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Abstract—Large Language Models (LLMs) have gained pop-
ularity due to their high performance in natural language
processing. This capability is underpinned by their ability to con-
textualize relations within text data. The application of LLMs also
extends to multi-modal tasks, such as image captioning and video
analysis. Research endeavors have been undertaken to leverage
LLMs for emotion recognition tasks by utilizing visual, audio,
and text data. Inspired by natural human approaches to emotion
recognition, we propose a simple yet powerful, multi-modal LLM
architecture for emotion recognition in conversations (ERC). Our
proposed framework aims to contextualize the change of emotions
better. We developed the Fully Auto-Regressive multi-modal LLM
for Contextual Emotion Recognition (FARCER) based on this
idea. This model consists of the instruction-tuned LLaMA3, a
vision encoder, and linear layers that map visual embeddings
to the LLM input space. FARCER significantly improved ERC
benchmarks over the uni-modal LLaMA3-Instruct, although the
LLM and vision encoder’s parameters remained frozen during
training. Fine-tuned FARCER demonstrated high performance
comparable to other state-of-the-art (SOTA) models, highlight-
ing the potential of our context-focused design combined with
conversational LLMs for ERC.

Index Terms—Artificial Intelligence, Large Language Models,
Vision-Language Models, Multi-modal LLMs, Emotion Recogni-
tion

I. INTRODUCTION

Inspired by the emergence of novel architectures such as
Transformers [1] and the expansion of data and computational
resources, researchers and companies developed Large Lan-
guage Models (LLMs) for various natural language processing
tasks. Recent examples include OpenAI’s ChatGPT [2], a
widely used LLM for chat-related purposes, Gemini from
Google DeepMind [3], and Claude from Anthropic [4]. Meta
AI has developed the LLaMA series [5][6], which achieved
high scores on several tasks while significantly reducing the
parameter size compared to other major LLMs.

Researchers have also attempted to ground multi-modal
reasoning in LLMs. Vision Language Models (VLMs) can
tackle tasks that involve image and language processing. Some
popular approaches include cross-attention architecture and
fully auto-regressive architecture. The cross-attention archi-
tecture applies cross-attention layers to interweave visual and
text features, modeling the semantic interconnections between

This research is supported by the National Science Foundation under award
number 2150135.

different modalities. The fully auto-regressive architecture
incorporates a more straightforward strategy of joining visual
and text feature vectors as one input. This approach requires
a modality projection layer to map the visual representation
to the same input space of the internal LLM [7]. VLMs
with these mechanisms show high capability in image-text
reasoning [8][9][10][11][12].

ERC is a meaningful real-life task to which researchers have
discussed applying computer programs [13][14][15][16]. Vari-
ous kinds of information, such as facial expressions, gestures,
and dialogue settings deliver emotional clues. Furthermore,
contextualizing emotions associated with utterances is key to
predicting emotions from continuous dialogues.

This paper introduces a unique, fully auto-regressive archi-
tecture (FARCER architecture) to leverage LLMs for contex-
tualizing vision-language dialogues. This framework concate-
nates visual and text feature tokens alternately and captures
inter-modal context. Based on the proposed architecture, we
also developed a Fully Auto-Regressive multi-modal LLM
for Contextual Emotion Recognition (FARCER). FARCER
employs an instruction-tuned LLaMA3 of 8 billion parameters
as the core LLM. Vision Transformers (ViT) model pre-trained
for facial emotion recognition serves as a visual encoder [17].
Linear layers map image feature vectors from ViT into the
LLM input space. We will discuss further design details in
Section III.

Our test suggested that employing the FARCER architecture
significantly improves the performance of the core LLM.
Moreover, one FARCER model with a specific configuration
achieved the SOTA-line weighted-F1 and accuracy scores.
These results highlight the effectiveness of our context-focused
model design and the potential applicability of FARCER archi-
tecture to other ERC tasks. We will also provide a comparative
analysis of several different implementations and discuss the
effectiveness and limitations of our framework.

Our research will provide the following contributions:
• Novelty: To the best of our knowledge, FARCER ar-

chitecture is the first design that leverages in-context
concatenation of image and text features for ERC, and
this approach demonstrated high accuracy on real-life
ERC benchmarks.

• Simplicity: FARCER architecture can ground visual ERC
reasoning to LLMs solely by training the modality projec-
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tion layers. This framework does not necessarily require
fine-tuning LLMs or visual encoders.

• Applicability: FARCER utilizes an instruction-tuned
causal LM (LLaMA3) as an internal LLM. FARCER
architecture suggests the potential applicability of such
LMs to multi-modal and interactive tasks.

II. RELATED WORK

A. Vision-Language Models

VLMs process both text and image/video data. Flamingo
uses pre-trained vision encoders to extract visual representa-
tions and applies cross-attention layers to capture the semantic
relationships between text and images [8]. FROMAGe [9] is
an example of a fully auto-regressive model. The researchers
showed that FROMAGe presented a high performance on im-
age captioning and retrieval through training only the modality
projection layer. MiniGPT4-Video [18] incorporates a similar
approach to ours for general video understanding; the model
converts a video into 45 frame features and concatenates
subtitles to each frame. In Macaw-LLM [12], text, audio, and
visual encoders are trained on many multi-modal instruction
data. As a result, Macaw-LLM achieved high performance
on reasoning, understanding, and question answering. Video-
ChatGPT [11] is a fine-tuned model on image-text-paired
instructions and embeds videos into both spatial and temporal
features to pass them to an LLM.

B. Emotion Recognition in Conversations

Understanding how conversations evolve is key to iden-
tifying the emotions of speakers. Several researchers have
leveraged pre-trained LLMs to this end. In the InstructERC
architecture [15], LLMs engage in speaker identification and
emotion impact prediction before actually recognizing emo-
tions to reinforce their performance on ERC. InstructERC
achieved SOTA with several different base LLMs in combi-
nation with LoRA fine-tuning [19]. The CKERC framework
fine-tunes LLMs to uncover the implicit clues of the subject
speaker based on past utterances and utilizes the information
to predict the emotion [16].

ERC also often necessitates analyzing multiple factors in
dialogues. Therefore, it is natural to incorporate multi-modal
data for more precise and effective prediction. Researchers
have applied multi-modal LLMs to contextualize dialogues
better and process multiple modalities for inference. Emotion-
Guided LLM-Based Multimodal Dialogue Method [14] is a set
of three phases that grounds emotional response generation
ability in LLMs. In the second Response Emotion Prediction
stage, models predict the speaker’s emotion based on visual
and text vectors from the first module, which is trained
on a contrastive loss of emotion labels. DialogueLLM [13]
processes visual data by retrieving video text descriptions.
Then, the model merges the captions with utterances based
on a template and predicts emotion labels.

III. METHODOLOGY

The LM-based models and frameworks discussed in Section
II-B achieve high scores on some ERC benchmarks; nev-
ertheless, few of these approaches focus on preserving the
inter-modal context of dialogues. Uni-modal LLMs easily lose
visual features by solely relying on text information. For multi-
modal approaches, VLMs thus far tend to create input as if
stacking blocks of different modalities, which is a common
strategy observed in several fully auto-regressive architectures
[12][14][20]. In real-life situations, however, humans judge
emotions based on visual information and speech content in
parallel. Regarding this point, the block-stacking approach
cannot align concurrent visual information and utterance, dis-
carding meaningful inter-modal connectivity. This section will
discuss our architecture design that aims to overcome this gap
by better contextualizing visual-text totality in conversations.

A. Task Definition

Here, we provide the formal description of ERC tasks
FARCER aims to tackle. For a given dialogue, we as-
sume there are n utterances whose set is denoted as
U = {u1, u2, . . . , un} and n corresponding images V =
{v1, v2, . . . , vn}. The goal of our training process is to update
the model parameters θ and approximate the model to:

P (ln | U ,V; θ) (1)

where ln is the emotional label of the nth utterance speaker.

B. Model Description

FARCER architecture constructs input in the following way.
First, we apply the ViT layers Fvit to extract the last hidden
states of the image pixels hi:

H = {hi | vi ∈ V : hi = Fvit(vi)} (2)

where hi = {ti1, ti2, . . . , ti197} is a set of 197 visual feature
token embeddings.

Then, we extract the ViT CLS token at index 1 of each last
hidden state:

CLS = {t11, t21, . . . , tn1}
= {cls1, cls2, . . . , clsn}

(3)

where clsi ∈ R1×p and p is the hidden size of the ViT.

Next, the modality projection layer Fmp : Rn×p → Rn×q

transforms the CLS vectors into a proper LLM input embed-
ding space:

Ev = Fmp(CLS)
= {ev1, ev2, · · · , evn}

(4)

Note that Ev ∈ Rn×q where q is the hidden size of the LLM.
Separately, we prepare utterance token embeddings:

Eu = {eu1, eu2, . . . , eun}

and prompt embedding ep by using the LLM embedding layer.
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Finally, the model joins Ev , Eu, and ep in the following
manner, aiming to capture the natural visual-text context of
the dialogue:

E = [ep, evi, eui|evi ∈ Ev, eui ∈ Eu]

= [ep, ev1, eu1, ev2, eu2, . . . , evn, eun]
(5)

, where E ∈ R(s+t+n)×q and s is the number of prompt
tokens, and t is the total number of text tokens for the dialogue.

The LLM computes logits lp ∈ RT×K (T is the number of
label tokens, and K is the vocabulary size of the LLM) by
applying the forward function FLLM and slicing it. We can
obtain a predicted emotion label with a sampling method Fsp:

lp = FLLM (E)[−T :]

label = Fsp(lp)
(6)

Fig. 1 visualizes the whole FARCER architecture. The snow
icons represent frozen parameters, and the fire marks indicate
the model component is trainable. The red and green squares
denote the prompt and utterance tokens, respectively. Image
data is visualized with the blue squares.

🦙 LLM Embedding

UtterancesPrompt Images

ViT

Linear

🔥

🦙 LLM
🔥

Fig. 1: FARCER Architecture

C. Training Pipeline

We trained our models on MELD [21] and IEMOCAP [22]
datasets.

• MELD contains video and text data with 13,708 utter-
ances annotated with seven different emotion labels.

• IEMOCAP is a multi-modal dataset with 151 two-party
conversations (7,433 utterances) and nine emotion labels.

Table I outlines the dataset size of MELD and IEMOCAP. In
IEMOCAP, each dialogue includes 49.2 utterances on average,
whereas the average number of utterances in MELD is 9.6.
Inputting especially large amounts of data limits the inference

of LLMs, blocking effective training. To shorten the dialogues
and increase the sample size, we divided dialogues in the
training data into sub-dialogues of 5-21 utterances. When we
trained our models on IEMOCAP, we initialized the model
parameters with the pre-trained weights from MELD.

TABLE I: Dataset Size

training validation test

MELD Dialogues 1039 114 280

MELD Utterances 9989 1109 2610

IEMOCAP Dialogues 120 31

IEMOCAP Utterances 5810 1623

IEMOCAP Sub-dialogues 897 101 224

We trained three types of FARCER models to analyze
effective configurations comparatively:

• Base model: The modality projection layer is a single
linear layer. Only the linear layer is trainable, and the
LLM and ViT parameters are fixed.

• Three-layer model: The modality projection layer con-
sists of three linear layers. The other components remain
frozen.

• Fine-tuned model: LLaMA3-Instruct is fine-tuned while
training a single modality projection layer. The ViT
encoder is kept frozen.

By the default behavior, the models generate a sentence as
a response, making it difficult to calculate proper contrastive
loss between a response and a target label. To effectively train
the models, we provided 7-shot prompting to constrain the
output. We created ten prompts with randomly selected 7-shot
examples to generalize the model performance.

Fig. 2 shows an input example. The prompt first specifies
rules regarding response generation. The few-shot window
places special tokens to make LLaMA3-Instruct understand its
in-task role. Finally, the formatted input follows the prompt.
For a given dialogue, the goal of our training is to minimize
the mean cross-entropy loss between the predicted logits
lp ∈ RT×K and the one-hot target label vector lt ∈ RT×K :

L(lp, lt) = − 1∑T
i=0 wlti

T∑
i=0

wlti log softmax(lpi) · lti (7)

, where wlti is the weight assigned to the token lti.

Since the population of target labels is disproportion-
ate in MELD and IEMOCAP, we calculated the balanced
weight for the sub-word tokens of the labels with the
sklearn.compute class weight function. We used the weights
to compute the training loss. Table II outlines the label
distributions in each dataset.

During the training process, the models performed multiple
forward passes until the number of predicted tokens reached
that of corresponding target labels. We saved the model
parameters with the best-weighted F1 score in the validation
data and used them in the testing process.
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Input Template

six more examples

Prompt + Few-shot examples
Prompt: You are FARCER, a high-quality emotion recognizer. Classify the emotion
of the last speaker of a dialogue based on past utterances and the images of
speakers.
Rules:
1. Classify the emotion of the last speaker in the dialogue.
2. The output must be one of the nine emotional labels: neutral, joy, sadness,
anger, surprise, disgust, or fear.
3. The output must be a single emotion label.

Few Shot Examples:
<|start_header_id|>user<|end_header_id|>

DIALOGUE:
Rachel: <image feature token> Emma!  See? I don�t want it.
LABEL:<|eot_id|><|start_header_id|>assistant<|end_header_id|>

sadness<|eot_id|>

Utterances + Image Embeddings

<|start_header_id|>user<|end_header_id|>

DIALOGUE:
Mark: < > Why do all you're coffee mugs have numbers on the buttom?
Rachel: < > Oh. That's so Monica can keep track. That way if one on them is
missing, she can be like, "Where's number 27?!"
Rachel: < > Y'know what?
LABEL:<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Fig. 2: Input Template

TABLE II: Label Distribution in Training Data

MELD IEMOCAP
neutral 45.38% 22.38%

joy 18.98% -
surprise 11.46% 1.13%
anger 10.69% 13.66%

sadness 7.61% 11.81%
disgust 3.37% 0.18 %

fear 2.51% 0.62 %
other - 0.97 %

frustration - 24.49%
excitement - 13.48%
happiness - 10.57%

In IEMOCAP, each of the “xxx”
labels, on which annotators did not
agree, were converted into a ran-
domly selected label among emotion
candidates of the corresponding ut-
terance.

D. Implementation Details

We used AdamW [23] as an optimizer and a cosine learning
rate scheduler. For LoRA fine-tuning, the target modules were
the query, key, and value projection layers of the LLM. We
assigned the modality projection layer as a module to save. The
batch size was set to 1 because of computational limitations.
Table III outlines the hyperparameters in detail.

IV. EXPERIMENT

A. Benchmarks

We use the following corpora as benchmarks to evaluate the
performance of our models.

TABLE III: Hyperparameters

Base Three-layer Fine-tuned

Epoch 20 20 10

Learning Rate 1e-4 2e-4 1.5e-4 / 2e-4

Activatoin Function - GELU -

Dropout - 0.05 0.1

LoRA r - - 8

LoRA α - - 16

• MELD test dataset contains 280 dialogue instances and
2610 utterances in total.

• IEMOCAP test dataset comprises 31 two-party dia-
logues. We divided the dialogues into sub-dialogues of
5-26 utterances.

B. Baselines

To evaluate our models comparatively, we introduced five
different models as baselines. We selected both multi-modal
and text-only Transformer-based models.

• LLaMA3-8B-Instruct: We tested the original text-
only LLaMA3-Instruct to measure how employing the
FARCER architecture improves its performance on the
ERC tasks. LLaMA3-Instruct is the LLaMA3 instruction-
tuned specifically for dialogic purposes. The LLaMA se-
ries has achieved exceptional performance and reduction
in the parameter size, although the training corpus only
consists of open-source data.

• MPT-HCL [24] is a multi-modal ERC model based
on Bi-LSTM, Relatoinal Graph Convolutional Networks
(RGCN) [27], and the Transformer architecture. MPT-
HCL extracts contextual features from Bi-LSTM, speaker
dependencies, and contextual information using Speaker-
aware RGCN and Context-aware RGCN, respectively.
This model also utilizes Multimodal Prompt Transformer
to fuse features of different modalities.

• AccWR [25] is a uni-modal LM-based architecture that
aggregates the contextual representations near the target
utterance and feeds it to Ro-BERTa [28] to maximize its
inference ability.

• SDT [26] uses the cross-attention mechanism to aggre-
gate multi-modal data. The intra-modal and inter-modal
steps retrieve interactions within and across different
modalities.

• DialogueLLM [13] is a LLaMA-powered model that
infers emotions based on past utterances and video
descriptions. DialogueLLM adopts a different approach
from ours by taking visual information as text. Still, this
model compares to ours since it utilizes visual data as
input.

C. Experimental Setup

In the testing process, the Base FARCER model, Three-
layer FARCER model, Fine-tuned FARCER model, and
LLaMA3-8B-Instruct predicted the last speaker’s emotion in
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TABLE IV: Test Results on MELD and IEMOCAP
Table IV shows the F1 scores of each emotion label along with the overall weighted F1 and accuracy scores. We gave the models with “PL” with few-shot

prompts where the past utterances are annotated with emotion labels. The “PL” models, except for LLaMA3, are trained on dialogues with the label
annotations. The bold scores are the highest scores of each section, and the red values represent the best scores across the table.

MELD

Models Neutral Joy Surprise Anger Sadness Disgust Fear Accuracy w-F1

MPT-HCL [24] 77.82 60.18 58.26 59.25 45.15 30.36 21.52 65.86 65.02

AccWR [25] - - - - - - - 64.99 59.40

SDT [26] 80.19 64.29 59.07 54.33 43.69 28.78 17.88 67.55 66.60

DialogueLLM [13] - - - - - - - 71.96 71.90

LLaMA3-Instruct - 3 shot 40.68 45.45 17.50 37.04 25.0 15.38 0.0 35.0 36.03

LLaMA3-Instruct - 7 shot 41.99 48.12 17.86 32.76 21.05 11.76 0.0 35.36 36.26

Base FARCER - 3 shot 70.59 54.24 36.67 51.52 34.15 30.77 0.0 56.79 56.41

Base FARCER - 7 shot 70.80 57.14 35.71 54.84 34.15 16.67 25.0 58.21 57.38

Three-layer FARCER - 3 shot 73.36 60.71 40.82 51.35 19.05 42.86 0.0 58.93 58.44

Three-layer FARCER - 7 shot 75.27 58.82 44.0 53.12 19.51 30.77 0.0 60.36 59.19

Fine-tuned FARCER - 3 shot 79.86 66.04 43.64 54.24 34.29 28.57 25.0 66.07 64.37

Fine-tuned FARCER - 7 shot 80.88 64.86 45.28 50.79 33.33 25.0 22.22 65.36 64.17

LLaMA3-Instruct PL - 3 shot 60.09 44.66 31.37 55.32 25.53 31.58 0.00 48.57 48.92

LLaMA3-Instruct PL - 7 shot 59.59 43.81 26.67 56.47 33.33 22.22 0.00 48.57 48.55

Base FARCER PL - 3 shot 79.09 63.37 46.43 59.46 34.04 18.18 0.00 64.29 63.63

Base FARCER PL - 7 shot 77.98 59.79 48.00 60.27 36.36 18.18 0.00 64.29 62.89

Three-layer FARCER PL - 3 shot 76.87 60.95 36.00 55.38 35.09 28.57 0.00 62.86 61.05

Three-layer FARCER PL - 7 shot 76.71 52.53 51.72 58.18 42.11 33.33 0.00 63.93 61.98

Fine-tuned FARCER PL - 3 shot 82.63 69.16 56.25 61.29 41.86 33.33 28.57 69.29 69.18

Fine-tuned FARCER PL - 7 shot 83.02 69.09 55.74 64.41 50.00 40.00 0.00 70.00 70.01

IEMOCAP

Models Frustration Neutral Anger Sadness Excitement Happiness Accuracy w-F1

MPT-HCL [24] 69.09 66.75 69.96 85.97 74.06 58.13 72.83 72.51

AccWR [25] - - - - - - - 64.99

SDT [26] 68.68 74.62 69.73 81.84 80.17 66.19 73.95 74.08

DialogueLLM [13] - - - - - - 70.62 69.93

LLaMA3-Instruct - 3 shot 51.91 39.44 52.0 50.0 50.0 34.15 44.0 45.39

LLaMA3-Instruct - 7 shot 46.3 30.3 46.67 58.23 60.32 35.29 43.56 44.52

Base FARCER - 3 shot 49.57 45.98 53.85 61.97 51.52 13.33 47.11 47.35

Base FARCER - 7 shot 53.45 48.89 51.16 66.67 54.79 20.0 50.22 50.51

Three-layer FARCER - 3 shot 57.66 52.73 29.41 64.29 59.26 32.26 50.67 50.39

Three-layer FARCER - 7 shot 59.38 38.46 48.78 65.17 64.41 52.63 53.78 53.05

Fine-tuned FARCER - 3 shot 60.0 47.06 58.82 64.62 60.0 35.29 54.67 54.44

Fine-tuned FARCER - 7 shot 55.05 49.54 59.65 67.69 60.0 38.89 54.67 54.45

LLaMA3-Instruct PL - 3 shot 68.42 49.35 59.65 69.57 66.67 66.67 60.89 61.25

LLaMA3-Instruct PL - 7 shot 61.11 48.65 52.63 71.79 77.78 63.83 60.89 60.18

Base FARCER PL - 3 shot 48.08 52.63 41.03 64.2 53.85 42.86 49.78 49.57

Base FARCER PL - 7 shot 61.54 61.86 50.0 70.89 73.53 52.63 60.0 60.76

Three-layer FARCER PL - 3 shot 42.35 50.42 58.33 64.65 34.15 54.55 50.22 47.93

Three-layer FARCER PL - 7 shot 55.56 54.74 60.87 68.04 48.15 50.0 54.67 54.51

Fine-tuned FARCER PL - 3 shot 51.85 42.86 51.06 66.67 64.52 50.0 52.44 53.32

Fine-tuned FARCER PL - 7 shot 56.41 45.83 51.16 67.65 64.52 53.66 54.67 55.49
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each dialogue. We prepared 3-shot and 7-shot prompts to
investigate the effect of few-shot prompting. We used greedy
decoding as a sampling method Fsp, namely:

label = Fsp(lp)

= argmax
dim=−1

(lp)
(8)

Table IV outlines the test results.

V. RESULTS

A. Effect of FARCER Architecture

Employing the FARCER architecture significantly improved
the performance of LLaMA3-Instruct in MELD. The weighted
F1 score increased from 36.26 to 57.38 for the base FARCER
model and 59.19 for the three-layer model. The FARCER
architecture successfully improved the ERC performance on
most emotion labels. Nonetheless, identifying fear remained
a highly challenging task for the models without fine-tuning.
This result implies the limitation of our model design. Our
framework has difficulty ameliorating the core LLM’s critical
weakness as it augments the reasoning ability by adding
external linear layers without updating the parameters of the
core LLM. In contrast, the LoRA fine-tuned FARCER marked
the stable scores on the “fear” label, overcoming the LLaMA3-
Instruct’s fundamental inability by attaching additional train-
able parameters to the internal attention layers.

We observed a similar improvement in IEMOCAP. The
weighted F1 scores increased by 5.99 points for the base
model and 8.53 points for three-layer FARCER with 7-
shot prompting. The difference in improvement rates between
MELD and IEMOCAP is attributed to the discrepancy between
the ViT encoder and the nature of the IEMOCAP dataset.
While the ViT encoder is designed to classify images across
seven emotions: {neutral, happiness, surprise, anger, sadness,
disgust, fear}, IEMOCAP introduces three additional emo-
tions: {frustration, excitement, and other}. Fig. 3 and 4 are the
confusion matrices of Base FARCER and LLaMA3-Instruct
with 7-shot prompting on IEMOCAP. These figures show that
our vision-language models are more likely to misclassify
“anger” utterances as “frustration” and “happiness” utterances
as “excitement” or “neutral” than the text-only LLaMA3-
Instruct.

The greater clarity of this pattern in the vision-language
models indicates that the vision encoder mapped facial ex-
pressions annotated with the new labels onto one of the seven
standard emotions, and the CLS tokens from ViT obscure
the differences in those similar emotion features. In contrast,
this observation also explains the high improvement rate in
MELD. Since the labels classified by the vision encoder
match the emotion labels of MELD, the CLS features were
properly transformed and reinforced the inference of the LLM.
Therefore, we speculate we can maximize the performance of
FARCER by applying it to ERC with the seven distinct labels
or by fine-tuning the vision encoder for more diverse emotion
labels.

Fig. 3: Confusion Matrix for Base FARCER

Fig. 4: Confusion Matrix for LLaMA

B. Modality Projection Layer Size

Increasing the number of modality projection layers also
improved the overall F1 score in MELD from 57.38 to 59.19
with the 7-shot prompt. This phenomenon is explained by the
neural networks’ capability to learn more complicated and
hierarchical representations from input visual features [29].
The weighted F1 score for the three-layer model with 7-shot
prompting increased by 4.47 points in the “neutral” emotion,
8.29 points in “surprise”, and 14.1 points in “disgust” from
the single-layer counterpart.

In the same principle, the three-layer FARCER achieved
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higher scores in IEMOCAP. Fig. 5 displays the confusion
matrix of the three-layer model in IEMOCAP. By training the
deeper modality projection layer, the model marked higher
accuracy in classifying ambiguous labels such as “happiness”,
“excitement,” and “frustration” than the base model.

Fig. 5: Confusion Matrix for Three-layer FARCER

C. Ablation Study on Past Label Annotations

We also tested our model trained on dialogues where
utterances were annotated with emotion labels. Our motivation
was to analyze the effect of integrating the contextual flow of
emotions as input features. The results are shown in the bottom
sections with “PL” (past labels).

In MELD, the overall F1 scores improved from the coun-
terpart models; on average, the scores increased by 4.8
points. The fine-tuned FARCER model with PLs achieved
the weighted F1 score of 70.01, a SOTA-line performance.
Notably, the base FARCER and three-layer models reached
the same weighted F1 score and accuracy level when the past
emotion labels were provided. The base single-layer model
improved by 6.37 points by introducing PLs, whereas the
three-layer model improved by only 2.7 on average. Given the
observation above that more modality projection layers under-
pin the models’ visual abstraction ability, the result suggests
that providing emotional context for dialogues supports more
accurate reasoning of the core LLM, filling the gap between
single-layer models and those with more layers.

In IEMOCAP, LLaMA3-Instruct with PLs improved the
F1 scores for all the emotion labels. This result supports
our argument that giving contextual emotion clues improves
the inference of the core LLM. In FARCER, the overall
improvement was less conspicuous. The recall scores for
“anger” did not increase, especially for the models with
a single modality projection layer. On average, the recall
scores changed from 50.67 to 46.67, suggesting that the false

prediction of “anger” as “frustration” was unimproved. The
smaller size of the modality projection layer had difficulty
distinguishing a CLS token for the two similar features,
especially due to the unbalanced label availability in the
training data, as Table II shows. On the other hand, all the
FARCER models successfully increased the recall scores for
“happiness”, which was often misclassified as “excitement”,
by 22.46 on average with the more balanced label size. The
fundamental incongruency between the vision encoder and the
dataset elicited this test result.

D. Few-shot Prompting

Few-shot prompting is reported to improve the reasoning
of language models [30]. At the same time, Zhang et al.
[13] show that providing excessive examples deteriorates the
LLM’s performance on ERC because of information redun-
dancy and long input sequences. Our research observed that
the weighted F1 scores of the FARCER models increased by
0.44 in MELD and 4.30 in IEMOCAP on average using 7-shot
prompting.

VI. CONCLUSION

In this work, we delved into the effectiveness of our context-
focused, fully auto-regressive mechanism with causal LM for
ERC. The test results showed that introducing our simple
FARCER architecture significantly increased F1 scores under
suitable settings, improving the LLM’s reasoning in ERC.
Moreover, our research indicated that annotating emotion
labels to past utterances elevates the LLM’s contextual under-
standing of emotions. We hope this paper provided overarching
analysis and critical insight into applying conversational LLMs
to ERC tasks.

VII. FUTURE WORK

Further research should be done to expand the commu-
nity’s knowledge on effectively implementing conversational
LLMs for ERC. One possible research topic is testing the
performance of FARCER architecture on more complicated
and interactive tasks, such as integrating ERC and emotional
response generation. This type of research will clarify the
real-life applicability of our proposed framework. Another
fundamental interest is in data accessibility to negative emo-
tions. In contemporary social settings, people are less often
exposed to so-called negative emotions compared to neutral
states or joy. Furthermore, it is socially difficult to express
those negative emotions even amid uncomfortable settings.
This social-behavioral tendency is also reflected in the lower
ERC dataset availability of negative emotions as TableII show.
The consequence is ERC models’ relatively poor performance
in recognizing a human’s disgust, anger, or fear. Therefore,
collecting more data on those emotions will help ERC models
improve their emotion recognition ability.
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