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ABSTRACT

Large language models are increasingly becoming a popular tool for
software development. Their ability to model and generate source
code has been demonstrated in a variety of contexts, including
code completion, summarization, translation, and lookup. However,
they often struggle to generate code for complex programs. In
this paper, we study the capabilities of state-of-the-art language
models to generate parallel code. In order to evaluate language
models, we create a benchmark, PAREVAL, consisting of prompts that
represent 420 different coding tasks related to scientific and parallel
computing. We use PAREVAL to evaluate the effectiveness of several
state-of-the-art open- and closed-source language models on these
tasks. We introduce novel metrics for evaluating the performance
of generated code, and use them to explore how well each large
language model performs for 12 different computational problem
types and six different parallel programming models.
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1 INTRODUCTION

Large language model (LLM) based coding tools are becoming pop-
ular in software development workflows. Prior work has demon-
strated their effectiveness at performing a variety of tasks, including
code completion, summarization, translation, and lookup [4, 5, 18,
20, 21, 26, 39]. Popular models such as StarCoder [29], span a wide
range of programming languages and domains, and can be used to
complete or generate code during the development process. This
makes them a promising tool for improving developer productivity
and the overall quality of software. However, despite the rapid ad-
vancement and scaling of LLMs in recent years, they still struggle
with more complicated tasks such as reasoning and planning. One
particularly complex task that LLMs struggle with is generating
parallel code. This task involves reasoning about data distributions,
parallel algorithms, and parallel programming models.

Parallel code is essential to modern software development due
to the ubiquity of multi-core processors, GPGPUs, and distributed
systems. However, writing parallel code is difficult and error-prone.
Parallel algorithms are generally more complicated than their se-
quential counterparts, and parallel bugs such as race conditions and
deadlocks are notoriously non-trivial to debug. Further, it can be
challenging to reason about the performance of parallel code and
identify “performance bugs” [25]. LLMs can potentially help devel-
opers overcome these challenges but, this requires an understanding
of the current capabilities of LLMs, and in turn, a well-designed
and reproducible methodology to assess these capabilities.

There are several existing benchmarks for evaluating the capa-
bilities of LLMs to generate correct code. However, none of them
test generation of parallel code. Most existing benchmarks focus on
short, array or string manipulation tasks, and are predominantly in
Python (or translated to other languages from Python [9]). Only
more recent benchmarks such as DS-1000 [28], test the usage of
APIs, which are critical to using parallel programming models. Fur-
ther, these benchmarks do not evaluate the performance of the
generated code, instead testing only correctness. While correctness
is a crucial metric, performance is also vital for developers writing
parallel code. Thus, it is imperative to design new benchmarks
and metrics to evaluate the usefulness of LLMs for parallel code
generation tasks.

Developing a set of benchmarks that fully covers the space of de-
sired capabilities is non-trivial. Identifying the best LLM for parallel
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code generation requires testing on problems that cover shared-
and distributed-memory programming models, different computa-
tional problem types, and different parallel algorithms. This can
become a large quantity of benchmarks that must be manually
designed. Further, these benchmarks are challenging to test. Tradi-
tional Python code generation benchmarks are tested by running
eval on the generated code for a small number of small unit tests.
On the other hand, in the case of parallel code — we must compile
C/C++ code, link against one or more parallel libraries, and run the
code in the proper parallel environment. Additionally, if we want
to test the performance of the generated code, then we must choose
reasonable input sizes for each benchmark.

In order to evaluate the current capabilities and limitations of
LLMs in generating parallel code, we propose the Parallel Code
Generation Evaluation (PAREvAL) benchmark: a set of benchmarks
(prompts) for evaluating how well LLMs generate parallel code.
These benchmarks cover twelve different computational problem
types, and seven different execution models: serial, OpenMP, Kokkos,
MPI, MPI+OpenMP, CUDA, and HIP. We evaluate several state-of-
the-art open- and closed-source LLMs using these benchmarks, and
report metrics that represent the correctness and performance of the
generated code. We introduce novel code generation evaluation
metrics that assess performance and parallel scaling. We further
analyze how each model performs with respect to the various pro-
gramming models and computational problem types. We discuss the
areas where current state-of-the-art LLMs are already performing
well and the areas where they can be improved.

In this paper, we make the following important contributions:

o We design the PAREvAL benchmark for evaluating the ability
of LLMs to generate and translate parallel code. PAREVAL is
available online at: github.com/parallelcodefoundry/ParEval.

e We introduce two novel metrics, speedup, @k and
efficiency, @k, for evaluating the performance and scaling
of LLM generated code.

o We evaluate the effectiveness of several state-of-the-art open-
and closed-source LLMs using the PAREvAL benchmark.

o We identify several areas where current state-of-the-art LLMs
can improve their capabilities on parallel code generation.

In addition to these contributions, we explore the following
research questions (answers based on our observations):

RQ1 How well do state-of-the-art LLMs generate parallel code, and
which models are the best? We show that all tested LLMs,
both open- and closed-source, struggle to generate parallel
code. Of the models tested, GPT-3.5 performs the best with
a pass@1 of 76.0 for serial code generation and a pass@1 of
39.6 for parallel code generation.

RQ2 Which parallel execution models and problem types are most
challenging for LLMs? We observe that LLMs struggle most
with MPI code generation, and perform best for OpenMP
and Kokkos code generation. Additionally, we show that
LLMs find it challenging to generate parallel code for sparse,
unstructured problems.

RQ3 How performant and scalable is the parallel code generated by
LLMs? We observe that the parallel code generated by LLMs
can have poor parallel speedup and efficiency. Additionally,
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we show that the LLMs that most often generate correct par-
allel code do not necessarily generate the most performant
parallel code.

RQ4 How well can LLMs translate between execution models? How
performant and scalable is the translated code? We show that
providing LLMs with correct implementations in one exe-
cution model can improve their ability to generate correct
code in another execution model. This is particularly true
for smaller open-source models.

2 BACKGROUND

In this section, we provide background information on large lan-
guage models and how they are used for text generation. We further
discuss how large language models can be used for code generation.

2.1 Large Language Models

Natural Language Processing (NLP) has largely been dominated
by transformer-based models since their introduction in 2017 by
Vaswani et al. [46]. Transformer networks are designed to model se-
quential data, such as text, relying on self-attention mechanisms to
model the relationships between values in a sequence. Self-attention
enables modeling of long-range dependencies in the data with-
out vanishing gradient and scaling issues and allows for sequence
elements to processed in parallel. Transformers learn attention
scores, which are computed between pairs of tokens in the input.
Multi-head attention allows for learning multiple attention repre-
sentations. These large transformer models are generally trained
to model the distribution of a text corpus such as the English lan-
guage by predicting the next token in a sequence given previous
tokens. Transformer-based models have emerged as the most ef-
fective means of modeling text data, and have been shown to be
effective at a wide range of NLP tasks.

2.2 Large Language Models for Code

An LLM trained on a large corpus of code can be used to generate
code by giving it a code input prompt and asking it to predict the
next token. Generally, code LLMs are trained on a large corpus of
code, such as The Stack [27], that covers a wide range of program-
ming languages and application types. Sometimes the pre-training
corpus includes natural language as well, such as The Pile [16, 48].
In some instances, such as CodeLlama [40], the code LLM is a natu-
ral language model that has been further fine-tuned on a corpus of
code. When generating code with one of these models it is often not
enough to simply select the most probable next token to construct
a sequence. This often leads to repetitive, low-quality outputs [22],
so we also need a strategy for token selection. We utilize nucleus
sampling and model temperature in this study.

Nucleus Sampling. Nucleus sampling [22], also called top-p sam-
pling, samples the next token from the token probability distribu-
tion up to some cut-off p in the cumulative distribution function.
Compared to sampling from a fixed number of top tokens in the
distribution (called top-k sampling), this ensures the selection of
a more representative sample of tokens from the distribution. Nu-
cleus sampling is often used in code generation tasks with a value
of p = 0.95 and is sometimes combined with top-k sampling.
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Model Temperature. Generation temperature is a scaling value ap-
plied to the raw model outputs, or logits, before they are converted
to a probability distribution. The value is applied by first dividing
the logits vector by the scalar temperature before computing the
softmax of the logits. Higher temperatures make the probability
distribution more peaked, upweighting the most probably tokens,
while lower temperatures make the distribution more uniform. In-
tuitively, lower temperatures yield more conservative generations
that the model is more confident in. Conversely, higher tempera-
tures will lead to more varied and creative generations. For code
generation tasks, a low temperature value of 0.2 is often used.

3 RELATED WORK

Below, we describe related work in benchmarking LLMs for code-
related tasks and applying LLMs to parallel and HPC code.

3.1 Benchmarking LLMs for Code-related Tasks

Since the introduction of the Codex model and HumanEval bench-
mark [13], many works have proposed new LLMs for code and
evaluated them on a variety of tasks. The number of code-specific
models has grown rapidly as open-source models and data sets
become more available and low-rank training techniques, such
as LoRA [23], make training large models more feasible. These
models are usually evaluated on code generation tasks such as
HumanEval [13], MBPP [7], and DS-1000 [28].

The first of these, HumanEval [13], is a set of 164 code generation
tasks that are designed to evaluate the ability of LLMs to write short
Python functions that solve a variety of problems, given a docstring
and function signature. Similar to HumanEval is the Mostly Basic
Python Problems (MBPP) [7] benchmark which is a set of 1000
simple Python problems. MBPP is often evaluated with few-shot
prompts, where example correct solutions to other problems are
included in the prompts. A common extension of these benchmarks
is MultiPL-E [9] which extends the set of HumanEval and MBPP
tests to 18 programming languages.

The DS-1000 benchmark [28] tests the ability of the model to gen-
erate more complex, data science-related code, for 1000 tasks mak-
ing use of common data science libraries. Other similar benchmarks
that evaluate coding LLMs on more complex tasks are GSM8K [14]
and GSM-HARD [17], which use PAL [17] to evaluate the ability
of LLMs to generate Python code snippets to assist in chains of
reasoning. The CoderEval benchmarks [49] are a set of 230 Java and
230 Python code generation tasks that require the model to write
context-dependent functions, rather than standalone functions as
in HumanEval and MBPP.

Additionally, there have been several domain specific bench-
marks that evaluate more narrow uses of LLM code generation [15,
30, 42]. All of these benchmarks make use of tasks manually created
by experts to test more specific use cases of LLMs.

3.2 Applying LLMs to Parallel and HPC Code

Recently there has been a growing interest in applying LLMs to
parallel and High Performance Computing (HPC) code. Several
works have looked at creating smaller specialized HPC models [247? ]
or applying existing LLMs to HPC tasks [10, 11, 31]. Nichols etal. [?]
introduce HPCCoder, a model fine-tuned on HPC code, and evaluate
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its ability to generate HPC code, label OpenMP pragmas, and predict
performance. Kadosh et al. [24] introduce TOKOMPILER, an HPC
specific tokenizer for LLMs, and use it to train COMPCODER, a
model trained on C, C++, and Fortran code.

Other works have looked at applying existing LLMs to HPC tasks.
Munley et al. [31] evaluate the ability of LLMs to generate compiler
verification tests for paralle]l OpenACC code. Chen et al. [10] use
LLMs to identify data races in parallel code and propose the DRB-
ML data set, which is integrated into the LM4HPC framework [11].
Godoy et al. [19] and Valero-Lara et al. [45] both evaluate the
capabilities of LLMs on generating HPC kernels, but use a limited
set of problems and LLMs and do not prompt or evaluate the LLMs
using standard practices. None of these works comprehensively
evaluate and compare the ability of LLMs to generate parallel code
across a large number of problems, execution models, and LLMs
using state-of-the-art evaluation techniques, which is the focus of
this work.

4 PAREVAL: PROMPTS FOR PARALLEL CODE
GENERATION

In order to evaluate the ability of LLMs to generate parallel code, we
propose the Parallel Code Generation Evaluation (PAREvAL) bench-
mark. Below, we discuss the design of PAREvAL, and its various
components that lead to the creation of concrete prompts for LLMs.

To disambiguate the use of the terms prompt, task, problem, prob-
lem type, and benchmark we define them as follows.

o Task/Prompt: An individual text prompt that is given to the LLM
to generate code. The output can be compiled, executed, and
scored as either correct or incorrect code.

e Problem: A set of tasks or prompts that test the ability of the LLM
to generate code for the same computational work, but each task
or prompt may use a different execution model.

e Problem Type: A set of problems that test computational problems
with similar work or from similar domains (for example, sorting
problems).

e Benchmark: A set of prompts that are all tested together to evalu-
ate the performance of the LLM. We name the collection of all
the prompts we have designed as the PAREvAL benchmark.

Benchmark Requirements. The goal of PAREVAL is to evaluate
the ability of LLMs to generate parallel code. To do this, the prompts
should be such that:

(1) The prompts should cover a wide variety of computational
problem types, and parallel programming models.

(2) The prompts should be simple enough that they can be gener-
ated as a standalone function, but complex enough that they
are not too trivial to solve.

(3) The prompts should not exist within any of the LLMs’ training
datasets, to prevent the LLMs from simply copying solutions
from their training data.

(4) The prompts and corresponding outputs should be able to be
evaluated automatically, since there will be many different tasks
and LLM outputs.

In order to fulfill the requirements above, we propose PAREVAL,
a set of 420 prompts that cover twelve different computational
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problem types and seven different execution models. Each problem
type has five different problems, and each problem has a prompt for
each of the seven execution models, resulting in 420 total prompts.
Each prompt in PAREVAL is a standalone function that requires the
LLM to generate code that solves the problem either sequentially
or in parallel.

Problem Types. The problem types are listed and described in Ta-
ble 1. These were hand-selected by us, and represent a wide variety
of common computational problems that are often parallelized.
Each requires different strategies or APIs to solve in parallel. For
instance, the problems in the Sort problem type require the LLM to
generate code that sorts an array of values.

Problems. The five problems within each problem type are de-
signed to test the core functionality of the problem type. To prevent
prompting the model for a solution that is already in its training
dataset, the five problems are small variations of the usual prob-
lem type. For example, one of the scan problems is to compute the
reverse prefix sum of an array, rather than directly computing the
prefix sum. These variations still test the model’s understanding
of the core computational problem, but mitigate the likelihood of
it simply copying code from its training dataset. Listing 1 shows
another example of these problem variations. Another benefit of
having five problems per problem type is that it provides more
data points for evaluating the LLM’s performance on that problem
type, but not so many that it becomes infeasible to implement and
maintain.

Prompts. Each problem has a prompt for each of the seven exe-
cution models that the LLM is required to generate code for. The
seven execution models we test are: serial, OpenMP [36], MPI [41],
MPI+OpenMP, Kokkos [44], CUDA [32], and HIP [2]. All the prompts
are in C++, CUDA, or HIP. These represent both shared and dis-
tributed memory programming models, as well as GPU program-
ming models. The prompts for each execution model are designed
to be as similar to the other prompts for that problem as possi-
ble, while still being idiomatic for the programming model. For
serial, OpenMP, MPI, and MPI+OpenMP prompts, we use STL data
structures such as std: : vector and std: :array. For Kokkos, we
utilize the Kokkos: :View data structure (as shown in Listing 1).
The CUDA and HIP prompts use raw pointers to represent array
structures.

We list an example prompt in Listing 1 for a variant of a scan
problem to generate Kokkos code. The goal of this problem is to
compute the minimum value of the array up to each index. We
include example inputs and outputs in the prompt as this can signif-
icantly improve the quality of the generated code [7]. The necessary
#include statements are also prepended to the prompt as we found
that this improves the likelihood of the LLM correctly using the
required programming model.

5 DESCRIPTION OF EVALUATION
EXPERIMENTS
Now that we have described the prompts in the previous section,

we describe how we can use them to evaluate the performance of
LLMs on two different tasks — code generation and translation.

Nichols et al.

#include <Kokkos_Core.hpp>

/* Replace the i-th element of the array x with the minimum
value from indices @ through i.
Use Kokkos to compute in parallel. Assume Kokkos has
already been initialized.
Examples:

input: [8, 6, -1, 7, 3, 4, 4]
output: [8, 6, -1, -1, -1, -1, -1]

input: [5, 4, 6, 4, 3, 6, 1, 1]
output: [5, 4, 4, 4, 3, 3, 1, 1]
*/
void partialMinimums(Kokkos: :View<float*> &x) {

Listing 1: An example Scan prompt for Kokkos. The LLM will
be tasked with completing the function body.

5.1 Experiment 1: Parallel Code Generation

The first experiment studies the ability of LLMs to generate code,
either sequential or in a specific parallel programming model, given
a simple description in a prompt (see Listing 1). We evaluate LLMs
on how well they can generate code for all the prompts in PAREVAL.
We do so by asking the model to complete the function started in
the prompt, and then evaluating the generated code. By compiling
and executing the generated code, we report different metrics that
will be described in Section 7. The metrics are computed over the
combined results from the OpenMP, MPI, MPI+OpenMP, Kokkos,
CUDA, and HIP execution models, and compared with the same
metrics computed over the serial results. These results will provide
insight into how well the model can write parallel code based on
natural language descriptions. The results can also be compared
along the axes of execution model and problem type.

5.2 Experiment 2: Parallel Code Translation

The second experiment studies the ability of LLMs to effectively
translate code provided in one execution model to another execution
model. To accomplish this, we prompt the LLM with a correct
version of the code in one execution model and ask it to translate
it to another execution model. An example of this prompt format
is shown in Listing 2. We evaluated several prompting formats for
translation, such as giving examples of other successful translations,
but found the format in Listing 2 to be the most effective.

In theory, we could have evaluated translation capabilities be-
tween each pair of execution models for each problem. However, to
limit the quadratic increase in the number of prompts, we only eval-
uate translations for these pairs: serial — OpenMP, serial — MPI,
and CUDA — Kokkos. We identify these as some of the most rele-
vant translation tasks for HPC developers. We compute the same
metrics as for Experiment 1. These results will provide insight into
how well the model can translate between different execution mod-
els. The results can also be compared along the axes of source and
target execution model and problem type.
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Table 1: Descriptions of the twelve problem types in PAREvaL. Each problem type has five concrete problems, and each problem

has a prompt for all seven execution models.

Problem Type Description

Sort Sort an array or sub-array of values; in-place and out-of-place.

Scan Scan operations, such as prefix sum, over an array of values.

Dense Linear Algebra Dense linear algebra functions from all three levels of BLAS.

Sparse Linear Algebra Sparse linear algebra functions from all three levels of BLAS.

Search Search for an element or property in an array of values.

Reduce Reduction operation over an array dimension, such as computing a sum.
Histogram Binning values based on a property of the data.

Stencil One iteration of 1D and 2D stencil problems, such as Jacobi relaxation.
Graph Graph algorithms, such as component counting.

Geometry Compute geometric properties, such as convex hull.

Fourier Transform Compute standard and inverse Fourier transforms.

Transform Map a constant function to each element of an array.

Table 2: The models compared in our evaluation. CodeLlama and its variants currently represent state-of-the-art open-source
LLMs and GPT represents closed-source LLMs. OpenAl does not publish the numbers of parameters in their models.

No. of Open-source . HumanEvalT MBPP#

Model Name . License

Parameters Weights (pass@1) (pass@1)
CodeLlama-7B [40] 6.7B v llama2 29.98 41.4
CodeLlama-13B [40] 13.0B v llama2 35.07 47.0
StarCoderBase [29] 15.5B v BigCode OpenRAIL-M 30.35 49.0
CodeLlama-34B [40] 32.5B v llama2 45.11 55.0
Phind-CodeLlama-V2 [38] 32.5B v llama2 71.95 —
GPT-3.5 [8] - X - 61.50 52.2
GPT-4 [33] — X — 84.10 —

+HumanEval results are from the BigCode Models Leaderboard [1], except for GPT-3.5 and GPT-4 which are from [3].

$MBPP results are from [40].

6 MODELS USED FOR COMPARISON

We choose to compare several state-of-the-art open-source and
closed-source LLMs, as well as smaller LLMs that are more practical
for use in production. We provide brief descriptions of the LLMs
used in our evaluation, and their properties below. Table 2 provides
a summary and some salient properties of the models used.

CodeLlama (CL-7B, CL-13B, and CL-34B). Roziére et al. origi-
nally introduced CodeLlama models in [40] as variants of the Llama
2 model [43], fine-tuned for code. All three models started with
Llama 2 weights and were then fine-tuned on 500 billion tokens
from a dataset of predominantly code. The Llama 2 models were
also extended to support longer context lengths of 16k and infill-
ing to generate code in the middle of sequences. We select these
models as they are amongst the top performing open-source LLMs.
Additionally, the CodeLlama models are very accessible as there
are small model sizes available and there exists a thriving software
ecosystem surrounding Llama 2 based models.

StarCoderBase. The StarCoderBase model [29] is a 15.5B param-
eter model trained on 1 trillion tokens from The Stack [27]. In
addition to code from 80+ programming languages, its data set
includes natural language in git commits and Jupyter notebooks.

StarCoderBase supports infilling as well as a multitude of custom
tokens specific to code text data. The model architecture is based
on the SantaCoder model [6], and it supports a context length of
8K tokens. We select StarCoderBase as it is one of the best perform-
ing open-source models around its size, and is frequently used for
comparisons in related literature.

Phind-CodeLlama-V2. The Phind-CodeLlama-V2 model [38] is
a CodeLlama-34B model fine-tuned on over 1.5 billion tokens of
code data. At the time we were selecting models for comparison it
topped the BigCode Models Leaderboard [1] among open-access
models on HumanEval with a pass@1 score of 71.95. However, the
fine-tuning dataset for this model is not publicly available, so it is
not possible to ensure that the BigCode benchmarks themselves
are not included in Phind’s fine-tuning dataset.

GPT-3.5 and GPT-4. GPT-3.5 and GPT-4 are closed-source LLMs
from OpenAl [8, 33]. Most information about these models is not
publicly available, however, they can be used for inference via a paid
APL We use the most up-to-date versions of these models available
at the time of writing, the gpt-3.5-turbo-1106 and gpt-4-1106-preview
models. Unlike the other models tested, these are instruction-tuned
and aligned to human preferences. Rather than using them for
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// A serial implementation of sumOfMinimumElements

/* Return the sum of the minimum value at each index of vectors
x and y for all indices.
i.e. sum = min(x_0, y_0) + min(x_1, y_1) + min(x_2, y_2) + ...

Example:
input: x=[3, 4, o, 2, 31, y=[2, 5, 3, 1, 7]
output: 10

*/

double sumOfMinimumElements(std::vector<double> const& x,
std: :vector<double> const& y) {
double sum = 0.0;
for (size_t i = 0; i < x.size(); ++i) {
sum += std::min(x[i], y[il);
3
return sum;

}

// An OpenMP implementation of sumOfMinimumElements

/* Return the sum of the minimum value at each index of vectors
x and y for all indices.
i.e. sum = min(x_@, y_0) + min(x_1, y_1) + min(x_2, y_2) + ...
Use OpenMP to sum in parallel.

Example:
input: x=[3, 4, 0, 2, 31, y=[2, 5, 3, 1, 7]
output: 10

*/

double sumOfMinimumElements(std::vector<double> const& x,
std: :vector<double> const& y) {

Listing 2: An example prompt given to the model for code
translation. The model is given a sequential implementation
of sumOfMinimumElements and tasked with translating it
to OpenMP.

direct code generation, we have to interact with them via a chat
interface. As with the Phind-CodeLlama-V2 model, the data used to
train these models is not publicly available, so it is difficult to fairly
compare them with the other models as they might have seen some
prompts during training.

7 EVALUATION METRICS

It is important to be able to meaningfully compare the performance
of the selected LLMs at generating correct and efficient code for
the prompts in PAREvAL. This section details how we accomplish
this by adopting a popular correctness metric for code LLMs, and
defining two new performance-related metrics.

7.1 Metric for Correctness

We adopt the pass@k metric from [13] to quantify correctness
of the generated code. For a given prompt, pass@k estimates the
probability that the model will generate a correct solution given k
attempts. Often the average pass@k over all prompts in a bench-
mark is reported. To estimate the pass@k over a set of prompts, we
first generate N samples for each prompt using the model, where
N > k. These samples are then evaluated for correctness. The num-
ber of correct samples can be used to estimate the pass@k value as
shown in Equation (1).
Number of samples generated per prompt

()] e

Number of correct
samples for prompt p

1

pass@k = — Z
| P

pe P

Set| of promppts

Nichols et al.

This metric provides insight into how often do models generate
correct code. The probability that the model will generate a correct
solution in one attempt, pass@1, is the most useful metric for end-
users as it aligns with how LLMs are used in practice. In this paper,
we report 100X pass@k as is common in related literature and online
leaderboards [1, 12]. Additionally, as models have become more
capable, studies have shifted toward only reporting pass@1 values.
However, pass@k values for k > 1 are still useful for understanding
how models perform on more difficult prompts. Commonly reported
values of k are 1, 5, 10, 20, and 100. It is also common to report
pass@1 values using a generation temperature of 0.2 and pass@k
for higher values of k using a generation temperature of 0.8. This
higher temperature allows the model to more extensively explore
the solution space when generating a larger number of attempts.

7.2 Performance Metrics

For parallel and HPC code, it is important to consider both the
correctness and performance of the generated code. To analyze
and compare the runtime performance of LLM generated code, we
introduce two new metrics: speedup,, @k and efficiency, @k.

speedup, @k. The first metric, speedup, @k, measures the expected
best performance speedup of the generated code relative to the per-
formance of a sequential baseline (see Section 8.2) if the model
is given k attempts to generate the code. The relative speedup is
computed based on the execution time obtained using n processes
or threads. For a given prompt p, the expected best speedup relative
to a sequential baseline, Ty, is given by Equation (2).

T* T* N (Jj-1 T;;
E | max —p,.~-,—p = Z (k;ll) @
Tpsin Tp,spn =1 ( k ) Tp,jn

To demonstrate that Equation (2) represents the desired quantity,
consider the set of N generated samples is in order from slowest
to fastest. This is without loss of generality as we assume the k
samples are selected uniformly and, thus, all size k permutations
are equally likely. The probability that the max is the jth sample
is given by (i:i)/(jl\cl) as there must be j — 1 elements before j

and, thus, (i:i) ways to select the remaining elements. The sum
of these probabilities, each weighted by their respective speedups,
gives the expected max speedup over k samples. Taking the average
of Equation (2) over all prompts we can define the speedup, @k
metric as shown in Equation (3).

speedup, @k = — =
|P| pEP j=1 (Il\c])

T
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For a single LLM, the speedup,, @k metric can be used to under-
stand how well its generated code performs compared to sequential
baselines. A value greater than 1 indicates that the generated code
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is faster than the baseline on average, while a value less than 1 indi-
cates that the generated code is generally slower than the baseline.
When comparing multiple LLMs, a higher value of speedup, @k
signifies more performant code. It is important to note that this
metric is hardware dependent and, thus, to compare models fairly
all the run times need to be collected on the same hardware.

The speedup, @k metric also gives insight into how well the
generated code makes use of parallelism in its computation. It is
fixed to a given number of resources, n, which can either be threads
or processes, depending on the model of parallelism being used.
It also adds another axis to vary when comparing models. When
studying a single model, the speedup,, @k metric can be compared
at different values of n to understand the complete scaling behavior
of that model. When comparing multiple models, it is typically
most useful to fix n to a single value. One could also average over
many values of n, but this risks hiding too much information to be
useful.

speedupmax@k. We also define a variant of the speedup, @k met-
ric, speedup, . @k, as shown in Equation (4), which estimates the
maximum speedup over all n and not a fixed resource count.

N-|procs]| ] 1 T*
speedup, . @k = (4)
neprocs

Here procs is the set of resource counts over which the experiments
can be performed. For example, if there are 128 hardware cores,
procs = 1,2,4,8,16, 32, 64, 128 processes or threads.

efficiency, @k. To further understand the parallel performance of
the generated code, we define the efficiency, @k metric. This metric
measures the expected best performance efficiency (speedup per
process or thread) if the model is given k attempts to generate the
code. This is easily defined by modifying Equation (3) to divide by
n as shown in Equation (5). The possible values of this metric range
between 0 and 1.0, with 1.0 representing a model that generates
code that scales perfectly with the number of processes or threads.
This metric is useful for understanding how well the generated
code makes use of parallel resources. In addition to efficiency, @k,
we also define efficiency, , @k in the same fashion as Equation (4).

] l T*

k 1
efficiency, @k = | | Z Z (5)
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Even though we explore parallel code generation in this paper,
these metrics can be used to consider the performance of sequen-
tial code generation as well. For example, examining speedup; @k
for the HumanEval, MBPP, or DS-1000 benchmarks will lead to a
better understanding of how efficient the generated Python code is
compared to a human created baseline. Additionally, both perfor-
mance metrics could be modified to be parameterized by problem
size instead of number of processes/threads in order to study the
computational complexity of the generated code.

8 EXPERIMENTAL SETUP

This section describes how we generate outputs using each of the
LLMs (Section 6) and the prompts in PAREvAL, and how we evalu-
ated the generated code using the PAREVAL test harness.
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8.1 LLM Inference: Generating Code Output

To generate outputs with the open-source models, we use the Hug-
gingFace library [47] with PyTorch [37] as the backend to load the
LLM weights and use them for inference. Specifically, we create a
PyTorch Dataset object that wraps the set of prompts and we pass
this as input to a Huggingface Pipeline object, which then runs the
models in inference mode and generates the outputs. We do these
runs on a single NVIDIA A100 80GB GPU using 16-bit floating
point precision. Since the prompt workloads are fairly regular, we
get the best inference performance for larger batch sizes. So for
each model, we use the largest batch size that fits in GPU memory.
To generate the GPT-3.5 and GPT-4 outputs we use the OpenAl
API [34] via OpenAl’s Python client [35].

For all of the tasks, we use nucleus sampling with a value of
p = 0.95. Additionally, we limit the maximum number of new
tokens generated to 1024. We experimentally found this to be long
enough for all of the tasks to be completed, but short enough to limit
long, repetitive outputs. Using this configuration, we create two
sets of outputs for each model: one with 20 samples per prompt and
a temperature of 0.2, and the other with 200 samples per prompt and
a temperature of 0.8. The former is used to calculate the metrics at
k = 1 (such as pass@1) and the latter for larger values of k. This is in
line with the generation configurations in related literature [29, 40].
Note that we exclude the evaluation of GPT-3.5 and GPT-4 with
200 samples per prompt and a temperature of 0.8 due to the high
monetary cost of generating these outputs.

8.2 Evaluating the Generated Code

To evaluate the generated code, we use the PAREVAL test harness.
The test harness is a set of scripts that compile and run the gen-
erated code using manually written test drivers for each problem.
The scripts handle recording the compile status, correctness, and
execution time of the generated code.

To compile the generated code, we use the GNU Compiler Collec-
tion (GCC) version 9.4.0. For serial, OpenMP, and Kokkos versions,
we use GCC as the primary compiler, whereas we use it as the
backend to the respective frontend compiler for the other models
(i.e. the backend compiler to mpicxx). All compilations use the flags
-03 -std=c++17 and the OpenMP tasks add the -fopenmp flag. We
use version 4.1.0 of Kokkos, and the threads execution space, which
uses C++ threads for parallelism. MPI codes are compiled with
OpenMPI version 4.1.1. CUDA programs are compiled with nvee
and CUDA version 12.1.1. Likewise, HIP programs are compiled
with hipcc and ROCm version 5.7.0.

Before compiling an output, the prompt and generated code are
written to a header file that is included by the driver script for
that task. Once compiled, the generated binary is run by the test
harness. The test harness checks if the generated code produces the
same results as the sequential baseline. The sequential baselines
are handwritten, optimal implementations of the prompt that are
used to test correctness and to calculate the performance metrics
(see Section 7.2). Additionally, a code can be labeled as incorrect
for the following reasons:

o The code does not compile or it takes longer than three minutes
to run. We choose the problem sizes for each prompt such that
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any reasonable implementations execute in much less than three
minutes.

e The code does not use its respective parallel programming model.
For example, if the model generates a sequential implementa-
tion rather than using OpenMP when prompted to do so, it is
labeled as incorrect. We utilize several string matching criteria
to implement this check.

The output of the program includes the result of the correctness
check of the generated code, the average runtime of the generated
code, and that of the sequential baseline over ten runs. We use the
default timer for each execution model to measure its run time.

The CPU runs are conducted on an AMD EPYC 7763, 2.45 GHz
CPU with 64 physical cores and 512 GB of RAM. We run with
1,2,4,...,32 threads for OpenMP and Kokkos. For MPI, we run with
1,2,4,...,512 processes across multiple nodes with one process per
physical core. For MPI+OpenMP we run on 1, 2, 3, and 4 nodes with
1 process per node and 1,2, 4, . . ., 64 threads per node. The CUDA
runs are completed on an NVIDIA A100 80GB GPU and the AMD
runs on an AMD MI50 GPU. Kernels are launched with the number
of threads indicated in the prompt text (i.e. at least as many threads
as values in the array).

9 EVALUATION RESULTS

We now present detailed results from evaluating the LLMs described
in Section 6 using the PAREVAL prompts and test harness.

9.1 Experiment 1: Parallel Code Generation

RQ1 How well do state-of-the-art LLMs generate parallel
code, and which models are the best?

To evaluate the correctness of the code generated by the LLMs
we first look at the pass@1 scores over PAREvAL. Figure 1 shows the
pass@1 score for each LLM for generating the serial code versus
the average over the six parallel execution models. As defined
in Equation (1), these values are aggregated over all the prompts
including problem types and execution models. Notably, all of the
LLMs score significantly worse for parallel code generation than
they do for serial code generation. The best performing models,
GPT-3.5 and GPT-4, both achieve ~76 pass@1 on the serial prompts.
This is a strong score in the context of other benchmarks, such as
HumanEval, where GPT-4 gets 84.1 (see Table 2). Despite the strong
serial scores, GPT-3.5 and GPT-4 only achieve 39.6 and 37.8 pass@1,
respectively, on the parallel prompts.

The open-source models show a significant decrease in perfor-
mance for parallel code generation with all of them except Phind-V2
(Phind-CodeLlama-V2) scoring between 10.2 and 18.6. Phind-V2
does much better than the other open-source models, achieving
32 pass@1 on the parallel prompts. This suggests that further fine-
tuning of the open-source code models can improve their perfor-
mance on parallel code generation. Additionally, it is significant that
an open-source model performs near to the closed-source models
on parallel code generation. Open-source models are more accessi-
ble and, thus, having a strong open-source model for parallel code
generation would be beneficial to the community.

Nichols et al.
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Figure 1: Each LLM’s pass@1 score over PAREvaL. All of the
LLM:s score significantly worse in generating parallel code
than serial code.

Another interesting trend we observe in Figure 1 is that CodeLlama-
34B and GPT-4 both score worse than their smaller counterparts
on parallel code generation. The reasons for this decrease in per-
formance are not immediately obvious. However, we observe that
CodeLlama-34B and GPT-4 often generate the same output for a
given prompt for most or all of the 20 samples. This is due to the
larger models being more “confident” in their outputs, but this can
have an adverse effect on the pass@1 score when the output is
incorrect.

Ultimately, the closed-source models are better than the open-
source models at parallel code generation. Interestingly, GPT-3.5
beats GPT-4 on the parallel prompts by almost 2 percentage points,
suggesting it may be better suited for parallel code generation tasks.
This is interesting since GPT-4 is bigger and newer than GPT-3.5 and
generally obtains better results on other code and natural language
benchmarks. Amongst the open-source models, Phind-V2 has the
best results, but still lags behind the closed-source models by almost
8 percentage points.

In addition to pass@1 it is also useful to consider pass@k for
k > 1to understand how the LLMs perform provided more attempts
at a problem. Figure 2 shows the pass@k for each LLM for k =
1,5,10,20 with 200 samples and a temperature of 0.8 for k # 1.
The GPT models are omitted for k > 1 due to the monetary cost
of generating a large number of samples with these models. We
observe the same relative ordering as in Figure 1 is maintained for
all values of k with Phind-V2 leading the open-source LLMs. At
k = 20 Phind-V2 achieves a pass@k of 46 meaning that on average
it is able to generate a correct answer to one of the parallel prompts
in 20 attempts 46% of the time. The scores of each LLM improving
with an increase in k is expected due to the nature of the pass@k
metric. The fact that each LLM begins to plateau suggests that there
is an upper limit to their ability to generate correct parallel code
and giving them more attempts does not significantly improve their
performance.

RQ2 Which parallel execution models and problem types
are most challenging for LLMs?

9.1.1 Breakdowns by Execution Models. We further break
down the pass@1 results by each execution model in Figure 3.
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Figure 2: The pass@k for various values of k. The relative
order of the LLMs is the same for all values of k with Phind-
V2 leading the group.

From this data we observe that every LLM follows a similar distri-
bution of scores across the execution models: serial (best), OpenMP,
CUDA/HIP, and MPI/MPI+OpenMP (worst) with Kokkos varying
between LLMs.
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Figure 3: pass@1 for each execution model. The LLMs gen-
erally follow the same distribution of scores across the
execution models: serial (best), OpenMP, CUDA/HIP, and
MPI/MPI+OpenMP (worst) with Kokkos varying between
LLMs.

The pass@1 of LLMs being better with OpenMP than other
parallel execution models is likely due to the fact that OpenMP
code is the most similar to serial code. For many problems it only
requires adding an OpenMP pragma, and occasionally a reduction
clause. GPT-4 gets nearly as many OpenMP problems correct as
serial problems, with an OpenMP pass@1 of 60 vs a 76 serial pass@1.
The other top LLMs, GPT-3.5 and Phind-V2, are also nearly as
efficient on OpenMP problems as serial problems. StarCoderBase
and the CodeLlama models have a larger gap between their serial
and OpenMP pass@1 scores, but still have better results on OpenMP
than the other parallel execution models.

With the larger LLMs, Kokkos is consistently just behind OpenMP
in its pass@1 results. Like OpenMP, Kokkos is a shared memory
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parallel programming model that relies mostly on high-level ab-
stract constructs to parallelize code. These high-level abstractions
make it simpler for the LLM to translate the prompt text to code.
The smaller LLMs struggle with Kokkos, likely due to the fact that
Kokkos is more verbose than OpenMP and is more niche than
the other parallel execution models leading to less inclusion in
their training data. With fewer Kokkos examples in the dataset the
smaller LLMs likely struggle to learn how to model Kokkos code
well.

Following Kokkos, we observe that all the LLMs are next most
efficient for CUDA/HIP. These two always have a similar pass@1
score, which is likely due to the similarity of CUDA and HIP. All of
the open-source LLMs have a slightly better pass@1 with HIP than
CUDA, while the closed-source LLMs are slightly better with CUDA
than HIP. CUDA/HIP kernels are more complex than OpenMP and
Kokkos, but the parallelism is intrinsic to the kernel making it
easier than MP], since the LLM does not need to reason about large
changes to the underlying algorithm.

MPI and MPI+OpenMP are generally the worst parallel execu-
tion models for all the LLMs (except for CodeLlama 7B and 13B
where they are second and third worst). Compared to the other
execution models in our testing, MPI implementations often differ
the most from their sequential counterparts. This complexity makes
it difficult for the LLMs to generate correct MPI code. Based on the
results for all the execution models, we hypothesize that this trend
generalizes to all parallel execution models: the more different a
parallel programming model’s code is from the corresponding serial
code, the more difficult it is for the LLMs to generate correct code
in that programming model.

9.1.2 Breakdowns by Problem Types. In addition to execution
models it is also important to understand what types of computa-
tional problems LLMs struggle to parallelize. Figure 4 shows the
pass@1 score for each problem type across all the LLMs. As a
general trend, we observe that all LLMs are better at generating
parallel solutions for structured, dense problems and worse for
unstructured, sparse problems.

All of the LLMs get their best pass@1 scores for transform prob-
lems with the exception of GPT-3.5 where it is the second best.
Transform problems are the simplest as they are completely data
parallel. In addition to transform, all of the LLMs generally score
well on reduction and search. These are also fairly simple to paral-
lelize as searching requires little to no communication and reduc-
tions are often offered as high-level constructs in parallel program-
ming models.

Phind-V2 and the GPT LLMs score well on stencil, histogram, and
dense linear algebra problems. These problems are all structured
and dense, which makes them easier for the LLMs to parallelize.
These three problems are in the middle of the group for StarCoder-
Base and the CodeLlama LLMs coming after transform, search, and
reduce. This suggests that the larger LLMs are better at paralleliz-
ing these types of problems. Interestingly, StarCoderBase and the
CodeLlama LLMs all have graph problems in their top four to five
problem types, which is not the case for Phind-V2 and the GPTs.

The bottom five problem types for all of the LLMs are sparse
linear algebra, scan, fft, geometry, and sort. GPT-4 is the exception
with graph instead of sort as the fifth-worst problem type. Sparse
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Figure 4: pass@1 for each problem type. The LLMs are best at transform problems, while they are worst at sparse linear algebra

problems.

linear algebra is generally the worst problem type, which is likely
due to the difficulty in parallelizing sparse computations. FFT and
geometry problems are also generally more difficult to parallelize
so it readily follows that the LLMs would struggle with them. The
sorting and scan results are more surprising. Parallel implementa-
tions for sort and scan are well known and certain execution models
like OpenMP and MPI even offer high-level abstractions for scan.

Figure 5 provides an even more detailed view of the pass@1
metric across both execution models and problem types for GPT-4.
We see the same trends as in Figures 3 and 4 for GPT-4, however,
we can also see where certain trends do not hold. For example,
despite being the best LLM for search problems and the best LLM
at Kokkos, GPT-4 does not do well on Kokkos search problems. We
also see that MPI and MPI+OpenMP scores on a particular problem
type are not always the same. This suggests that the model has
difficulty dealing with these dual execution models.
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Figure 5: pass@1 for GPT-4 across all execution models and
problem types. GPT-4 excels with the Kokkos and OpenMP
execution models, while getting more problems correct for
transform, search, and reduce problems.

RQ3 How performant and scalable is the parallel code gen-
erated by LLMs?

9.1.3 Speedup and Efficiency. When writing parallel code, it
is important to consider performance in addition to correctness.
A parallel implementation that is correct, but makes inefficient
use of resources is not useful in practice. Hence, we compare the
speedup, @k and efficiency, @k metrics for each LLM.
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Figure 6: speedup, @1 and efficiency, @1 for parallel prompts.
Results are shown for n = 32 threads for OpenMP and Kokkos,
n = 512ranks for MPI, and n = (4ranks) X (64 threads) for
MPI+OpenMP. For CUDA/HIP n is set to the number of kernel
threads, which varies across prompts. !

Figure 6 shows the speedup, @1 and efficiency, @1 scores for
each LLM, averaged across the parallel execution models. For com-
parison, we use the highest value of n for each execution model
that we ran in our experimentation: n = 32 threads for OpenMP
and Kokkos, n = 512 processes for MPI, and n = (4 processes) X
(64 threads) for MPI+OpenMP. For CUDA/HIP, n is set to the num-
ber of kernel threads, which varies across prompts.!

! Search problems are omitted from speedup, @k and efficiency, @k results due to
their high super-linear speedups preventing a meaningful analysis of the performance
results for other problem types.
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Figure 7: efficiency @1 for MPI (left), OpenMP (middle), and Kokkos (right) prompts across rank and thread counts. Phind-V2 is
most efficient for MPI prompts, but is one of the least efficient for OpenMP and Kokkos. GPT-4 is the most efficient for OpenMP

and Kokkos prompts. !

In Figure 6, we see a trend similar to the pass@1 scores in Fig-
ure 1, with the GPT models scoring the highest and the CodeLlama
models scoring the lowest. Despite GPT-3.5 having the highest
pass@1 for parallel prompts, GPT-4 has the highest speedup, @1
for all parallel execution models at 20.28. This means that on av-
erage GPT-4’s parallel code achieves a 20.28x speedup over the
sequential baseline. To help interpret this result, we also show the
efficiency, @1 for each LLM for the parallel prompts in Figure 6.
From this we see that none of the LLMs use parallel resources ef-
ficiently. The best efficiency, @1 is 0.13 for GPT-4 meaning that
on average GPT-4’s parallel code achieves 13% of the maximum
possible speedup. CodeLlama-34B has the worst efficiency, @1 at
0.06. From the results in Figure 6 we can conclude that the parallel
code produced by LLMs is generally inefficient even when correct.

It is also important to consider how efficiency, @1 varies across
n. Figure 7 compares the efficiency, @1 curves for MPI, OpenMP,
and Kokkos. We see Phind-V2 is the most efficient at MPI prompts,
while the least efficient at OpenMP and second to least for Kokkos.
GPT-4 produces the most efficient code on average as it is one of
the top two most efficient for all three execution models. All of the
models start with better efficiency, @1 for OpenMP than Kokkos,
but rapidly decline towards an efficiency, @1 of ~0.2. On the other
hand, the Kokkos efficiency,@1 values stay roughly consistent
across n, showing efficient use of threads.

Figure 8 further shows the expected maximum speedup and
efficiency across all resource counts n. We see the same trends as
in Figure 6 with the speedups at similar values and the efficiencies
higher. This is likely due to a number of the generated code samples
plateauing at a certain n, so choosing a smaller n can give a better
efficiency with the same speedup.

9.2 Experiment 2: Parallel Code Translation

RQ4 How well can LLMs translate between execution mod-
els? How performant and scalable is the translated code?

In addition to generating parallel code from scratch, we also
evaluate the LLMs ability to translate between execution models
(see Section 5.2). Figure 9 shows the pass@1 scores for each LLM for
translating serial to OpenMP, serial to MPI, and CUDA to Kokkos.

speedupmax@ | and efficiencymax@ | for Parallel Problems

25 1.0
B speedupmax@| B efficiencymax@! 2011
_20 > 0'8@
16.79

(% 15 06 3

g 1308 048 £

a 11.05 0.45 0.45 =

S 040 ' 22042 5, 2

g0 764 7.53.0:33 048

2 577 &

2 5 020
0 0.0

CL-7B CL-13B StarCoderBase CL-34B  Phind-V2 ~ GPT-3.5 GPT-4

Figure 8: The expected max speedup and efficiency across all
resource counts n.

We also include the generation pass@1 scores from Figure 3 for
each LLM for OpenMP, MPI, and Kokkos.
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Figure 9: pass@1 for each LLM when translating serial to
OpenMP, serial to MPI, and CUDA to Kokkos compared to
the pass@1 score for generating code in the destination exe-
cution model. The smaller LLMs see a significant improve-
ment when shown an example correct implementation.

Several LLMs score significantly better when given a correct
example implementation in a different execution model i.e. trans-
lation. All LLMs, except for GPT-3.5, have a higher pass@1 score
for translating to OpenMP than they do for generating OpenMP
code from scratch. We observe that the LLMs are able to correctly
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parallelize the provided serial code with OpenMP. A similar trend
emerges with the serial to MPI translation. All of the LLMs score
better when translating serial code to MPI than they do when gen-
erating MPI code from scratch. Likewise, all of the LLMs see an
improvement translating from CUDA to Kokkos over native Kokkos
generation with the exception of the GPT models.

It is expected that the pass@1 scores would either increase or
stay the same, since the LLM is given more information during
translation than when generating code from scratch. It is surprising,
however, the magnitude of improvement that the smaller LLMs
experience. For example, CodeLlama-7B has a pass@1 of 20 for
generating OpenMP code from scratch, but a pass@1 of 52 for
translating serial code to OpenMP. This suggests that providing
LLMs with correct implementations can improve their ability to
generate correct parallel code.

9.2.1 Speedup and Efficiency. While translating between ex-
ecution models improves the pass@1 score it does not generally
improve the performance of the generated code as shown in Fig-
ure 10. Most LLMs see a similar efficiency, @1 for OpenMP, MPI,
and Kokkos whether generating from scratch or translating be-
tween execution models. A number of LLMs actually perform worse
when translating from serial to OpenMP.
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Figure 10: efficiency@1 translation scores compared to gen-
eration scores. The LLMs generally score similarly for trans-
lation and generation.!

We observe similar trends with OpenMP and Kokkos for speedup, @1

as shown in Figure 11. The LLMs generally perform similarly for
translation and generation. The exception is MPI where CodeLlama-

13B, CodeLlama-34B, and GPT-4 all get significantly better speedup, @1

when translating from serial to MPI code. From the results in Fig-
ures 9 to 11 we conclude that providing LLMs with correct imple-
mentations in one execution model helps them generate correct
code in another execution model, but does not necessarily improve
the performance of the generated code.

10 CONCLUSION

In this paper, we proposed a Parallel Code Generation Evaluation
(PAREvAL) benchmark for evaluating the ability of LLMs to generate
parallel code. We additionally introduced two novel metrics for
evaluating the runtime performance and scaling behavior of the
generated parallel code. Using PAREvAL and these metrics, we have
evaluated the ability of state-of-the-art open- and closed-source

Nichols et al.
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Figure 11: speedup@1 translation scores compared to gen-
eration scores. The LLMs generally perform similarly for
translation and generation with the exception of MPL!

LLMs to generate parallel code. We find that LLMs are significantly
worse at generating parallel code than they are at generating serial
code. In particular, we find that LLMs struggle most with MPI
code and sparse, unstructured problems. Further, we observe that
closed-source models outperform all the open-source models we
tested, and that even when LLMs generate correct parallel code, it is
often not performant or scalable. Providing correct implementations
in one execution model (i.e. serial) helps LLMs generate correct
parallel code, but does not necessarily improve the performance or
scalability of the generated parallel code.

The poor performance of LLMs on PAREvAL indicates that further
efforts are necessary to improve the ability of LLMs to model parallel
code and/or create new LLMs that are specialized for parallel code
generation. These LLMs will need to improve both the correctness
and runtime performance of their outputs. Benchmarks, such as
PAREVAL, are vital to creating and improving LLMs for parallel
code generation. By iterating on PAREVAL and the metrics we have
proposed, we can continue to improve the ability of LLMs in this
domain and create state-of-the-art open-source LLMs for different
parallel code development tasks.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the National
Science Foundation under Grant No. 2047120, and by the National
Science Foundation Graduate Research Fellowship Program un-
der Grant No. DGE 2236417. This research used resources of the
National Energy Research Scientific Computing Center, a U.S. De-
partment of Energy Office of Science User Facility using NERSC
award DDR-ERCAP0025593. We spent ~80 dollars for the use of
the paid API of GPT-3.5 and GPT-4 for the evaluation in this paper.

REFERENCES
I

2023. Big Code Models Leaderboard - a Hugging Face Space by bigcode. https:

//huggingface.co/spaces/bigcode/bigcode-models-leaderboard

[2] 2023. HIP Documentation. https://rocm.docs.amd.com/projects/HIP/en/latest/

[3] 2023. Zero-Shot Replication Framework. https://github.com/emrgnt-cmplxty/
zero-shot-replication.

[4] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2020. A Transformer-based Approach for Source Code Summarization. ArXiv
abs/2005.00653 (2020).

[5] Toufique Ahmed and Prem Devanbu. 2022. Learning code summarization from a

small and local dataset. ArXiv abs/2206.00804 (2022).


https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://github.com/emrgnt-cmplxty/zero-shot-replication
https://github.com/emrgnt-cmplxty/zero-shot-replication

Can Large Language Models Write Parallel Code?

[6] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher

Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 (2023).

[7] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk

[10

[11

[12

[13

[14

[15

[16

(7

[18

[19

[20

[21

[22

[23

= =

]

]

]

]

]

]

]

Michalewski, David Dohan, Ellen Jiang, Carrie ]J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR
abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

Tom B. Brown et al. 2020. Language Models are Few-Shot Learners. CoRR
abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165
Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-
Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg, and Abhinav Jangda. 2023.
MultiPL-E: A Scalable and Polyglot Approach to Benchmarking Neural Code
Generation. IEEE Transactions on Software Engineering 49, 7 (2023), 3675-3691.
https://doi.org/10.1109/TSE.2023.3267446

Le Chen, Xianzhong Ding, Murali Emani, Tristan Vanderbruggen, Pei hung Lin,
and Chuanhua Liao. 2023. Data Race Detection Using Large Language Models.
arXiv:2308.07505 [cs.LG]

Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chunhua Liao, Murali Emani,
and Bronis de Supinski. 2023. LM4HPC: Towards Effective Language Model
Application in High-Performance Computing. In OpenMP: Advanced Task-Based,
Device and Compiler Programming, Simon McIntosh-Smith, Michael Klemm,
Bronis R. de Supinski, Tom Deakin, and Jannis Klinkenberg (Eds.). Springer
Nature Switzerland, Cham, 18-33.

Mark Chen and et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:arXiv:2107.03374

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:arXiv:2107.03374

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math
Word Problems. arXiv preprint arXiv:2110.14168 (2021).

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan
Chen, Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2023. ClassEval: A
Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Genera-
tion. arXiv:2308.01861 [cs.CL]

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and
Connor Leahy. 2021. The Pile: An 800GB Dataset of Diverse Text for Language
Modeling. CoRR abs/2101.00027 (2021). arXiv:2101.00027 https://arxiv.org/abs/
2101.00027

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2022. PAL: Program-aided Language Models.
arXiv preprint arXiv:2211.10435 (2022).

Spandan Garg, Roshanak Zilouchian Moghaddam, Colin B. Clement, Neel Sun-
daresan, and Chen Wu. 2022. DeepDev-PERF: a deep learning-based approach
for improving software performance. Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (2022).

William Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Balaprakash, and
Jeffrey Vetter. 2023. Evaluation of OpenAI Codex for HPC Parallel Programming
Models Kernel Generation. In Proceedings of the 52nd International Conference
on Parallel Processing Workshops (ICPP-W 2023). ACM. https://doi.org/10.1145/
3605731.3605886

Jian Gu, Pasquale Salza, and Harald C. Gall. 2022. Assemble Foundation Models for
Automatic Code Summarization. 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER) (2022), 935-946.

Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. 2022. Se-
mantic Similarity Metrics for Evaluating Source Code Summarization. 2022
IEEE/ACM 30th International Conference on Program Comprehension (ICPC) (2022),
36-47.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In International Conference on Learning
Representations. https://openreview.net/forum?id=rygGQyrFvH

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language

[24

[25

&
&

[27

[28

[29

[30

[38

[39

[40

[41

"~
&

[43]

(44

HPDC ’24, June 3-7, 2024, Pisa, Italy

Models. CoRR abs/2106.09685 (2021). arXiv:2106.09685 https://arxiv.org/abs/
2106.09685

Tal Kadosh, Niranjan Hasabnis, Vy A. Vo, Nadav Schneider, Neva Krien, Abdul
Wasay, Nesreen Ahmed, Ted Willke, Guy Tamir, Yuval Pinter, Timothy Mattson,
and Gal Oren. 2023. Scope is all you need: Transforming LLMs for HPC Code.
arXiv:2308.09440 [cs.CL]

Md Abul Kalam Azad, Nafees Igbal, Foyzul Hassan, and Probir Roy. 2023. An
Empirical Study of High Performance Computing (HPC) Performance Bugs. In
2023 IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR). 194-206. https://doi.org/10.1109/MSR59073.2023.00037

Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu, Xin
Shi, Colin B. Clement, and Neel Sundaresan. 2022. Learning to Reduce False
Positives in Analytic Bug Detectors. 2022 [EEE/ACM 44th International Conference
on Software Engineering (ICSE) (2022), 1307-1316.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos
Murioz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries. 2022. The Stack: 3
TB of permissively licensed source code. Preprint (2022).

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Scott Wen tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2022. DS-
1000: A Natural and Reliable Benchmark for Data Science Code Generation.
arXiv:2211.11501 [cs.SE]

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu,
Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko, Nicolas Gontier,
Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero,
Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muiioz Ferrandis, Sean Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries. 2023. StarCoder: may the
source be with you! (2023). arXiv:2305.06161 [cs.CL]

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023.
VerilogEval: Evaluating Large Language Models for Verilog Code Generation.
arXiv:2309.07544 [cs.LG]

Christian Munley, Aaron Jarmusch, and Sunita Chandrasekaran. 2023.
LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation.
arXiv:2310.04963 [cs.Al]

NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. CUDA, release: 10.2.89.
https://developer.nvidia.com/cuda- toolkit

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

OpenAl 2023. OpenAI APL https://platform.openai.com/docs/api-reference/
OpenAl 2023. OpenAl Python API library. https://github.com/openai/openai-
python

OpenMP4 2013. OpenMP Application Program Interface. Version 4.0. July 2013.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

Phind. 2023. Phind-CodeLlama-34B-v2. https://huggingface.co/Phind/Phind-
CodeLlama-34B-v2

Cedric Richter and Heike Wehrheim. 2022. Can we learn from developer mistakes?
Learning to localize and repair real bugs from real bug fixes. ArXiv abs/2207.00301
(2022).

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
arXiv:2308.12950 [cs.CL]

M. Snir. 1998. MPI-the Complete Reference: The MPI core. Mass. https://books.
google.com/books?id=x79puj2YkroC

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark Ger-
stein. 2023. BioCoder: A Benchmark for Bioinformatics Code Generation with
Contextual Pragmatic Knowledge. arXiv:2308.16458 [cs.LG]

Hugo Touvron et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models.
Technical Report. arXiv:2307.09288 [cs.CL]

Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,


https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2308.07505
https://arxiv.org/abs/arXiv:2107.03374
https://arxiv.org/abs/arXiv:2107.03374
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.1145/3605731.3605886
https://doi.org/10.1145/3605731.3605886
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2308.09440
https://doi.org/10.1109/MSR59073.2023.00037
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2309.07544
https://arxiv.org/abs/2310.04963
https://developer.nvidia.com/cuda-toolkit
https://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/api-reference/
https://github.com/openai/openai-python
https://github.com/openai/openai-python
https://arxiv.org/abs/1912.01703
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://arxiv.org/abs/2308.12950
https://books.google.com/books?id=x79puJ2YkroC
https://books.google.com/books?id=x79puJ2YkroC
https://arxiv.org/abs/2308.16458
https://arxiv.org/abs/2307.09288

HPDC ’24, June 3-7, 2024, Pisa, Italy

[45

[46]

[47]

[48]

[49]

Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the
Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
805-817. https://doi.org/10.1109/TPDS.2021.3097283

Pedro Valero-Lara, Alexis Huante, Mustafa Al Lail, William F. Godoy, Keita
Teranishi, Prasanna Balaprakash, and Jeffrey S. Vetter. 2023. Comparing Llama-2
and GPT-3 LLMs for HPC kernels generation. arXiv:2309.07103 [cs.SE]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. Association for Computational Linguistics, 38—-45. https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J. Hellendoorn. 2022. A
Systematic Evaluation of Large Language Models of Code. https://doi.org/10.5281/
zenodo.6363556 https://arxiv.org/abs/2202.13169.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang,
Ying Li, Tao Xie, and Qianxiang Wang. 2023. CoderEval: A Benchmark of Prag-
matic Code Generation with Generative Pre-trained Models. arXiv preprint
arXiv:2302.00288 (2023).

Nichols et al.


https://doi.org/10.1109/TPDS.2021.3097283
https://arxiv.org/abs/2309.07103
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.5281/zenodo.6363556
https://doi.org/10.5281/zenodo.6363556

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models
	2.2 Large Language Models for Code

	3 Related Work
	3.1 Benchmarking LLMs for Code-related Tasks
	3.2 Applying LLMs to Parallel and HPC Code

	4 ParEval: Prompts for Parallel Code Generation
	5 Description of Evaluation Experiments
	5.1 Experiment 1: Parallel Code Generation
	5.2 Experiment 2: Parallel Code Translation

	6 Models used for Comparison
	7 Evaluation Metrics
	7.1 Metric for Correctness
	7.2 Performance Metrics

	8 Experimental Setup
	8.1 LLM Inference: Generating Code Output
	8.2 Evaluating the Generated Code

	9 Evaluation Results
	9.1 Experiment 1: Parallel Code Generation
	9.2 Experiment 2: Parallel Code Translation

	10 Conclusion
	Acknowledgments
	References

