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Abstract

Lake temperature plays a pivotal role in the physical and chemical processes in the water. It has a significant impact
on the distribution of lake organisms. In lake temperature modelling, the physics-based models have the shortcomings
of parameter calibration and generalization difficulties. The data-driven models are highly data dependent. This makes
hybrid models an effective solution at present. In this paper, we explore the spatial and temporal co-evolution process
for multi-depth lake temperature and propose a Physics-Informed Deep learning model for Lake multi-depth Temperature
prediction, PID4LaTe. It consists of three sub-models, two of which are long short-term memory (LSTM) models for
spatial and temporal prediction respectively, and the other is a physical model, the General Lake Model. The physical
model offers simulation data based on its rich knowledge for data-driven model learning, while guaranteeing consistency
between model results and physical mechanisms. We compared PID4LaTe with the Process-Based model (PB), the Deep
Learning model (DL) and the Physics-Guided Recurrent Neural Networks model (PGRNN), and used Root Mean Square
Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)
to assess the effectiveness of the models. Extensive experiments show the superiority of our hybrid model for lake multi-
depth prediction over PB, DL and PGRNN with RMSE of 0.798, MSE of 0.644, MAE of 0.567 and MAPE of 4.367%
in Mendota Lake and RMSE of 1.099, MSE of 1.261, MAE of 0.783 and MAPE of 7.936% in Sparkling Lake. The two-
cases study indicates that the hybrid model combining the physics-based model with the data-driven model is a promising
technique for multi-depth lake temperature predicting. This study provides a reference method for accurate prediction of
temperature at multiple depths in lakes.

Keywords Hybrid model - Physics-informed - LSTM - Lake multi-depth temperature prediction

Introduction soil-water interface (Ciampittiello et al. 2021). Lake water
temperatures are distributed in layers with depth, which is
called thermal stratification. Figure 1 shows the thermal
stratification of a lake in summer. This thermal stratification
usually consists of three layers: the epilimnion, the thermo-

cline and the hypolimnion (Boehrer and Schultze 2008).

The temperature status of lake is the basis for understand-
ing various physicochemical processes and dynamical phe-
nomena in lakes, and is one of the important environmental
conditions affecting aquatic ecosystems (Staehr et al. 2010).

Lake water temperature not only plays an important role
in water balance calculations and evapotranspiration, but
also in water quality analyses and material exchange at the
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Lake thermal stratification indirectly affects the plankton
population structure and also limits the upward and down-
ward mixing motion of turbulent flows (Spigel and Imberge
1987).

Meteorological conditions such as solar radiation, wind
speed and precipitation affect the heating and mixing of
lake water and have a significant effect on lake temperatures
(Arhonditsis et al. 2004). Lake temperatures also exhibit
significant seasonal stratification as a result of climatic
conditions. In summer, the surface temperature of lakes
tends to rise, while deeper layers maintain relatively cooler

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12145-024-01377-5&domain=pdf&date_stamp=2024-6-22

3780

Earth Science Informatics (2024) 17:3779-3795

Fig. 1 Thermal stratification

and temperature profile of lake
in summer. During the summer
months, thermal stratification

of lakes usually results in the
formation of three layers: the
epilimnion, the thermocline and
the hypolimnion. The epilimnion
is warmer, the hypolimnion is
cooler, and the water tempera-
ture drops sharply between the
epilimnion and the hypolimnion,
creating a transition zone known v
as the thermocline

Depth

Epilimnion Temperature

Profile
Thermocline

temperatures, resulting in a discernible positive temperature
stratification profile. In winter, the surface temperature of
lakes is lower than that of the deep layers, showing inverse
temperature stratification. The difference between the upper
and lower water body temperatures in spring and autumn
was small (Lampert and Somme 2007). Temperature pre-
diction at multiple depths in lakes is a challenging task that
requires comprehensive consideration of changes in meteo-
rological conditions, modelling of thermal stratification
phenomena, and the dynamics of water temperatures in dif-
ferent seasons and depths.

Some works related to lake temperature prediction have
been proposed. Based on the technical approach, they can
be divided into three categories: the physics-based methods,
the data-driven methods, and the hybrid methods.

Researchers have focused on the physics-based methods
that build complex functions to represent the physical and
thermal processes between the lake and the atmosphere. Sev-
eral models have been proposed to predict lake surface tem-
perature, including regression methods (Kettle et al. 2004;
Livingstone and Lotter 1998; Sharma 2008) and process-
based numerical models (Martynov et al. 2010; Thiery et al.
2014). Due to their limitations of not being able to address
some fundamental processes, Piccolroaz et al. (2013, 2016)
proposed the air2water model that can reliably estimate lake
surface temperature based on air temperature alone. The
physical models for predicting lake temperature at multi-
depths are more complex because they involve the verti-
cal temperature distribution and variations within the lake.
There have developed numerous models, such as the one-
dimensional model Dynamic Reservoir Simulation Model
(DYRESM) (Weinberger and Vetter 2012), the General
Ocean Turbulence model (GOTM) (Burchard 2002) and the
General Lake Model (GLM) (Read et al. 2017; Hipsey et al.
2019). We chose GLM as the primary physics-based model
for predicting lake temperature because of its outstand-
ing performance and extensive usage in lake modelling. It
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considers the effect of inflows/outflows, mixing and surface
heating and cooling (Menci6 et al. 2017). The estimation
and calibration of parameters in GLM models requires con-
siderable observational data and computational resources.
Accurate estimation and calibration of these parameters is
a major challenge, especially for large lakes and complex
environmental conditions.

With the advancement of big data era, the data-driven
methods have emerged as a promising alternative for lake
temperature prediction. It provides a flexibility and effective
solution compared to the physics-based models (DeWeber
and Wagner 2014). Some works have been reported that are
adaptive network based on fuzzy inference system (Kara-
bog and Kaya 2019), the standard multiple linear regression
(Uyanik and Giiler 2013), wavelet neural network (Alexan-
dridis and Zapranis 2013) and deep learning neural network
(Heddam et al. 2020). Recently, for lake surface temperature
prediction, Yu et al. (2020) presented a hybrid prediction
model that combines support vector regression (SVR), ana-
lytical hierarchy process (AHP), and backpropagation arti-
ficial neural network (BPANN) algorithms. This model was
applied to simulate and estimate the surface temperatures
of 11 lakes in the Yunnan-Guizhou Plateau, and the results
showed low error rates and strong generalization capabili-
ties. Willard et al. (2022) introduced entity information and
proposed an entity-aware long and short-term memory net-
work (EA-LSTM) to predict daily surface temperatures for
lakes in the United States. Hao et al. (2023) proposed an
Attention-GRU model, which combines the Self-Attention
mechanism and GRU model for predicting lake surface tem-
perature in Qinghai Lake. Di et al. (2023) used a machine
learning algorithm by stacking multilayer perceptron and
random forest (MLP-RF) for the prediction of lake surface
temperatures. The result showed that the entity information
is valuable for lake temperature prediction. While surface
temperature prediction provides valuable insights, it fails
to capture the complex thermal dynamics that occur below
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the lake surface. In this study, we emphasize the problem
of temperature prediction at multiple depths. When multi-
depth temperature data is available, researchers typically
employ data-driven models to simulate temperatures at
different depths separately (Saced et al. 2016). Saber et al.
(2020) used ANN to predict the future water temperature
of Lake Mead at 22 different depths. Quan et al. (2022)
proposed GA-SVR, a genetic algorithm with support vec-
tor regression model, to simulate the temperature of Long-
yangxia Reservoir at elevations of 2585, 2550 and 2495,
respectively. The optimal parameters of SVR were obtained
using GA.

The data-driven models demonstrate their excellent
capability to a certain extent, but they require large amounts
of high-quality data. High-quality data is hard to come
by in complex scenarios, hindering the use of data-driven
methods.

Recently, some hybrid models combining the data-driven
model and the physical model have emerged for lake tem-
perature prediction. These studies used the physical model
to generate synthetics data or incorporated it to constrain the
optimization objective. For lake multi-depth temperature
prediction, Daw et al. (2022) proposed the physics-guided
neural networks (PGNN) model that introduced the result of
the physical model as a feature for the neural network and
designed a loss function based on the relationship between
lake depth and density to ensure the prediction coherence
of the basic physical process. Subsequently, based on this
work, Daw et al. (2020) proposed the Physics-Guided Archi-
tecture (PGA) model, which uses auto-encoder structure to
extract temporal features and LSTM to mine spatial infor-
mation to predict an intermediate physical quantity: den-
sity. PGA combines knowledge of density-depth physics on
LSTM to have a monotonic recurrence relationship between
predicted densities. Daw et al. (2020) have recognized that
lake temperatures have a series relationship in both time and
space, but PGA models have limited methods for mining
time series information. Jia et al. (2021) proposed the Phys-
ics-Guided Recurrent Neural Networks model (PGRNN)
model, which uses simulated data to pre-train data-driven
model to address the problem of scarcity of observed data.
PGRNN uses LSTM to exploit time-series relationships for
lake temperatures, but neglects spatial-series relationships.
The above models do not learn enough spatial and temporal

Table 1 Statistics of the datasets

Dataset Time range  Time Depth Depth The number of
span range span  observations
Mendota  April 15,2009 1day Omto 0.5m 35,179
Lake to December 25m
19,2017
Sparkling  April 29,2009 1day Omto 0.5m 26,098
Lake to November 18 m
13,2017

information about lake temperatures and the integration
with physical models could be further enhanced. Lake tem-
peratures exhibit variations over time and depth. Therefore,
the lake temperature prediction problem can be viewed as a
spatiotemporal forecasting task, necessitating the extraction
of information from both the temporal and spatial dimen-
sions. In this paper, we propose a Physics-Informed Deep
learning model for Lake multi-depth Temperature predic-
tion, PID4LaTe. It consists of spatial, temporal and physical
models. Extensive experiments show the superiority of our
model.
The main contributions of this paper are follows:

(1) A hybrid method with a physics-informed deep learn-
ing model is proposed, where the physical model offers
information that conforms to special theories to enhance
and regularize the deep learning model.

(2) Considering the spatiotemporal change of lake tem-
perature, two LSTMs are introduced to make temporal
and spatial predictions respectively. The two views can
clearly extract its latent trends from two different angles
of view, which is simple but effective.

(3) The proposed model is compared with current popular
models for predicting lake temperature, and the experi-
mental results show the valid of our model in the datas-
ets of Mendota and Sparkling lakes.

Methods

In this part, we present the lake datasets used for training
and testing our model and the overall framework of our
proposed Physics-Informed Deep learning model for Lake
multi-depth Temperature prediction (PID4LaTe).

Datasets

The datasets used in our experiments are temperature data
from Lake Mendota and Lake Sparkling in the United
States, which are publicly available from Read et al. (2019)
and can be downloaded from https://doi.org/10.5281/
zen0do.3497495. Observations of lake temperatures were
obtained from North Temperate Lakes Long-Term Ecologi-
cal Research Program (Read et al. 2019), specifically dis-
crete temperature profile values. The sampling location for
the Mendota Lake data is 43.099°N, -89.405°E, and for the
Sparkling Lake data, it is 46.008°N, -89.701°E. The detailed
information on the datasets is presented in Table 1. On some
days we have observations at multiple depths, while on oth-
ers there are few or no observations.

@ Springer
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For Lake Mendota, we selected temperature measure-
ments at every 0.5 m interval from the surface to a depth of
25 m. The dataset for Lake Mendota includes temperature
observations from 15 April 2009 to 19 December 2017, for
a total of 35,179 observations.

For Lake Sparkling, we selected temperature measure-
ments at every 0.5 m interval from the surface to a depth of
18 m. The dataset for Lake Sparkling includes temperature
observations from 29 April 2009 to 13 November 2017, for
a total of 26,098 observations.

The features used in the experiments comprise daily
climate conditions recorded between 2009 and 2017.
Specifically, we focus on 10 features, including the day
of the year, depth, shortwave radiation, etc., listed in
Table 2. All meteorological features, except the depth
feature and the predicted value generated by the GLM
model, are measured or derived from the meteorological
dataset. The meteorological dataset was recorded from
stations located about 2 km and 10 km from Lake Men-
dota and Lake Sparkling. These features have consistent
values across different depths on a given day. It is worth
noting that the input features do not include historical
lake temperature. Considering that there are some days
when the temperature data is lost, we set up a mask vec-
tor, the vector consists of 0 and 1, where 0 means that the
temperature data for that day is lost and 1 means that the
temperature data for that day exists. The loss is calcu-
lated by multiplying the mask vector by the matrix of the
difference between the true and predicted values.

Problem formulation

The aim of this paper is to predict the temperature at
varying depths of the lake using given meteorological
variables. We use X =< X! X2 . X7 >eRI™m as
the input sequence. X' ¢ SR represents the ; th feature
vector. 7' represents the window size, while _ refers to
the feature dimension. Y7 = {yziT}zeDepth represents the
lake temperature at different depths at the time 7. Hence,
the lake temperature prediction task can be defined as to

T h,

Table 2 Details of the features used in this study

Name Units
Day of Year (1-366) days
Depth m
Short-wave Radiation W/m2
Long-wave Radiation W/m2
Air Temperature °C
Relative Humidity %
Wind Speed m/s
Rain cm
Snow cm
Physical model theoretical value °C

find the function f: X — Y7. The inputs X consist of
short-wave radiation, long-wave radiation, wind speed,
air temperature, relative humidity, rain, snow, as well as
the value of depth and day of year.

Long-short term memory networks

Sequence prediction is a challenging class of prediction
problems that need to capture sequence dependencies
between input variables. Recurrent neural network (RNN)
is a kind of neural network that can be used specifically to
deal with sequence dependency. Long short-term memory
network (LSTM) is a special kind of RNN. Memory units in
LSTM are able to store and update information. It can store
historical data to better predict future trends. The network
structure is shown in Fig. 2.

The LSTM cell consists of an input gate 7;, an output
gate , , a forget gate f; and a cell gate ¢ The individual
gates within the LSTM cell are calculated as follows:

fi = sigmoid Wiz, + Ushy—1 + by) (D)
iy = sigmoid Wiz + Uihy—1 + b;) ()
or = sigmoid Wyzy + Uyhy—1 + b,) 3)
¢; = tanh (Wea, + Uhy_1 + b.) 4)

h, T hey

el

LSTM .

s LSTM

[ ] h, heiy

‘ X1 X,

Fig.2 The network structure of LSTM.
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¢ = fici—1 + ¢y Q)

he = ogtanh (¢;) (6)

where Wy, Uy, W;, U;, W,, U,, W, and U, stand for
weights, by, b;, b, and b, denote bias. sigmoid is the sig-
moid activation function. tqnh is the hyperbolic tangent
activation function.

LSTM effectively solves the problems of gradient van-
ishing and gradient explosion in traditional RNNs through
the gating mechanism. The gating mechanism enables the
model to better capture long-term dependencies in sequence
data, and is often able to achieve better results in sequence
prediction tasks (Sherstinsky 2020). Therefore, we chose
the LSTM as the prediction model for the sub-module.

PID4LaTe model

The overview of PID4LaTe is shown in Fig. 3, which con-
sists of four major components: (1) Physical module that
generates the predictions based on general physical knowl-
edge. (2) Spatial prediction module that captures depth
sequence information using LSTM. (3) Temporal prediction
module that captures time series information using LSTM.

(4) Modules-hybrid prediction that fuses the three modules
to obtain the final predictions.

Physical module

In PID4LaTe, we use the GLM model as the physical model
for predicting lake temperature. The GLM model consid-
ers surface heat exchange, vertical energy layer mixing
and other factors. It gives a mapping function between the
dynamic physical processes and water temperature. The
GLM model takes meteorological time series data as input.
In our work, the GLM model first needs to be calibrated. The
calibration of the GLM model parameters can be expressed
as the following optimization problem:

. 1 T T\2
m@m \/SZ(T,d)ES(yd —y_phyy) (7)

sty phy = fo(X _m|0)

where y! represents the recorded temperature of the lake
at time 7 and depth (, s is the sample size, y phy
denotes the theoretical value based on the physical model,
which incorporates temperature at each depth from 1
to T time points, ¢ is the parameter sets, andX _m

y T —— i e -
(T meteorological feature / Spatial Prediction Module \
(9 day of year | i

depth !
O NN s saaannn, Spatial Encoding ‘
(5] physical model theoretical value ] ey [ S (4 |
5| OTIITrEen) i) | I AN
| 5‘ ©00—p LSTM —p LSTM —p LSTM y—depth |
| e t ot 1
[ Iy Xdepti, X.deptio: X deptiy |
\ attribute R /' e -
T e e e T I T e+ e+ e e sttt e - - N
ementtati ! N ST
Qugmentiation i Module-hybrid Prediction |

-
meteorological
attribute

Figuierd itoduie T T T ‘ """""

Layer

|

i

| i

| !

. i

- [] | |
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Fig. 3 The overview of PID4LaTe. In this model, the time interval is
one day and the depth interval is 0.5 m. The PID4LaTe model can be
divided into four modules: (1) Physical module generates the physical
model theoretical values based on the meteorological time series data.
(2) Spatial prediction module outputs the predicted values with spatial
information based on the input features consisting of meteorological
features, day of the year, depth, and the physical model theoretical

values. (3) Temporal prediction module outputs the predicted values
with temporal information based on the input features consisting of
meteorological features, day of the year, depth, and the physical model
theoretical values. (4) Modules-hybrid prediction: the outputs of
Physical module, Spatial prediction module, and Temporal prediction
module are passed through the Dense layer to get the final temperature
predictions
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is the meteorological data. The shape of X _m is
time _window*meteorological _feature _number.

The parameters of GLM model are linked to the loca-
tion, depth, hypsographic curve, and other morphological
characteristics of the lake. The objective is to select a set
of parameter values, denoted as 9, that best matches the
model output with the observed data. This optimisation is
achieved through an adaptive evolution strategy of covari-
ance matrix adaptive evolution strategy, resulting in the the-
oretical temperature values y phy. The shape of y phy is
time _window*depth _window.

The GLM model is a general model for different lakes. It
shows the significant relationship between temperature and
factors such as morphology, hydrology, climatic conditions,
and others.

The physical model generates simulated values at differ-
ent depths, which are combined with known data to form
series data at different depths. It plays the role of data aug-
mentation, solving the problem of data shortage in practi-
cal application scenarios. At the same time, the simulation
value of the physical model as a feature is in accordance
with the physical law.

Spatial prediction module

Sequence data with different depth information are formed
after the GLM model augmentation. Considering the spa-
tial extent, the lake temperature shows a smooth evolving
process over different depths. LSTM has gained popularity
due to its ability to model long-term dependencies and ease
of implementation. To capture this dependence relationship,
we use LSTM to extract the concealed pattern of change
in depth. The physical model theoretical values y phy”
at time 7' are incorporated into the input, combined with
the inputs X7 at time 7 to construct the input matrix
X _depth”. The size of the depth window is dw, with a
depth interval of 0.5 m. The calculation formula for dw is:

dw = (D +0.5)/0.5 (8)

where D is the maximum depth of the lake. The shape of
X depthT is 1¥dw* feature _number . The spatial predic-
tion module generates temperatures y _depth’ at different
depth during a given time 7" based on depth series relation-
ships. The shape of y _depth” is 1*dw-

Temporal prediction module
In PID4LaTe, the LSTM model is introduced to capture the
temporal latent correlation. The input X _time to this mod-

ule includes meteorological features X _m, day of the year,
depth, and the physical model theoretical value. The shape

@ Springer

of X _time is dw*time _window™ feature _number . The
meteorological features X m comprise seven variables,
namely short-wave radiation, long-wave radiation, wind
speed, air temperature, relative humidity, rain, and snow.
We include the theoretical value of physical model as a
data augmentation feature, concatenated with X m, day
of the year and depth. The aim of this model is to extract the
evolving temporal trend at a fixed depth. The output of this
module is y_time” which represents the temperatures at
different depths at time 7", calculated through the temporal
sequence relationship. The shape of 3y time is dw = 1.

Modules-hybrid prediction

Based on the physical module, the temporal prediction mod-
ule and the spatial prediction module, the model derives
three prediction values. These three values are initially
transformed into one-dimensional data and subsequently
passed through a dense layer with a single neuron to obtain
the final temperature prediction 3//1(1 , corresponding to time
T and depth ¢ :

A
yé =f(w_time x y_time?,- +w_depth * y_depthrff 9)

+w_phy * y_phy,{ +0)

The function f is a linear activation function, while
w_time,w_depth and w_phy stand for weights, b
denotes bias. The model generates more accurate prediction
by considering the temporal and spatial dynamic correla-
tions and physical principles.

The loss function is defined as the root mean square error
between the predicted value and the true value:

tossomse =\ S0 G~ ) (10)
rmse S (T.d)es d d

where s is the number of samples. We employ the loss func-
tion lossg,. developed by PGRNN (Jia et al. 2021) according
to the energy conservation law to ensure reliable prediction
of lake temperature. It guarantees the interpretability of the
predicted results. PGRNN has already conducted thorough
discussions on this topic, thus we will not repeat these anal-
yses. The final loss function is obtained by adding the two:

lossa = 108Srmse + Apclossge (1 1)

where \g. is the coefficient of the energy conservation law
loss function. The loss function is calculated and then back-
propagated to update the model parameters.
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Table 3 The inputs of PB, DL, Model Inputs
PGRNN and PID4LaTe PB Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humid-

ity, Wind Speed, Rain, Snow
DL Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humid-
ity, Wind Speed, Rain, Snow, Day of Year, Depth

PGRNN

Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humid-

ity, Wind Speed, Rain, Snow, Day of Year, Depth

PID4LaTe

Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humidity,

Wind Speed, Rain, Snow, Day of Year, Depth, Physical model theoretical value

Evaluation metrics

We choose Root Mean Square Error (RMSE), Mean Square
Error (MSE), Mean Absolute Error (MAE) and Mean Abso-
lute Percentage Error (MAPE) as evaluation metrics. They
are calculated as follows:

1 AT
= T _ 2 12
RMSE \/ SZ(M)GS(% Yq) (12)
1 AN
MSE = ) Z vy — Yy (13)
(T,d)es
1 roAT
MAE = > |ui =¥, (14)
(T, d)es
AT
100% -yl
MAPE = /“ S e (15)
“ (Tud)es Ya
where _ is the number of test samples, y) and ‘ﬁT are the

true and predicted values at time 7" and depth (.

Experiments and results

We did experiments to evaluate the performance of PID-
4LaTe. These experiments are summarized in the following
research questions:

RQ1 How does the prediction performance of our proposed
model PID4LaTe compare to the baseline models?

RQ2 How each module in the PID4LaTe contributes to the
overall model performance?

RQ3 Which sub-module fusion approach has better predic-
tion performance?

RQ4 How do PID4LaTe and the baseline models perform in
time and depth?

Experiment settings

The experimental environment is as follows: Intel Core
19-10900 K CPU, NVIDIA 3090 GPUs. All codes are imple-
mented in Python (3.7.6).

We have standardized all input features to predict lake
temperature at different times and depths. The LSTM con-
sists of 20 hidden neurons. The number of layers is 2. Epoch
is a complete run of the process of forward and backward
propagation of the entire training dataset through the neu-
ral network. In each epoch, all the samples in the training
dataset are used to update the parameters of the model. The
learning rate is the step size that controls the updating of the
model parameters in each iteration. The number of training
epoch is 600 and the learning rate is 0.001 for the Men-
dota Lake dataset. For the Sparkling Lake dataset, the epoch
number is 400 and the learning rate is 0.005.

To compare with the baseline models, we follow an
experimental design similar to as Read et al. (2019). We ran-
domly select some continuous time periods as the test set,
while the remaining time periods are used as the training set.
We conduct five experiments, choosing a different test set
for each experiment. In our experiments, the Mendota Lake
dataset uses data of 980 dates as the training set and 540
dates as the test set. The Sparkling Lake dataset uses data
of 500 dates as the training set and 540 dates as the test set.

@ Springer
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Comparison methods

We choose the state-of-the-art models used for multi-depth
temperature prediction in lakes as the baseline models.
Table 3 shows the inputs to each model. The baseline mod-
els include:

PB (Read et al. 2017): A Process-Based model, which
is the physical model. We select the GLM model. It is cali-
brated using the training sets of the two lakes, and the pre-
dicted results are evaluated on the test set.

DL (Jia et al. 2021): A Deep Learning model in which
the meteorological indicators are features and LSTM is
used to extract the time series relationships and generate the
prediction.

PGRNN (Jia et al. 2021): This is a hybrid model which
unites physical and data-driven models. The model employs
LSTM to capture the temporal dynamic patterns of lake
temperature. It is pre-trained using the output of the uncali-
brated GLM model and further fine-tuned using a limited
set of observations. The model also incorporates additional
states derived from physical equations into the loss func-
tion to ensure energy conservation. In addition, PGRNN
is another name for the Process-Guided Deep Learning
(PGDL) model proposed by Read et al. (2019).

Hyperparameters study

We investigate the influence of the number of hidden neu-
rons, the learning rate and the epoch on the model perfor-
mance. Using an iterative approach, we systematically vary
these parameters to assess their impact on the overall per-
formance of the model. Hidden neurons € {10,20,30,40},
learning rate € {0.05,0.01,0.005,0.001,0.0005}, epoch €
{100,200,300,400,500,600,700,800}.

Supplementary Table S1 shows the performance of the
number of hidden neurons on the two datasets. The effect
of this factor on the model performance is subtle. When the
number of hidden neurons is set to 20, the model performs
best on two datasets.

Supplementary Table S2 shows that the learning rate set-
ting has a great impact on model performance. For Mendota
Lake, the learning rate is set to 0.001 for best performance.
For Sparkling Lake, the learning rate is set to 0.005 for best
effect.

Supplementary Fig. S17 shows the optimal value for
Mendota Lake when the epoch number is 600. The best
value for Sparkling Lake is taken for an epoch number of
400.

Performance evaluation (RQ1)

The experimental results are given in Table 4. We can draw
the following conclusions:

Our model demonstrates the superior performance than
others on the two datasets. Table 4 shows the values of the
evaluation metrics of our proposed model and other base-
line models on the train and test datasets in Lake Mendota
and Lake Sparkling. After five experiments, PID4LaTe per-
forms best in both lakes, with an RMSE of 0.798, MSE of
0.644, MAE of 0.567 and MAPE of 4.367% in Lake Men-
dota, compared to an RMSE of 1.099, MSE of 1.261, MAE
of 0.783 and MAPE of 7.936% in Lake Sparkling.

The hybrid models of PGRNN and PID4LaTe are all
superior to the physics-based model and the data-driven
model. As can be seen in Table 4, PB performs the worst
with RMSE of 1.564, MSE of 2.511, MAE of 1.097, and
MAPE of 8.787% in Lake Mendota and RMSE of 1.600,
MSE of 2.619, MAE of 1.278, and MAPE of 11.804% in

Table 4 RMSE, MSE, MAE and MAPE of PB, DL, PGRNN and PID4LaTe on the train and test datasets for the two lakes. (Bold and /talic high-

light the best and second-best model performance respectively.)

Dataset MODEL RMSE MSE MAE MAPE
Train dataset Mendota Lake PB 1.500 2.254 1.057 8.786%
DL 1.074 1.159 0.786 4.099%
PGRNN 0.914 0.838 0.673 4.316%
PID4LaTe 0.495 0.246 0.349 2.676%
Sparkling Lake PB 1.468 2.159 1.097 10.524%
DL 1.465 2.162 1.057 6.163%
PGRNN 1.294 1.688 0.952 6.687%
PID4LaTe 0.437 0.194 0.315 2.995%
Test dataset Mendota Lake PB 1.564 2.511 1.097 8.787%
DL 1.074 1.157 0.786 6.397%
PGRNN 0.914 0.838 0.673 5.488%
PID4LaTe 0.798 0.644 0.567 4.367%
Sparkling Lake PB 1.600 2.619 1.278 11.804%
DL 1.450 2.162 1.057 10.466%
PGRNN 1.281 1.688 0.952 9.402%
PID4LaTe 1.099 1.261 0.783 7.936%
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Lake Sparkling, followed by DL with RMSE of 1.074, MSE
of 1.157, MAE of 0.786 and MAPE of 6.397% in Lake
Mendota and RMSE of 1.450, MSE 0f 2.162, MAE of 1.057
and MAPE of 10.466% in Lake Sparkling.

PID4LaTe has a better performance than PGRNN. The
RMSE values of PID4LaTe are reduced by 12.7% and
14.2%, respectively. The improvement of PID4LaTe is sig-
nificant when compared to PGRNN.

Ablation study (RQ2)

To investigate the role of each module in PID4LaTe, we
design the ablation experiments. We calculate the mean
of the results from five experiments, while discarding the
highest and lowest values, to account for cases where cer-
tain models perform exceptionally well or poorly on spe-
cific datasets. The experimental results are shown in Fig. 4,
where:

(1) PID4LaTe: the complete model.

(2) PID4LaTe-Tem: remove only the temporal prediction
module.

(3) PID4LaTe-Spa: remove only the spatial prediction
module.

(4) PID4LaTe-Phy: remove only the physical module.

The temporal prediction module shows superior perfor-
mance in lake temperature prediction. Removing the tempo-
ral module results in a significant increase in errors, with a

reduction of 42.2% for the Mendota Lake dataset and 21.6%
for the Sparkling Lake dataset.

The spatial prediction module can help to reduce the pre-
diction errors. The errors of PID4LaTe-Spa on the Mendota
Lake and Sparkling Lake datasets increase by 3.4% and
17.5% respectively when the spatial module is removed. The
role of the spatial prediction module is not as great as that of
the temporal prediction module. However, it improves the
accuracy of the lake temperature prediction to some extent.

The physical module plays a crucial role in improving
the quantity and quality of the data, thereby enhancing
the accuracy of prediction. Removing this module leads
to an increase in errors, with an increase of 2.4% for the
Mendota Lake dataset and 17.1% for the Sparkling Lake
dataset. Therefore, the physical prediction module is also
indispensable.

As a result, all three modules are crucial. They have a
favorable impact on the prediction of lake temperature.

Analysis of the fusion procession (RQ3)

In addition, we explore different fusion processes for sub-
modules and evaluate their performance. Four fusion tech-
niques have been tested and compared:

Res: Residual model (San and Maulik 2018a, b; Wan et
al. 2018). The final output of the model is the sum of the
outputs of the three modules. It adopts data-driven method
to correct the residual of the physical model.

Ave: This method is to sum the outputs of three modules
and averages them as the final prediction.

1.6
PID4LaTe
1.4 PID4LaTe-Tem
PID4LaTe-Spa 1.266 1.223 1219
1.2 PID4LaTe-Phy | 1.140
1.041
1
| 0.801 0.829  0.821
5 0.8
0.6
0.4
0.2
0
Mendota Sparkling

Datasets

Fig.4 RMSE values of prediction results for PID4LaTe, PID4LaTe-Tem, PID4LaTe-Spa and PID4LaTe-Phy
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BLUE (Xue et al. 2022): It statistically integrates the
model of the PID4LaTe removal physical prediction module
with the theoretical value of the physical model based on the
best linear unbiased estimator to get the final prediction. The
best linear estimate (X ) is:

g p2 g D2
Xp = op?+op? + op*+ JDQXP (16)
where op and  _ are the root mean square errors of PID-
4LaTe-Phy and PB predictions, respectively. Xp and Xp
are the temperature values from PID4LaTe-Phy and PB,
respectively.

PID4LaTe: The final prediction is obtained by feeding
the outputs of three modules into a dense layer. It learns the
weights and gets the final prediction.

Table 5 shows the prediction results of different fusion
techniques for the two lake datasets. Res gives the worst
results at Lake Mendota with RMSE value of 0.943, MSE of
0.906, MAE of 0.673 and MAPE of 5.442%. In the residual
model, the data-driven model acts as a corrective element,
while the output of the physical model dominates the pre-
diction. The data-driven model plays a lesser role. Ave gives
better predictions than Res at Lake Mendota with RMSE
value of 0.842, MSE of 0.717, MAE of 0.603 and MAPE
of 4.658%. Ave assigns equal weight to the outputs of the
temporal prediction module, the spatial prediction mod-
ule, and the physical module. PID4LaTe and BLUE exhibit
similar errors on Mendota Lake. BLUE has an RMSE of
0.797, MSE of 0.639, MAE of 0.585 and MAPE of 4.515%.
PID4LaTe has an RMSE of 0.798, MSE of 0.644, MAE of
0.567 and MAPE of 4.367%. However, PID4LaTe signifi-
cantly outperforms Blue on Sparkling Lake. As BLUE is a
statistical fusion technique, it is clear from Eq. (16) that the
results of the fusion are significantly limited by the RMSE
of PID4LaTe-Phy and PB. The benefits of merging the two
are only marginally improved. Figure 4 shows that the effi-
ciency of PID4LaTe-Phy in Sparkling Lake is relatively low
compared to that in Mendota Lake, which leads to the fusion

Table 5 RMSE, MSE, MAE and MAPE of prediction results for Rse,
Ave, BLUE and PID4LaTe. (Bold and /talic highlight the best and
second-best model performance respectively.)

Dataset MODEL RMSE MSE MAE MAPE

Mendota Lake  Rse 0.943 0.906 0.673 5.442%
Ave 0.842 0.717  0.603  4.658%
BLUE 0.797 0.639 0.585 4.515%
PID4LaTe 0.798 0.644 0.567 4.367%

Sparkling Lake  Rse 1.135 1.314  0.809  8.092%
Ave 1.118 1.267 0.820 7.812%
BLUE 1.230 1.530 0.934 8.876%
PID4LaTe 1.099 1.261 0.783 7.936%
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result in Sparkling Lake not being as good as that in Men-
dota Lake.

These findings suggest that the fusion process in PID-
4LaTe enables better integration of the three modules, lead-
ing to improved forecast performance.

Performance of predicted temperature in time and
depth (RQ4)

Due to the lack of lake observations during the winter
months and the presence of fewer observations in some
months, we chose data from the spring (May), summer (July
and August), and autumn (October), when there were more
observations, to assess the prediction effectiveness of the
model across the seasons. Figures 5 and 6 show the results
of the different evaluation metrics for PID4LaTe and the
baseline models on the predicted values in these months for
Lake Mendota and Lake Sparkling, respectively. For these
four months, PID4LaTe performs best on almost all evalua-
tion metrics, consistent with the overall performance evalu-
ation results. For Lake Mendota, we selected data at 10 m
from 30 April 2017 to 15 November 2017, and for Lake
Sparkling, data at 8§ m from 18 June 2010 to 15 Novem-
ber 2010 were selected. Figures 7 and 8 show the predicted
compared to the true values for PID4LaTe and the baseline
models for the selected time ranges at these two lakes. For
Lake Mendota, we also compared model predictions with
true values at depths of 0 m, 5 m, 15 m, and 20 m, with
results shown in Supplementary Fig. S1 through S4. For
Lake Sparkling, we also compared model predictions with
true values at depths of 0 m, 4 m, 11 m, and 15 m, with
results shown in Supplementary Fig. S5 through S8. Over-
all, the predictions of our model are closer to the true values.

In order to evaluate the prediction effectiveness of differ-
ent models at different depths, we selected 25 depths from
0 m to 24 m with a depth interval of 1 m for Mendota Lake
and 18 depths from 0 m to 17 m with a depth interval of
1 m for Sparkling Lake. Figures 9 and 10 show the per-
formance of PID4LaTe and the baseline models for differ-
ent evaluation metrics at different depths in Mendota Lake
and Sparkling Lake. At shallow depths, PID4LaTe performs
similarly to the best baseline model. At deeper depths,
PID4LaTe shows a significant improvement in water tem-
perature compared to the baseline models, which can better
simulate temperature changes in the lakes. We selected lake
temperatures at different depths on 28 May 2014 for Lake
Mendota and 31 May 2011 for Lake Sparkling, and plot-
ted the predicted versus true values of PID4LaTe versus the
baseline models on both lakes, as shown in Figs. 11 and 12.
For Mendota Lake, we also compared the model predictions
with the true values on July 21, 2014, August 20, 2014, and
October 30, 2014, as shown in Supplementary Fig. S9 to



Earth Science Informatics (2024) 17:3779-3795 3789

18 45
WPID4LaTe mPID4LaTe
1.6 2 PGRNN 4 = PGRNN
uDL =DL
14 “PB 35 “PB
12 3
g 1 % 25
5 =
0.8 2
0.6 15
0.4 1
0.2 0.5
0 0
May July Aug Oct May July Aug Oct
Month Month
1.6 0.12
mPID4LaTe mPID4LaTe
14 =PGRNN =PGRNN
=DL 0.10 =DL
12 “PB “PB
1 0.08
E =
= 08 2 oos
=
0.6
0.04
04
0.02
0.2
0 0.00
May July Aug Oct May July Aug Oct
Month Month

Fig. 5 RMSE, MSE, MAE and MAPE of prediction results for PB, DL, PGRNN and PID4LaTe on the Mendota Lake in May, July, August and
October

18 35
WPID4LaTe WPID4LaTe
L6 =PGRNN 3 = PGRNN
=DL =DL
14
“PB 25 “PB
12
2 1 2 2
5 =
0.8 15
0.6
1
0.4
02 05
0 0
May July Aug Oct May July Aug Oct
Month Month
16 0.14
WPID4LaTe
14 #PGRNN 0.12
DL
12 “PB
0.10
1
=
> 2 008
= o8 E
0.06
0.6
04 0.04
0.2 0.02
0 0.00
May July Aug Oct May July Aug Oct
Month Month

Fig.6 RMSE, MSE, MAE and MAPE of prediction results for PB, DL, PGRNN and PID4LaTe on the Sparkling Lake in May, July, August and
October

@ Springer



3790

Earth Science Informatics (2024) 17:3779-3795

25

——PID4LaTe ——PGRNN ——DL

20 PB —TRUE

15

10 =z

Temperature

N Q
RSN S S IR SO S NSO MR RS

Date

Fig. 7 Temperature predictions for PB, DL, PGRNN and PID4LaTe at 10 m in Lake Mendota from 30 April 2017 to 15 November 2017

25

e—PID4LaTe

===PGRNN

20

[
2}

Temperature
L
(=]

0

N}
J
'\
N

N S\ N \
'VQ ) ,»Q ,»Q ,\‘Q

o>

AV
N

5

V

OV R N
& \ oo
& &

S S
RN )

o > S A
@ \\ \v v
\

O IS A

Yoo

o
o

SN \\%
O O
>

O A
N ~
ORI
\% \Q \Q \Q
N Q N N
D v »

Date

Fig. 8 Temperature predictions for PB, DL, PGRNN and PID4LaTe at 8 m in Lake Sparkling from 18 June 2010 to 15 November 2010

S11. For Sparkling Lake, we compared the model predic-
tions with the true values on July 30, 2011, August 9, 2011,
and October 6, 2011, as shown in Supplementary Fig. S12
to S14. The results show that the temperature distribution
of PID4LaTe at deeper depths is closest to the true values.
Lake temperatures show a clear seasonal stratification
phenomenon, with significant thermal stratification occur-
ring in summer and winter, while in spring and autumn the
lake undergoes an overturning phenomenon that reduces the
temperature difference between the top and bottom of the
lake. Due to the lack of winter observations and the pres-
ence of fewer observations in some months, we evaluated
the prediction results for Lake Mendota and Lake Sparkling
at different depths in summer (July, August), spring (May)
and autumn (October). As shown in Supplementary Fig.
S14 and S15, for Lake Mendota, the PGDL model performs

@ Springer

better at shallower depths in May, July, and August. PID-
4LaTe is slightly worse than PGDL. PID4LaTe works bet-
ter at deeper depths. In October, PID4LaTe outperforms the
other models overall at various depths. For Sparkling Lake,
PID4LaTe performs slightly better than the other baseline
models at shallower depths in July and August, and signifi-
cantly better at deeper depths. In May and October, PID-
4LaTe is similar to the optimal baseline model at shallower
depths, and PID4LaTe performs better at deeper depths.
This suggests that when the lake is thermally stratified,
PID4LaTe can better simulate lake temperatures in the ther-
mocline and deeper depths. Taken together, the prediction
performance of PID4LaTe is similar to that of the optimal
baseline model at shallow depths, and at deeper depths PID-
4LaTe can simulate the temperature change of the lake bet-
ter than the baseline models. It can more accurately simulate
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Fig. 12 Temperature predictions for PB, DL, PGRNN and PID4LaTe at different depths in Lake Sparkling, 31 May 2011

temperatures during periods of thermal stratification and
mixing in lakes.
Discussion

Lake temperature plays a crucial role in maintaining a bal-
anced underwater ecosystem (Prakash 2021). In this study,
a hybrid model PID4LaTe that fuses the data-driven model

@ Springer

with the physical model is proposed to predict lake tem-
peratures at different depths. The results of the study show
that combining the spatio-temporal mining module with the
physical model could result in accurate multi-depth temper-
ature modelling of lakes.

PGRNN and PID4LaTe have better prediction perfor-
mance than DL and PB for both lakes. PB has the worst
performance. PB simulates the dynamics of thermal strati-
fication. However, predicting the stratification dynamics
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based on the underlying process is very challenging for the
physical models including GLM. DL learns patterns from
the data and is able to reduce prediction errors for com-
plex processes in lakes. But a combination of physical and
data-driven models is more effective. PID4LaTe is superior
to PGRNN. One reason is that it takes into account depth
sequences that the PGRNN does not. Its spatial prediction
module helps to better mine the complex temperature varia-
tions at different depths. Another is that PID4LaTe benefits
from the combination of the physical model and the data-
driven model. All this highlights the advantages of PID-
4LaTe over existing models by leveraging both depth and
time series relationships and effectively utilizing the physi-
cal model to improve prediction.

PID4LaTe outperforms the PGRNN, DL and PB mod-
els in terms of prediction performance for selected lake
temperatures in summer (July, August), spring (May) and
autumn (October). In the shallow layer of the lake, the pre-
diction performance of the PID4LaTe model is similar to
that of the optimal baseline models. In the deeper layer, the
PID4LaTe model is able to simulate the temperature varia-
tion of the lake better than the baseline models, showing an
obvious enhancement effect. This improvement is due to the
fusion effect of the physical model and the use of the physi-
cal model output as a feature for data augmentation in the
depth prediction module, which learns more depth informa-
tion. It can be concluded that the PID4LaTe model is able to
simulate lake temperatures more accurately when thermal
stratification and mixing occur.

The temporal prediction module, the spatial prediction
module and the physical module of PID4LaTe are required.
The temporal prediction module plays the main role,
because most of the input features of the model change over
time. The data contain more time series information. The
mining of time series information by the temporal predic-
tion module can greatly improve the prediction accuracy.
Lake temperature prediction involves temperature at mul-
tiple depths. The same sequence relationship exists between
the depths, which requires the spatial prediction module to
mine the information. Although the model mines informa-
tion in both temporal and spatial dimensions, the predictions
made by the physical model based on complex physical
knowledge cannot be ignored. The sub-modules fusion
process of PID4LaTe allows the model to learn the weights
of the sub-modules summation on its own to obtain more
accurate predictions compared to Res, Ave and BLUE. The
fusion method of PID4LaTe can combine the advantages of
the sub-modules to a great extent, which can improve the
prediction results.

There are some limitations in this study: due to the lim-
ited datasets of the studied lake, the applicability of the
model proposed in this study to other lakes needs to be

further analyzed. In addition, the spatio-temporal mining
method of this model does not learn the spatio-temporal
dynamic correlation, which needs to be studied by choosing
a more advanced deep learning model.

Conclusions

The combination of data-driven model and physical model
can improve the prediction of lake temperature at mul-
tiple depths more effectively. We consider the relationship
between lake temperatures over time series and depth series,
and fuse the spatio-temporal model with the physical model
to propose a hybrid model: PID4LaTe. The model can effec-
tively improve the accuracy of lake temperature prediction.
Among the sub-modules of the model, the temporal predic-
tion module plays the most important role, followed by the
spatial prediction module, and finally the physical module.

By analyzing the prediction results in both temporal
and spatial dimensions, we found that the PID4LaTe pro-
posed in this paper has better prediction performance in
summer (July, August), spring (May) and autumn (Octo-
ber) compared to PB, DL and PGRNN models. PID4LaTe
outperforms the PB, DL and PGRNN models at all depths,
especially at deeper depths, and is able to simulate tempera-
tures during thermal stratification and mixing in lakes more
accurately.

The results of this study will help future researchers in
lake ecological studies, environmental protection and policy
development. Further research could explore different neu-
ral network models and machine learning approaches, as
well as more advanced fusion methods of data-driven and
physical models to improve and increase the accuracy of
lake temperature modelling.
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