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Abstract—Modern scientific software in high performance
computing is often complex, and many parallel applications
and libraries depend on several other software or libraries.
Developers and users of such complex software often use package
managers for building them. Package managers depend on hu-
mans to codify package constraints (for dependency and version
selection), and the dependency graph of a software package
can often become large (hundreds of vertices). In addition,
package constraints often become outdated and inconsistent over
time since they are maintained by different people for different
packages, which is a laborious task. This can result in package
builds to fail for certain package configurations. In this paper,
we propose a methodology that uses historical build results to
assist a package manager in selecting the best versions of package
dependencies with an aim to improve the likelihood of a successful
build. We utilize a machine learning (ML) model to predict
the probability of build outcomes of different configurations
of packages in the Spack package manager. When evaluated
on common scientific software stacks, this ML model-based
approach is able to achieve a 13% higher success rate in building
packages than the default version selection mechanism in Spack.

Index Terms—package managers, build configuration, version
selection, machine learning

I. INTRODUCTION

Scientific software has grown in complexity and size over
time, and many application codes have tens to hundreds of
dependencies on other software and libraries. Keeping track of
dependency and version constraints for such complex software
and building them manually is highly challenging. As a result,
developers and users have turned to package managers to
automate the process of managing and installing dependencies.
However, package managers depend on humans to codify
package constraints (for dependency and version selection).
Over time, package constraints can become outdated and
inconsistent since maintenance is often laborious and done by
different people for different packages.

Package constraints can either be too soft or too strict as de-
velopers generally cannot test all of the combinatorial version
constraints that arise in large dependency graphs. As package
versions and dependency constraints are updated, these invalid
constraints can cause packages to fail to build or install.
This leads to package managers struggling with building
and maintaining packages successfully. Solving these complex
package management problems and improving the success rate
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of package installations is important as the complexity and size
of software continues to grow. Thus, ensuring that a package
manager can reliably resolve dependency constraints despite
the complexity of the package is important. Such an improved
package manager could reduce the amount of time developers
spend debugging dependency issues and re-building software.
This could also reduce the amount of time package maintainers
spend writing and maintaining dependency constraints. Finally,
this could allow even larger and more complex software to be
easily built, maintained, and reliably deployed with a higher
success rate.

Ensuring that a package manager builds packages success-
fully most of the time is difficult as it involves improving
the quality of constraints in package definitions (codified by
humans). Improving these through brute-force or increased
human effort is not feasible due to the large number of pack-
ages and dependencies in modern scientific software. Making
use of historical build information is a potential solution to
this problem, but it is non-trivial to incorporate into modern
package managers. This is due to most package managers
relying on logic programs and SAT solvers to resolve package
configurations, which do not readily support incomplete and/or
probabilistic information. Furthermore, trying to adapt these
solvers and change their problem encoding is generally a
complex task [1]. Minor changes in the problem encoding can
lead to significant changes in the solution space that can yield
undesirable solutions or be intractable to solve.

In this paper, we improve the success rate of package instal-
lations by incorporating historical build information into the
version selection process. We first adapt the BuildCheck [2]
machine learning model, that predicts the probability of a
dependency graph successfully building, and extend it to be
able to handle new and unseen versions. We then make use of
the predicted probabilities in the flexible and heavily param-
eterized package manager, Spack [3], to select the versions
of a package that maximize the probability of a successful
build. We design and compare several strategies for encoding
probabilistic information into Spack’s internal logic program.
We show that our proposed methodology improves the success
rate of package installations by up to 13% over the default
version selection mechanism in Spack. We further show how
this methodology can be used to study the causes of package



build failures.
Our paper makes the following important contributions.

« A method for extrapolating build probabilities of package
configurations to handle new and unseen versions.

o A novel methodology for selecting package configura-
tions that incorporates probabilistic build information to
improve the success rate of package installations.

« A method for exploring the causes of build failures using
probabilistic build information.

In addition to these contributions we answer the following
research questions in our work:

RQ1 How can we extrapolate build information to new pack-
age versions to mitigate frequent, expensive data collec-
tion? We compare several methods for extrapolating build
probabilities on a short time-horizon and show that per-
pair averages provide the best results.

How can probabilistic build information be used to select
better dependency versions and improve the likelihood of
successfully building a package? We show that incorpo-
rating build probabilities into Spack’s version selection
mechanism with probabilistic Answer Set Programming
improves the total number of packages in our data set
built successfully by 13%.

Can probabilistic version selection mechanisms be effec-
tively used to determine causality for failed builds? We
demonstrate how to use Plingo, a probabilistic logic pro-
gramming language, to query build outcome information
for to-be installed packages and study causality.

RQ2

RQ3

II. BACKGROUND

In this section, we provide background on the Spack pack-
age manager and its use of Answer Set Programming for
package configuration selection. We additionally discuss prob-
abilistic variants of Answer Set Programming and machine
learning models that yield probabilities of build success for
package configurations.

A. Spack and Answer Set Programming

To test our methodologies we use the Spack package
manager [3]. It is a flexible and heavily parameterized package
manager that allows for the specification of package depen-
dencies, versions, and build flags. It was originally designed
for scientific software ecosystems, but has grown to support
a wide variety of software. Its parameterization makes it
a desirable tool to use for our studies as it allows us to
easily modify the package configurations to test different
version selections. Spack can also build any of its package
configurations which allows us to easily test the build success
of different configurations.

Spack packages are defined in a Python based Domain
Specific Language (DSL). Despite being in Python, the pack-
age DSL is a declarative specification of the package, its
build process, dependencies, constraints, and other metadata.
Listing 1 shows an example package declaration in Spack.

Spack defines a concretizer [4], which is an algorithm
that takes an abstract specification of a package and its

# This is the class name for the package ‘example’
class Example (Package) :

"""Example depends on zlib, mpi,

and optionally bzip2"""

version("1.1.0") # two versions are available

version("1.0.0")

variant ("bzip", default=True,

description="enable bzip")
# Depends on bzip2 or later when bzip is enabled

dependsion("bzipé@l. L1,
depends_on ("z1lib") 4§

# Newer

when="+bzip")

versions re

# Known failure when
conflicts ("%$intel")
# Does not suppor

conflicts("target=aarch64:")

building with intel cc

t architectures derived from ARM64

Listing 1: Constraints in a Spack package . py file, expressed
in Spack’s embedded DSL.

dependencies and produces a concrete package configuration
for building and installing. It is responsible for selecting the
versions and build flags for each package in the dependency
graph. This concretizer is implemented using formal logic in
Answer Set Programming (ASP) [5], [6]. ASP is a declarative
programming paradigm that allows for the specification of a
problem in terms of rules and constraints. These rules and
constraints define stable models, which are the solutions to
the problem. Internally, Spack uses the Clingo [7] language
and solver implementation of ASP.

Spack’s internal Clingo program consists of two parts: rules
that define what a valid package configuration is, and facts
that define the package definitions, current build environment,
and other metadata. Since there may be many valid package
configurations, the concretizer uses optimization statements to
select the best configuration based on a number of criteria.
For instance, the default Spack concretizer prefers the latest
version of a package and packages that are already installed.

Listing 2 shows an example of a version conflict specifica-
tion in the format of Spack’s concretizer. This conflict would
be generated based on a stated conflict within a package’s
package.py file. If the condition requirements are present in
the concretizer’s facts for a given package configuration, then
an error fact will be included in the model. Spack’s concretizer
is set to minimize the number of errors in the model, so
these conflicts will be avoided if a valid configuration exists.
Listing 3 shows the rule that enforces this behavior within
Spack’s concretizer.

Spack encodes some of its constraints using error facts
and aggressively minimizes the number of error facts in the
final stable model. This program encoding allows for the
propagation of error messages into the final stable model and
is essential for providing useful error messages to the user.
Line 1 in Listing 3 shows how the Msg variable is propagated
to the error fact. Rules and constraints in the concretizer that



condition (15022, "conflict trigger fooRvl").

condition_requirement (15022, "node", "foo") .

condition_requirement (15022, "node_version_satisfies",
"EFooM, Myl .

condition (15023, "conflict constraint bar@v2").

condition_requirement (15023, "node", "bar") .

condition_requirement (15023, "node_version_satisfies",
"bar", "v2") .

conflict ("foo",15022,15023,"foo@vl conflicts with bar@v2").

Listing 2: An example showing the specification of version
conflicts in the format of Spack’s concretizer. It would be
derived from foo’s package.py file and specifies that
foo@vl conflicts with bar@v2.

do not need to propagate error messages use standard ASP
rules and constraints.

error (1, Msg)
conflict (Package,
condition_holds (TriggerID),

1 :— attr("node"
2

3

4 condition_holds (ConstraintID),
S

6

TriggerID,

Package),
ConstraintID, Msg),

not external (Package),
not attr("hash", Package, _).

Listing 3: An error rule from Spack’s concretizer. This speci-
fies that an error is present if a conflict exists and its conditions
hold. This is how version conflicts are enforced in Spack’s
concretizer.

B. Probabilistic Answer Set Programming

While ASP provides a powerful interface for logic program-
ming, it does not provide a mechanism for reasoning about
uncertainty. Probabilistic Answer Set Programming is an ex-
tension of ASP that allows for the specification of probabilistic
facts and rules. It makes use of the stable model semantics
of ASP and extends it to probabilistic reasoning to find the
most probable stable models. There are several proposed ways
to extend ASP to support probabilistic reasoning [8]-[10].
Most of these center around replacing strict rules within stable
model semantics with weighted rules that follow Markov
Logic. This allows for probabilistic reasoning, stable model
ranking, and recovering probabilities of facts and models.

Plingo [11], an extension of Clingo, implements several
probabilistic variants of ASP. It extends the syntax of Clingo
to allow for the specification of probabilistic facts and rules.
These are then transformed into native Clingo rules and
optimization statements to find the most probable stable mod-
els. Plingo also provides a mechanism for recovering the
probabilities of individual facts and models. Listing 4 shows
an example of a probabilistic ASP program that specifies the
weight of particular facts using the weight rule. The example
uses integer weights, but can also be modified to using floating
point weights as log probabilities. Running the program in
Plingo yields the stable models and their probabilities.

C. Predicting Build Probabilities

In order to obtain probabilities of build success for pack-
age configurations, we build upon the previous work Build-
Check [2]. BuildCheck is a graph neural network (GNN) based

bird(X) :- resident (X).
bird(X) :- migratory (X).
:— resident (X), migratory (X) .
resident (jo) :- &weight (2)
migratory (jo) :- &weight (1).

L T

Listing 4: An example of a probabilistic ASP program in
Plingo from [8]. The weight syntax specifies a probability
weight for a particular fact. This program can be read as
follows. X is a bird if it is a resident (line 1). X is a bird
if it is migratory (line 2). X cannot be both resident and
migratory (line 3). jo has been observed to be both resident
and migratory with weights 2 and 1, respectively, higher being
more trustworthy (lines 4-5). This program will yield 3 stable
models: {} with probability 0.09, {resident(jo),bird(jo)}
with probability 0.67, and {migratory(jo),bird(jo)} with
probability 0.24.

tool that predicts the outcome of building a dependency graph.
The underlying GNN model is based on a Graph Convolutional
Network (GCN). The input to BuildCheck is a dependency
graph where each node is a package and its features are an
encoding of the package version. Edges in the graph represent
dependency relationships in the build graph. The GNN model
learns a representation of the graph and uses it to classify
whether a package will build or not. A notable limitation of
BuildCheck is that versions are encoded as one-hot vectors in
the graph nodes, which means the model cannot be extended
to new package versions without re-training from scratch.

BuildCheck was trained on a data set of over 40,000 Spack
package builds. It was shown to predict 91% of builds correctly
in its test set making it a perfect candidate for our studies.
In order to use BuildCheck to predict build probabilities, we
need to change the output of the model from classifying build
success to regressing build probability. This is easily accom-
plished by removing the GNN’s argmax computation after its
softmax output layer, which can be interpreted as probabilities
of build success. So in order to build our data set we create
the dependency graph for a package configuration and run it
through the modified BuildCheck model, which in turn outputs
a probability of build success for the configuration.

III. OVERVIEW OF OUR APPROACH

In this section we provide an overview of our methodology
for incorporating predicted build probabilities into Spack’s
version selection mechanism. The goal is to make use of his-
torical build information to improve on hand-labeled version
constraints and select package versions that are more likely
to build successfully. Our approach focuses on incorporating
predicted build probabilities into the logic program that Spack
uses to select package versions. Figure 1 provides an overview
of this approach.

First, we introduce a method for extrapolating build proba-
bilities to new package versions. New package configurations
are introduced rapidly in Spack and it is infeasible to collect
new build data and re-train the GNN model every time package
metadata changes. It is possible to re-train BuildCheck with
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Fig. 1. Overview of our approach for incorporating predicted build probabilities into Spack’s version selection mechanism. First, the graph neural network is
used to predict the build probability for all pairs of packages. For new package versions, we extrapolate the build probabilities from existing package pairs.
These build probabilities are then encoded into Spack’s logic program alongside the existing metadata and install constraints. The modified logic program

then selects the package versions that are most likely to build.

some frequency, but we need an approach to extrapolate build
probabilities for short time horizons. We solve this by using
expected probabilities for existing package pairs to extrapolate
to new versions. When compared to several other extrapolation
methods we find that this approach is the most accurate (see
Section 1V).

Now that we can extrapolate build probabilities to new
package versions, we can use them to improve Spack’s version
selection mechanism. To accomplish this, our approach first
computes the build probability for all pairs of packages. These
pairs are then used to encode the build probabilities within
Spack’s logic program in order to select the most probable
package versions. As finding good problem encodings for logic
programs is non-trivial, we compare four different ways of
encoding this information into the logic program using Answer
Set Programming and its probabilistic variant Plingo (see
Section V). These methods are compared over two different
sets of packages in Spack and we report the build success rate
for each method (see Section IX-A). Additionally, we compare
the solve times for each of the new concretizer methods (see
Section IX-B).

Using the best of these approaches we then investigate
using probabilistic build data to improve Spack’s existing
hand-labeled constraints. This is accomplished by using query
features in Plingo to get the probability of individual facts
and entire stable models. These probabilities can be used
to discover new likely constraints for the concretizer (see
Section VI). We demonstrate the effectiveness of this approach
by using it to improve the build success rate of the default
concretizer (see Section IX-C).

IV. EXTRAPOLATING BUILD PROBABILITIES FOR NEW
VERSIONS

RQ1 How can we extrapolate build information to new
package versions to mitigate frequent, expensive data
collection?

The existing BuildCheck tool provides us the ability to
predict build probabilities over a set of known packages,
however, due to its design it is unable to extrapolate to package
versions that are not in its data set. The model is limited
to known package versions due to its use of fixed sized
vectors to encode package versions. This is limiting as package
versions are added to Spack at a faster rate than new data can
be collected and new models trained. Thus, a technique is
needed to extrapolate build probabilities to the most recent
few versions of a package.

We compare several methodologies for extrapolating build
probabilities to new versions and compare their performance
in this Section. We omit discussion of interpolating build
probabilities between versions as it is unlikely for the collected
data sets used to train BuildCheck to be missing values within
version ranges.

A. Details of Proposed Extrapolation Methods

We consider the problem of extrapolating build probabilities
for a package-dependency pair to new versions of the package.
More specifically, given a package p with a set of versions V),
and a dependency d with a set of versions V;, we want to
predict the build probability of p with d for a new version
vp ¢ V. BuildCheck’s GNN is not capable of this, however,
we can use its output for known versions to make predictions
for new versions.

Let Prob(vp,vq) be the probability of building v, with v,.
We want to predict this for an unknown v, (ie., v, ¢ V,)
using known Prob(vp,vq) for v, € V, values. To estimate
this we propose three different techniques: per-pair mean,
nearest version, and regression. We try several variants of these
methods and additionally compare to a baseline of guessing a
constant value for each parent package. We describe each of
these in detail below.

1) Per-Pair Mean: One of the simplest methods for extrap-
olating build probabilities is to take the mean of the known
build probabilities for the package-dependency pair. For a



package p with versions V), and a dependency d with versions
V4, this would be:

new, unknown version dependency version

! 1
by

e AT
p

Prob(v;, v;)

v € Vp ,v;€ Vg

probability v;
builds with v;

parent versions

This can also be modified to take the mean for a fixed
dependency version v, instead of all dependency versions.
This simpler average can be computed as Prob(v;,vd) =
I?lpl > vev, Prob(vi,va). These simpler extrapolations are
easy to compute and reason with, however, they do not capture
trends in versions over time or any anomalous behavior for a
particular version.

2) Nearest Version: Another extrapolation method is to use
the build probability from the nearest package-dependency
pair. To accomplish this, we first need to define a distance
metric between versions. This can be done by mapping pack-
ages into Euclidean space and using the Euclidean distance
between versions.

Packages are mapped into R” where P is the total number
of packages in the data set. Each dimension corresponds to a
particular package. The value of a package’s dimension is an
encoding of the package version. For packages with a standard
versioning scheme (e.g., semantic versioning), we encode the
version as a weighted sum of each component (major, minor,
and patch version). In the absence of a standard versioning
scheme, we encode the versions ordinally from 1 to n where
n is the total number of versions for the package.

Once packages are mapped into RP, we can compute
the Euclidean distance between two package versions. To
extrapolate the build probability for a new version we find the
nearest version in the data set and use its build probability.
Once the data points are mapped into Euclidean space, this
can be simply implemented using k-Nearest Neighbors (kNN)
regression with k = 1.

3) Regression: The final extrapolation method we consider
is to use a regression model to predict build probabilities. To
accomplish this we transform the data set into a tabular form
where each package version is represented in vector space. We
use the same encoding as described in Section IV-A2 where
each dimension corresponds to a package and the value is
an encoding of the version. The vectors for the package and
dependency are concatenated to form a single vector, which
is then used as the input to a regression model that predicts
the build probability for that package-dependency pair.

We consider several regression models including linear,
AdaBoost, and XGBoost [12] regressors. We train each of
these with an 80-20 train-test split using mean absolute error
(MAE) as the training objective. Due to the large number of
packages, and therefore features, we attempted to use principal
component analysis (PCA) to reduce the dimensionality of the
data set, but observed significantly worse performance.

B. Comparison of Different Extrapolation Methods

To compare each of these methods we evaluate them over
the data set used to train BuildCheck. Let this data set be
denoted as D. We extract the build probabilities for each
package-dependency pair, so that the final five columns of
D are package, package version, dependency, dependency
version, build probability. This data set has 62,075 rows and
is further split into Diyain and Dyt With 20% of the pairs for
each parent-child pair in the test set. To simulate extrapolating
new packages on a short time horizon we limit the test set to
only package pairs where one of the packages is at one of
its three most recent versions. When evaluating the methods
from Section IV-A we use Di,ain as the set of known package
versions and Dyt as the set of unknown package versions to
extrapolate build probabilities for.

To compute the comparisons we implement each of the
methods from Section IV-A in Python. The Per-Pair Mean
method is implemented directly in Python and Numpy. The
Nearest Version and Regression methods are implemented
using the Scikit-Learn [13] package in Python. For the ma-
chine learning models we perform grid search over the hyper-
parameters to find the best possible MAE.

010 Comparison of Version Extrapolation Methods
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Fig. 2. Comparison of different methods for extrapolating build probabilities.
The Per-Pair Mean method obtains the lowest MAE of 0.0344 when predicting
build probability, and AdaBoost obtains the highest MAE.

Figure 2 compares the results for each method when eval-
uated over Dies;. We observe that the Per-Pair Mean method
obtains the lowest MAE of 0.0344 when predicting build
probability. This method is able to accurately predict the build
probability within 0.0344 of the actual build probability. Thus,
we can expect the build probabilities extrapolated from the
model to be +3.44 percentage points of the actual build
probability on average, which is a reasonable tolerance for
our methodology. It is important to note that these approaches
are simplifications and cannot model the complexities in the
dependency graph as well as BuildCheck. However, they are
useful for rapid extrapolation of build probabilities for new,
recent package versions.



V. INCORPORATING BUILD PROBABILITIES INTO SPACK’S
CONCRETIZER

Now that we have build probabilities readily available
they need to be incorporated into the configuration selec-
tion mechanism of Spack. This is non-trivial as Spack’s
concretizer is implemented with logic programming and its
strict rules do not readily allow for incorporating probabilities.
Furthermore, the most difficult aspect of SAT problems and
logic programming is generally finding correct and efficient
problem encodings [1]. In this section we present four potential
encodings for incorporating build probabilities into Spack’s
concretizer.

A. Encoding 1: Optimizing Version Selection in Clingo

The first approach modifies Spack’s Clingo program di-
rectly by encoding build probabilities as integer weights and
minimizing those weights during stable model selection. This
approach loses the ability to recover the probabilities of
individual models, but is the simplest to implement as it uses
native Clingo. The approach is inspired by Spack’s current
version selection mechanism where versions are encoded 1
through N, where N is the total number of versions and 1
is the most recent version. The Clingo program is directed to
minimize these version weights when selecting a stable model
and, thus, more recent versions are favored in Spack.

We adopt this design to assign integers to package-
dependency pairs based on build likelihood. Lower numbers
are assigned to pairs that are more likely to build and higher
numbers are assigned to pairs that are less likely to build. The
Clingo program is then directed to minimize these weights
when selecting a stable model. For example, consider that
package foo depends on bar. foo at version vl can build
with bar at version vI, v2, and v3 with probabilities 0.9,
0.1, and 0.5, respectively. These would create will_fail facts
in the program with weights 1, 3, and 2, respectively. The
Clingo program is then directed to minimize these weights
when selecting a stable model.

Listing 5 shows the modified Clingo program for the above
problem encoding. Lines 2-4 demonstrate how build failure
can be encoded as integer weights for package dependency
pairs. Lines 6-7 use a choice rule (omitted for brevity) to
include pair_weight facts in the stable model if that package-
dependency pair is also in the stable model. Lines 10-14
then tell the Clingo solver to minimize the weights of the
pair_weight facts in the final stable model. In practice, the
build failure encodings (lines 2-4) would be generated offline
and stored in a separate Clingo file. Only the choice rule and
optimization criterion (lines 6-14) would be added to Spack’s
current concretizer program.

B. Encoding 2: Probabilistic Constraints

The second approach is similar to the first (Section V-A),
however, we use Plingo to encode the build probabilities
for the will_fail facts. This allows for the use of Plingo’s
capabilities for probabilistic reasoning and recovering the
probabilities of individual facts and models. In this setup,

$ fail probabiliti r foo and bar

will_fail ("foo", "v1", "bar", "v1", 1).
will fail ("foo", "v1", "bar", "v2", 3).
will fail ("foo", "vl1", "bar", "v3", 2).

11 Weight@70+Priority, Package,Dependency

12 : pair_weight (Package, Dependency, Weight),
13 build_priority (Package, Priority)

14 }.

Listing 5: Example showing modification of Spack’s Clingo
program to weight version selection based on the “badness”
of certain pairs. This is done by including pair_weight facts in
the stable model if that version pair is also in the stable model.
The Clingo solver is then directed to minimize the weights of
these facts.

the will_fail facts are encoded as probabilistic facts using the
weight rule from Plingo. Section II-B describes weight rules
in Plingo.

With the will_fail facts included in the program we then
constrain against them. Constraints in Clingo are specified
using : - statements. These are rules with an empty head and
are read as “it is not the case that”. The conjunction of facts
after the :— cannot be included in the stable model. We use
this to constrain against the will_fail facts when their particular
package-dependency pair is also in the stable model.

Listing 6 shows an example of how this approach would
be implemented. The probability encoding is demonstrated in
lines 1-3. This would be repeated for all package-dependency
pairs. Lines 6-9 then specify the constraint that would be added
to Spack’s current concretizer program.

1 will_fail("foo", "v1", "bar", "vl") :- &weight ("0.1").
2 will_fail ("foo", "v1", "bar", "v2") :- &weight("0.9").
3 will fail ("foo", "v1", "bar", "v3") :- &weight("0.5").
4

5 $ constrain if will fail.

6 :— depends_on (Package, Dependency),

7 attr ("version", Package, Versionl),

8 attr ("version", Dependency, Version2),

9 will_ fail (Package, Versionl, Dependency, Version2).

Listing 6: Encoding build probabilities using Plingo’s weight
rule. This can be integrated with Spack’s concretizer to select
more probable versions for packages.

C. Encoding 3: Probabilistic Conflicts

The previous approach imposes a logical constraint on the
final stable model with some probability based on the failure
probabilities. This can be limiting in terms of the amount
of information that can be propagated via constraints and
how two or more constraints can interact. To address this we
modify Spack’s existing conflict specification mechanism to
be probabilistic. This mechanism is described in Section II-A
and Listings 2 and 3. Instead of creating will_fail facts and
encoding them with build probabilities we instead introduce



conflict facts into the language (as in Listing 2) and assign
them a probability. This introduces conflict statements into the
program, which will produce errors if their conditions are met.
Spack is in turn directed to minimize the number of errors in
the final stable model.

An example probabilistic conflict fact is shown in Listing 7.
The conditions for the conflict are specified in lines 1-8.
These conditions are met when the packages and their specific
versions are included in the final stable model. When these
conditions are met the conflict (lines 9-10) is triggered. This
approach is favorable to the other Plingo approaches in terms
of implementation as it makes use of existing mechanisms
within Spack’s Clingo program.

condition (15022, "conflict trigger fooRvl").

conflict ("foo",15022,15023,
"foo@vl conflicts with bar@v2")

1

2 condition_requirement (15022, "node", "foo") .

3 condition_requirement (15022, "node_version_satisfies",
4 "foo","vl") .

5 condition (15023, "conflict constraint bar@v2a").

6 condition_requirement (15023, "node", "bar") .

7 condition_requirement (15023, "node_version_satisfies",
8 "bar", "v2") .

9

0

1 :— &weight ("0.9").

Listing 7: Example showing a probabilistic conflict fact for the
conflict between foo at version vI and bar at version v2. These
two conflict with probability 0.9. Each package and version is
specified in a condition and condition requirements.

D. Encoding 4: Probabilistic Errors

The previous approach has the nice property that it cleanly
integrates with Spack’s existing conflict mechanism. However,
it puts probabilistic constraints on the same optimization
level as normal hard constraints, which may be less than
ideal for final concretization performance. To introduce a
new optimization level we create build_error facts based on
will_fail facts and minimize them in the final stable model.
Thus, we are increasing the probability of errors in a stable
model when those models include package-dependency pairs
that are likely to fail.

Listing 8 shows an example of this set up. As before, lines 1-
3 encode the build probabilities for each package-dependency
pair as will_fail facts using Plingo’s weight rule. These are
used in lines 5-12 to create build_error facts for each package-
dependency pair if it is in the stable model. This rule is the
only addition to Spack’s current concretizer program.

VI. USING CAUSALITY TO IDENTIFY NEW CONFLICTS

Incorporating historical build information into the
configuration selection mechanism of Spack can increase
the rate of successful package builds, but it does not
eliminate the errors in package metadata that cause build
failures. In this section we present a methodology for
uncovering the causes of build failures using probabilistic
build information. In order to accomplish this we can
make use of the query feature in Plingo. This feature
allows us to query the probability of individual facts

1 will_fail("foo", "v1", "bar", "vl") :- &weight ("0.1").
2 will fail ("foo", "v1", "bar", "v2") :- &weight("0.9").
3 will fail ("foo", "v1", "bar", "v3") :- &weight("0.5")
4

5 build_error (50, Msg) :- attr("node", Package),

6 attr ("node", Dependency),

7 depends_on (Package, Dependency),

8 attr ("version", Package, Versionl),

9 attr ("version", Dependency, Version2),

10 will fail (Package, Versionl, Dependency, Version2),

11 not external (Package),
12 not attr("hash", Package, _).

Listing 8: Incorporating probabilistic errors into Spack’s con-
cretizer based on build probability. Probabilities are encoded
using Plingo’s weight rule. Then build_error facts are created
for each package-dependency pair that is likely to fail.

(or atoms) being in the final stable model. For instance,
&query (attr ("version", Package, Version))
will output the probability of a version for a particular
package being in the final stable model. Another key Plingo
feature we will use is the ability to list the probability of all
stable models.

We first invert the existing Plingo concretizers in Section V
to find the least likely to build configurations. This can be
accomplished by changing all the will fail facts into
will build facts with necessary adjustments made to the
weights. We then sample a large number of stable models
from the concretizer and set aside the least likely to build. We
sample instead of using all stable models as the number of
stable models is intractably large for most problems.

Within the least likely to build stable models we select the
package pairs that have a will_build probability below
some threshold «. If these package pairs are present in their
stable models with a probability higher than 5 we consider
them as new hard constraints. We then add these new conflicts
to the existing Spack package metadata as shown in Listings 1
and 2. These new hard constraints supplement the existing
hand labeled constraints within the package metadata and can
be used to improve the concretizer.

To test this methodology we use the ECP-Proxy set of
packages and the Plingo Prob. Conflicts concretizer to identify
new hard constraints. We sample 10° stable models and use
a = 0.05 and 8 = 0.9 as thresholds for the package
selection. We then add the new hard constraints to the existing
package metadata and use the default Spack concretizer to
build the packages. We compare the build rate of the Default,
Prob. Conflicts, and Default + New Conflicts concretizers. This
will show whether the new constraints are valid and if they
improve the number of packages that build successfully.

VII. IMPLEMENTING OUR APPROACH IN SPACK

The current Spack implementation does not support Plingo
or custom concretizer implementations. This section provides
an overview of how we modify Spack to test each of the new
concretizers.

In order to implement and test each of the new con-
cretizers described in Section V we need to modify Spack.



This can be accomplished by modifying the Clingo source
code in Spack and the Python code that interacts with the
Clingo APIL In the Spack library all these source files reside
in spack/solver/. The main concretizer program is in
concretize.lp and the Python code that interfaces with
the Clingo API is in asp.py. There are several other minor
files related to the concretizer that we do not modify so they
are not mentioned here.

We first incorporate the probability atoms into the solver.
Each of the new concretizers in Section V relies on a list of
probability atoms for each package-dependency version pair.
We generate this file offline in each of the four formats using
a Python script. The probabilities are stored in a separate file
called probs. 1p. These get included into the main solve call
in asp.py when all the other external . 1p files are loaded.

The next step is to modify the main concretizer program
in concretize.lp. This is where we implement the main
logic for each of the new concretizers. This is accomplished
by directly changing the concretizer Clingo program. For the
first concretizer approach (see Section V-A) this is sufficient,
however, the other three concretizers require Plingo to be
integrated. Fortunately, Plingo is implemented simply as an
Abstract Syntax Tree (AST) transformation on top of Clingo’s
parser. This means that we can use the same Python code
that interfaces with the Clingo API and apply the AST
transformation to the concretizer program before solving. This
AST transformation is applied directly after parsing the ASP
program and right before the solve. The main effect of the
AST transformation is mapping the soft rules from the Plingo
program into optimization criterion in Clingo. The current
Plingo implementation hard codes this to the highest optimiza-
tion priority in Clingo, which interferes with Spack’s existing
optimization criteria, so we manually change the optimization
level within Plingo’s source. As an additional note we found
that the current Plingo implementation does not work with
Clingo #heuristic directives, so we disable them in Spack
before calling Plingo. #heuristic directives are a way to
provide hints to the solver about how to prioritize choices and
are generally used to optimize solve times. We refer the reader
to [11] for more details on Plingo’s implementation.

VIII. EXPERIMENTAL SETUP

With each of the problem encoding techniques implemented
in Spack we can then test their effectiveness at improving the
build success rate of package installations. This section pro-
vides an overview of how we test each of the new concretizers
in Spack and the metrics we use to compare the results.

A. Setting up Build Experiments

To test each of the concretization algorithms we build
a subset of packages from the Spack package repository
using each concretization method: the E4S and ECP-Proxy
application suites of packages. The first of these, E4S [14],
is a collection of 80 unique packages that are used in the
Exascale Computing Project (ECP) software stack. The latter
set of packages, ECP-Proxy [15], is a collection of 22 packages

that mimic the computational workload of larger, full scientific
applications. Note that the GNN model from BuildCheck was
trained on build data from E4S, but not ECP-Proxy.

To test the concretizers we build a set of 1000 packages
comprised of the E4S and ECP-Proxy packages at their
default settings and randomly selected versions. To randomly
select versions we sample a subset of dependencies and then
randomly request versions for those dependencies. Each build
is done with each concretizer method implemented in Spack.
We concretize and build each package separately (Spack is
able to concretize environments, or sets of packages, all at
once) and provide the ——fresh concretize option to keep
Spack from aggressively reusing existing binaries from local
or remote caches. Additionally, we test all the packages for
each concretization method together and then clear the Spack
environment before testing the next concretizer to prevent any
build from being reused. All of these builds are done on the
Quartz cluster at Lawrence Livermore National Laboratory.
It has 3018 nodes, each with an Intel Xeon E5-2695 v4
processor, 36 cores, and 128 GB of memory. The builds are
run as an array of Slurm [16] jobs with each job running on
a single node and using 32 cores to build in parallel.

B. Metrics Used to Compare Encodings

To compare the results of each concretizer we use two
metrics: the ratio of successful to total builds and the number
of packages that fail with an experimental concretizer but
succeed with the default concretizer. The first metric is the
most important because it directly measures the effectiveness
of each concretizer. This metric can lie between 0 and 1 with
1 being a perfect build success rate. We define this as shown
in Equation 1.

indicator function
1 if the package built successfully, 0 otherwise

1 i
1{p builds} (1)

build_success_rate( P; ) =
P,
| | pe P;

set of package
specifications to install

While we are most concerned with the build success rate,
we also want to know whether it is introducing any new build
errors. This could happen despite an overall improvement in
the build success rate and is, thus, not captured by the previous
metric. To measure this we compute the ratio of new package
build failures to total package build failures. This metric also
has values lying between O and 1, however, here O is a perfect
score indicating that no packages that built previously fail with
a new concretizer. We define this as shown in Equation 2.

concretizer being tested
new_failures(Pi, C'j ) _ djfault Spack concretizer

EpePi 1{]) builds with Ciefaure , nOt Cj }

(2
Z])EP»L 1{p build fails with C; }



Both Equations 1 and 2 provide a summary of how a
particular concretizer improves the number of build successes
for package installs. Being scalar values they can be compared
directly across the different concretizer implementations to
determine which is the most effective. We also record the
solve time of each new concretizer, however, the evaluation
of this metric is limited due to the bug in Plingo preventing
#heuristic directives from being used (see Section VIII),
which are a major optimization within Spack’s solver.

IX. RESULTS

In this section we present the results for the different
concretizer implementations and the causality study.

A. Comparison of Build Success Rates

RQ2 How can probabilistic build information be used
to select better dependency versions and improve the
likelihood of successfully building a package?

Figure 3 presents the build success rates for each concretizer
on the ECP-Proxy and E4S package sets. For both sets of
packages the new concretizers outperform Spack’s default
concretizer by up to 13 percentage points. For E4S all new
concretizers perform the same, while for ECP-Proxy the new
concretizers vary. This is likely due to the fact that the Build-
Check model is trained on data from the E4S set of packages,
but not ECP-Proxy. Predicted probabilities are likelier to be
noisier for the ECP-Proxy packages which could exacerbate
the differences between the proposed concretization methods.

Comparison of Build Success Rates for Each Concretizer

1.0
2 0.8
[s’]
-4
5 0.6
S EEH Default
3 04 B Weighted Clingo
% [ Prob. Constraints
“ 02 == Prob. Conflicts
ISl Prob. Errors
0.0 —

ECP-Proxy E4S

Fig. 3. Build success rates for each concretizer on the ECP-Proxy and E4S
package sets (higher is better.) For both sets of packages, the new concretizers
outperform the default concretizer. For E4S, all new concretizers perform the
same, while for ECP-Proxy, the probabilistic conflicts in Plingo perform the
best.

For the E4S set of packages there is a 7 percentage point
improvement in build success rate for all new concretizers.
The build success rate improvement ranges between 3 and
13 percentage points for the ECP-Proxy set of packages.
Using the probabilistic conflicts in Plingo results in the highest
build success rate for ECP-Proxy. The probabilistic conflicts
in Plingo (see Section V-C) encode information directly into

Spack’s existing version conflict mechanism. This allows the
concretizer to use the information in a way that is more
consistent with the existing concretizer.

We observe that new_failures(P;, C;) is 0 for all concretiz-
ers C;. None of them introduce new failed builds for any
package. This shows a strict improvement over the default
concretizer without hurting any existing results. This is critical
for the adoption of the new concretizers as they can be
integrated without any risk of breaking existing workflows and
creating a bad user experience.

Despite an improvement in build success rate there are still
packages that concretize, but fail to build. This is due to build
failures originating from issues other than version selection.
Packages can fail to build due to compiler mismatch, missing
dependencies, invalid build flags, etc. For instance, the version
of Spack used for testing, 0.20.1, does not treat compilers as
dependencies, so their versions are handled separately within
the concretizer. We noticed that the failure cases for the
four proposed concretizer methods in our testing were all
either due to compiler and/or build flag mismatches between
dependencies.

B. Comparison of Concretization Times

Figure 4 presents the concretization times for each con-
cretizer over the entire package set. The two native Clingo
concretizers, Default and Weighted Clingo, both take around
the same amount of time to solve. They are also both much
faster than the Plingo concretizers and have less variance in
their solve times. This could be due to the fact that Plingo is
built on top of Clingo and adds additional overhead.

Average Solve Time of Concretizers
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Fig. 4. Concretization times for each concretizer over the entire package set
(lower is better.) The new concretizers are slower than the default concretizer.
However, Plingo currently does not support the same optimizations that
Spack’s concretizer uses.

These results mostly shed light on how ideal the Weighted
Clingo solution is. It improves on the number of packages
built (see Section IX-A), has little overhead, and is easy
to implement. The slowness of the Plingo concretizers is
expected as they add more complexity to the solve call by
adding new minimization criteria (see Section II-B). More
importantly, the #heuristic directives that Spack uses
for optimization do not currently work in Plingo and likely



contribute significantly to the observed slowdown in Figure 4.
Furthermore, the duration of a solve call will be heavily
dependent on the set of packages, current environment (other
existing installations), problem encoding, and hardware.

C. Understanding Causality of Build Failures

RQ3 Can probabilistic version selection mechanisms
be effectively used to determine causality for failed
builds?

Figure 5 presents the results of using Plingo to identify new
hard constraints for the concretizer. The results are presented
over the ECP-Proxy set of packages. We observe that the new
conflict statements, or version constraints, improve the default
concretizer by 3 percentage points. This shows that we are
able to glean build failure causality from the Plingo-based
concretizer.

Adding New Conflicts to the Default Concretizer
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Fig. 5. Adding new conflicts to the existing Spack concretizer based on the
outputs of the Plingo concretizer yields an improvement of 3 percentage points
(for ECP-Proxy packages.)

However, the performance is not as good as using Plingo
directly to label conflicts with probabilities. This is expected
as the new hard constraints are only for packages we are
certain will not build. The probabilistic concretizer has more
information about the build success rate of each package and
can therefore make better decisions. This motivates the use of
the probabilistic concretizer in addition to any other technique
for hard constraint discovery as we can improve the number
of valid configurations by using both.

X. LIMITATIONS

Our methods for predicting build probability and selecting
build configurations are limited to reducing compile time
errors and not version conflicts errors that arise only during
dynamic linking or run time. For instance, Spack has over
2200 Python packages available for which most would not
create errors during install if there was a version conflict.
These errors would appear during run time and may even
only be triggered by specific run time call paths. Run time
errors caused by version mismatches could be incorporated
into our methodology by also considering post-install tests

for packages. However, this requires that the package has a
test suite and that the test suite has proper coverage of the
package’s functionality. This type of testing is not currently
available for most of the packages relevant to this study
preventing us from including it in our methodology.

XI. RELATED WORK

As package managers have grown more complex they have
needed strong solutions to the problems of dependency man-
agement and package versioning. Since version compatibility
is NP-complete, many rely on SAT solvers or other variations
to select versions [17]-[19]. These solvers rely on existing
package metadata, such as versions and constraints, for inputs
into their solver. These metadata are provided by package
authors and kept up to date by package managers. However,
as discussed in this work, these metadata can be wrong or
incomplete due to the complexity of managing a large set
of fast changing packages. Due to this problem some works
have looked at new version selection policies to improve over
existing methods.

One such work [20] proposes Wisdom of the Crowd for
version selection. This method selects the most popular and
highly used version of a package for the dependency version.
While this can improve over existing hand selection methods,
it can still introduce errors. In particular, it will not be able to
prevent version conflicts that only manifest in uncommon and
unpopular library features. Other simpler policies typically rely
on Semantic Versioning [21] to select versions. This involves
matching compatible sub-versions of a package to determine if
they are compatible [22], [23]. These simpler approaches have
been popular as they are easy for developers to reason through
and implement. However, they are not able to capture the
complexity of dependency versioning and can lead to errors,
particularly when overly relied upon.

To build on methods such as Wisdom of the Crowd and
Semantic Versioning, several works have developed more
complicated version selection policies that use binary analysis
or historical build information [24]-[32]. Menon et al. [24]
propose a Bayesian Optimization based strategy to find the
best version of a package to install that improves over Wisdom
of the Crowd. Other works [25] look at the binary compati-
bility of packages to determine if they are compatible. Xu et
al. [26] propose a methodology for editing the source code
to prevent version conflicts. Many of these approaches focus
on identifying version conflicts and/or fixing them. However,
they all differ from our work in that they do not integrate
build likelihood from historical build data into an existing
build system and package manager to improve the likelihood
of successfully building a package.

XII. CONCLUSION AND FUTURE WORK

We have demonstrated a methodology for integrating prob-
abilistic build information into a package manager’s config-
uration selection system. Using this methodology, we have
implemented a prototype system that is shown to improve
the package manager’s successful build rate by up to 13



percentage points. Additionally, we have demonstrated how to
extend our methodology to new package versions as they are
added to the package manager. The methodologies presented
in this paper can be extended to other build and package
management tools that implement version selection semantics.
In future work we plan to extend this methodology to more
pieces of package meta-data such as compiler and build flags.
We also plan to further investigate how to easily transfer build
probabilities to new systems and architectures. Additionally,
we would like to extend the concretizers to optimize build
outcomes other than success and failure, such as build time,
memory usage, and performance of the final binary.
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