
Received 29 April 2024, accepted 19 May 2024, date of publication 4 June 2024, date of current version 11 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3407778

Probabilistic Solar Generation Forecasting for
Rapidly Changing Weather Conditions
CHENG LYU , (Graduate Student Member, IEEE), AND
SARA EFTEKHARNEJAD , (Senior Member, IEEE)
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA

Corresponding author: Sara Eftekharnejad (seftekha@syr.edu)

This work was supported by the National Science Foundation (NSF) under Grant 2144918.

ABSTRACT Probabilistic solar generation forecasting provides a better means of quantifying generation
uncertainties for power grid operations by providing a range of potential power outputs rather than a
single-point estimate. The traditional probabilistic models are unreliable under rapidly changing weather
conditions due to fluctuating data correlations, necessitating dynamic modeling of spatio-temporal feature
correlations under diverse weather scenarios. The correlations represent the interactions across space and
time that reflect the impact of weather conditions on solar power output. This paper addresses this critical
problem with a novel method by fusing copula theory and machine learning methods to dynamically
quantify the spatio-temporal correlations among meteorological data under diverse weather conditions. The
meteorological data and the functions employed to estimate spatio-temporal correlations change dynamically
based on weather conditions. A data-driven environment-aware model has been developed to produce
probabilistic forecasts from this data, effectively quantifying uncertainty in meteorological data. Case studies
on real-world datasets demonstrate that the proposed dynamic method exhibits robust performance in solar
irradiance and solar power forecasting. Moreover, the model outperforms state-of-the-art models by up to
60% higher accuracy under non-sunny conditions in autumn and winter.

INDEX TERMS Copula theory, data correlation, dynamic forecasting, probabilistic solar generation
forecast.

NOMENCLATURE
α Dependence parameters in copula functions.
p Correlation matrix in Gaussian copula.
η, µ Parameters controlling penalty for T and w.
γ, σ Quantile level, Standard deviation.
ŷ Predicted results of XGBoost.
I, IL , IR All nodes, left nodes, and right nodes in a tree.
�(fk ) Complexity penalty of kth tree in XGBoost.
8() Uni-variate standard normal CDF.
CTI A data cluster with centriod xCTI .
F,F−1 Distribution function, inverse distribution

function.
fk kth independent regression tree with structure

q and leaf weights w.
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n Data points number in the original weather dataset.
T ,w Number of leafs, and leaf weights in a tree.
U A random variable that has a uniform distribution

on the interval [0,1].

I. INTRODUCTION
The dramatic increase in the integration of solar-powered
generation units is anticipated to lead to substantial changes
in power grids, necessitating improved operational and plan-
ning procedures. An accurate solar generation forecast is a
vital step in these operational enhancements and is especially
critical for maintaining the real-time load and generation
balance. Traditionally, the generation forecast is achieved
using historical data, such as meteorological observations
obtained from local weather stations or remote sensing
devices [1]. The resulting forecast provides grid operators
with a short-term (day-ahead or hour-ahead) estimate of solar
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generation, allowing an optimized power dispatch, balancing
the generated electricity and load, and preparing necessary
measures to protect the grids. Solar power forecasting can be
performed deterministically or probabilistically. The proba-
bilistic forecasts generate predicted values as a probability
distribution [1]. In recent years, the research community
and utilities have acknowledged the need for probabilistic
predictions to integrate uncertainty quantification into grid
operations and planning [2]. Previous research has shown
that probabilistic approaches are more reliable than their
deterministic counterparts [3]. The focus of this paper is thus
on probabilistic forecasting.

Probabilistic forecasting methods are classified into para-
metric techniques, in which the forecasted variable is
expected to follow a prior distribution, and non-parametric
approaches, in which no such assumptions are made [1].
Parametric techniques refer to the sum of a deterministic
forecast and a predefined distribution of the forecast error [4].
In the category of the non-parametric probabilistic forecasts,
Quantile Regression [5], [6] and Persistence Ensemble
(PeEn) [7], [8] are two widely used benchmarks. An example
of a probabilistic solar irradiance forecast fromPeEn is shown
in Fig. 1, from which some shortcomings of conventional
probabilistic approaches for solar forecasts can be identified
as follows:

1) Conventional probabilistic forecasts cannot adapt to
sudden weather changes; often, forecasts for different
days are nearly identical.

2) The Prediction Interval (PI) derived from traditional
techniques is overly wide to be a credible reference for
power system planning.

In light of the limitations of traditional probabilistic
forecasting, the Copula Theory offers a refined solution.
By capturing the dependency correlation between multiple
variables, copula-based forecasts can adapt to dynamic
weather changes and provide more reliable prediction
intervals for enhanced decision-making in power system
planning.

FIGURE 1. Probabilistic forecasts obtained from the PeEn method.

A. RELATED WORK ON FORECASTING BASED ON COPULA
THEORY
Copulas were first introduced to probabilistic wind power
forecasting in [21] and [22] to capture uncertainties in fore-
casting and later were applied to solar generation forecasting
for the same purpose [9], [10], [11]. The application of
copula theory in generation forecasting can be categorized in
three ways: 1) the development of a conditional probability
distribution of generation, given meteorological variables,
2) the analysis of the correlations between different variables,
and 3) the generation of probabilistic forecasts using the
ensemble approach.

In the first category, the copula-based joint probability
distribution function (PDF) andBayesian theory are generally
utilized to form the conditional PDF of a renewable genera-
tion unit. For example, authors in [9] apply copula theory to
estimate the joint distribution of Global Horizontal Irradiance
(GHI) forecast and solar generation output. Conditional
probabilities for solar generation output are calculated using
the obtained marginal and joint distributions. Similarly,
in [10] and [11], Copula-based conditional probabilistic
forecast models are developed for predicting wind power and
its ramp rate, respectively. In another work [12], the joint dis-
tribution between the forecasted and the real meteorological
variables is modeled using copulas to capture the uncertainty
inherent in the forecasted meteorological data. A conditional
PDF of weather scenarios given near real-time weather
predictions is thus generated [12]. The generated weather
scenarios are input variables to amachine-learningmodel that
yields probabilistic forecasts. In [13], the prior distribution of
the solar power forecasts is derived first using deterministic
forecasts. Copula functions, constructed through the analysis
of relationships between solar power output and temperature,
are used to update the prior distribution to the posterior
forecast distribution, thus providing probabilistic forecasts.
Furthermore, Copula-based Quantile Nonlinear Regression
(CQNR) is deployed by authors in [23] for a day-ahead solar
power forecast methodology. Given input variables v and
predicted values x [23], the quantile equation with quantile
level γ is formulated as:

Qx(γ | v) = F−1(C−1x|v (γ | v)), (1)

where the copula function C is used to optimize the quantile
equation. In a similar work [21], Quantile-Copula is applied
to probabilistic wind power forecasting. In [24], a copula-
based autoregressive time series forecasting model is used
to forecast solar irradiance. The time series are modeled
using a pairwise decomposition of conditional distributions
obtained from a copula, thus providing a flexible framework
to generate synthetic series for generating forecasts. In [25],
the time series of wind speed, which is used for generating
forecasts, is classified into multiple non-Gaussian compo-
nents through the Gaussianmixture copulamodel. The hybrid
model developed in [14] forms a joint probability distribution
of solar power and weather variables using Copula theory
and the Monotone Broad Learning System. The marginal
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TABLE 1. Discussion of the limitations of the previous solutions and the proposed solution to address those limitations.

probability distribution of the forecast, given certain input
weather variables, can be generated from the joint probability
distribution.

Another application of copula is for feature selection,
mainly to determine the optimal variables used for forecasting
by analyzing the correlation between power generation and
other variables. In [15], the relations between meteorological
variables and solar power generation are analyzed by the
copula theory. The most relevant variables are then fed to
an LSTM model to predict mid- to long-term (monthly
or yearly) solar power. Similar work is proposed in [16],
where D-vine copulas determine suitable variables for the
probabilistic solar forecast after investigating the relationship
between solar power and meteorological variables. Although
these works demonstrated the promise of copula for feature
selection, selecting a fixed set of optimal features for all
weather scenarios is not persuasive for establishing a robust
predictive model, especially under rapidly changing weather
conditions.

The adoption of copula theory for generating probabilistic
forecasts has been demonstrated in several studies through
the ensemble approach. For example, in [17], errors of
deterministic forecasts are used to fit a D-vine copula. The
generated probabilistic error from the well-trained copulas is
thus added to the deterministic results to yield a probabilistic
forecast. Similarly, Gaussian Copula is deployed in [18] to
form the distribution of the forecast error. In a different
study [19], an ultra-fast pre-selection algorithm is deployed
to select the optimal features, which are utilized by Quantile
Regression (QR) to yield initial forecasts. Initial forecasts
from different sensors are used to train a copula function,
which generates final probabilistic forecasts. In another
work [20], historical meteorological data from the immediate
past two weeks were first classified into groups. The data in
each group is used to fit a copula function, which generates
synthetic weather data for generating probabilistic forecasts.

Despite their contributions, Table 1 provides a comprehen-
sive analysis of the limitations and proposed solutions related

to previous work utilizing copula theory in renewable energy
forecasting. The aforementioned studies fail to fully consider
the dynamic uncertainty of meteorological variables under
various weather conditions. Specifically, they do not adjust
their methodologies and data to estimate spatio-temporal
correlations among meteorological variables in response to
rapidly changing weather conditions, which could result in
suboptimal performance. This oversight can significantly
impair the predictive accuracy and reliability of the models,
especially during rapidly changing weather events where
accurate forecasts are most crucial.

B. CONTRIBUTION
This paper thoroughly addresses the problem by integrating
Copula theory and data-driven forecast methods, which
enables dynamic quantification of the spatio-temporal corre-
lations among various variables. By effectively representing
the intricate relationships between diverse variables under
various weather conditions, the forecasting model’s accuracy
and robustness significantly improve under rapidly changing
weather conditions.

In summary, the contributions of this paper are:
1) The developed predictive model dynamically models

spatial-temporal correlations of meteorological vari-
ables based on weather conditions. The data and
functions used to quantify spatio-temporal correlations
among meteorological variables are dynamically chang-
ing based on prevailing weather conditions;

2) An environment-aware model is developed to pro-
duce probabilistic forecasts that leverage the dynam-
ically captured spatial-temporal correlations. This
approach pre-trains multiple models, each designed
for unique weather scenarios, with data incorporating
spatio-temporal correlations relevant to those condi-
tions. The selection of the appropriate model for forecast
generation is based on the prevailing weather at the
time of the forecast, thereby improving the model’s
adaptiveness to fluctuating meteorological conditions;
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3) The developed forecast model exhibits significant
robustness and precision in predicting solar irradi-
ance and power generation under various weather
conditions and geographical locations. The practical
applicability of the model was substantiated through
its participation in the 2022 American-Made Solar
Forecasting Prize [26], where it secured a runner-
up place, demonstrated exceptional performance, and
highlighted its potential for solar power forecasting in
real-world scenarios.

II. THE DEVELOPED MODEL FOR PROBABILISTIC SOLAR
GENERATION FORECASTS
In this paper, a novel probabilistic solar power forecast model
is developed by integrating the Copula theory and Extreme
Gradient Boosting Tree (XGBoost). Copula theory and an
XGBoost classifier are integrated to dynamically quantify
spatio-temporal correlations among diverse meteorologi-
cal variables under various weather conditions, producing
synthetic data that capture uncertainties not present in
the original dataset. The synthetic data is utilized by an
environment-aware model, developed based on XGBoost
regression trees, to generate probabilistic forecasts. This
integration results in dependable and robust predictions,
effectively addressing the uncertainties associated with solar
power forecasting.

The developed probabilistic solar power forecast model
uniquely incorporates data clustering, correlation analysis,
synthetic data generation, and data-driven modeling to
produce probabilistic forecasts, as depicted in Fig. 2.

FIGURE 2. Framework of the developed model.

A. DATA CATEGORIZATION
The authors have previously demonstrated that the optimal
features for accurate forecasting change dynamically depend-
ing on weather circumstances [27]. Specifically, optimal
features for accurate forecasting under sunny conditions vary
from those pertinent to non-sunny conditions. A decision tree
model is employed to initially classify the historical weather
data into three distinct categories based on the prevailing
meteorological conditions, improving the efficiency of the
subsequent training procedures. Specifically, the data is

considered to be of the ‘‘sunny’’ type when the cloud
cover is less than 25%; otherwise, it is classified as
‘‘cloudy’’ or ‘‘other’’ data. Precipitation and snowfall are
then used to differentiate between ‘‘cloudy’’ and ‘‘other’’
data, which encompasses both ‘‘rainy’’ and ‘‘snowy’’
conditions. To eliminate the confounding effects of night-
time conditions, only day-time data when the zenith angle
is less than 87 degrees is retained for analysis.

The three aforementioned data groups are further classified
into clusters to better quantify spatio-temporal correlation
amongmeteorological data under diverse weather conditions.
Existing literature predominantly applies clustering to the
input training samples, notably meteorological variables.
This method, however, is prone to noise and inaccuracies
inherent in Numerical Weather Predictions (NWP), which
are often employed as inputs [28]. Such vulnerabilities
lead to challenges in accurately quantifying spatio-temporal
correlations within these clusters, causing inaccuracies in
data uncertainty estimations, particularly under varying
weather conditions where NWP’s reliability is compromised.
Inspired by the clustering method presented in [14] and [28],
clustering is based on solar power values in this study,
which is extended across the entire dataset. Therefore,
meteorological variables used for prediction are not clustered
according to their intrinsic values but are categorized based
on the target variable, the solar power output. This approach
guarantees that subsequent quantification of spatio-temporal
correlations among meteorological variables is tailored to
specific conditions associated with a certain range of solar
power output, enhancing the precision of these correlations.
In this study, the optimal number of clusters, denoted as k ,
is determined independently for each case study through a
grid-search method, resulting in 3× ki clusters. Each cluster
refers to meteorological and solar power data under a specific
weather condition.

B. THE DEVELOPED COPULA-BASED FEATURE SELECTION
Utilizing the 3 × ki clusters, the next step involves selecting
the most relevant features within each cluster to enhance
prediction under various weather conditions. This selection is
pivotal because, as demonstrated by previous research [27],
the set of features that yield the most accurate forecasts
can vary with changing weather conditions. By identifying
these optimal features and examining the spatio-temporal
correlations between them, the aim is to enhance the data
correlation evaluation under varying weather conditions,
ultimately leading to more precise forecasts. A bivariable
copula-based method has been developed to implement
feature selection.

1) COPULA THEORY
In statistics theory, copula theory is deployed to estimate the
multivariate cumulative distribution function (CDF) of the
input variables [29], thereby enabling an analysis of data
correlations. More specifically, bi-variable copula functions
are employed to identify the most relevant meteorological
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variables for generating accurate forecasts under diverse
weather conditions. Multivariate copula functions are intro-
duced to quantify the spatio-temporal correlations among
relevant meteorological variables.

According to the Sklar’s theorem, the joint distribution F
of variables X = {x1, x2, . . . xn} with marginals Fi(xi) is
formulated as [30]:

F(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)) (2)

The CDF is in the range of zero to one. Hence, the input
variables must be transformed to a standard uniform distri-
bution, a procedure known as probability integral transform.
Suppose a standard uniform distribution for variable xn is
Un = Fxn (xn), the probability integral transform is [30]:

FUn (un) = P(Un ≤ un) = P(Fxn (xn) ≤ un)

= P(xn ≤ F−1xn (un) = Fxn (F
−1
xn (un)) = un, (3)

where FUn is the CDF of a uniformly distributed random
variable, and Un has a uniform distribution in the interval
[0,1]. Thus, all the variables in X can be converted to uniform
distributions [31]:

(u1, u2, . . . un) = (F1(x1),F2(x2), . . .Fn(xn)) (4)

The copula of the original variables X = {x1, x2, . . . xn} is
defined as the joint CDF of (U1,U2, . . .Un):

C(u1, u2, . . . un) = P(U1 ≤ u1,U2 ≤ u2, . . . ,Un ≤ un)
(5)

Suppose the joint distribution of (u1, u2, . . . un) is
H (u1, u2, . . . un). There exists a function C() that integrates
the marginal distribution and the joint distribution, which can
be expressed as [30]:

H (u1, u2, . . . un) = C(F1(u1),F2(u2), . . .FN (un)) (6)

Based on the inverse transformation of a CDF of the marginal
distribution, which refers to ui = F−1i (ui), i = 1, 2, . . .N , the
expression of the Copula function can be obtained:

C(u1, u2, . . . un) = H [F−11 (u1),F
−1
2 (u2), . . .F−1n (un)] (7)

Upon obtaining the Copula function C(), the joint density
function of X is derived as:

f (x1, . . . , xn) =
∂2

∂x1 · . . . · ∂xn
C(u1, . . . , un)

= f1(x1) · . . . · fn(xn) · c(u1, . . . , un)

c(u1, . . . , un) =
∂2C(u1, . . . , un)
∂u1 · . . . · ∂un

(8)

Therefore, Copula functions enable the independent mod-
eling of the marginal distributions and the dependency
structure for random variables with unique marginal dis-
tributions [31]. Copulas are classified into bivariate and
multivariate Copulas. A bivariate Copula is a joint cumulative
distribution function (CDF) of two random variables, and
a multi-variate copula is used to model the joint CDF of
multiple random variables.

2) SINGULARITY PROBLEM
The efficacy of copula functions is undermined when the
input exhibits singularity. When the random variables X form
a singular matrix, the corresponding U in (3) is also singular.
The determinant of a singular matrix is zero, indicating that
Ui is not invertible. Hence, the copula function C in (7)
cannot be obtained. The Ledoit-Wolf shrinkage method [32]
is introduced to address the problem.

Suppose U forms a singular matrix, and the corresponding
covariance matrix is S. To avoid singularity, S is then updated
using the Ledoit-Wolf shrinkage method as,

S′ = (1− ϵ)× S+ ϵ × trace(S), (9)

where ϵ is the shrinkage parameter and ϵ ≈ 0.

3) BI-VARIABLE COPULA-BASED FEATURE SELECTION
Archimedean copulas constitute an associative class of
copulas, with the Clayton, Frank, and Gumbel copulas
being among the most widely utilized instances of the
class of Bi-variable copula. The copula function of the
Clayton, Frank, and Gumbel copulas are denoted in (10)-(12)
respectively [33].

C(u1, u2;α) = (u−α
1 + u

−α
2 − 1)−

1
α α ∈ (−1,∞) \ {0}

(10)

C(u1, u2;α) = −
1
α
log(1+

(e−αu1 − 1)(e−αu2 − 1)
(e−α − 1)

)

α ∈ (−∞,∞) \ {0} (11)

C(u1, u2;α) = exp
(
− [(− log(u1))α + (− log(u2))α]

1
α
)

α ≥ 1 (12)

Here, the Maximum log-likelihood estimation
(MLE) (13) [34] is employed to estimate the dependence
parameter.

ℓ(α) = argmax
m∑
i=1

log(c(F(x1),F(x2);α)) (13)

In (13), F(x1) is the marginal CDF of the original feature x1.
To evaluate the appropriateness of an Archimedean copula
function in accurately capturing the dependence structure
between two variables, the Bayesian Information Criterion
(BIC) [35] is deployed:

BIC = −2× log(c(F(x1),F(x2))+ 2× log(Ns), (14)

where Ns is the sample size of X .
The copula model differs from the traditional correlation

analysis methods in that it does not limit the selec-
tion of marginal distributions. This flexibility allows for
examining both linear and nonlinear associations between
pairs of variables, as the copula function consistently
estimates correlation values. Given a bi-variable copula, the
Kendall’s τ (15) and Spearman’s rank correlation (16)
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coefficients are utilized here to analyze data correlations [36].

τ = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1 (15)

ρ = 12
∫ 1

0
C(u1, u2)du1du2 − 3 (16)

The applicability of the coefficients is broadened by the
fact that they are independent of the marginal distributions
of the variables, in contrast to linear correlation coefficients.
These coefficients quantify the probability of simultaneous
substantial increases or decreases in the random variables,
providing a valuable measure of the strength and nature of
the correlation between variables.

In this work, the correlation between each of the mete-
orological features and the solar power is analyzed using
Kendall’s tau coefficient and Spearman’s rank correlation
coefficient in (15) and (16), respectively, based on the
obtained bi-variable copulas. Instead of determining one
combination of optimal features, the optimal 2,3,. . . , n
features are obtained for each cluster through the aforemen-
tioned data correlation analysis, where n refers to the total
number of features. Thus, 3×ki× (n−1) numbers of optimal
feature sets are obtained. This approach comprehensively
investigates the relationship between meteorological features
and solar power, providing valuable insights into factors
influencing forecasts.

C. SYNTHETIC DATA GENERATION
The generation of synthetic data aims to assess the
spatio-temporal relationships among optimal feature sets,
thereby quantifying the uncertainties within meteorological
data that may not be apparent in original data but could
emerge in future forecasting scenarios. The approach begins
with developing multivariable copula functions for each
optimal feature set and then selecting the best copula function
to generate synthetic data related to prevailing weather
conditions.

Fig. 3 demonstrates the rationale behind generating
synthetic data. Initially, the process starts with using the
data in optimal feature sets as the original data. Through
the application of the copula function, additional synthetic
samples are generated. These samples represent uncertainties
not captured in the initial data, and data expansion strengthens
the model’s ability to handle uncertainties. Training the
model with both original and synthetic data refines its
forecasting robustness, making it more resilient and adaptable
to unforeseen variations in weather conditions.

FIGURE 3. An illustration of synthetic data generation.

Specifically, the dependence structure between variables
in each aforementioned 3 × ki × (n − 1) optimal feature
set is estimated using multivariable copulas. Thus, joint
CDFs can be obtained frommultivariable copulas to generate
synthetic meteorological data to incorporate the uncertainty
of the weather conditions. Vine copula and Gaussian copula
are introduced simultaneously in the research for such
a purpose. The simultaneous integration of these distinct
copula functions mitigates the limitations associated with
the exclusive reliance on a single copula type, thereby
enhancing model flexibility. The adaptability of the model
is underscored by the selective application of either Vine or
Gaussian copula, contingent upon the characteristics of the
real-time weather conditions.

1) VINE COPULA
Vine copulas model dependencies among random variables
by implementing a nested structure of bi-variate copulas,
known as pair-copula [30]. The nested structure, and thus
the relationship between the pair-copulas, determines the
classification of the vine copula as either a C-vine, R-vine,
or D-vine copula. The joint density function of variables is
formulated as X as D-vine, C-vine, and R-vine copulas in
equations (17)-(19) respectively.

f (x1, . . . , xn;α) = [
n−1∏
j=1

n−j∏
i=1

ci,(i+j)|(i+1),...,(i+j−1);αj ]

·

n∏
h=1

fh(xh) (17)

f (x1, . . . , xn;α) = [
n−1∏
j=1

n−j∏
i=1

cj,(i+j)|1,...,(j−1)αj ] ·
n∏

h=1

fh(xh)

(18)

f (x1, . . . , xn;α) =
n∏

h=1

fh(xh)

·

n−1∏
j=1

∏
e∈Ei

cj(e),r(e)|D(e);αj (F(Xj(e)|XD(e)),

F(Xr(e)|XD(e)) (19)

The dependence parameter αj of each pair-copula is estimated
using (13). In (19), e = j(e), and r(e)|D(e) is the combination
that determines each pair-copula, and E is the combination
set. The conditioning sets D and conditioned sets j, r are
utilized to establish the order of the arguments within the pair
copula.

2) GAUSSIAN COPULA
Gaussian copulas model the variables’ dependence as a
Gaussian distribution. The correlation matrix of the multi-
variate normal distribution is utilized as the parameter to
describe the variables’ dependence in the Gaussian copula.
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The Gaussian copula function is denoted as [33]:

C(u1, . . . un; p) = 8p(8−1(u1), . . . , 8−1(un)) (20)

Nevertheless, either Vine copula or GaussianCopula has its
limitations. Gaussian copula makes it hard to capture the tail
structure, and Vine copula is inefficient for high-dimensional
data. This work introduces a novel solution to address the
described research gap in comprehensively considering the
volatile characteristics of weather conditions. The developed
method applies the introduced types of multivariable copulas
simultaneously, while the optimal copula is dynamically
chosen based on future weather conditions at the time
of the forecast. An XGBoost classifier is applied for
this purpose. Thus, the spatio-temporal correlation between
meteorological variables is dynamically quantified.

XGBoost [37], a scalable machine learning algorithm
based on ensemble tree boosting, excels in classification
tasks. By aggregating multiple weak decision trees, XGBoost
demonstrates resilience against data outliers. Given its robust-
ness, XGBoost is well-suited for applications within this
study, notably in scenarios where meteorological data may
include outliers due to rapidly changing weather conditions.

In the developed method, four introduced types of
multivariable copulas are utilized simultaneously, resulting in
a total of 3×ki×(n−1)×4 copula functions, thereby creating
a comprehensive pool of copula functions, denoted as set C.
AnXGBoost-based classifier is then employed to identify and
select the most suitable copula function from this pool based
on the prevailing weather conditions. The classifier is trained
using meteorological data X = {x1, . . . , xn} as input features,
and the copula functions C = {C1, . . . ,C3×ki×(n−1)×4} as
labels. During training, the optimal copula functions under
prevailing weather conditions are pre-analyzed based on final
forecasting performance, enabling the precise selection of
appropriate functions for accurate weather condition analysis.

For the developed multi-class copula function classifica-
tion problem, the prediction as is formulated as:

Ĉ = argmaxj

k∑
k=1

fk,j(x), (21)

where fk,j(x) is the output of the k-th tree for class j (copula
function j). The softmax function, defined as the loss function
for each tree, is then applied in this study to convert raw
predictions into probabilities.

L(C, Ĉ) = −
k∑
j=1

1(C = j) log(
exp(

∑k
k=1 fk,j(x))∑k

s=1 exp(
∑k

k=1 fk,s(x))
)

(22)

Aggregating trees and improving the model using the
greedy method, the objective of the applied XGBoost is

defined as:
L(t)
=

n∑
i=1

L(Ci, Ĉi
(t−1)
+ ft (xi))+�(ft )

�(ft ) = ηTt +
1
2
µ||wt ||2

, (23)

where ft (x) is the independent regression tree with structure q
and weights w at the t-th iteration. It is computationally
challenging to list all tree structures in f (·) for optimization.
To simplify the calculation, the second-order Taylor expan-
sion and the greedy algorithm are applied to add branches of
trees for optimization iteratively. The objective function (23)
can be simplified as:

L′=
1
2

[ (
∑

i∈IL gi)
2∑

i∈IL hi + µ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + µ
−

(
∑

i∈I gi)
2∑

i∈I hi + µ

]
−η,

(24)

where gi = ∂ŷi
(t−1) l(yi, ŷi

(t−1)) and hi = ∂2
ŷi
(t−1) l(yi, ŷi

(t−1)).
The objective L is thus readily optimized to find the leaf
weights of the entire tree.

The developed approach, summarised in Algorithm 1,
allows for selecting the copula function that best captures
the underlying dependencies between the meteorological
features and the solar power, providing a more accurate
representation of the complex relationships between these
variables. The well-trained copula function classifier selects
different well-trained copula functions for each time step
in the forecasting process. The selected copula function is
then employed to generate synthetic samples S , which are
subsequently deployed for probabilistic forecasts.

D. PROBABILISTIC FORECASTING
An environment-aware model is developed to generate
probabilistic forecasts using the synthetic data generated in
the previous section. This model is integrated with the copula
function classifier, enhancing its adaptability to fluctuating
weather conditions by selecting appropriate data and models
for forecast generation.

After the data-categorization step, 3× ki× (n− 1) optimal
feature sets corresponding to various weather scenarios are
established. Each set is employed to train an individual
XGBoost regression tree. The determination of the specific
model for forecasting is guided by future weather conditions,
as informed by the copula function classifier. A Huber loss
function is employed for the XGBoost regression trees, which
is defined as (25). Through the Huber loss function, the
forecast model achieves robustness without compromising
the precision essential for accurate prediction.

Lδ(y, p) =


1
2
(y− p)2 for |y− p| ≤ δ,

δ(|y− p| −
1
2
δ) otherwise.

(25)

The Huber loss function merges aspects of both mean
squared error and mean absolute error, allowing for outlier
impact mitigation and maintaining the model’s predictive
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Algorithm 1 Adaptive Selection of Copula Functions Based
on Weather Conditions Leveraging XGBoost
1: Input: Meteorological data X = {x1, . . . , xn}, 3 × ki ×

(n− 1) number of optimal feature sets
2: Output: Trained XGBoost model, selected copula func-

tion Ĉ , synthetic samples S
3: Initialize pool of copula functions C
4: for each optimal feature set do
5: Estimate joint CDFs using Vine and Gaussian

copulas
6: Add all four well-trained copulas to C
7: end for
8: C contains 3× ki × (n− 1)× 4 copula functions
9: for each meteorological data xi ∈ X do

10: for each copula function Cj ∈ C do
11: Evaluate final forecasting accuracy using syn-

thetic data generated from Cj
12: end for
13: Find the best copula function for xi
14: end for
15: Initialize XGBoost model with trees fk,j for each class j
16: for t ← 1 to T do
17: for each instance xi ∈ X do
18: Compute gradient gi and Hessian hi for xi
19: Update tree structures and leaf weights
20: end for
21: Aggregate trees, update model using greedy method
22: Optimize L(t) with regularization term �(ft )
23: end for
24: Ĉ ← argmaxj

∑K
k=1 fk,j(x)

25: Return trained XGBoost model

accuracy. The δ parameter establishes a threshold for
applying quadratic loss, enhancing sensitivity to minor
discrepancies.

During training, 3× ki × (n− 1)× 4 copula functions are
derived from 3 × ki × (n − 1) optimal feature sets, resulting
in the same number of synthetic sample feature sets. Each
sample set, along with its corresponding original data, is used
to train an XGBoost regression tree. A substantial number,
specifically 3×ki×(n−1)×4, of XGBoost regression trees are
pre-trained. This pre-training process ensures that eachmodel
is finely tuned to accurately reflect the uncertainty captured
by its feature set, enhancing the overall predictive accuracy
in varying weather conditions. Through this comprehensive
approach, the research leverages the dynamic nature of copula
functions to provide a robust framework of weather-adaptive
predictive modeling.

To generate forecasts using Numerical Weather Prediction
(NWP) data, the trained XGBoost-based copula function
classifier, and the trained XGBoost regression trees, the
developed process is outlined as follows:
1) The trained copula function classifier uses the NWP data

to select the best-fit copula function for future weather
conditions;

2) The copula function determined in step 1 is used to
generate synthetic samples, denoted as S . The XGBoost
regression tree that has been trained with feature types
corresponding to those in S is selected;

3) Finally, S are used by the selected trained XGBoost
regression tree to produce solar power forecasts. These
forecasts are refined into probabilistic forecasts using
the Gaussian Kernel Density Estimation [38] in (26).

f̂ (x) =
1

nh
√
2π

n∑
i=1

exp
(
−
(x − Xi)2

2h2

)
(26)

III. CASE STUDIES
The forecasting performance of the developed model is
initially examined through solar irradiance predictions, where
it is compared to benchmark models in both literature [39]
and industry. Subsequently, to further validate the model’s
effectiveness, the solar power data used in [14] are utilized for
comparative analysis with models developed in [14] and [39],
representing contributions in recent literature.

A. DATA CHARACTERISTICS AND EVALUATION CRITERIA
The data used for solar irradiance forecasting were sourced
from the Open Weather database [40] and were gathered
in Seattle, Washington, between January 1, 2019, and
December 31, 2021. Meteorological data such as hourly
temperature, zenith angle, dew points, feel-like temperature,
air pressure, relative humidity, average wind speed, wind
degree, cloud cover, and visibility are employed to forecast
solar irradiance. The training dataset spans from January 1,
2019, to December 31, 2020, whereas the validation data is
the last 20 % of training data. The test dataset spans from
January 1, 2021, to December 31, 2021.

Following a comparison of the proposed model with
benchmarks utilizing the aforementioned solar irradiance
data, the proposed model’s performance has been analyzed
against benchmarks in the literature for solar power forecast-
ing. The data used for solar power forecasting is identical
to the dataset used in [14], spanning from 2017 to 2018 in
Yulara, Australia. The meteorological data for solar power
prediction comprises solar irradiance, temperature, wind
direction, and wind speed, measured at 5-minute intervals.
To ensure a fair comparison between the proposed model and
the model in [14], the training data is consistent with the data
used to develop the model in [14]. Additionally, both models
were evaluated using the same testing data from 2018.

To evaluate the probabilistic forecast, two statistical
metrics, i.e., the normalized Continuous Ranked Probability
Score (nCRPS) (27) and the Pinball loss (28), are deployed.

nCRPS(F, y) =
1

ymax

∫
∞

−∞

(F(ŷ)− 1y≤ŷ)
2dŷ× 100% (27)

The nCRPS is similar to the normalized mean absolute error
(nMAE) for a deterministic forecast [41]. Pinball Loss is
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expressed as:

Pinball Lossγ (y, ŷ) =

{
(y− ŷ)γ, if y ≥ ŷ
(ŷ− y)(1− γ ), if ŷ > y

(28)

Since γ refers to the quantile level, the Pinball loss is
used to evaluate the accuracy of quantile forecasts. A lower
CRPS or Pinball loss implies higher forecasting accuracy,
and a zero value is a perfect result. The CRPS and Pinball
Loss are essential for evaluating probabilistic forecasts,
as CRPS evaluates the accuracy and calibration of entire
distributions, while Pinball Loss specifically measures the
precision of quantile forecasts used in forming prediction
intervals. Together, these metrics evaluate the reliability and
accuracy of models.

B. BENCHMARK
The study utilizes benchmarks including PeEn, QR, andmod-
els introduced in prior research [14], [39] for a comprehensive
comparative analysis. Specifically, the proposed model is
compared with PeEn, QR, and the model in [39] for hourly
solar irradiance forecasting. For solar power forecasting on
a 5-minute interval basis, the proposed model is compared
against the model in [14] and [39]. Next, these benchmarks
are explained briefly.

1) A HYBRID FORECASTING MODEL COMBINING QUANTILE
REGRESSION-BASED MONOTONE BROAD LEARNING
SYSTEM (QRMBLS) WITH COPULA THEORY
In recent literature, authors in [14] developed a compre-
hensive model that integrates QR, MBLS, and Copula
theory, effectively merging probabilistic forecasts with the
spatial-temporal correlations of meteorological variables
through Gaussian Copulas. This model provides probabilistic
solar power forecasts by generating joint probability dis-
tributions that incorporate both solar power and meteoro-
logical data, thus obtaining predictions based on forecasted
meteorological data.

2) GENERALIZED LAPLACE-BASED LONG-SHORT TERM
MEMORY NETWORK (GL-LSTM )
The model developed in [39] is also used as the benchmark
from recent literature for comparison. Authors in [39] devel-
oped a modified LSTM network whose output adheres to a
generalized Laplace distribution, incorporating an innovative
loss function derived from the CRPS. The hyperparameters
of the Generalized Laplace LSTM (GL-LSTM)model—such
as learning rate, layer count, neurons per layer, and dropout
rate—were rigorously optimized through a comprehensive
cross-validation process, evaluating numerous parameter
configurations to enhance model performance.

3) PERSISTENCE ENSEMBLE
The persistence ensemble (PeEn) method [42] is a widely
used benchmark in the industry.

4) QUANTILE REGRESSION
Quantile Regression (QR) [43] is also a benchmark in the
industry. The appliedQRmodel is built with the same training
data and optimized with the cross-validation approach.

C. DATA CATEGORIZATION
Historical weather data is first divided into three categories:
sunny, cloudy, and other. Each data group is then subdivided
into smaller clusters using the described clustering approach,
enabling a more granular analysis of the relationships
between variables within each group. To identify the optimal
number of clusters, the grid-search method is applied based
on the Within-Cluster Sum of Squares (WSS) (29), a metric
used to evaluate the clustering performance. A lower WSS
value indicates that the data points are closer to their
respective centroids, suggesting a better clustering solution.
The clustering performance is illustrated in Fig. 4.

WSS =
k∑
i=1

∑
xi∈CTI

∥∥xi − xCTI ∥∥2 (29)

FIGURE 4. The variations of WSS with the increase in clusters.

Upon determining the optimal clusters using the Elbow
method, the bi-variable copula-based approach is formulated
to determine the optimal features in each cluster. For instance,
consider one cluster of rainy data where the pair correlation of
marginal distributions of each variable and GHI is illustrated
in Fig. 5. Here, the cloud cover and humidity show a
strong negative correlation, while temperature has a strong
positive correlation with GHI. Kendall’s τ and Spearman’s
rank ρ values corresponding to each variable are presented in
Table 2, from which the same observation can be obtained.
Consequently, the optimal features in each data cluster are
chosen based on Kendall’s τ and Spearman’s rank ρ values.
It is imperative to acknowledge that the relationship between
GHI and meteorological variables is not uniform but varies
significantly across distinct clusters, each representing a
unique weather condition.

Upon identifying various optimal feature sets for each
cluster, a pool of copula functions can be established using
each of the optimal feature sets. This pool is utilized for
training an XGBoost-based copula function classifier for
future forecasting purposes, as illustrated in Fig. 2.
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FIGURE 5. Pair correlation of marginal distributions when modeling
copula functions of each meteorological variable and GHI in an example
cluster.

TABLE 2. Kendall’s τ and Spearman’s rank ρ values between GHI and
different meteorological variables.

D. THE COPULA FUNCTION CLASSIFIER
The hyperparameters of the XGBoost classifier utilized
in this study are refined through cross-validation, setting
the learning rate at 0.001, the maximum tree depth at 6,
and employing L2 regularization to prevent over-fitting by
penalizing model complexity. An illustrative example of
the forecasts and the dynamically selected optimal copula
function for each time step is presented in Fig. 6, where
night-time data has been excluded, as previously mentioned.

Fig. 6 shows solar irradiance forecasts for a sunny day,
including an hour of cloudy conditions and a following
rainy day. It illustrates how the trained copula function
classifier selects an appropriate copula function for each
time step based on hourly meteorological data. The labels
‘‘VC-3’’ and ‘‘GC-7’’ represent the Vine andGaussian copula
functions, estimated using three and seven meteorological
features, respectively. The trained XGBoost regression trees
use synthetic samples derived from these copula functions
to produce probabilistic forecasts. The specific XGBoost
regression tree applied varies with each time step, tailored to
the copula function selected for diverse weather conditions.

This example highlights the adaptability of the forecasting
model to different weather conditions by dynamically
adjusting the data and functions used to estimate the
spatio-temporal correlation between meteorological vari-
ables. It also demonstrates that an accurate forecast requires

FIGURE 6. An example of forecasts for a sunny day (with one-hour cloudy
condition) and a following rainy day. Night-time data is filtered out.

fewer features under stable weather conditions, e.g., sunny
weather, and more under unstable conditions, e.g., cloudy
or rain. The forecasts show the preference for Vine copula
functions when fewer features are involved, aligning with
their effectiveness in lower-dimensional data scenarios,
whereas Gaussian copula functions are chosen as the data
dimensions increase.

E. COMPARISON WITH BENCHMARK MODELS FOR
DAY-AHEAD HOURLY SOLAR IRRADIANCE PREDICTION
The forecasting performance of the proposed model is
compared to the benchmark methods. Various models
generate day-ahead hourly solar irradiance forecasts, and
their performance is evaluated based on nCRPS and Pinball
loss metrics. Table 3 compares the developed model with
benchmark models, including ‘‘no-CC’’ (the proposed model
without copula classifier), ‘‘no-VineC’’ (the proposed model
without Vine copulas, only using Gaussian copulas), PeEn,
QR, and the GL-LSTM developed in [39]. The developed
model consistently outperforms other models in terms of
nCRPS and Pinball loss, achieving the lowest forecasting
error across all periods except for July-August, where the
GL-LSTM model [39] shows a slightly better performance
in nCRPS. Nonetheless, whereas the proposed model’s
forecasts are slightly improved compared to the GL-LSTM
model, its superiority becomes more pronounced under
non-sunny or rapidly changing weather conditions. This
advantage is further elucidated in the subsequent section,
highlighting the robustness and effectiveness of the developed
model across a broader range of meteorological scenarios.

The improved accuracy of the developed model can be
attributed to the effective combination of the copula classifier
and multiple types of copulas. This combination allows
the model to better account for the complex relationships
between variables under diverse weather conditions. The
comparison of the proposedmodel with its modified versions,
i.e., ‘‘no-CC’’ and ‘‘no-VineC’’ cases, emphasizes the
significance of both the copula classifier and the application
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of multiple types of copulas within the overall forecasting
framework. By selecting the optimal copula function from
among Vine copulas and Gaussian copulas, instead of
solely relying on one type of copula, the model attains the
flexibility to represent a wide range of variable dependencies.
Furthermore, such a structure enhances the robustness of the
model to variations in meteorological data and improves the
forecast accuracy.

Fig. 7 presents the hourly variability and central tendencies
of GHI across seasonal intervals, corresponding to the
test dataset employed for error computation in Table 3.
This visualization underscores the pronounced impact of
seasonal shifts on solar irradiance and corroborates the
robustness of the proposed model under diverse meteorolog-
ical scenarios.

In Table 4, the peak memory usage during the training
process, time for offline training, and online forecast for vari-
ous models are documented. The computational experiments
were executed on a system equipped with a 12th Gen Intel(R)
Core(TM) i7-12700H CPU, 2300 MHz, and 14 cores and
complemented by 16 GB of RAM. It is observed that offline
training for the developed model is more extensive than other
models; however, this process is a one-time requirement.

FIGURE 7. Seasonal GHI variations by hour.

TABLE 3. The comparison of the developed model with benchmark
models in terms of prediction performance.

Despite the high memory usage, the developed model can
complete online forecasting tasks in about eight seconds,
which is efficient enough for near real-time applications.
Therefore, despite its substantial memory consumption and
complex architecture during training, the model effectively
supports real-world applications with satisfactory online
forecasting speed and advanced functionalities.

TABLE 4. Memory usage, running time for offline training and online
forecasting of different models.

F. COMPARISON WITH THE BENCHMARK MODEL FOR
DAY-AHEAD MINUTELY SOLAR GENERATION PREDICTION
To further validate the proposed model’s robustness under
diverse weather conditions, solar power data from [14] are
employed for a comparative study with models presented
in [14] and [39], representing advanced models in recent
literature. To ensure an equitable comparative analysis, the
model in [14] is replicated with meticulous adherence to its
specifications described in the paper, utilizing identical data
and hyperparameters as delineated in [14]. Further details on
these parameters are accessible in [44].

The model developed in [14] considers spatio-temporal
correlations of meteorological variables for solar power
forecasting, integrating Copula theory and machine learning
methodologies. This methodology distinguishes between
sunny and non-sunny days to independently quantify spatio-
temporal correlations for each category. However, this
distinction overlooks the variability within each category,
as sunny days may experience non-sunny intervals and
vice versa. Thus, the model does not dynamically analyze
data correlations under fluctuating weather conditions,
compromising forecast accuracy during rapidly changing
weather conditions. The comparative analysis highlighted
in this section demonstrates the superior performance
of the developed model, which is based on dynamic
spatio-temporal correlation analysis, thereby confirming its
increased accuracy and robustness.

The dataset utilized in this case study is the same as the
data employed in [14], which can be found in [44]. For a
consistent comparison, both the training and test datasets for
the developed model are the same as those used in [14].

Table 5 presents a performance comparison between the
proposedmodel and the model in [14] and GL-LSTM [39] for
different seasons and varying weather conditions. The results
indicate that the proposed model generally outperforms the
model in [14] and GL-LSTM [39], with much more accurate
forecasts during non-sunny days. For sunny-day forecasts,
the proposed model demonstrates comparable accuracy to
the model [14] and GL-LSTM in spring and summer while
outperforming these models during autumn and winter, when
weather conditions tend to be more unstable. In the case of
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TABLE 5. The comparison of the developed model with benchmarks.

non-sunny day forecasts, the proposed model significantly
outperforms the model [14], with the proposed model
demonstrating up to 60% greater accuracy during autumn.
These findings further highlight the ability of the proposed
model to enhance the robustness and reliability of solar
generation forecasting in various weather conditions. The
superior performance of the proposed model is enabled by
the ability to dynamically quantify the correlation between
different meteorological variables under various weather
conditions.

FIGURE 8. Forecast comparison of the developed model and the model
in [14] under rapidly changing weather events.

Fig. 8 compares the proposed model, and the model
described in [14], focusing on performance under rapidly
changing weather conditions to underscore the effectiveness
of our approach. Specifically, the figure illustrates forecasts
for a day of heavy rainfall, generally categorized as a rare
event based on its infrequency. Accurate forecasting during
such rapidly changing weather conditions is crucial due to
their significant potential impact on the stability and normal
operation of power systems. While advanced models cited in
existing literature often struggle to provide robust and precise
forecasts under such challenging conditions, the proposed
model demonstrates exceptional capability in predicting
solar generation. This is especially noteworthy when precise
forecasts are essential for ensuring the resilience and stability
of power systems.

IV. CONCLUSION
In this work, a non-parametric model based on Copula theory
and XGBoost is developed for probabilistic forecasting.
Unlike traditional approaches that focus on identifying a

single type of optimal copula function, the developed model
concurrently examines multiple copula functions and selects
the most suitable one according to forecasted weather
conditions. This flexibility enables the model to capture
the varying dependencies of meteorological variables better.
By dynamically analyzing the spatio-temporal correlations
of meteorological variables under diverse weather condi-
tions, the proposed model enhances forecasting accuracy
and robustness, particularly in rapidly changing weather
situations when accurate forecasts are challenging.

Case studies employing real-world data from various
locations and time intervals demonstrate that the developed
model can substantially improve prediction accuracy when
compared to benchmark models such as PeEn, QR, the
GL-LSTM [39], and the model in [14], especially for non-
sunny days. Furthermore, the model is adaptable to rapidly
changing weather conditions, providing grid operators with
valuable insights for reliable grid operations. The feasibility
of the developed model has been tested in a real-world
application during the 2022 American-Made Solar Fore-
casting Prize [26], where it secured the runner-up place
and showcased its practical applicability for enhancing solar
power forecasting.

Future research will aim to devise a more robust model by
addressing the sensitivity of the developed model to location
variations. Presently, models developed with data from a spe-
cific location may not perform adequately in other locations
with completely different weather conditions. To overcome
this, it is essential to incorporate spatio-temporal data analysis
from multiple regions with different weather scenarios.
This approach will facilitate the creation of a universally
applicable model trained on a diverse dataset. Additionally,
incorporating more relevant meteorological features, such
as visibility, Global Normal Irradiance, and Direct Normal
Irradiance (DNI), into the model could enhance forecast
accuracy. This comprehensive model development strategy
will ensure broader applicability and improved reliability of
future forecasting models.
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