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Abstract
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there is some evidence that the species exhibits considerable variability in trophic
niche. Here, we assessed how Cisco body size relates to trophic position, that is, tro-
phic ontogeny. We analysed *3C and '°N isotopes from Cisco ranging from 127 to
271 mm in body length (n = 66) from Trout Lake, Vilas County, Wisconsin, USA. °N

isotopes showed smaller Cisco had a trophic position of ~3, which steadily increased
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to ~3.5 for larger Cisco. Further, *3C isotope signatures showed Cisco transitioned
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to be more pelagically reliant (lower 3C signatures). Using gillnet catch data, we
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found that larger Cisco were using deeper habitats than smaller Cisco. Our results
support that Cisco have significant variability in trophic niche even though they are
traditionally thought of as an obligate planktivore. Overall, we emphasize that

researchers should be cautious when generalizing Cisco trophic function, particularly
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1 | INTRODUCTION

Cisco (Coregonus artedi) are a cold-water species that are highly stud-
ied throughout their range in North America (Page & Burr, 2011). In
many inland lakes, Cisco are a highly populous species, and as a zoo-
planktivore, they can strongly structure zooplankton communities
(Lampert & Sommer, 2007; Martin et al., 2022; Rudstam et al., 1993).
Cisco are also an important prey resource for many piscivorous spe-
cies of economic and ecological importance like lake trout (Salvelinus
namaycush), muskellunge (Esox masquinongy), northern pike (Esox
lucius), and walleye (Sander vitreus) (Kennedy et al., 2018; Mrnak
et al,, 2023; VanderBloemen et al., 2020). Cisco are often regarded as
an “obligate zooplanktivore,” yet there is growing evidence of Cisco
feeding on higher trophic level prey, particularly when they increase
in body size, that is, trophic ontogeny (Breaker et al., 2020; Muir
et al., 2013; Mullins, 1991; Rosinski et al., 2020). However, there is a
lack of consensus as to whether Cisco undergo trophic ontogeny.

when considering the broader food web.

Cisco, Coregonus artedi, stable isotopes, trophic ontogeny, zooplanktivore

Trophic ontogeny is common among fishes as gape size increases
with body size, and thereby larger fish can consume larger, higher tro-
phic level prey (Sanchez-Hernandez et al., 2019). For Cisco and other
zooplanktivorous fishes, gill raker morphology is an additional deter-
minant of the size of prey items consumed (Gibson, 1988; Kahilainen
et al, 2011; Langeland & Ngst, 1995). It was long thought that gill
rakers act as a basic sieve filtering out prey items based on body size
(i.e., dead-end sieve) (Hessen et al., 1988). However, more recent the-
ory suggests that gill rakers function as a cross-flow filter (Sanderson
et al., 2001; Smith & Sanderson, 2008). In a cross-flow filter, prey
items move tangentially across the gill rakers rather than perpendicu-
larly through the rakers like a dead-end filter. Here, the gill rakers filter
prey items by size, and inter-gill raker spacing determines the mini-
mum size of prey to be retained. Importantly, prey items that are
retained by the gill rakers proceed to the oesophagus and are con-
sumed. Inter-gill raker spacing increases with Cisco body size, and

therefore the minimum retained prey item size also increases with
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body size (Langeland & Ngst, 1995; Link & Hoff, 1998; Mullins, 1991).
Given this relationship between gill rakers and prey size selection, we
expect Cisco trophic position to increase with body size, thereby
establishing trophic ontogeny.

Here, we asked whether Cisco undergo trophic ontogeny in an
inland lake and to examine whether ontogenetic shifts play a role in
the ecology of the species? We used stable isotope analysis of 13C
and ¥°N to detail the trophic niche of Cisco across a range of body
sizes. Further, we investigated the relationship between Cisco
body size and habitat occupancy to understand ontogenetic shifts in
habitat occupancy.

2 | STUDYSYSTEM

Trout Lake is a 1608-hectare oligotrophic lake in Vilas County, Wis-
consin, USA. The lake is largely undeveloped and reaches a maximum
depth of 35 m (Benson et al., 2006). The native apex predator, lake
trout, has been stocked for the past 70 years for sportfishing opportu-
nities (Ahrenstorff et al., 2013; Piller et al., 2005). In Trout Lake, Cisco
dominate pelagic zooplanktivory, and their population dynamics are
mediated from the top down by lake trout (Martin et al., 2022;
Parks & Rypel, 2018). The zooplankton community comprises large-
bodied grazers, including Daphnia and Calanoida taxa, and smaller-
bodied cyclopoid, rotifer, and copepod nauplii (Martin et al., 2022).
There are also several predatory zooplankton species, including Chao-
borus, Mysis, Leptodora, and, recently invasive Bythotrephes (Martin
et al., 2022). Shifts in the pelagic food web occurred when lake trout
abundances rose between 2007 and 2014 and when Bythotrephes
invaded in 2014 (Martin et al., 2022). The increase in lake trout abun-
dance between 2007 and 2014 coincided with a major decline in
Cisco abundances. During this time, Cisco abundance was the lowest
observed in several decades (Martin et al., 2022). By 2020, Bytho-
trephes abundance had declined, and the species was barely detect-
able even with frequent monitoring (Martin et al., 2023). Since 2020,
only a few Bythotrephes individuals have been collected, so it is
believed that their population crashed likely due to high predation by
Cisco (Martin et al., 2023).

3 | MATERIALS AND METHODS

Zooplankton and benthic macroinvertebrates were sampled to
establish baseline stable isotope reference points (Vander
Zanden & Rasmussen, 1999). Zooplankton were sampled with a
vertical tow using a Wisconsin net from the deepest depth of the
lake (32 m). Zooplankton samples were sorted to remove predatory
taxa, that is, Mysis, Chaoborus, Leptodora, and Bythotrephes. Benthic
macroinvertebrate samples were collected using an Eckman dredge
and a D-frame net. Profundal benthic macroinvertebrate samples
were collected from the deepest depth of the lake within a few
days of the fish sampling. Littoral benthic macroinvertebrate sam-

ples were collected using a D-frame net in ~1 m of water. All

benthic macroinvertebrate samples were grouped and analysed by
functional feeding groups.

Pelagic fishes were captured using a 24-h vertical gillnet survey
following standardized North Temperate Lakes-Long Term Ecological
Research (NTL-LTER) protocols (Magnuson et al, 2022; Mrnak
et al., 2021). On July 27 and August 20, 2020, seven monofilament
nets were set in the deepest part of the lake for 24 h. Nets extended
from surface to bottom (~30 m). Vertical gillnets were 3 x 30 m with
stretched mesh-sizes of 19, 25, 32, 38, 51, 64, or 89 mm. After 24-h,
vertical gillnets were picked, and fish species were enumerated, mea-
sured to the nearest millimeter (total length [TL]), and weighed to the
nearest gram.

3.1 | Ethics statement

The care and use of experimental animals complied with U.S. Fish and
Wildlife welfare laws and animal care and use guidelines outlined by
the University of Wisconsin, Madison (protocol number: A006182).

3.2 | Stableisotopes

An ~1-mg piece of muscle tissue was sampled from individual Cisco
at the caudal peduncle above the lateral line. Invertebrate samples
were homogenized from whole-body samples of several individuals of
the same taxa. Fish and invertebrate samples were dried in an oven
for 24-48 h. Dried tissue was ground using a mortar and pestle,
and ~1 mg was packed into a tin. Prepared tissue samples were sent
to the UC-Davis Stable Isotope Facility for analysis of *3C and *°N
(https://stableisotopefacility.ucdavis.edu/13cand15n.html). °N was
corrected for baselines following methods outlined by Vander Zanden
and Rasmussen (1999). In short, baselines from both the pelagic and
littoral habitats were used to establish a lake-specific residual value,
and the *3C values were then used to calculate corrected *°N values.
The corrected *°N values were then used to calculate trophic position
that accounts for habitat differences in baseline isotope values. We
included an older collection of stable isotope samples (2003) that
focused more on littoral invertebrates, as the current collection was
limited in the number of littoral taxa represented. Although these are
unlikely to be prey resources for Cisco, they can be helpful to contex-
tualize the entire range of stable isotope values within the food web.
We visualized the trend in body size and isotope values with a loess
smooth line. All statistical analysis and plots were generated using R
Studio (R Core Team, 2019).

3.3 | Habitat use

We used NTL-LTER data from gillnet surveys to investigate if Cisco
body size relates to vertical habitat use. The depth at which individual
Cisco are captured was recorded, as well as body length. We statisti-

cally tested the relationship between depth of capture and Cisco body
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FIGURE 1 **N and *3C biplot of
Cisco (Coregonus artedi), zooplankton, and A
benthic macroinvertebrate taxa from
Trout Lake, Wisconsin, USA. Sampling &
dates (n = 4) are shown as different
shapes, and taxa (n = 13) are shown in
different colors.
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FIGURE 2 Trophic position and Cisco 38
(Coregonus artedi) body length

(in millimeters) from Trout Lake, Wisconsin,

USA, in 2020. Points are colored by sample

date. Trophic position was adjusted for 36
baselines using methods detailed in Vander
Zanden and Rasmussen (1999). A loess
smooth line (span = 0.9) is displayed as a
visual aide.
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size using a linear regression and evaluated year as an interaction
term. We limited the analysis to post-Bythotrephes invasion years as
the relationship between Bythotrephes and Cisco has been noted to
cause changes in diel vertical migration behavior (Young & Yan, 2008).

4 | RESULTS

Baseline stable isotope values from a suite of zooplankton and benthic
macroinvertebrates followed general trends observed from freshwater
lakes in North America (approximately —30 to —20 for *3C) (Figure 1)
(Fry, 1991). Baseline isotope values were relatively similar from recent
sample dates. The species collected in the 2003 sample date had little
overlap with the more recent collections. Stable isotopes of *°N
revealed that Cisco trophic position increased with body size
(Figure 2) even after trophic position was adjusted from baseline data.
steadily increased with body size rather than

Trophic level

160

200 240
Length (mm)

incrementally. Stable isotopes of °C showed that Cisco shifted from
moderate littoral reliance to rely more on pelagic resources (Figure 3).
13C values decreased steadily with body size (Figure 3). The gillnet
catch data indicated that larger Cisco were captured at deeper depths
(r* = 0.16, F23494 = 342.4, p < 0.001) (Figure 4). We did not see a
strong year effect as an interaction term (t= —1.84, p < 0.001
p = 0.07) (Figure 4). Although we saw evidence for trophic ontogeny,
we were unable to point to the prey resource contributing to the
increased Cisco trophic position because our sampling did not capture
some profundal taxa as they rarely occurred in zooplankton samples
(Martin et al., 2022).

5 | DISCUSSION

Stable isotope analysis confirmed that Cisco in Trout Lake undergo
trophic ontogeny, as their trophic position increased by approximately
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FIGURE 3 '3C and body length

(in millimeters) of Cisco (Coregonus artedi)
from Trout Lake, Wisconsin, USA, in 2020.
Points are colored by sample date. A loess
smooth line (span = 0.9) is displayed as a
visual aide.
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0 FIGURE 4 Cisco (Coregonus artedi)
depth of capture (in meters) from vertical
gillnets based on individual body length

. : (in millimeters) from the years 2015 to
e 2020 (post- Bythotrephes invasion) from
10 Trout Lake, Wisconsin, USA. Points are
c colored by the year. Body length was
Té Year significantly related to depth of capture
,g_ -~ 2015 (P = 0.16, F2.3494 = 342.4, p < 0.001). This
8 : gg}g relationship was mostly similar across years
S 20- ~ 2018 as year was tested as an interaction term in
- = 2019 .
% ~ 2020 the linear model (p = 0.07).
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half a trophic level in our study. Even after adjusting *°N values from
our baseline samples, we saw trophic position increased steadily as
individuals were larger (Figure 2). Notably, our Cisco samples did not
exceed 275 mm in body length, but Cisco can exceed 500 mm in
length (Page & Burr, 2011). Cisco in Trout Lake grow well beyond the
maximum size we analysed for isotopes here and, therefore, may con-
tinue to shift in trophic niche (Martin et al., 2022; Martin & Vander
Zanden, 2023). Although our results show trophic ontogeny, an unfor-
tunate shortcoming is that we were unable to pinpoint the higher tro-
phic level prey resources that the larger cisco are consuming due to
the rarity of capturing some taxa in zooplankton nets (Martin
et al.,, 2022). From what we know about the food web in Trout Lake,
larger Cisco are likely preying on predatory taxa such as Mysis, Chao-
borus, Leptodora, or some Calanoida species (Martin et al., 2022).
Given what we know about the invertebrate community of Trout Lake
(Martin et al., 2022) and the trophic ecology of Cisco in other lakes

(Grow et al., 2022; Ridgway et al., 2020; Rosinski et al., 2020), it is
most likely that the observed increase in trophic position is due to
larger Cisco consuming a combination of predatory invertebrate taxa,
including those that were not readily captured in our study.

The gill rakers are a primary functional structure for Cisco (and
other zooplanktivores) and influence the size of the prey that is
retained for consumption. As inter-gill raker spacing increases with
body size (Link & Hoff, 1998), the minimum size of retained prey
increases with body size (Kahilainen et al., 2011; O'brien, 1987;
Roesch et al., 2013). Our study found that trophic position increased
steadily rather than in a step-like manner (Figure 2). Therefore, as
Cisco body size increases, the change in inter-gill raker spacing
steadily shifts the size of the prey that is retained. Therefore, some of
the shift in trophic position could be caused by the lack of lower tro-
phic position prey items included in Cisco diets. Therefore, although it

is well acknowledged that larger Cisco integrate larger, omnivorous
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prey items, larger Cisco are also likely no longer retaining the smaller,
lower trophic level prey species. This slow change in diet, based on
prey size selection, is in agreement with the slow, steady increase in
trophic position that we observed.

We additionally found that Cisco *3C values decreased with body
size and therefore shifted to be more pelagically reliant (Figure 3). This
is likely reflective of the shift in diet where higher trophic level prey
have lower 3C values. Our invertebrate samples indicated that zoo-
plankton, chironomids, and other pelagic taxa can exhibit *C values
slightly lower than —30. Seeing large Cisco shift to have °C
values down to —30 indicates that they shift to being more pelagically
reliant. We often think of Cisco as a pelagic species, but our results
show that at least the smaller Cisco are noticeably more reliant on lit-
toral resources than we may typically expect. That shift for Cisco
becoming more pelagically reliant is important for the transfer of
energy between the pelagic and littoral habitats. Seeing that Cisco are
reflecting diverse 13C values, as a species they are providing greater
integration of energy along the littoral-pelagic axis. The integration of
energy between the littoral-pelagic axis is particularly important as
Cisco are a populous prey fish in many inland lakes. In Trout Lake, lake
trout are highly reliant on Cisco as a prey resource, but more littoral
species will also prey on them, including muskellunge, walleye, small-
mouth bass, and largemouth bass (Martin et al., 2022; Vanderbloemen
et al., 2020).

Although trophic ontogeny is not overly surprising as it is com-
mon for many fish species, it has not yet been widely acknowledged
for Cisco. Muir et al. (2013) detailed trophic and morphological ontog-
eny of Cisco in Great Slave Lake, Canada, but did not find nearly as
strong an ontogenetic shift as our study. Importantly, Muir et al.
(2013) included Cisco that spanned a wider range of body sizes (117-
445 mm), which was almost twice the maximum body size that our
study assessed. Although their results showed more subtle shifts in
trophic ontogeny, the shift was in the same direction as we saw
in Trout Lake; that is, larger Cisco were a higher trophic position and
more pelagically reliant. As for prey resources in Great Slave Lake, the
food web included a similarly diverse array of prey resources that
would have allowed for shifts in trophic behavior. A more recent
study from Great Slave Lake, Rohonczy et al. (2020), included stable
isotope values for Cisco (n = 13) across a smaller range in body sizes
(129-328 mm). In the study by Rohonczy et al. (2020), there was a
trend of larger Cisco having higher °N and lower *3C. The result was
not a reported study as it was outside their project goals, but it can be
seen in the archived data. Besides Muir et al. (2013), there have not
been many studies detailing ontogeny in Cisco. Many studies have
described stomach as indicators of trophic behavior of Cisco, and
some have found diet differences based on body size (Breaker
et al., 2020; Gatch et al., 2021; Keeler et al., 2015). Although our
study found a stronger ontogenetic shift in Cisco trophic behavior
than previous studies, the direction of change is consistent with find-
ings from other lakes.

Although our study found an ontogenetic shift in Cisco, it is
important to consider if this shift is ecologically relevant. It has been
acknowledged that the effects of trophic ontogeny go well beyond

s FISHBIOLOGY |

the individual (Nakazawa, 2011, 2015; Sanchez-Hernandez
et al,, 2019). At a population level, trophic ontogeny lessens intraspe-
cific competition for prey resources, which can increase growth rates
and allow for more overall reproduction (Nakazawa, 2015; Sanchez-
Herndndez et al., 2019). More broadly, trophic ontogeny increases
population-level niche breadth, couples pelagic and benthic food
webs, and thereby adds to food web complexity and stability
(Nakazawa, 2015; Sdnchez-Hernandez et al., 2019; Sanchez-Hernan-
dez & Cobo, 2016). With our findings of trophic ontogeny in Cisco, it
is important to consider the size structure of a Cisco population as
it can impact ecosystem function. Among inland lakes around Trout
Lake, Cisco populations have been characterized as high-density, low
maximum body size or low density, high maximum body size popula-
tions (Ahrenstorff et al., 2013). The Cisco population in Trout Lake
has undergone large changes in density (Martin et al., 2022), but dur-
ing the time of this study, it would be characterized as an intermediate
density (Martin et al., 2023). However, Cisco greater than 300 mm in
body size are extremely rare (2 individuals captured out of 2403 total
Cisco sampled between 2020 and 2022), so our dataset covers cur-
rent size structure of Cisco in Trout Lake. Even at this density and
without analysing large Cisco, we found strong evidence of trophic
ontogeny. Therefore, we may expect to see this relationship across
many other Cisco populations in this area, which could be an impor-
tant direction for future study.

Overall, our study detailed trophic ontogeny in Cisco that was
unlike the lack of ontogeny others have previously found. As Cisco
grew to larger sizes, they were found to be of higher trophic position
and be more pelagically reliant. This followed the general trend among
previous studies that have described the trophic behavior of Cisco.
We further discussed how trophic ontogeny is important beyond the
individual scale, as it can have effects across population and ecosys-
tem level scales. Future work assessing trophic ontogeny in Cisco in
other lakes would address potential drivers of the extent to which

Cisco trophic behavior shifts.
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