors. Such research could investigate
how advanced computational strategies and robust optimiza-
tion models can enhance the resilience and reliability of POPF
outcomes in the face of forecast inaccuracies.
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