

Experimental Testing of the Theoretically Predicted Magnetic Properties for Kagomé Compounds in the Li–Fe–Ge System

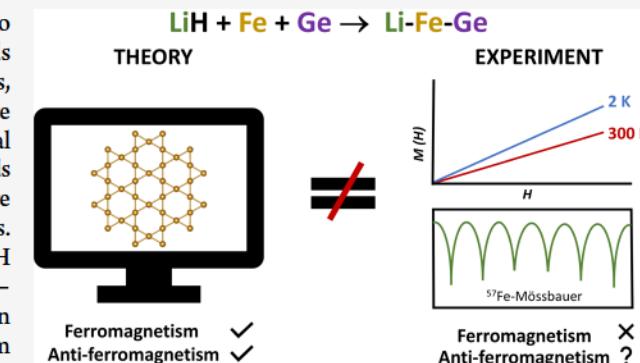
Aishwarya Mantravadi, Raquel A. Ribeiro, Sergey L. Bud'ko, Paul C. Canfield, and Julia V. Zaikina*

Cite This: *Inorg. Chem.* 2024, 63, 24697–24708

Read Online

ACCESS |

Metrics & More


Article Recommendations

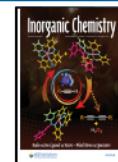
Supporting Information

ABSTRACT: Investigating material properties is essential to assessing their application potential. While computational methods allow for a fast prediction of the material structure and properties, experimental validation is essential to determining the ultimate material potential. Herein, we report the synthesis and experimental magnetic properties of three previously reported Kagomé compounds in the Li–Fe–Ge system. LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 were predicted to have ferromagnetic or antiferromagnetic ground states. The hydride route that replaces the ductile Li metal with salt-like LiH proved to be an excellent alternative for the facile synthesis of the Li–Fe–Ge powders with appreciable purity, permitting the investigation of their bulk magnetic properties. Magnetometry below room temperature and room-temperature ^{57}Fe Mössbauer spectroscopy collectively indicate an antiferromagnetic ground state for the three compounds with ordering temperatures above 300 K, contrary to the prediction of ferromagnetic ground states. Moreover, Mössbauer spectroscopy reveals a magnetization of 1.1–1.3 μ_{B} /Fe atom for the Li–Fe–Ge compounds, while higher moments of 1.63–2.90 μ_{B} /Fe atom were theoretically predicted. Experimental (in)validation addresses the issue of inaccuracy in determining material properties *in silico* only and helps to improve the prediction power of the computational models. This work underlines that the contribution of experimentalists continues to be valuable for the accurate determination of structure–property relationships in solid-state materials.

INTRODUCTION

Understanding the structure–property relationships in solid-state compounds is an important endeavor in the pursuit of technologically relevant materials. There exist various material classes of inorganic solids where the unique structural features afford them distinct properties. The Kagomé class of compounds is one such example, featuring a two-dimensional trihexagonal sublattice in their crystal structure.^{1–3} The geometry of the Kagomé sublattice does not allow for a perfect antiferromagnetic alignment of spins, producing magnetic frustration that gives rise to unique electronic behavior and magnetic properties, including superconductivity, quantum spin liquid (QSL) behavior, and charge density wave (CDW) order.^{4–10} The complex physics of Kagomé compounds has geared extensive research efforts toward elucidating their structure–property relationship, including the use of computational methods for the identification of suitable Kagomé candidates for applications such as superconductivity and quantum spin liquids.^{11–15} For example, in the work by Meschke et al., machine learning (ML)- and density functional theory (DFT)-based analysis of ~500 previously reported Kagomé compounds was performed to identify suitable QSL candidates.¹¹ The detailed report includes predictions of magnetic ground states and calculations of magnetic moments for the atoms forming the Kagomé

sublattice in several Kagomé compounds. Another example is provided by the work of Jovanovic and Schoop, which demonstrates the use of chemical heuristics, local symmetry considerations, and DFT-based calculations for the prediction of band structures in Kagomé materials as a means of recognizing their unique magnetic properties.¹²


The past decade has seen a steep rise in the use of DFT- and ML-based predictions of inorganic material structures and properties for both known and novel chemical compositions.^{16–24} Many databases, including the Open Quantum Material Database (OQMD)^{25,26} and the Materials Project (MP)²⁷ database, provide insightful information about the material's structure, magnetic properties, and formation energy, among other properties. There are numerous examples in the literature for the predictions of new materials with targeted properties or predictions of novel properties for known compounds.^{19–24} However, few reports provide

Received: September 16, 2024

Revised: December 2, 2024

Accepted: December 4, 2024

Published: December 18, 2024

experimental validation or invalidation of the predicted properties.^{28,29} Examples include the work by Singh et al., where the ML-predicted Curie temperature for the $(\text{Zr}_{0.16}\text{Ce}_{0.84})\text{Fe}_2$ and $(\text{Zr}_{0.94}\text{Ce}_{0.06})\text{Fe}_2$ pseudo-binaries was experimentally confirmed.²⁸ There also exist examples where DFT-based predictions have been experimentally proven incorrect.^{11,30} For instance, an antiferromagnetic order in the MgCo_6Ge_6 Kagomé germanide with a magnetic moment of $1.3 \mu_{\text{B}}/\text{Co}$ atom was predicted by Meschke et al.,¹¹ while experimental results reveal Pauli paramagnetism.³⁰ While computational tools can be used for advancing the understanding of the material structure and properties, we believe that they cannot be developed independently of experimentation.^{31,32} Experiments to (in)validate and improve the predictability of theoretical models are essential. Our work is an effort in this direction, where we experimentally explore the magnetism in three known Kagomé compounds in the Li–Fe–Ge systems, *i.e.*, LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 , and test their predicted magnetic properties.^{11,27}

The LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 compounds were first synthesized in the late 1970s and are known to contain a Kagomé network of Fe atoms.^{33–35} The Materials Project database predicts ferromagnetic (FM) ground states for all three phases, with the magnetic moment of $2.41 \mu_{\text{B}}$, $1.63 \mu_{\text{B}}$, and $2.12 \mu_{\text{B}}$ per Fe atom in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 , respectively.³⁷ Such values are comparable to the experimentally measured magnetic moment per Fe atom in the well-known permanent magnet $\text{Nd}_2\text{Fe}_{14}\text{B}$.^{36,37} Another independent work by Meschke et al. also predicted ferromagnetic (FM) ground state with a magnetic moment of $2.83 \mu_{\text{B}}/\text{Fe}$ atom in LiFe_6Ge_6 and an antiferromagnetic (AFM) ground state with a magnetic moment of $2.90 \mu_{\text{B}}/\text{Fe}$ atom in LiFe_6Ge_4 .¹¹ To the best of our knowledge, there are no experimental reports on the synthesis of polycrystalline powders of LiFe_6Ge_4 and LiFe_6Ge_5 or on their magnetic properties. The synthesis of LiFe_6Ge_6 using Li metal is reported,^{33,38} and the measurement of magnetic properties performed on a polycrystalline sample of LiFe_6Ge_6 indicates a possibility of AFM ordering at $T > 300 \text{ K}$.³⁸ The prediction of magnetically ordered ground states for the LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 Kagomé compounds and a lack of detailed experimental evidence inspired us to probe the magnetic properties of the Li–Fe–Ge compounds.

While measurement of properties using single crystals is ideal for the elucidation of the intrinsic properties of a material,³⁹ measurements on polycrystalline samples can provide valuable information and shed light on their bulk properties. Preparation of polycrystalline samples using traditional high-temperature (“heat-and-beat”) methods is often diffusion-limited, leading to multiphase samples. This is an even greater challenge for the synthesis of LiFe_6Ge_4 , LiFe_6Fe_5 , and LiFe_6Ge_6 phases due to their compositional proximity, consistent with the lack of reports on the bulk synthesis of LiFe_6Ge_4 and LiFe_6Ge_5 using traditional routes.^{33,34} While the polycrystalline sample of LiFe_6Ge_6 can be prepared, a large excess of Li, long annealing times, and post-treatment with water to remove excess Li are required to obtain the phase in high yield.³⁸ In this work, we utilize the hydride route for the facile synthesis of the LiFe_6Fe_4 , LiFe_6Fe_5 , and LiFe_6Ge_6 phases in the polycrystalline form, where the soft alkali metal precursor (Li) is replaced with powder-like reactive alkali metal hydride (LiH).^{40–43} Since all the precursors for the hydride route are in the powder form, they can be weighed precisely, providing excellent compositional control, handy for

the Li–Fe–Ge system where the three target phases exist within a narrow compositional space. The route also allows for the intimate mixing of precursors *via* ball milling, helping with diffusion limitation, and hence provides a notable alternative to the traditional synthesis route.

Herein, we report the successful synthesis of LiFe_6Fe_4 , LiFe_6Fe_5 , and LiFe_6Ge_6 phases in the polycrystalline form *via* the hydride route and the experimental characterization of their magnetic properties with the goal of testing the predicted magnetic properties. We present a comparison of the experimentally determined and theoretically predicted magnetic properties for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 .

■ EXPERIMENTAL SECTION

Chemicals. Iron powder (Fe, Alfa Aesar, 99.998%) and lithium hydride powder (LiH, Alfa Aesar, 99.4%) were used as received. Germanium pieces (Ge, Alfa Aesar, 99.999%) were ball-milled using a tungsten carbide (WC) ball mill container and two WC balls for 30 min to obtain a fine powder. Sample manipulations were conducted in a glovebox under a dry argon atmosphere, $p(\text{O}_2) < 1 \text{ ppm}$ and $p(\text{H}_2\text{O}) < 1 \text{ ppm}$.

Synthesis. Synthesis of the samples was conducted *via* hydride route. Starting materials were weighed as powders in desired LiH, Fe, and Ge molar ratios (total weight: 0.3 g). The powders were loaded into a polycarbonate grinding set with a methacrylate grinding ball. The vial was sealed into two polyethylene bags under an argon atmosphere, taken out of the glovebox, and ball-milled using a SPEX mixer/mill 8000 M for 6 min. In the glovebox, the ball-milled powders were loaded into tantalum tubes (ID: 5.4 mm; OD: 6.4 mm) and sealed using an arc welder under an argon atmosphere. The Ta tubes were placed into a silica reactor, evacuated to a pressure of 3.0×10^{-5} – 3.5×10^{-5} bar, and placed into a programmable high-temperature furnace. The silica reactor is equipped with Swagelok safety check valves to avoid overpressurizing the silica reactor due to hydrogen gas released during the reaction. The setup was heated from room temperature (RT) to 1023 K in 5 h, annealed for 12 h, and then cooled naturally to room temperature.

Powder X-ray Diffraction (PXRD). The purity of the synthesized sample was confirmed from powder X-ray diffraction using a Rigaku MiniFlex600 powder diffractometer with $\text{Cu K}\alpha$ radiation ($\lambda = 1.54051 \text{ \AA}$) and a $\text{Ni K}\beta$ filter. Data were collected on a zero-background plate holder in air at room temperature. Phase analysis was performed using the COD database incorporated into Match-3! software.⁴⁴ Rietveld refinement of the PXRD data was performed to accurately determine the impurity content in the synthesized samples using the GSAS II software package.⁴⁵

High-Temperature Synchrotron Powder X-ray Diffraction (HT-PXRD). High-temperature X-ray diffraction data were collected at the synchrotron beamline 17-BM at the Advanced Photon Source (APS) at Argonne National Lab (ANL), $\lambda = 0.24130 \text{ \AA}$. A finely ground sample of LiFe_6Ge_5 and LiFe_6Ge_6 was filled into a 0.7 mm-outer diameter, thick-wall (0.1 mm) silica capillary and sealed under vacuum. The capillary was mounted into a secondary shield capillary on a sample stage equipped with two resistive microheaters and a thermocouple set as close as possible to the measurement area. Details of the setup can be found elsewhere.⁴⁶ Data were collected upon heating and cooling in the temperature range of 298 K–1173 K–298 K with a heating rate of 15 K/min and a cooling rate of 25 K/min, followed by fast cooling.

Magnetic Properties. Magnetic measurements were performed on ~ 50 mg polycrystalline samples of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 in a gelatin capsule inside a plastic straw using Quantum Design MPMS XL and MPMS3 SQUID magnetometers. DC magnetic susceptibility measurements were performed in applied fields of 0.005 T and 0.1 T in the 2–300 K temperature range. Field dependence of magnetization was measured in the 0–7 T range at 2 and 300 K.

⁵⁷Fe Mössbauer Spectroscopy. Mössbauer spectroscopy measurements were performed using a SEE Co. conventional constant acceleration-type spectrometer in transmission geometry with a ⁵⁷Co(Rh) source, kept at room temperature. For the absorber, 20–40 mg of powders of the samples was mixed with a ZG-grade BN powder to ensure homogeneity. The absorber holder comprised two nested white Delrin cups. The driver velocity was calibrated by α -Fe foil, and all isomer shifts (IS) are quoted relative to the α -Fe foil at room temperature. A commercial software package, MossWinn,⁴⁷ was used to analyze the Mössbauer spectra in this work.

RESULTS AND DISCUSSION

Synthesis. Several loading molar ratios of LiH:Fe:Ge and temperature profiles were attempted to synthesize LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 in high yield. The hydride route was employed, where ball-milled powders of LiH, Fe, and Ge were taken in a desired molar ratio and heated at 1023 K for 12 h to produce crystalline samples of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 with minimized amounts of secondary phases. The compounds were obtained as a dark-gray powder with a weight fraction of target phases exceeding 90 wt %: 92.9 wt % for LiFe_6Ge_4 (containing 7.1 wt % LiFe_6Ge_5), 91.0 wt % for LiFe_6Ge_5 (containing 9.0 wt % LiFe_6Ge_4), and 100 wt % for LiFe_6Ge_6 according to Rietveld refinement of PXRD data (Figures 1 and S1). The unit cell dimensions of hydride-synthesized phases are comparable to those obtained *via* single-crystal X-ray diffraction (SC-XRD) for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 synthesized from elements.^{33–35}

Figure 2 shows the Li–Fe–Ge compositional phase space with the optimized (filled circles) and other attempted (shaded regions) loading compositions used for the synthesis *via* the hydride route, whereas the actual phase compositions, *i.e.*, LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 , are shown as open circles. Excess Li and Ge are required for synthesis, as indicated by the difference in optimized *vs* actual composition in Figure 2. The optimized loading molar ratios for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 are $\text{LiH:Fe:Ge} = 2.8:6:4.1$, $2.3:6:5.2$, and $2.2:6:6.1$, respectively, signifying a need for 2.2- to 2.8-fold excess of LiH and a slight excess of Ge. We hypothesize that the need for excess Li and Ge may be due to slight oxidation of LiH and/or reaction of Ge powder with the reaction vessel (Ta tube); however, no Ta–Ge impurities were observed in PXRD post-synthesis. Alternatively, Li-rich compositions might be required for the formation of the low-melting Li–Ge binaries^{48,49} that function as a flux and promote Fe incorporation toward the synthesis of the Li–Fe–Ge ternaries. The initial work on the synthesis of single crystals of LiFe_6Ge_4 and LiFe_6Ge_5 also reports the need for excess Li (6-fold) and Ge (2 to 4-fold) to avoid the formation of a mixture of ternaries.³⁴ Crystals of the LiFe_6Ge_4 and LiFe_6Ge_5 ternaries form along with Li and Li–Ge binaries, consistent with the considerable Li and Ge excess used. Li and Li–Ge phases were washed using water, leaving behind shiny silver crystals of the targeted Li–Fe–Ge ternary.³⁴ For LiFe_6Ge_6 , single crystals can be synthesized in high yield, albeit the crystals obtained have the dimension of $0.04\text{ mm} \times 0.01\text{ mm} \times 0.5\text{ mm}$,³³ suitable for SC-XRD analysis but too small to examine material properties. The preparation of LiFe_6Ge_4 and LiFe_6Ge_5 as polycrystalline powders has not been reported yet. Preparation of the polycrystalline sample of LiFe_6Ge_6 using Li is reported,³⁸ where substantial excess of Li ($\text{Li:Fe:Ge} = 6:6:6$, *i.e.*, 6-fold Li excess) and significantly longer annealing periods (168 h with Li *vs* 12 h with LiH) are required. The excess Li needs to be removed by washing the synthesized powder with water, adding an additional step to

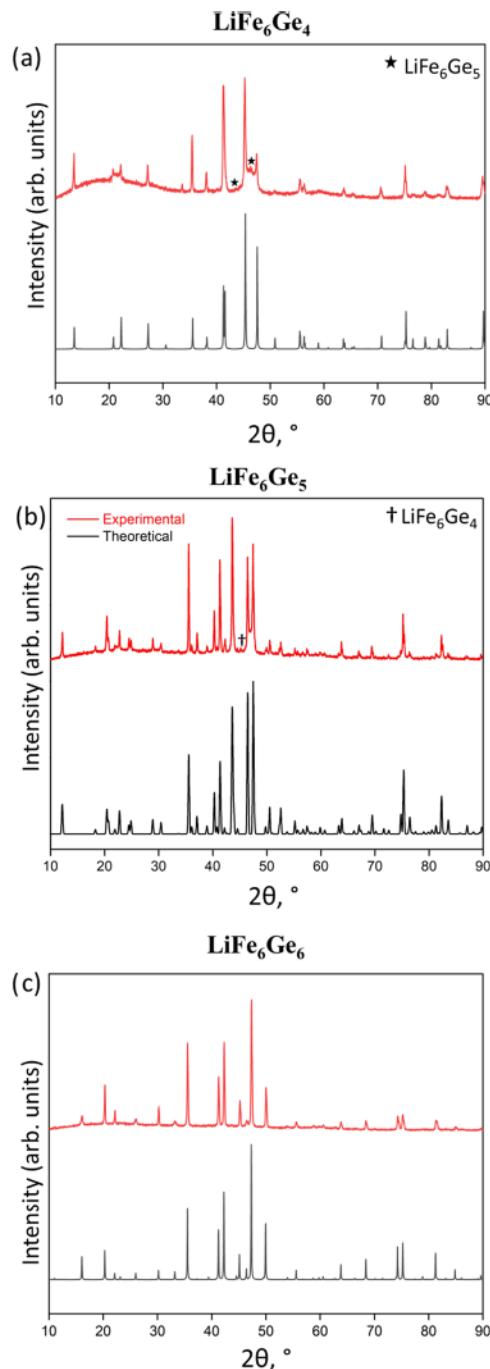


Figure 1. Experimental (red) and calculated (black) powder X-ray diffraction data for (a) LiFe_6Ge_4 , (b) LiFe_6Ge_5 , and (c) LiFe_6Ge_6 , with diffraction peaks for the impurity phases marked.

obtain a single-phase sample of LiFe_6Ge_6 . The above discussion clearly highlights the advantage and suitability of the hydride route for the facile preparation of the polycrystalline powder of Li–Fe–Ge phases in high yield, facilitating the evaluation of their bulk properties.

Hydride reactions performed with stoichiometric molar ratios of LiH, Fe, and Ge powders corresponding to the phase compositions result in the synthesis of the ternaries, albeit with the formation of secondary phases such as binary $\text{Fe}_{3+x}\text{Ge}_2$ and Ge. The $\text{LiH:Fe:Ge} = 1:6:4$ stoichiometric loading results in the synthesis of $\text{Fe}_{3.34}\text{Ge}_2$ as the major phase along with the synthesis of LiFe_6Ge_5 instead of the target LiFe_6Ge_4 . The

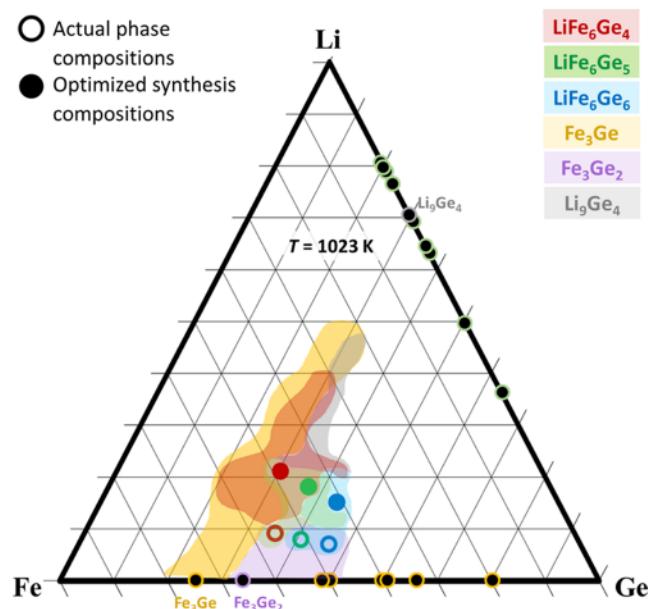


Figure 2. Compositional diagram for the Li-Fe-Ge ternary system, representing the optimized synthesis composition (filled circles) and phase composition (open circles) for LiFe_6Ge_4 (red), LiFe_6Ge_5 (green), and LiFe_6Ge_6 (blue). The shaded regions include all the compositions where the respective phases are observed by PXRD: LiFe_6Ge_4 (red), LiFe_6Ge_5 (green), LiFe_6Ge_6 (blue), $\text{Fe}_{3+x}\text{Ge}_2$ (purple), Fe_3Ge (yellow), and Li_9Ge_4 (gray). The difference between the optimized composition and phase composition indicates that excess Li and Ge are needed to maximize the yield of target LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 compounds.

molar ratio $\text{LiH:Fe:Ge} = 1:6:5$ results in a minor amount of LiFe_6Ge_5 , while the major phases obtained are LiFe_6Ge_6 and $\text{Fe}_{3.34}\text{Ge}_2$. Finally, the molar ratio $\text{LiH:Fe:Ge} = 1:6:6$ results in

the synthesis of LiFe_6Ge_6 along with considerable fractions of Ge and Fe_3Ge_2 .

Other compositions with variable Li excess and Fe:Ge ratios were also attempted (composition within shaded regions in Figure 2). The different colors of the shaded region represent the compositions in the Li-Fe-Ge phase space, where the formation of LiFe_6Ge_4 (red), LiFe_6Ge_5 (green), LiFe_6Ge_6 (blue), $\text{Fe}_{3+x}\text{Ge}_2$ (purple), Fe_3Ge (yellow), and Li_9Ge_4 (gray) phases was observed. As seen in Figure 2, Li-poor compositions (less than 1.7-fold excess) promoted the formation of the $\text{Fe}_{3+x}\text{Ge}_2$ phase (purple region). For compositions that are Li-rich (more than 2.8-fold excess), the formation of the Fe_3Ge (yellow region) and Li_9Ge_4 (gray region) binaries was observed. Li-rich compositions also seem to favor the synthesis of LiFe_6Ge_4 (red region) together with Fe_3Ge and/or Li_9Ge_4 . A 1.7- to 2.8-fold Li excess turned out to be optimal for the synthesis, providing the highest wt % of the targeted Li-Fe-Ge ternary compounds. Maintaining the optimal Li excess, the yield of the desired ternary phase was found to be highly sensitive to the Fe:Ge ratio due to the compositional proximity of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 . Ge-poor compositions, *i.e.*, $\text{LiH:Fe:Ge} = (1.7-2.8):6:(2.6-4.0)$, resulted in the LiFe_6Ge_4 along with Fe_3Ge . The Ge-rich compositions, *i.e.*, $\text{LiH:Fe:Ge} = (1.7-2.8):6:(6.0-6.3)$, form LiFe_6Ge_6 along with Ge. For the compositions in the middle, *i.e.*, $\text{LiH:Fe:Ge} = (1.7-2.8):6:(4.0-6.0)$, a mixture of either LiFe_6Ge_4 and LiFe_6Ge_5 [for $\text{Fe:Ge} = 6:(4-5)$] or LiFe_6Ge_5 and LiFe_6Ge_6 [for $\text{Fe:Ge} = 6:(5-6)$] is obtained. For example, for the $\text{LiH:Fe:Ge} = 2.2:6:4.4$ loading composition, a mixture of LiFe_6Ge_4 and LiFe_6Ge_5 was synthesized, and when the precursors were taken in the $\text{LiH:Fe:Ge} = 2:6:5.8$ molar ratio, a mixture of LiFe_6Ge_5 and LiFe_6Ge_6 was obtained. Notably, all three ternary compounds are not observed in the same sample.

Attempts at optimizing other reaction parameters, such as temperatures and annealing times were also made but proved

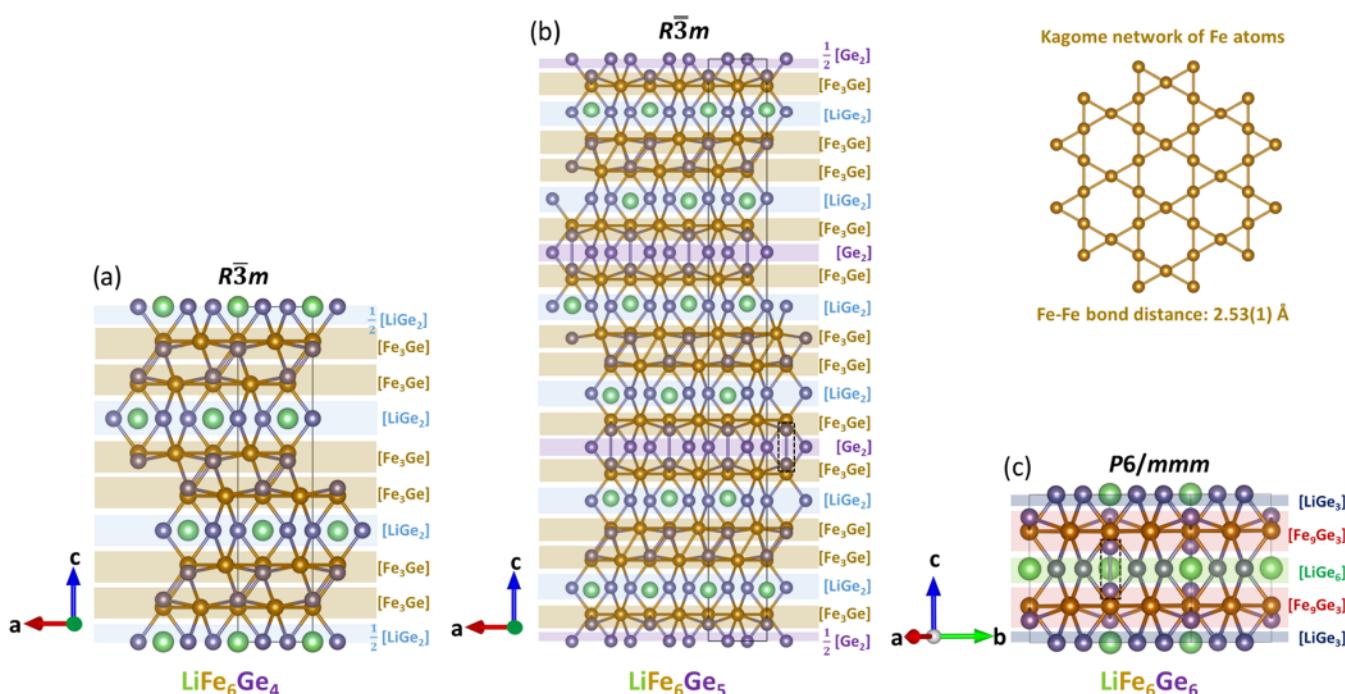


Figure 3. Crystal structure of (a) LiFe_6Ge_4 , (b) LiFe_6Ge_5 , and (c) LiFe_6Ge_6 with a breakdown of the layers building their 3-dimensional structures. Top right corner: Kagomé network of Fe atoms featured in all three phases.

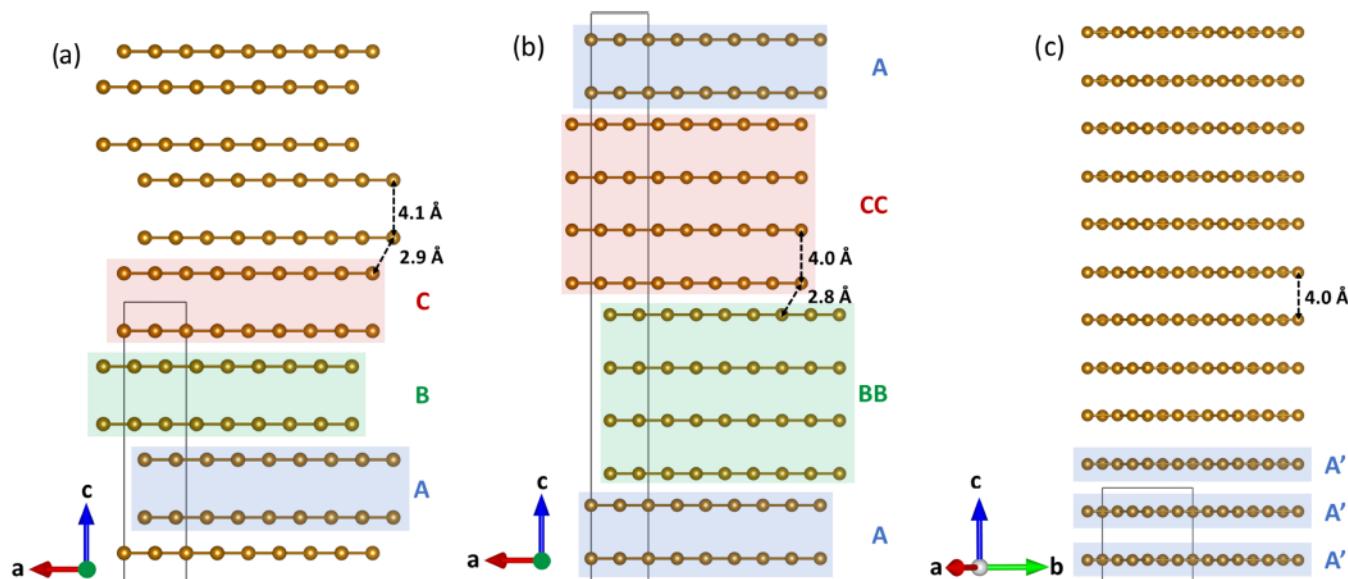
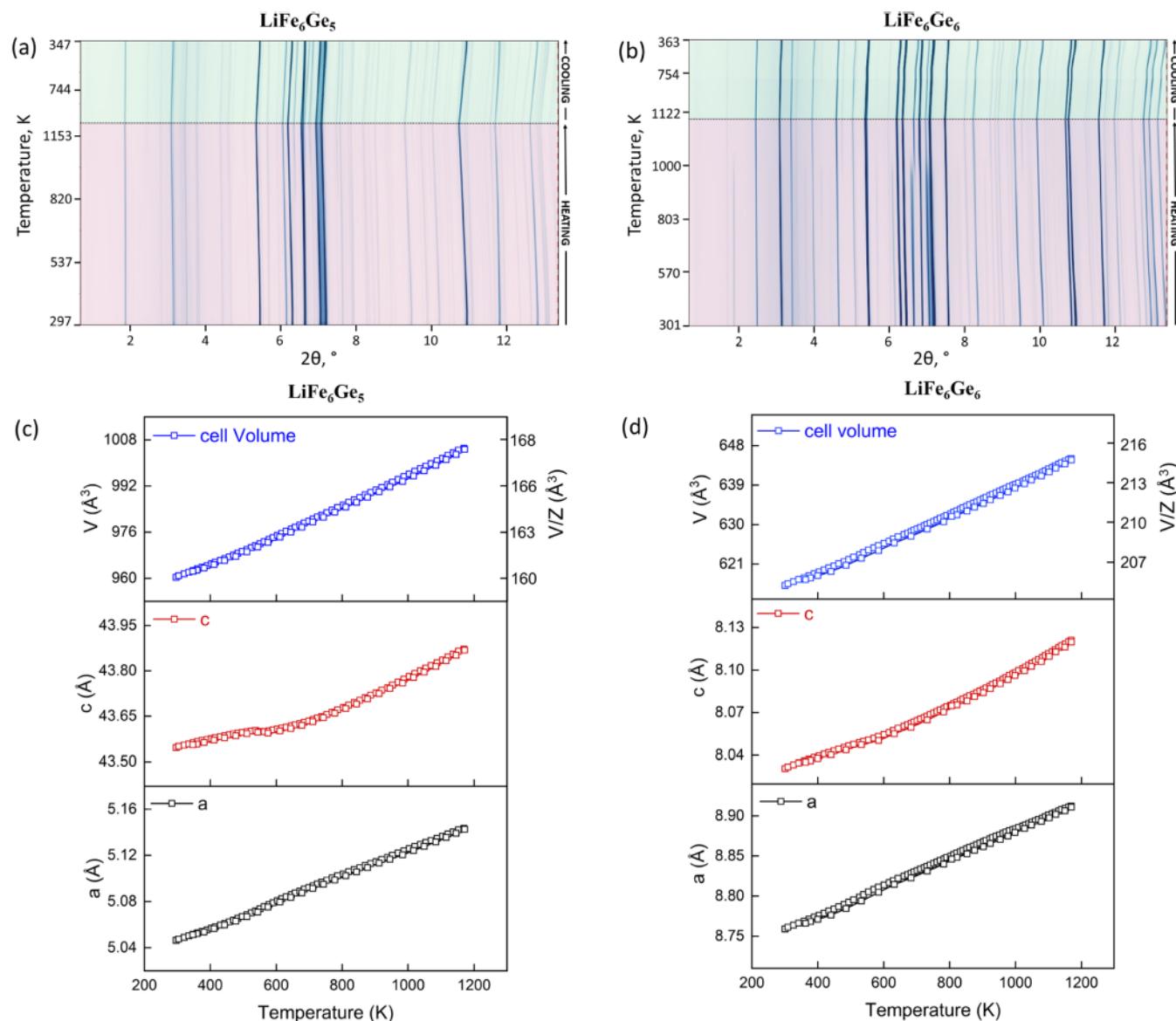


Figure 4. Stacking arrangement of Fe layers in (a) LiFe_6Ge_4 , (b) LiFe_6Ge_5 , and (c) LiFe_6Ge_6 along the c direction. The Fe–Fe bond distance within the Kagomé layers is $2.53(1)$ Å, whereas the out-of-plane Fe–Fe bond distance is in the range of 2.8 – 4.1 Å, as marked in the figure.

ineffective. When the synthesis temperature was lowered to 873 K, it led to a decrease in the crystallinity of the ternary phase, evident from the slight broadening of diffraction peaks in the PXRD pattern, while increasing the reaction temperature to 1173 K did not improve the crystallinity and promoted the formation of the $\text{Fe}_{3.4}\text{Ge}_2$ and Fe_3Ge binaries. Moreover, the variation in the synthesis temperature does not eliminate the formation of side phases. Adjusting the annealing time had no impact on the outcome of the reactions and, hence, was held constant at 12 h.


Overall, for all compositions in the $\text{LiH:Fe:Ge} = (1.7\text{--}2.8):6:(2.6\text{--}6.3)$ range, LiFe_6Ge_4 , LiFe_6Ge_5 , and/or LiFe_6Ge_6 can be synthesized but are either obtained as a mixture of ternaries or accompanied by Fe–Ge or elemental Ge as secondary phases. While the close compositional proximity of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 posed limitations to synthesis optimization, the precise compositional control afforded by the hydride route allows for the fine tuning of the LiH:Fe:Ge ratio, eventually permitting the synthesis of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 in high yield (>90 wt %). Our work provides the first example of a synthetic route for the preparation of polycrystalline powders of LiFe_6Ge_4 and LiFe_6Ge_5 and a facile alternative for the synthesis of LiFe_6Ge_6 .

Crystal Structure. The crystal structures of the LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 phases were determined in earlier reports through single-crystal X-ray diffraction (SC-XRD) study.^{33–35} LiFe_6Ge_4 and LiFe_6Ge_5 phases crystallize in the trigonal space group $\bar{R}3m$ (No 166) with $a = 5.05$ Å, $c = 19.66$ Å, $Z = 3$ for LiFe_6Ge_4 and $a = 5.05$ Å, $c = 43.64$ Å, $Z = 6$ for LiFe_6Ge_5 . The LiFe_6Ge_6 phase displays a hexagonal structure ($a = 8.74$ Å, $c = 8.03$ Å, $Z = 3$) in the $P6/mmm$ space group. The crystal structure of the LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 phases can be described as a 3-dimensional covalent network comprising Fe and Ge atoms, with electropositive Li occupying the voids created within the covalent network (Figure 3).

The crystal structures of the three phases show striking similarities, which can be attributed to the compositional proximity and similar bonding interactions. A layer-by-layer breakdown of the three-dimensional (3D) structures of

LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 phases allows for easy identification of their structural relations (as shown in Figure 3). Figure 3a,b shows that LiFe_6Ge_4 and LiFe_6Ge_5 phases are built from the same $[\text{LiGe}_2]$ and $[\text{Fe}_3\text{Ge}]$ layers highlighted in blue and brown, respectively. The added Ge atoms in LiFe_6Ge_5 are accommodated as $[\text{Ge}_2]$ layers (highlighted in purple in Figure 3b) that are sandwiched between the $[\text{Fe}_3\text{Ge}]$ layers. Within this Ge layer in the structure of LiFe_6Ge_5 , Ge dumbbells form with a Ge–Ge distance of 2.63 Å (black dashed box in Figure 3b). Such Ge dumbbells also appear in the structure of LiFe_6Ge_6 (Ge–Ge distance: 2.43 Å, black dashed box in Figure 3c). Unlike LiFe_6Ge_5 , the added Ge in LiFe_6Ge_6 is accommodated within the $[\text{Li–Ge}]$ layers instead of separate $[\text{Ge}_2]$ layers, resulting in the Ge-rich composition of the $[\text{Li–Ge}]$ layers in LiFe_6Ge_6 compared to LiFe_6Ge_4 and LiFe_6Ge_5 , i.e., $[\text{LiGe}_6]$ and $[\text{LiGe}_3]$ in LiFe_6Ge_6 vs $[\text{LiGe}_2]$ in LiFe_6Ge_4 and LiFe_6Ge_5 . In other words, the $[\text{LiGe}_6]$ and $[\text{LiGe}_3]$ layers in LiFe_6Ge_6 (highlighted in green and dark blue in Figure 3c) are similar to the $[\text{LiGe}_2]$ layers in LiFe_6Ge_4 and LiFe_6Ge_5 , except for the extra Ge dumbbells.

In addition to possessing common layered fragments that build the 3D structure, all three compounds also feature a Kagomé network of Fe atoms with an Fe–Fe bond distance of $2.53(1)$ Å (represented in the top right corner in Figure 3). The structural similarities in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 are well reflected in the bonding environments around the Li, Fe, and Ge atoms (Figure S2). There are coordination environments common to all three structures, such as the hexagonal bipyramidal coordination of Li with Ge (Figure S2a) and the trigonal prismatic coordination of Ge with Fe (Figure S2f). A few coordination environments in LiFe_6Ge_4 and LiFe_6Ge_6 are closely related yet distinct. For example, Fe atoms in LiFe_6Ge_6 are 10-coordinated to Ge atoms, as shown in Figure S2b. In LiFe_6Ge_4 , similar coordination is observed, but Fe atoms have one less adjacent Ge atom, resulting in a 9-coordinated Fe atom (Figure S2c). Apart from the common trigonal prismatic coordination by 6 Fe atoms, Ge atoms display different coordination environments in the structures of Li–Fe–Ge ternaries. In LiFe_6Ge_6 , Ge atoms form dumbbells,

Figure 5. High-temperature *in situ* synchrotron PXRD data for LiFe_6Ge_5 and LiFe_6Ge_6 . Waterfall plots for (a) LiFe_6Ge_5 and (b) LiFe_6Ge_6 powdered samples upon heating them from 298 to 1173 to 298 K. The vertical lines represent diffraction peaks in the PXRD at a given value of 2θ ($\lambda = 0.24130 \text{ \AA}$). Cell parameters a and c and cell volume V for (c) LiFe_6Ge_5 and (d) LiFe_6Ge_6 plotted as a function of temperature during the heating and cooling cycles.

where each Ge is, in turn, coordinated to 6 Fe atoms, as shown in Figure S2d. These Ge dumbbells are absent in LiFe_6Ge_4 (as also seen in Figure 3), where Ge is instead bonded to 9 Fe atoms (Figure S2e). Interestingly, all three Ge coordination environments, with the trigonal prismatic configuration being common for both LiFe_6Ge_4 and LiFe_6Ge_6 , are found in the structure of the LiFe_6Ge_5 phase, demonstrating that LiFe_6Ge_5 is a structural hybrid of LiFe_6Ge_4 and LiFe_6Ge_6 . Going from LiFe_6Ge_4 to LiFe_6Ge_5 and LiFe_6Ge_6 , the structure of the compounds transforms to accommodate the added Ge while maintaining certain common structural motifs, resulting in crystal structures that are remarkably alike.

Figure 4 compares the stacking of the Kagomé layers of Fe atoms in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 . The Fe layers pile along the c direction with different stacking arrangements (Figure 4). In LiFe_6Ge_4 , a relative shift of Fe atoms is observed after every two layers, establishing an $[\text{ABC}]$ stacking pattern (Figure 4a). A similar stacking is seen in LiFe_6Ge_5 , except for a

shift every four Fe layers instead of two following the $[\text{AABBCC}]$ stacking arrangement (Figure 4b). No relative shift exists in LiFe_6Ge_6 , as the iron layers stack precisely above each other along the c -axis (Figure 4c). In LiFe_6Ge_6 , the Fe–Fe distance between adjacent Fe layers is 4.0 Å, while in the case of LiFe_6Ge_4 and LiFe_6Ge_5 , there are shorter distances of 2.8–2.9 Å and longer distances of 4.0–4.1 Å between the adjacent Fe layers. The wider spacing between the Fe layers accommodates the $[\text{LiGe}_2]$, $[\text{LiGe}_3]$, and $[\text{LiGe}_6]$ layers in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 , respectively. In the case of LiFe_6Ge_5 , the extra Ge atoms are also accommodated within this space (Figure 3b).

In summary, the crystal structures of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 display remarkable similarity and evolve as the composition becomes richer in Ge. All three compounds contain a Kagomé layer of Fe atoms and show a different stacking arrangement of Fe-Kagomé layers in their crystal structure.

Thermal Stability by HT-PXRD. High-temperature *in situ* synchrotron PXRD data were collected for the samples of LiFe_6Ge_5 (containing 9.0 wt % LiFe_6Ge_4) and LiFe_6Ge_6 (containing 11.9 wt % LiFe_6Ge_5). For both samples, the major phase remains the same; thus, no significant changes in the PXRD data were noticed upon heating and cooling the samples in the 298–1173–298 K range, suggesting the phases to be thermally stable up to 1173 K (Figure 5a,b). For the LiFe_6Ge_6 sample, while the diffraction peaks for the ternary remain intact in the entire temperature range, the simultaneous disappearance of diffraction peaks at 1.9 and 6.6° and the appearance of a diffraction peak at 6.7° are observed at \sim 1000 K. This corresponds to the decomposition of LiFe_6Ge_5 (present as an impurity from the beginning) to $\text{Fe}_{3.34}\text{Ge}_2$ and presumably with Li–Ge binaries and Ge. However, no Li–Ge binary or Ge diffraction peaks were observed during the entire measurement. According to Rietveld refinement, after HT-PXRD, a sample of LiFe_6Ge_6 contains 8 wt % of $\text{Fe}_{3.34}\text{Ge}_2$ in addition to the LiFe_6Ge_6 major phase, while a sample of LiFe_6Ge_5 contains 10 wt % of $\text{Fe}_{3.34}\text{Ge}_2$ and 6 wt % of LiFe_6Ge_6 in addition to LiFe_6Ge_5 as a major phase (84 wt %).

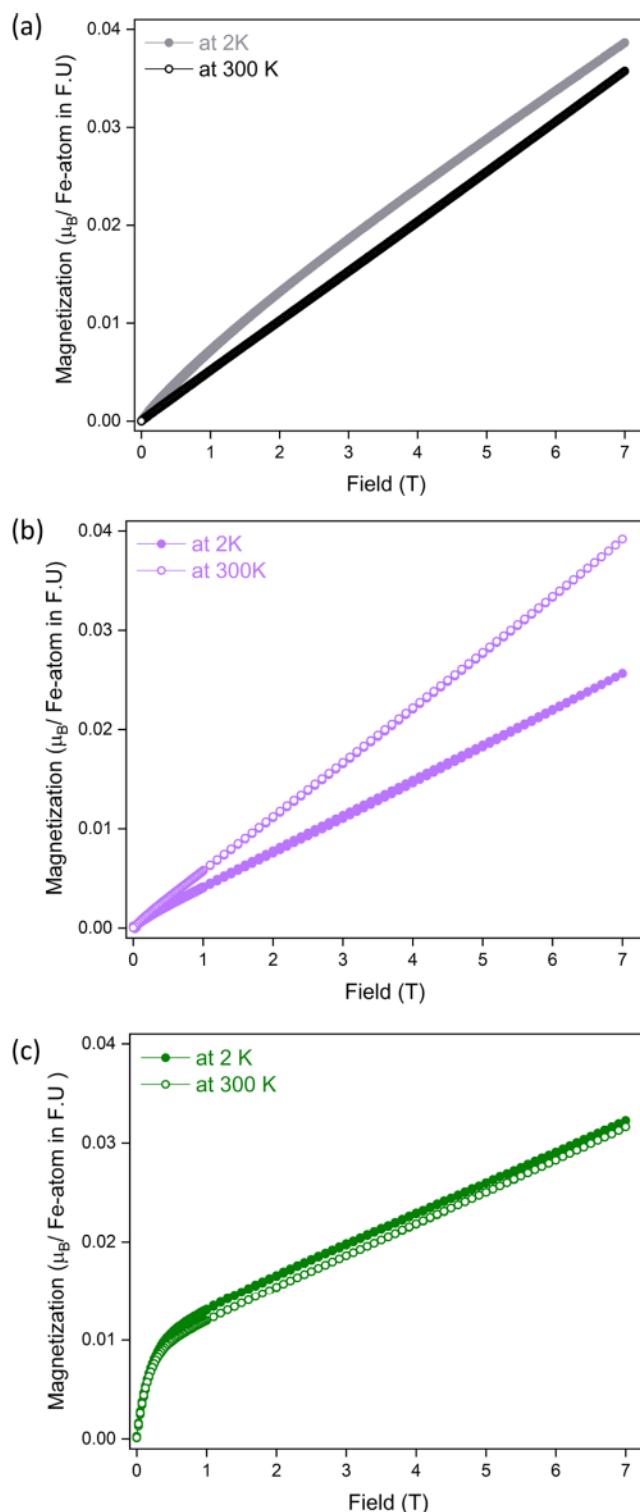
Figure 5c,d represents the plots for unit cell parameters (a , c) and unit cell volume (V) for LiFe_6Ge_5 and LiFe_6Ge_6 as a function of temperature. The unit cell parameters determined from Rietveld refinement of the HT-PXRD data show a nearly linear increase with temperature and no hysteresis for the heating/cooling cycle in the 298–1173–298 K range. However, the c parameter of LiFe_6Ge_5 shows a nonlinear increase with temperature (Figure 5c, red curve). The positive thermal expansion is evident from the shifting of the diffraction peaks to the left upon heating due to unit cell expansion and to the right upon the cooling cycle due to unit cell contraction (Figure 5a,b). The coefficients of thermal expansion (CTE) were calculated from linear fits of the data shown in Figure 5c,d using eqs 1–3

$$\text{CTE}(a) = \frac{da}{dT} \times \frac{1}{a} \quad (1)$$

$$\text{CTE}(c) = \frac{dc}{dT} \times \frac{1}{c} \quad (2)$$

$$\text{CTE}(V) = \frac{dV}{dT} \times \frac{1}{V} \quad (3)$$

The coefficients of thermal expansion are $\text{CTE}(a) = 22.3 \times 10^{-6} \text{ K}^{-1}$, $\text{CTE}(c) = 8.2 \times 10^{-6} \text{ K}^{-1}$, and $\text{CTE}(V) = 57.4 \times 10^{-6} \text{ K}^{-1}$ for LiFe_6Ge_5 and $\text{CTE}(a) = 20.4 \times 10^{-6} \text{ K}^{-1}$, $\text{CTE}(c) = 12.8 \times 10^{-6} \text{ K}^{-1}$, and $\text{CTE}(V) = 54.4 \times 10^{-6} \text{ K}^{-1}$ for LiFe_6Ge_6 . If $\text{CTE}(c)$ for LiFe_6Ge_5 is calculated in the 700–1173 K range, where a linear dependence of c with temperature is observed (Figure 5c, red curve), the value increases to $\text{CTE}(c) = 11.8 \times 10^{-6} \text{ K}^{-1}$. CTEs are remarkably similar for both phases.


In conclusion, the *in situ* HT-PXRD study reveals LiFe_6Ge_5 and LiFe_6Ge_6 phases to be thermally stable up to 1173 K and possess positive coefficients of thermal expansion, which are similar between the two phases. As a broader outlook, *in situ* HT-PXRD analysis of materials is crucial to understanding their thermal stability and behavior. Knowledge of a compound's decomposition temperature and pathway can be insightful in determining the synthetic parameters for growing crystals from the melt *via* Bridgman or Czochralski methods or

from solutions using reactive fluxes, allowing investigation of the material structure and properties.

Magnetic Properties. Given the prediction of a ferromagnetic (FM) ground state in the LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 Kagomé compounds and also antiferromagnetic (AFM) ground states in LiFe_6Ge_4 by Meschke et al., we were interested in investigating the magnetic properties of these three compounds.^{11,27} From the above-mentioned studies, a magnetic moment of 1.63–2.90 μ_{B} per Fe atom was predicted for these compounds, the value comparable to experimentally determined Fe magnetic moments in $\text{Nd}_2\text{Fe}_{14}\text{B}$.^{11,27,36} Moreover, the structurally related Kagomé compounds FeGe and RFe_6Ge_6 ($\text{R} = \text{Mg, Sc, Ti, Nb, Lu, Hf, Zr, Yb}$) display AFM ordering, well established from magnetic susceptibility measurements, field-dependent magnetization, neutron diffraction studies, and Mössbauer spectroscopy.^{50–57} In all RFe_6Ge_6 compounds that crystallize in the HfFe_6Ge_6 structure type, the Fe atoms within a single layer order ferromagnetically, but adjacent Fe layers order antiferromagnetically at temperatures significantly above room temperature ($T_N \sim 400$ to 520 K).^{50–57} The magnetic moment per Fe atom in this 1–6–6 family of compounds was found to be appreciably high, around 1–2 μ_{B} at 2 K, as determined from neutron diffraction data,^{55,56} and comparable to the predicted magnetic moment per Fe atom in LiFe_6Ge_6 .^{11,27} RFe_6Ge_6 compounds containing a nonmagnetic R metal ($\text{R} = \text{Sc, Lu, Ti, Zr, Nb}$) display AFM ordering temperature $T_N > 300$ K and the value of Fe moment increases with an increase in the valency of R .^{52,55} For example, trivalent Sc ($T_N = 497$ K for ScFe_6Ge_6) and Lu ($T_N = 471$ K for LuFe_6Ge_6), tetravalent Ti ($T_N = 518$ K for TiFe_6Ge_6) and Zr ($T_N = 508$ K for ZrFe_6Ge_6), and pentavalent Nb ($T_N = 561$ K for NbFe_6Ge_6) show a clear increase in T_N with an increase in R valency. However, divalent Mg deviates from this trend as $T_N = 501$ K is observed for MgFe_6Ge_6 . While the magnetic properties of RFe_6Ge_6 compounds containing divalent to pentavalent R metals have been studied,^{50–57} magnetic properties for compounds with monovalent R metals are not well explored. This further motivated us to investigate the magnetism in LiFe_6Ge_6 ($\text{R} = \text{monovalent Li}$).

Figure 6 displays magnetization per Fe atom (μ_{B}) as a function of the applied magnetic field for the LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 phases. A linear dependence of magnetization on the field is observed for LiFe_6Ge_4 and LiFe_6Ge_5 at 2 and 300 K. The linear dependence together with an overall low magnetization of $\sim 0.04 \mu_{\text{B}}$ per Fe atom at 7 T reveals paramagnetism or antiferromagnetic (AFM) ordering at temperature above 300 K for the two phases (Figure 6a,b). For LiFe_6Ge_6 , magnetization increases linearly with an increase in the field above 1 T, once again suggesting paramagnetic behavior or AFM ordering above room temperature (Figure 6c). A nonlinear temperature dependence at a lower field for LiFe_6Ge_6 (0–1 T) at both 2 and 300 K indicates a small ferromagnetic contribution from impurity (Figure 6c) or AFM-like ordering above room temperature with a small FM component. Assuming Fe metal to be the ferromagnetic impurity, 0.46 wt % of Fe impurity (saturation moment $M_s = 2.2 \mu_{\text{B}}$ and saturation field $H_s = 0.6$ T) in LiFe_6Ge_6 can be estimated from a linear fit of the $M(H)$ curve above 1 T.

Molar magnetic susceptibility (χ) is positive and small in magnitude (~ 0.02 emu/mol) for LiFe_6Ge_4 and LiFe_6Ge_5 (Figure S3a–d). Both zero field-cooled (ZFC) and field-cooled (FC) susceptibility show minuscule changes with temperature in the 2–300 K temperature range at 50 or 1000

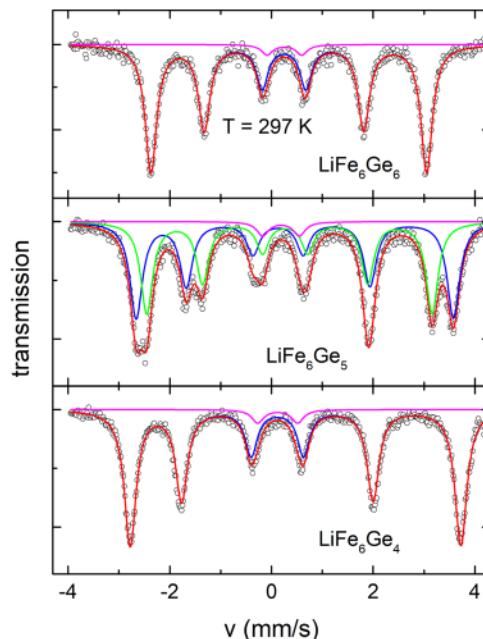


Figure 6. Plot of magnetization per mol of Fe atom (μ_B) as a function of the applied magnetic field at 2 and 300 K for (a) LiFe₆Ge₄, (b) LiFe₆Ge₅, and (c) LiFe₆Ge₆. Magnetic measurements were carried out on the samples of LiFe₆Ge₄ (containing 14 wt % LiFe₆Ge₅), LiFe₆Ge₅ (containing 13 wt % LiFe₆Ge₆), and LiFe₆Ge₆ (containing 4 wt % Ge).

Oe applied field (Figure S3b–d) in line with paramagnetism or antiferromagnetic ordering above room temperature. A larger difference in the ZFC and FC curves and overall large magnitude of susceptibility for LiFe₆Ge₆ concurs with a small

FM component in $M(H)$, stemming from a ferromagnetic impurity in the sample or intrinsic to the phase (Figure S3a, green curves).

The direct current (dc) magnetization measurements were complemented by ⁵⁷Fe Mössbauer spectroscopy data collected at room temperature (297 K) (Figure 7). The data were

Figure 7. ⁵⁷Fe Mössbauer spectra of LiFe₆Ge₄ (bottom), LiFe₆Ge₅ (middle), and LiFe₆Ge₆ (top) at $T = 297$ K. Open symbols: experimental data; red lines: total fits; blue and green lines: sextets; and magenta lines: doublets.

successfully fitted with a sextet and a doublet for LiFe₆Ge₆ and LiFe₆Ge₄ and two sextets and a doublet for LiFe₆Ge₅. The results of the fits are listed in Table 1.

The sextets signify a static magnetic moment on Fe in LiFe₆Ge₄, LiFe₆Ge₅, and LiFe₆Ge₆. ⁵⁷Fe Mössbauer data for LiFe₆Ge₄ and LiFe₆Ge₆ data correspond to one magnetic Fe site, whereas there are two somewhat different sites in LiFe₆Ge₅, which is also in agreement with the single type of Fe-coordination environment in LiFe₆Ge₄ and LiFe₆Ge₆ and two types in LiFe₆Ge₅ (Figure S2b,c). By inspecting the quadrupolar splitting (QS) and hyperfine field (B_{hf}) values, it can be seen that just as LiFe₆Ge₅ is considered a structural hybrid of LiFe₆Ge₄ and LiFe₆Ge₆ (Figures 3 and S2), the local magnetic properties for the LiFe₆Ge₅ phase are also a hybrid of LiFe₆Ge₄ and LiFe₆Ge₆ as seen by the ⁵⁷Fe Mössbauer effect. From the B_{hf} values, we can roughly estimate the magnetic moment on Fe as $\sim 1.3 \mu_B$ for LiFe₆Ge₄, $\sim 1.1 \mu_B$ for LiFe₆Ge₆, and $\sim 1.3 \mu_B$ and $\sim 1.2 \mu_B$ for two Fe sites in LiFe₆Ge₅. Discussion of the proportionality coefficient between B_{hf} and the magnetic moment can be found elsewhere.⁵⁸ The observed doublets for the three phases correspond to a small fraction of some nonmagnetic Fe spins intrinsic to the major phases or from Fe-containing impurities.

A comparison of the ⁵⁷Fe Mössbauer data, *i.e.*, IS—isomer shift, QS—quadrupolar splitting, B_{hf} —hyperfine field, for the Li–Fe–Ge Kagomé compounds with the antiferromagnetic RFe₆Ge₆ (R = Mg, Sc, Ti, Nb) Kagomé compounds is provided in Table S1 in the Supporting Information. As seen in Table S1, similar IS and higher QS and B_{hf} values^{52,55,59} are

Table 1. Results of the Fits of the $T = 297$ K ^{57}Fe Mössbauer Spectra for LiFe_6Ge_6 , LiFe_6Ge_5 , and LiFe_6Ge_4 ^a

compound	component	%	IS (mm/s)	QS (mm/s)	B _{hf} (T)	LW (mm/s)
LiFe_6Ge_6	sextet	96.2	0.293(1)	0.094(2)	16.845(7)	0.275(3)
	doublet	3.8	0.254(15)	0.68(3)		0.27 ^b
LiFe_6Ge_5	sextet 1	50.4	0.294(1)	0.329(3)	19.39(1)	0.300(5)
	sextet 2	46.2	0.311(2)	0.083(3)	17.44(1)	0.289(5)
	doublet	3.4	0.19(1)	0.72(2)		0.28 ^b
LiFe_6Ge_4	sextet	95.4	0.294(1)	0.358(1)	20.211(5)	0.283(2)
	doublet	4.6	0.122(8)	0.78(2)		0.28 ^b

^aIS—isomer shift, QS—quadrupolar splitting, B_{hf}—hyperfine field, and LW—line width. ^bSince the free parameter fit for doublets resulted in unreasonably narrow line widths, the doublet LW values were fixed at 0.27–0.28 mm/s (similar to those of sextets). Since doublets correspond to the minority (3–5%) phase, this restriction did not affect other results in any significant manner.

observed for Li–Fe–Ge phases compared to RFe_6Ge_6 . The magnetic moment of 1.1–1.3 μ_{B} /Fe atom (at room temperature) obtained from the Mössbauer data for the Li–Fe–Ge compounds is similar to the magnetic moment of 1.1–1.7 μ_{B} /Fe atom in the RFe_6Ge_6 ($\text{R} = \text{Mg, Sc, Lu, Ti, Zr, Nb}$) compounds.^{52,55,59} The above comparison serves as a strong indication of AFM ordering of Fe moieties in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 .

The collective analysis from the dc magnetization and Mössbauer data imply that the plausible magnetic state for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 compounds would be antiferromagnetic with the ordering temperature above 300 K. From HT-PXRD data, a change of slope is observed at ~ 575 K in the temperature-dependent curves for *a* and *c* unit cell parameters of LiFe_6Ge_5 and LiFe_6Ge_6 (Figure 5c,d). We hypothesize that this change of slope might be a result of structural changes brought about by magnetic ordering in these materials, suggesting an antiferromagnetic ordering temperature, $T_N \sim 575$ K, for LiFe_6Ge_5 and LiFe_6Ge_6 .

The experimental investigation of magnetic properties of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 reveals antiferromagnetic (AFM) ordering at $T > 300$ K, which agrees with the prediction of the AFM ground state in LiFe_6Ge_4 by Meschke et al. but contradicts with the prediction of the ferromagnetic (FM) grounds state in LiFe_6Ge_6 by the same authors.¹¹ The experimental finding also conflicts with the predicted FM ground states for the three compounds in the Materials Project database.²⁷ Additionally, while the Materials Project database and the work by Meschke et al. calculate a magnetic moment of 2.41–2.90 μ_{B} /Fe atom, 1.63 μ_{B} /Fe atom, and 2.12–2.83 μ_{B} /Fe atom in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 respectively,^{11,27} our ^{57}Fe Mössbauer data reveal a lower magnetic moment of ~ 1.1 –1.3 μ_{B} /Fe atom for the three phases. The above discussion highlights the inconsistency between the experimentally measured and theoretically predicted magnetic properties of the LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 Kagomé compounds. We propose two possible reasons for such an inconsistency:

- (1) Theoretical methods used to calculate magnetic properties do not fully capture the complexity of the electronic structure and magnetic ordering in these compounds, averting modeling of factors like spin frustration of the triangular lattice, symmetry-based constraints, or electron correlations within a material. Another 1–6–6 Kagomé germanide was analyzed in the work by Meschke et al., where a mismatch between measured and predicted magnetic properties is revealed in MgCo_6Ge_6 .¹¹ An AFM ground state with a magnetic moment of 1.3 μ_{B} /Co atom was predicted for

MgCo_6Ge_6 ; however, experimental measurements of magnetization, resistivity, and heat capacity all reveal Pauli paramagnetism in MgCo_6Ge_6 .³⁰ The above explanation emphasizes the need for experimental probing of the predicted magnetism to help refine and improve the computational methodology, ultimately leading to predictions of material properties with greater accuracy.

- (2) Since LiH is used for the synthesis of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 , one can speculate that an alteration of magnetic properties might occur due to H-incorporation into the structure of the Li–Fe–Ge ternaries. Examples where hydrogen incorporation (in the form of the hydride H-ion) alters magnetic properties are known among rare earth-containing intermetallics, for instance, CeNiSn , GdTiGe , and $\text{Pr}_{1-x}\text{Gd}_x\text{ScGe}$. In the hydrogenated version of these stannides and germanides, hydride ions occupy tetrahedral (T_d) and octahedral (O_h) interstitial voids surrounded by the electropositive rare-earth metals. Hydrogen incorporation (in the form of H^-) alters the magnetic properties of the parent compounds.^{60–63} The structures of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 compounds lack such interstitial sites, in part due to the low Li content (Figures 3 and S2). As discussed earlier, Li is coordinated with Ge in a hexagonal bipyramidal fashion with an Li–Ge distance of 2.5–2.9 Å (Figure S2a), leaving no space to be filled by the H^- ion. Additionally, hydrogen incorporation in the RTX compounds to form RTXH_3 is achieved under high pressures of H_2 gas (~ 10 bar),⁶² which is not the case for the synthesis of the Li–Fe–Ge ternary phases. In the synthesis of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 , the LiH precursor decomposes to form Li and H_2 gas. The latter escapes through the permeable walls of the tantalum tube used as the reaction vessel.⁶⁴ Our previous research with antimonides suggests that H-incorporation is unlikely at conditions similar to those used for synthesizing LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 .^{42,43} Based on the above discussion, H-incorporation in the structure of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Ge_6 seems improbable.

Further investigation of high-temperature magnetic properties is required to confirm the AFM ordering states compellingly suggested by dc magnetization and ^{57}Fe Mössbauer measurements for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 . Additionally, neutron diffraction at variable temperatures can shed light on the magnetic properties of the Li–Fe–Ge Kagomé phases. Neutron diffraction can also be helpful in eliminating the possibility of H-incorporation in Li–Fe–Ge

phases synthesized *via* the hydride route. Alternately, sizable single crystals of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 can be grown using suitable methods (aided by the information obtained from *in situ* PXRD studies in this work) for the comparison of their properties to those of the hydride-synthesized phases. Nonetheless, the hydride route was successfully used herein for the preparation of polycrystalline powders of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 compounds, enabling experimental characterization of their magnetic properties and testing of the theoretically predicted material properties of these Kagomé compounds.

CONCLUSIONS

The Kagomé germanides LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 were successfully synthesized *via* hydride route, providing an alternative route for the synthesis of the phases as polycrystalline powders. LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 were synthesized in high yields exceeding 90 wt %, allowing the investigation of their magnetic properties. Although the crystal structures of the Li–Fe–Ge ternary phases have been previously reported, we provide a detailed comparison of the structure of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 in terms of stacking of [Fe–Ge] and [Li–Ge] layers rationalizing their structural similarities but also accounting for the differences as the phases become compositionally richer in Ge. The thermal stability of LiFe_6Ge_5 and LiFe_6Fe_6 was analyzed using the high-temperature *in situ* PXRD analysis, revealing both phases to be thermally stable up to 1173 K. The magnetic measurements performed in this work highlight the inconsistency between experimental and theoretical magnetic properties for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 . While previous computational studies predict ferromagnetic ground states in LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 , experimental investigation *via* dc magnetization measurements and Mössbauer spectroscopy indicate antiferromagnetic ordering at temperatures above 300 K for all three. A magnetic moment of 1.1–1.3 μ_{B} /Fe atom estimated from Mössbauer spectroscopy is lower compared to the theoretically calculated values of 1.6–2.9 μ_{B} /Fe. High-temperature magnetization measurements and neutron diffraction studies are required to further confirm the antiferromagnetic ordering for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 , while high-temperature *in situ* PXRD data hint at $T_{\text{N}} \sim 575$ K.

Through our work, we highlight the need for experimental (in)validation of the theoretically predicted material properties, which is essential to assess the efficiency of computational methodologies and further improving predictive capabilities. The synergy between the experiment and theory is crucial for accurate elucidation of material properties. We believe that experimentalists will continue to play a pivotal role alongside theorists in predicting new materials, understanding their structure–property relationships and eventually realizing their potential for relevant technological applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03925>.

Rietveld refinement of laboratory PXRD data for LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 , comprehensive representation of coordination environments of Li, Fe, and Ge in the Li–Fe–Ge ternaries, additional plots for

the temperature- and field-dependent magnetic properties of LiFe_6Ge_4 , LiFe_6Ge_5 , and LiFe_6Fe_6 , and comparison of the ^{57}Fe Mössbauer data of the Li–Fe–Ge ternaries to RFe_6Ge_6 (R = Mg, Sc, Lu, Ti, Zr, Nb) Kagomé compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Julia V. Zaikina – Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States; orcid.org/0000-0002-8755-1926; Email: yzaikina@iastate.edu

Authors

Aishwarya Mantravadi – Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

Raquel A. Ribeiro – Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States

Sergey L. Bud'ko – Department of Physics and Astronomy and Ames National Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States; orcid.org/0000-0002-3603-5585

Paul C. Canfield – Department of Physics and Astronomy and Ames National Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.inorgchem.4c03925>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Science Foundation (U.S.) Division of Materials Research (DMR-1944551) CAREER Award is gratefully acknowledged. The use of the Advanced Photon Source at Argonne National Laboratory (APS ANL) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Dr. W. Xu and Dr. A. Yakovenko at 17-BM at APS ANL are thanked for their help with high-temperature synchrotron PXRD data collection. The magnetization and Mössbauer measurements (RAR, SLB, PCC) were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division, through the Ames National Laboratory. Ames National Laboratory is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.

REFERENCES

- (1) Pati, S. K.; Rao, C. N. R. Kagome Network Compounds and Their Novel Magnetic Properties. *Chem. Commun.* 2008, 4683–4693.
- (2) Yin, J. X.; Lian, B.; Hasan, M. Z. Topological Kagome Magnets and Superconductors. *Nature* 2022, 612, 647–657.
- (3) Wang, Y.; Wu, H.; McCandless, G. T.; Chan, J. Y.; Ali, M. N. Quantum States and Intertwining Phases in Kagome Materials. *Nat. Rev. Phys.* 2023, 5, 635–658.
- (4) Wang, H.; Liu, Y.; Gong, M.; Jiang, H.; Gao, X.; Ma, W.; Luo, J.; Ji, H.; Ge, J.; Jia, S.; Gao, P.; Wang, Z.; Xie, X. C.; Wang, J. Emergent Superconductivity in Topological-Kagome-Magnet/Metal Heterostructures. *Nat. Commun.* 2023, 14 (1), No. 6998.
- (5) Riberolles, S. X. M.; Han, T.; Slade, T. J.; Wilde, J. M.; Sapkota, A.; Tian, W.; Zhang, Q.; Abernathy, D. L.; Sanjeewa, L. D.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.; Ueland, B. G. New Insight into

Tuning Magnetic Phases of RMn_6Sn_6 Kagome Metals. *npj Quantum Mater.* 2024, 9, No. 42.

(6) Mielke, C.; Qin, Y.; Yin, J. X.; Nakamura, H.; Das, D.; Guo, K.; Khasanov, R.; Chang, J.; Wang, Z. Q.; Jia, S.; Nakatsuji, S.; Amato, A.; Luetkens, H.; Xu, G.; Hasan, M. Z.; Guguchia, Z. Nodeless Kagome Superconductivity in LaRu_3Si_2 . *Phys. Rev. Mater.* 2021, 5, No. 034803.

(7) Larsen, C. B.; Mazzone, D. G.; Gauthier, N.; Rosales, H. D.; Albaracín, F. A. G.; Lass, J.; Boralev, X.; Bud'ko, S. L.; Canfield, P. C.; Zaharko, O. Magnetic Ground State and Perturbations of the Distorted Kagome Ising Metal TmAgGe . *Phys. Rev. B* 2023, 107, No. 224419.

(8) Neupert, T.; Denner, M. M.; Yin, J.-X.; Thomale, R.; Hasan, M. Z. Charge Order and Superconductivity in Kagome Materials. *Nat. Phys.* 2022, 18 (2), 137–143.

(9) Chamorro, J. R.; McQueen, T. M.; Tran, T. T. Chemistry of Quantum Spin Liquids. *Chem. Rev.* 2021, 121 (5), 2898–2934.

(10) Wang, Y.; McCandless, G. T.; Wang, X.; Thanabalasingam, K.; Wu, H.; Bouwmeester, D.; Van Der Zant, H. S. J.; Ali, M. N.; Chan, J. Y. Electronic Properties and Phase Transition in the Kagome Metal $\text{Yb}_{0.5}\text{Co}_3\text{Ge}_3$. *Chem. Mater.* 2022, 34 (16), 7337–7343.

(11) Meschke, V.; Gorai, P.; Stevanović, V.; Toberer, E. S. Search and Structural Featurization of Magnetically Frustrated Kagome Lattices. *Chem. Mater.* 2021, 33 (12), 4373–4381.

(12) Jovanovic, M.; Schoop, L. M. Simple Chemical Rules for Predicting Band Structures of Kagome Materials. *J. Am. Chem. Soc.* 2022, 144 (24), 10978–10991.

(13) Singh, H. K.; Sehrawat, A.; Shen, C.; Samathrakis, I.; Opahle, I.; Zhang, H.; Xie, R. High-Throughput Screening of Half-Antiperovskites with a Stacked Kagome Lattice. *Acta Mater.* 2023, 242, No. 118474.

(14) Mazin, I. I.; Jeschke, H. O.; Lechermann, F.; Lee, H.; Fink, M.; Thomale, R.; Valentí, R. Theoretical Prediction of a Strongly Correlated Dirac Metal. *Nat. Commun.* 2014, 5, No. 4261.

(15) Xiang, H. J.; Kan, E. J.; Wei, S. H.; Whangbo, M. H.; Gong, X. G. Predicting the Spin-Lattice Order of Frustrated Systems from First Principles. *Phys. Rev. B* 2011, 84 (22), No. 224429.

(16) Hafner, J.; Wolverton, C.; Ceder, G. Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research. *MRS Bull.* 2006, 31 (9), 659–668.

(17) Jha, D.; Choudhary, K.; Tavazza, F.; Liao, W. K.; Choudhary, A.; Campbell, C.; Agrawal, A. Enhancing Materials Property Prediction by Leveraging Computational and Experimental Data Using Deep Transfer Learning. *Nat. Commun.* 2019, 10 (1), No. 5316.

(18) Kiele, E.; Zwane, R.; Fox, R.; Reilly, A. M.; Guerin, S. Density Functional Theory Predictions of the Mechanical Properties of Crystalline Materials. *CrystEngComm* 2021, 23, S597–S710.

(19) Sparks, T. D.; Gaulois, M. W.; Oliynyk, A.; Brugoch, J.; Meredig, B. Data Mining Our Way to the next Generation of Thermoelectrics. *Scr. Mater.* 2016, 111 (15), 10–15.

(20) Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. *Nat. Commun.* 2017, 8, No. 15679.

(21) Pilania, G.; Wang, C.; Jiang, X.; Rajasekaran, S.; Ramprasad, R. Accelerating Materials Property Predictions Using Machine Learning. *Sci. Rep.* 2013, 3, No. 2810.

(22) Choudhary, A. K.; Kini, A.; Hohs, D.; Jansche, A.; Bernthaler, T.; Csizsár, O.; Goll, D.; Schneider, G. Machine Learning-Based Curie Temperature Prediction for Magnetic 14:2:1 Phases. *AIP Adv.* 2023, 13 (3), No. 035112.

(23) Yong-Hong, Z.; Liu, B. G. First-Principles Study of Structural, Electronic, and Magnetic Properties of Mn_4XGe_3 ($\text{X} = \text{Fe, Co, Ni}$). *Chin. Phys. B* 2008, 17 (9), 3417–3421.

(24) Aravindan, V.; Rajarajan, A. K.; Mahendran, M. First-Principles Study of Structural, Electronic, Magnetic and Elastic Properties of the Mn_2XSb ($\text{X} = \text{Co, Fe}$) Inverse Heusler Alloys. *J. Electron. Mater.* 2021, 50 (4), 1786–1793.

(25) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). *JOM* 2013, 65, 1501–1509.

(26) Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies. *npj Comput. Mater.* 2015, 1, No. 15010.

(27) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. *APL Mater.* 2013, 1 (1), No. 011002.

(28) Singh, P.; Del Rose, T.; Palasyuk, A.; Mudryk, Y. Physics-Informed Machine-Learning Prediction of Curie Temperatures and Its Promise for Guiding the Discovery of Functional Magnetic Materials. *Chem. Mater.* 2023, 35 (16), 6304–6312.

(29) Jiang, Y.; Jia, S.; Chen, S.; Li, X.; Wang, L.; Han, X. Theoretical Prediction and Experimental Validation of the Glass-Forming Ability and Magnetic Properties of Fe-Si-B Metallic Glasses from Atomic Structures. *Materials* 2022, 15 (9), No. 3149.

(30) Sinha, M.; Vivanco, H. K.; Wan, C.; Siegler, M. A.; Stewart, V. J.; Pogue, E. A.; Pressley, L. A.; Berry, T.; Wang, Z.; Johnson, I.; Chen, M.; Tran, T. T.; Phelan, W. A.; McQueen, T. M. Twisting of 2D Kagomé Sheets in Layered Intermetallics. *ACS Cent. Sci.* 2021, 7 (8), 1381–1390.

(31) Carter, E. A. Challenges in Modeling Materials Properties without Experimental Input. *Science* 2008, 321 (5890), 800–803.

(32) Chamorro, J. R.; McQueen, T. M. Progress toward Solid State Synthesis by Design. *Acc. Chem. Res.* 2018, 51 (11), 2918–2925.

(33) Welk, E.; Schuster, H.-U. Zur Kenntnis Der Phase LiFe_6Ge_6 . *Z. Anorg. Allg. Chem.* 1976, 424 (3), 193–197.

(34) Welk, E.; Schuster, H.-U. LiFe_6Ge_6 Und LiFe_6Ge_4 Zwei Phasen Mit Enger Strukturbeziehung Zu Der Verbindung $\text{LiFe}_6\text{Ge}_6/\text{LiFe}_6\text{Ge}_5$ und LiFe_6Ge_4 Two Phases with Close Structure Relations to the Compound LiFe_6Ge_6 . *Z. Naturforsch. B* 1977, 32 (7), 749–752.

(35) Cenzual, K.; Gelato, L. M.; Penzo, M.; Parthe, E. Overlooked Trigonal Symmetry in Structures Reported with Monoclinic Centred Bravais Lattices; Trigonal Description of Li_8Pb_3 , PtTe , Pt_3Te_4 , Pt_2Te_3 , LiFe_6Ge_4 , LiFe_6Ge_5 , $\text{CaGa}_6\text{Te}_{10}$ and $\text{La}_{3.266}\text{Mn}_{1.1}\text{S}_6$. *Z. Kristallogr.-Cryst. Mater.* 1990, 193 (3–4), 217–242.

(36) Givord, D.; Li, H. S.; de la Bâthie, R. P. Magnetic Properties of $\text{Y}_2\text{Fe}_{14}\text{B}$ and $\text{Nd}_2\text{Fe}_{14}\text{B}$ Single Crystals. *Solid State Commun.* 1984, 51 (11), 857–860.

(37) Sagawa, M.; Fujimura, S.; Togawa, N.; Yamamoto, H.; Matsuura, Y. New Material for Permanent Magnets on a Base of Nd and Fe (Invited). *J. Appl. Phys.* 1984, 55 (6), 2083–2087.

(38) Ventrella, E. BS thesis. Investigating Itinerant Magnets for Magnetic Refrigeration 2017. http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1493404076.

(39) Canfield, P. C. New Materials Physics. *Rep. Prog. Phys.* 2020, 83 (1), No. 016501.

(40) Adeyemi, A. N.; Bhaskar, G.; Cox, T.; Hong, S.; Gvozdetskyi, V.; Zaikina, J. V. Hydride Precursors in Materials Synthesis. In *Comprehensive Inorganic Chemistry III*, 3rd ed.; Elsevier, 2023; Vol. 1–10, pp 128–146.

(41) Gvozdetskyi, V.; Sun, Y.; Zhao, X.; Bhaskar, G.; Carnahan, S. L.; Harmer, C. P.; Zhang, F.; Ribeiro, R. A.; Canfield, P. C.; Rossini, A. J.; Wang, C. Z.; Ho, K. M.; Zaikina, J. V. Lithium Nickel Borides: Evolution of [NiB] Layers Driven by Li Pressure. *Inorg. Chem. Front.* 2021, 8 (7), 1675–1685.

(42) Mantravadi, A.; Gvozdetskyi, V.; Sarkar, A.; Mudryk, Y.; Zaikina, J. V. Exploring the A-V-Sb Landscape beyond AV_3Sb_5 : A Case Study on the KV_6Sb_6 Kagome Compound. *Phys. Rev. Mater.* 2023, 7 (11), No. 115002.

(43) Cox, T.; Gvozdetskyi, V.; Owens-Baird, B.; Zaikina, J. V. Rapid Phase Screening via Hydride Route: A Discovery of $\text{K}_{8-x}\text{Zn}_{18+3x}\text{Sb}_{16}$. *Chem. Mater.* 2018, 30 (23), 8707–8715.

(44) Putz, H.; Brandenburg, K. Match! - Phase Analysis using Powder Diffraction, Crystal Impact, GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany <https://www.crystalimpact.de/match>.

(45) Toby, B. H.; Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. *J. Appl. Crystallogr.* 2013, 46 (2), 544–549.

(46) Chupas, P. J.; Chapman, K. W.; Kurtz, C.; Hanson, J. C.; Lee, P. L.; Grey, C. P. A Versatile Sample-Environment Cell for Non-Ambient X-Ray Scattering Experiments. *J. Appl. Crystallogr.* 2008, 41 (4), 822–824.

(47) Klencsár, Z. *MossWinn 4.0i Manual*; Mosswinn, 2023.

(48) Sangster, J.; Pelton, A. D. The Ge-Li (Germanium-Lithium) System. *J. Phase Equilib.* 1997, 18, 289–294.

(49) Zeilinger, M.; Fässler, T. F. Structural and Thermodynamic Similarities of Phases in the Li-Tt (Tt = Si, Ge) Systems: Redetermination of the Lithium-Rich Side of the Li-Ge Phase Diagram and Crystal Structures of $\text{Li}_{17}\text{Si}_{4.0-x}\text{Ge}_x$ for $x = 2.3, 3.1, 3.5$, and 4 as Well as $\text{Li}_{4.1}\text{Ge}$. *Dalton Trans.* 2014, 43, 14959–14970.

(50) Teng, X.; Oh, J. S.; Tan, H.; Chen, L.; Huang, J.; Gao, B.; Yin, J. X.; Chu, J. H.; Hashimoto, M.; Lu, D.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Granroth, G. E.; Yan, B.; Birgeneau, R. J.; Dai, P.; Yi, M. Magnetism and Charge Density Wave Order in Kagome FeGe. *Nat. Phys.* 2023, 19 (6), 814–822.

(51) Avila, M. A.; Takabatake, T.; Takahashi, Y.; Bud'ko, S. L.; Canfield, P. C. Direct Observation of Fe Spin Reorientation in Single-Crystalline YbFe_6Ge_6 . *J. Phys.: Condens. Matter.* 2005, 17 (43), No. 6969.

(52) Mazet, T.; Malaman, B. Macroscopic Magnetic Properties of the HfFe_6Ge_6 -Type RFe_6X_6 ($\text{X} = \text{Ge}$ or Sn) Compounds Involving a Non-Magnetic R Metal. *J. Alloys Compd.* 2001, 325 (1–2), 67–72.

(53) Venturini, G.; Welter, R.; Malaman, B. Crystallographic Data and Magnetic Properties of RT_6Ge_6 Compounds ($\text{R} = \text{Sc, Y, Nd, Sm, Gd, Lu}$; $\text{T} = \text{Mn, Fe}$). *J. Alloys Compd.* 1992, 185 (1), 99–107.

(54) Hori, T.; Nishihara, R.; Akimitsu, M.; Ohoyama, K.; Onodera, H.; Yamaguchi, Y.; Mitsudo, S.; Motokawa, M. Magnetic Properties of hp13 Type TFe_6Ge_6 ($\text{T} = \text{Zr, Nb, Hf}$) Alloys. *J. Magn. Magn. Mater.* 2001, 226–230, 1076–1078.

(55) Mazet, T.; Isnard, O.; Malaman, B. Neutron Diffraction and ^{57}Fe Mössbauer Study of the HfFe_6Ge_6 -Type RFe_6Ge_6 Compounds ($\text{R} = \text{Sc, Ti, Zr, Hf, Nb}$). *Solid State Commun.* 2000, 114 (2), 91–96.

(56) Schobinger-Papamantellos, P.; Buschow, K. H. J.; De Boer, F. R.; Ritter, C.; Isnard, O.; Fauth, F. The Fe Ordering in RFe_6Ge_6 Compounds with Non-Magnetic R ($\text{R} = \text{Y, Lu, Hf}$) Studied by Neutron Diffraction and Magnetic Measurements. *J. Alloys Compd.* 1998, 267 (1–2), 59–65.

(57) Cadogan, J. M.; Ryan, D. H. Independent Magnetic Ordering of the Rare-Earth (R) and Fe Sublattices in the RFe_6Ge_6 and RFe_6Sn_6 Series. *J. Alloys Compd.* 2001, 326 (1–2), 166–173.

(58) Dubiel, S. M. Relationship between the Magnetic Hyperfine Field and the Magnetic Moment. *J. Alloys Compd.* 2009, 488 (1), 18–22.

(59) Mazet, T.; Ban, V.; Sibille, R.; Capelli, S.; Malaman, B. Magnetic Properties of MgFe_6Ge_6 . *Solid State Commun.* 2013, 159, 79–83.

(60) Chevalier, B.; Bobet, J. L.; Pasturel, M.; Bauer, E.; Weill, F.; Decourt, R.; Etourneau, J. Ferrromagnetic Behavior of the New Hydride $\text{CeNiSnH}_{1.8(2)}$. *Chem. Mater.* 2003, 15 (11), 2181–2185.

(61) Gaudin, E.; Matar, S. F.; Pöttgen, R.; Eul, M.; Chevalier, B. Drastic Change of the Ferromagnetic Properties of the Ternary Germanide GdTlGe through Hydrogen Insertion. *Inorg. Chem.* 2011, 50 (21), 11046–11054.

(62) Del Rose, T.; Choudhary, R.; Mudryk, Y.; Haskel, D.; Pathak, A. K.; Bhaskar, G.; Zaikina, J. V.; Johnson, D. D.; Pecharsky, V. K. Interplay between Kondo and Magnetic Interactions in $\text{Pr}_{0.75}\text{Gd}_{0.25}\text{ScGeH}$. *J. Alloys Compd.* 2023, 966, No. 171351.

(63) Yartys, V. A.; Denys, R. V.; Akselrud, L. G.; Vajeeston, P.; Dankelman, R.; Plomp, J.; Block, T.; Pöttgen, R.; Wragg, D.; Eggert, B. G. F.; Berezovets, V. Structure and Bonding in TiNiSi Type LaMgSnH Intermetallic Hydride. *J. Alloys Compd.* 2024, 976, No. 173198.

(64) Buxbaum, R. E.; Kinney, A. B. Hydrogen Transport through Tubular Membranes of Palladium-Coated Tantalum and Niobium. *Ind. Eng. Chem. Res.* 1996, 35 (2), 530–537.