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Abstract—Gait impairments are highly prevalent in persons
with multiple sclerosis (PwMS), contributing to difficulties in
daily activities. Disability is commonly assessed using the Ex-
panded Disability Status Scale (EDSS). However, the EDSS
lacks detailed gait analysis for assessing the severity of multiple
sclerosis. To address this, gait analysis tools such as inertial
measurement units are commonly used to understand walking
patterns in PwMS. Another concern is that collecting sufficient
gait data becomes challenging due to limited participation in
studies. This research acknowledges these limitations and pro-
poses using a variational autoencoder to address this issue.
Additionally, the study explores the feasibility of classification
models aimed at assisting the quantification of disability of PwMS
based on individuals’ gait patterns.

Index Terms—multiple sclerosis, data augmentation, varia-
tional autoencoder, inertial measurement unit, machine learning

I. INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease
of the central nervous system resulting in demyelination of
neurons. The resulting deterioration of the myelin sheath
exposes the axon of the neuron, causing the inhibition of
the propagation of action potentials from the central nervous
system to the peripheral tissue. Remyelination can occur to
the myelin sheath, though only to a small degree, but a lesion,
or sclerosis, is often left [1]. Due to the disruption of the
propagation of action potentials, persons with MS (PwMS)
experience many symptoms, often influenced by the location
of the lesion and the severity of the inflammatory reaction.
Common symptoms reported by PwMS include impaired
vision, balance, muscle control, and sensation [2].

Currently, the severity of MS is quantitatively scored using
the Expanded Disability Status Scale (EDSS). EDSS is an
accepted instrument to assess the severity and progression
of MS and is regularly used to note the effectiveness of
therapeutic interventions [3]. The EDSS scoring system scales
the severity level for MS from a rating of 0.0 to 10.0 in
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increments of 0.5. A rating of 0.0 equates to the individual
having normal functions with no disability, and a rating of
10.0 equates to the individual being deceased due to MS
[4]. The overall rating is calculated through evaluations of
optic, brainstem, pyramidal, cerebellar, sensory, bowel/bladder,
cerebral functions, and walking capability. Each of these
categories has its predetermined scoring criteria. While EDSS
scores increase in increments of 0.5, the scale is not continuous
but is influenced by differing factors. Specifically, walking
ability significantly impacts scores above 3 [5]. From the
scoring rubric, EDSS ratings under 0.0 to 3.5 note that the
person is fully ambulatory without aid and does not specify
a limit to the distance a person can walk. Scores of 4.0 to
5.5 describe the individual as fully ambulatory without aid.
Individuals can walk without rest for distances of 500 meters
for 4.0, 300 meters for 4.5, 200 meters for 5.0, and 100 meters
for 5.5. EDSS ratings past 5.5 state that the individual requires
assistance with mobility or is completely restricted to a bed
or wheelchair [6].

The loss of balance and muscle control contribute to the gait
patterns of PwMS, such that more than 50% of people with MS
have balance and walking difficulties [7]. Additionally, gait is
one of the first and most common impairments to occur in
the early stages of MS [8] [9]. Therefore, it is important to
assess the gait characteristics of PwMS to determine trends in
gait abnormalities. However, the EDSS rating system offers
a surface-level assessment of walking ability, such that the
PwMS either reports or has its maximum unassisted walking
distance (in meters) measured by the neurologist. Many PwMS
who choose to self-report their walking distance underes-
timates the distance, resulting in an incorrect EDSS score
[10]. Previous studies have utilized sensor systems to capture
gait parameters for people with MS, in which there were
noticeable changes to parameters including step length, double
support time, and walking speed across increasing EDSS levels
and compared to healthy control participants [11]. Regarding
groups of PwMS with worsening EDSS scores, there is a
significant association between changes to medio-lateral stride
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regularity and disease progression [12]. Additionally, wearable
sensors are an accessible alternative to more expensive gait
measurement instruments [13] [14].

Other studies have used machine learning algorithms to
classify PwMS from healthy controls [15] [16]. However,
these studies rely on instrumented walkways and treadmills
to measure walking characteristics, and few studies utilize
Inertial Measurement Units (IMUs) to extract data for ma-
chine learning classification of MS. Another problem that
arises is the limitation in access to MS data due to the
unavailability of original datasets, time-consuming nature of
data collection, and monetary restrictions in obtaining data or
accessing commercial datasets [17] [18]. These limitations are
influenced by such factors of geography, where the prevalence
of PwMS increases in areas further away from the equator,
and accessibility, where individuals would need to consider
transportation and costs of transportation to available clinics
that specialize in MS treatment [19]. Even without these
limitations, with researchers looking into using and combining
external datasets, existing real-world evidence (RWE) data
for MS does not follow a standardized data collection and
processing protocol [20].

Thus, the purpose of the current investigation was to de-
termine if data generation is a viable solution to limited
data resources in healthcare and if machine learning methods
and comprehensive gait evaluation can more accurately assess
the severity of MS. It was hypothesized that using neural
networks to generate data from existing health data is a
reliable option when access to data is limited. Additionally, it
was hypothesized that the classification of gait patterns using
machine learning can act as a complementary assessment to
current standard methods of the EDSS.

II. DATA COLLECTION AND PREPROCESSING

A. Data Collection

A control group of 8 healthy individuals was recruited
to participate in the current investigation1. Participants were
asked to complete the 6-Minute Walking Test (6MWT) once
with their usual gait and a second time with an impairment
to simulate the gait patterns of a PwMS. During both assess-
ments, participants wore inertial measurement units to collect
biomechanical data for gait analysis.

The 6-Minute Walk Test [21] is a standard functional
assessment for PwMS used to evaluate walking endurance.
A distance of 30 meters was marked out on a flat surface for
the assessment. Participants were instructed to walk at their
own pace to the end of the marked-out course, perform a U-
turn, and walk back to the starting point, completing as many
loops as possible in 6 minutes. The participants completed the
6MWT two times, once with their normal gait pattern and
second time with a gait pattern to mimic a person with MS.
Previous studies that have examined gait patterns in PwMS

1The research protocol was reviewed and approved by the Institutional
Review Board (IRB) at Texas State University under approval number
#8289. Written informed consent was obtained from all individual participants
included in the study.

have observed reduced motion in the hips, knee joints, and
ankle joints [22]. Thus, to mimic similar restrictions in motion,
our gait pattern prompts included several variations of keeping
one or both knees locked while walking, such as prompting
the participant to keep one leg straight while walking, walking
normally but locking one knee once the foot contacts the
ground, and keeping both legs straight while walking.

IMU sensors consist of accelerometers, gyroscopes, and
magnetometers measuring acceleration, rotational motion, and
orientation across a three-dimensional plane [23]. Following
previous studies, the sensors were placed on the lower extrem-
ities as shown in Figure 1 to assess the gait characteristics
of the participants [24]. We utilize four Noraxon Myomotion
IMU sensors strapped to the left and right foot and the left and
right shank to measure the gait patterns of the participants.
These four sensors captured 112 columns of data regarding
foot pitch, foot roll, acceleration, orientation, trajectory, and
contact. The Noraxon Myomotion sensors recorded these
features with a frequency of 100 Hz. We utilize nine columns
of the dataset that indicate the foot position and ground contact
over the allotted time. Only the first and last minutes of the
6MWT were recorded to reduce the amount of data collected
for each person. Sensors were calibrated according to the
manufacturer’s recommendations before each iteration of the
6MWT.

Fig. 1. Noraxon Myomotion IMU and Placement on Lower Body

B. Preprocessing

Each iteration of the 6MWT was then exported to a sin-
gle CSV file. The data was processed into identifiable gait
parameters using the given columns from the raw dataset:

• ‘time’
• ‘Segments-Foot RT-Contact’
• ‘Segments-Foot LT-Contact’
• ‘Trajectories-Heel back RT-x (mm)’
• ‘Trajectories-Heel back LT-x (mm)’
• ‘Trajectories-Heel back RT-y (mm)’
• ‘Trajectories-Heel back LT-y (mm)’
• ‘Trajectories-Heel back RT-z (mm)’
• ‘Trajectories-Heel back LT-z (mm)’
The gait parameters [13] extracted from the raw data and

their definitions are as follows:
• Stride length: distance between a foot’s heel position at

initial contact and its position at subsequent contact
• Step length: distance between the heel positions of op-

posing feet when each is on the ground (left step length
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is when the left foot is forward; right step length is when
the right foot is forward)

• Step duration: time interval between one foot’s initial
ground contact and the opposite foot’s ground contact

• Cadence: the number of steps taken over a minute
• Single support interval: time interval for when one foot

is on the ground
• Double support interval: time interval for when both feet

are on the ground
First, we converted the three-dimensional coordinates from

millimeters to meters and then used the columns to calculate
the left and right foot gait parameters. These calculations were
split into the first and last minute and averaged to create a
dataset of 22 continuous variables. This process was completed
by implementing the algorithm in Figure 2.

Algorithm 1: Gait Parameter Calculation

1 Set pre ious heel positions to first entry
2 for each entry in dataset do
3 Set left and right heel positions to entry
4 if left heel strike occurs then
5 Calculate step length with left heel position and pre ious right

heel position
6 Calculate step duration
7 Calculate stride length with left heel position and pre ious left

heel position
8 Increment cadence
9 Record step length, step duration, and stride length

10 Update pre ious left heel position to current left heel position

11 if right heel strike occurs then
12 Calculate step length with right heel position and pre ious left

heel position
13 Calculate step duration
14 Calculate stride length with right heel position and pre ious

right heel position
15 Increment cadence
16 Record step length, step duration, and stride length
17 Update pre ious right heel position to current right heel position

18 if both feet are not on the ground then
19 Record double support inter al if time started

20 else
21 Start time

22 if left foot is on the ground then
23 Record left single support inter al if time started

24 else
25 Start left foot time

26 if right foot is on the ground then
27 Record right single support inter al if time started

28 else
29 Start right foot time

30 Calculate a erages for the first 60 seconds
31 Calculate a erages for the last 60 seconds

1

Fig. 2. Gait Parameter Pseudocode

Each walking impairment prompt was assessed and assigned
a score based on the Expanded Disability Status Scale (EDSS)
by a certified EDSS rater. The impairments reflected EDSS
scores of 3.5 and 4.0, so data reflecting scores of 4.5, 5.0,
and 5.5 were generated from the original data. The calculated
values for the last minute were set to 0, as EDSS scores of
4.5 or higher indicate an inability to walk 500 meters without
rest, while healthy individuals can walk 400 to 700 meters in
six minutes [25].

The final prepared dataset consisted of 22 continuous vari-
ables of the gait parameters and one categorical variable of
the associated EDSS score. Length calculations were rounded
to the nearest thousandth, time calculations were rounded to
the nearest hundredth, and cadence was recorded in integers.

III. METHODOLOGY

A. Data Generation

To resolve the problem of limited access to participant data,
we chose to use data augmentation. For data augmentation, a
generative artificial intelligence model is used to create syn-
thetic data to train our classification model. We implemented
a variational autoencoder (VAE) due to its ability to learn and
define a latent space through the distribution of the original
data, such that randomly generated noise can then be decoded
to generate new data. VAEs have been widely utilized in
previous studies for generating data, including text modeling,
molecular structures, handwritten digits, and images of faces
[26].

Fig. 3. Variational Autoencoder Architecture

The prepared dataset was first separated into categorical
and continuous variables, where continuous features were
transformed to follow a uniform distribution using quantile
information and the categorical feature was converted with
one-hot encoding. The architecture of the VAE is shown in
Figure 3. The components of the VAE are split into two parts:
the encoder and the decoder. Our encoder comprises an input
layer, a hidden layer utilizing the Rectified Linear Unit (ReLU)
activation function, and an output layer. We implement two
decoders: one for categorical data and one for continuous data.
The categorical decoder consists of an input layer followed
by an output layer with softmax activation. The continuous
decoder comprises an input layer, a hidden layer employing the
ReLU activation function, and an output layer. During training,
we use Adam with a learning rate of 0.0001 to minimize the
given loss function:

Loss =
∫

q(z|x) log q(z|x)
p(z)

dx

+
1

n

n∑
i=1

(xcont,i − x̂cont,i)
2

− 1

n

n∑
i=1

k∑
j=1

xcat,i,j log (pcat,i,j)

(1)

where q(z|x) is the approximated posterior distribution, p(z)
is the prior distribution, n is the number of samples in the
dataset, k is the number of classes for the categorical variable,
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xcont,i is the true value for the ith continuous variable, x̂cont,i
is the predicted value for the ith continuous variable, xcat,i,j is
the indicator function for the ith variable in the jth class, and
pcat,i,j is the predicted probability for the ith variable to belong
to the jth class. The first term of the loss function is the KL
divergence term, which measures how closely the distribution
of the approximated posterior, q(z|x), matches the distribution
of the prior, p(z). Second, we add two reconstruction loss
terms, with the first being the mean squared error for the
continuous variables and the second being the categorical cross
entropy for the categorical variables.

After training the model, data is generated by sampling
latent variables from a standard Gaussian distribution. The
latent variables were then decoded and inversely transformed
to their original representation, resulting in a new dataset of
generated samples.

Ultimately, we intend for the generated data to represent
the original dataset fairly. Specifically, we used the two-
sided Kolmogorov-Smirnov test for two samples to compare
distributions for the original and generated data for each
continuous variable. The formula for the KS test is provided
below in Equation 2:

Dmn =

(
mn

m+ n

)1/2

sup
x

|Fm(x)−Gn(x)| (2)

where F (x) is the empirical distribution function for the
original dataset, G(x) is the empirical distribution function
for the generated dataset, m is the sample size of the original
dataset, n is the sample size of the generated dataset, and
D is the test statistic with mn degrees of freedom. The two-
sample Kolmogorov-Smirnov statistic tests the null hypothesis
that two empirical distribution functions are equal instead of
the alternative that the two empirical distribution functions
are not the same. We state our null hypothesis and alternative
hypothesis to be:

H0 : F (x) = G(x) vs. H1 : F (x) ̸= G(x) (3)

We set our significance level to 0.05, which states that the two
datasets were not drawn from the same distribution if we get
a p-value of less than 0.05.

B. Classification Models and Implementation

Our model aims to predict the EDSS score given to a
PwMS based on the decided gait features. We implemented
multiple models in consideration of the nature of our data
and the suitability for future use in a clinical setting. These
classification models included Random Forest, Gaussian Naive
Bayes, Logistic Regression, and Gradient Boosting.

Before implementing the four models, features were stan-
dardized to follow a normal distribution with 0 mean and unit
variance before training and prediction occurred. The 500-
sample dataset was split into 64-16-20 training, validation, and
testing splits. The hyperparameters of the four classification
models were tuned based on the evaluation metrics of the
validation set.

C. Evaluation

The performance of the classification models was evaluated
by calculating the respective balanced accuracy, precision,
recall, and f1-score for each class. We utilized confusion
matrices to visualize each model’s prediction accuracy. Then,
we tested the model on the original dataset from the best-
performing classification model to evaluate the reliability of
training the model on generated data.

IV. RESULTS

A. Data Generation

Figure 4 shows 23 histograms visualizing data distribution
across the 23 variables to compare how closely the generated
dataset represents the original dataset. Each graph represents
one of the 23 variables, in which the x-axis displays the range
of values for the given variable, and the y-axis displays the
density for that value in the dataset. The bars shaded orange
show the distribution for the generated dataset, and the bars
shaded blue show the distribution for the original dataset.

TABLE I
KS TEST STATISTIC AND P-VALUE FOR COMPARING ORIGINAL AND

GENERATED DATASETS

Gait Parameter Dmn P-value

LF M1 Stride Length 0.210 0.257
LF M6 Stride Length 0.248 0.146
RF M1 Stride Length 0.222 0.189
RF M6 Stride Length 0.240 0.168
LF M1 Step Length 0.214 0.225
LF M6 Step Length 0.284 0.065
RF M1 Step Length 0.314 0.026
RF M6 Step Length 0.196 0.346
LF M1 Step Duration 0.270 0.052
LF M6 Step Duration 0.110 0.853
RF M1 Step Duration 0.250 0.050
RF M6 Step Duration 0.126 0.714
M1 DSI 0.148 0.388
M6 DSI 0.120 0.674
LF M1 SSI 0.250 0.097
LF M6 SSI 0.150 0.527
RF M1 SSI 0.302 0.018
RF M6 SSI 0.130 0.719
LF M1 Cadence 0.296 0.009
LF M6 Cadence 0.236 0.129
RF M1 Cadence 0.290 0.023
RF M6 Cadence 0.228 0.160

Abbreviations: LF-left foot; RF-right foot; M1-first minute; M6-
last minute; DSI-double support interval; SSI-single support in-
terval

Table I is used to quantitatively compare the two datasets
using the KS test statistic and associated p-values. From the
table, the variables ’RF M1 Step Length’, ’RF M1 SSI’, ’LF
M1 Cadence’, and ’RF M1 Cadence’ all correspond to p-
values lower than 0.05 while the other 18 gait parameters
have p-values above 0.05. This means there is a significant
difference in distributions between the original and generated
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Fig. 4. Histograms Comparing Original and Generated Datasets Across the 23 Variables

Abbreviations: LF-left foot; RF-right foot; M1-first minute; M6-last minute; DSI-double support interval; SSI-single support; EDSS-Expanded Disability Status
Scale

datasets for these four gait parameters. Since the remaining
gait parameters have p-values above 0.05, there is no sufficient
evidence to reject the null hypothesis and state that the original
and generated data distributions differ.

We compare these obtained p-values to the histograms in
Figure 4 to assess these differences visually. It is evident that
although the generated dataset follows the overall distributions
across the 23 variables, the VAE tended to generate more data
clustering around the means of the variables. Thus, in the cases
of a first-minute right foot step length, single support interval,
cadence, and left foot cadence, the VAE did not fully capture
the variability from the original dataset.

Another aim for the VAE was to correlate scores of 4.5, 5.0,
and 5.5 with being unable to walk 500 meters without rest
or sustain a 6-minute walk. In the generated dataset, this is
observed with zero values for the gait measurements recorded
at the last minute. Figure 5 shows the occurrence of zeros
and other values for the eleven gait measurements in EDSS
scores of 4.5 and above. The histograms reveal that zero values
are most common for all gait parameters measured at the last
minute of the 6MWT, with fewer frequent values above zero.

B. Model Performance
Based on the confusion matrices in Figure 6, the Random

Forest classifier correctly predicted 85 ratings, the Logistic
Regression classifier correctly predicted 86 ratings, the Gaus-
sian Naive Bayes classifier correctly predicted 80 ratings, and
the Gradient Boosting classifier correctly predicted 85 ratings
out of a total of 100 samples. All four models exhibit similar
patterns in prediction errors in which higher true ratings of
5.0 and 5.5 were misclassified as ratings of 3.5.

Precision, recall, and F1-scores were calculated for each
class in Table II, with most scores exceeding 0.70. Notably,

Fig. 5. Generated Measurements for Scores 4.5 and Above in the Last Minute

Abbreviations: LF-left foot; RF-right foot; M6-last minute; DSI-double sup-
port interval; SSI-single support

the Gradient Boosting model had one score below 0.70, while
the Gaussian Naive Bayes classifier had two scores below
0.70. In Table III, the Gaussian Naive Bayes classifier had
the lowest balanced accuracy score of 0.761 among the four
models. The other three models performed comparably, with
balanced accuracy scores around 0.85. The precision, recall,
and F1-scores for the Random Forest, Logistic Regression, and
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Fig. 6. Test Set Confusion Matrices

TABLE II
PERFORMANCE METRICS FOR TEST SET

Model EDSS Rating Precision Recall F1-Score

Random
Forest

0.0
3.5
4.0
4.5
5.0
5.5

1
0.79
0.88
0.86
0.79
0.87

0.77
0.86
0.92

1
0.79
0.81

0.87
0.83
0.90
0.92
0.79
0.84

Logistic
Regression

0.0
3.5
4.0
4.5
5.0
5.5

1
0.81
0.88
0.86
0.79
0.92

0.77
0.95
0.92

1
0.79
0.75

0.87
0.88
0.90
0.92
0.79
0.83

Gaussian
Naive Bayes

0.0
3.5
4.0
4.5
5.0
5.5

1
0.68
0.95
0.75
0.81
0.7

0.77
0.86
0.88
0.5

0.68
0.88

0.87
0.76
0.91
0.6

0.74
0.78

Gradient
Boosting

0.0
3.5
4.0
4.5
5.0
5.5

1
0.76
0.85
0.86
0.84
0.91

0.85
0.86
0.96

1
0.84
0.63

0.92
0.81
0.9

0.92
0.84
0.74

Gradient Boosting models ranged from 0.70 to 0.92. Generally,
these three classification models demonstrated higher preci-
sion, recall, and F1-scores for EDSS ratings of 4.0 and 4.5,
with the logistic regression model performing the best out of
the four classifiers.

After testing the trained logistic regression model to predict
EDSS scores from the original gait data, we achieved the
metrics in Table IV. The model performs relatively well with
a balanced accuracy of 0.74 and performs the best when

TABLE III
BALANCED ACCURACY FOR TEST SET

Model Balanced Accuracy
Random Forest 0.859

Logistic Regression 0.863
Gaussian Naive Bayes 0.761

Gradient Boosting 0.856

TABLE IV
PERFORMANCE METRICS FOR LOGISTIC REGRESSION IN PREDICTING

ORIGINAL DATASET EDSS SCORES

EDSS Rating Precision Recall F1-Score Balanced
Accuracy

0.0
3.5
4.0
4.5
5.0
5.5

1
0.6
0.8
1

0.6
1

0.5
0.75

1
0.5
1

0.67

0.67
0.67
0.89
0.67
0.75
0.8

0.74

predicting scores of 4.0, 5.0, and 5.5. We also provide a visual
representation of the predictions with the confusion matrix
in Figure 7, which shows that prediction errors made by the
classifier fall within 0.5 of the true EDSS score.

V. DISCUSSION

To evaluate the efficacy of generating a larger dataset
from an original, manually collected dataset, we utilize the
Kolmogorov-Smirnov test for two samples and visualize the
distributions with overlaid histograms. We then applied four
machine learning classification algorithms to assess the practi-
cality of using gait parameters and machine learning to assign
an EDSS rating to PwMS. The results were promising, with
most generated gait parameters matching the original data’s
distributions and three models achieving balanced accuracy
scores above 80%.

We obtained p-values of 0.05 or greater for 18 gait param-
eters and p-values less than 0.05 for four gait parameters. The
KS test was not employed to compare the distribution of EDSS
scores as the EDSS scores do not follow a continuous distribu-
tion. The four gait parameters associated with p-values smaller
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Fig. 7. Logistic Regression Confusion Matrix - Original Dataset

than 0.05 included the first-minute data for right foot step
length, single support interval, cadence, and left foot cadence.
A previous study determined walking cadence to vary depend-
ing on the height of the participant [27]. From the first-minute
cadence histograms in Figure 4, the original dataset follows a
slightly uniform distribution, which the participants’ height
variation can explain. The variability of walking cadences
and the small size of the original dataset could contribute
to the small p-value. Thus, further studies should consider
standardizing cadence in accordance with height. We also
focused on the VAE’s ability to learn effectively and correlate
scores of 4.5, 5.0, and 5.5 with the inability to walk 500 meters
without rest. By accurately reflecting the gait characteristics of
these disability levels, the model becomes more applicable to
real gait data. Ultimately, our model holds promising results
by capturing the underlying distributions for 18 of the 22
gait parameters. Considering these 18 parameters, the model
performed well in reconstructing data with less variability, as
the distribution is easier to represent and reconstruct.

We produced four working classification models from the
generated dataset, namely using random forest, logistic regres-
sion, gaussian naive bayes, and gradient boosting algorithms,
to predict the EDSS score from 22 gait characteristics. The
logistic regression model performs best when we evaluate the
four models on the precision, recall, and F1-scores between the
six classes. This simplifies interpretation in a clinical setting,
as logistic regression weights gait characteristics differently
based on their significance in predicting an EDSS score.
We also use a simpler dataset of 22 features so the logistic
regression model can better generalize the given data. When
testing the logistic regression classifier on the original dataset,
we see a decrease in overall balanced accuracy, precision,
recall, and f1-scores. However, the prediction errors fall closer
to the true EDSS scores than the prediction results using the
generated dataset, possibly due to similar gait characteristics
between adjacent scores. This shows that our model can
classify real data and complement other clinical assessment
methods to improve the overall diagnosis.

From a practical standpoint, researchers with limited ac-
cess to health-related datasets can use generative models for
data augmentation since this alternative also protects personal
health information. VAEs are a viable choice in the pool of
generative models due to their ability to learn the data structure
and prevalence for data or image generation tasks. Using a
classification model to evaluate gait characteristics can provide
a more comprehensive diagnosis for the disability, along with
consideration of the current EDSS evaluation standards. The
proposed logistic regression model is especially insightful for
practice because clinicians can view how different features
are weighted to influence the classification. As an attribute of
being a probabilistic model, logistic regression also provides
the probability of the given features being in the predicted
class. This approach helps to mitigate the current black box
problems in using artificial intelligence for medical fields.

VI. FUTURE WORK

Although we find our data augmentation and machine
learning methods to be sufficient, we acknowledge there are
limitations to the current investigation. The discrepancies from
all four gait parameters can be attributed to our implemented
VAE suffering from posterior collapse. The posterior collapse
phenomenon is when the latent variables cannot capture
sufficient information on the data. Our VAE model fails to
represent the first-minute cadence, right foot step length, and
single support interval parameters through the latent variables.
Therefore, the current proposed model can be improved upon
by experimenting with using solutions to prevent posterior
collapse, such as a beta-VAE or Latent-Identifiable VAE
(LIDVAE) model [28] [29]. Due to time constraints, we could
not implement and test the performances of beta-VAE and
LIDVAE models. Future studies could explore variations of
the traditional VAE architecture to prevent posterior collapse
and evaluate whether the generated data accurately represents
all gait parameters from the original dataset. Additionally,
collecting more data from PwMS would help the encoder
better learn and represent the variation in gait characteristics.
The performance of the classification models can be improved
with more data. Recruiting PwMS with EDSS scores of 5.0
and 5.5 would help the model accurately discern walking
characteristics, as these individuals are expected to exhibit
more distinct walking patterns due to their shorter walking
distances before needing to rest. Further research should
consider a larger set of gait parameters to represent the gait
cycle better. For example, the classification model can evaluate
factors including ankle rotation and knee and hip range of
motion.

VII. CONCLUSION

This research study introduces a solution for handling
small datasets for health-related datasets. The proposed VAE
architecture is demonstrated to be effective in data augmen-
tation. Generally, the architecture of VAEs can be adapted to
align with the characteristics of the original dataset. In our
study, a shallow VAE with two separate decoders effectively
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transformed Gaussian random samples into a larger dataset re-
sembling the original collected data. From the generated data,
we analyzed the performance of four classification models in
distinguishing EDSS scores from relevant gait characteristics.
The balanced accuracy and f1-scores of the models revealed
promising results for utilizing machine learning methods to
aid clinicians in rating the disability. Additionally, the model
accurately classified the EDSS score or predicted within 0.5
of the actual score on the original dataset, demonstrating the
feasibility of training the classification model on augmented
data. Along with using IMUs, this process allows for a
comprehensive and accessible assessment of walking disabil-
ity for PwMS. Thus, the integration of IMUs and artificial
intelligence in a clinical setting can provide an additional
tool for improving the diagnosis of MS. Therefore, our initial
results warrant further research in combining other modes
of diagnosis for MS, including MRI scans, arm and leg
strength, and vision tests to create a complete assessment of
the disorder.
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