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soil-water interface (Ciampittiello et al. 2021). Lake water 
temperatures are distributed in layers with depth, which is 
called thermal stratification. Figure  1 shows the thermal 
stratification of a lake in summer. This thermal stratification 
usually consists of three layers: the epilimnion, the thermo-
cline and the hypolimnion (Boehrer and Schultze 2008). 
Lake thermal stratification indirectly affects the plankton 
population structure and also limits the upward and down-
ward mixing motion of turbulent flows (Spigel and Imberge 
1987).

Meteorological conditions such as solar radiation, wind 
speed and precipitation affect the heating and mixing of 
lake water and have a significant effect on lake temperatures 
(Arhonditsis et al. 2004). Lake temperatures also exhibit 
significant seasonal stratification as a result of climatic 
conditions. In summer, the surface temperature of lakes 
tends to rise, while deeper layers maintain relatively cooler 

Introduction

The temperature status of lake is the basis for understand-
ing various physicochemical processes and dynamical phe-
nomena in lakes, and is one of the important environmental 
conditions affecting aquatic ecosystems (Staehr et al. 2010). 
Lake water temperature not only plays an important role 
in water balance calculations and evapotranspiration, but 
also in water quality analyses and material exchange at the 
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Abstract
Lake temperature plays a pivotal role in the physical and chemical processes in the water. It has a significant impact 
on the distribution of lake organisms. In lake temperature modelling, the physics-based models have the shortcomings 
of parameter calibration and generalization difficulties. The data-driven models are highly data dependent. This makes 
hybrid models an effective solution at present. In this paper, we explore the spatial and temporal co-evolution process 
for multi-depth lake temperature and propose a Physics-Informed Deep learning model for Lake multi-depth Temperature 
prediction, PID4LaTe. It consists of three sub-models, two of which are long short-term memory (LSTM) models for 
spatial and temporal prediction respectively, and the other is a physical model, the General Lake Model. The physical 
model offers simulation data based on its rich knowledge for data-driven model learning, while guaranteeing consistency 
between model results and physical mechanisms. We compared PID4LaTe with the Process-Based model (PB), the Deep 
Learning model (DL) and the Physics-Guided Recurrent Neural Networks model (PGRNN), and used Root Mean Square 
Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) 
to assess the effectiveness of the models. Extensive experiments show the superiority of our hybrid model for lake multi-
depth prediction over PB, DL and PGRNN with RMSE of 0.798, MSE of 0.644, MAE of 0.567 and MAPE of 4.367% 
in Mendota Lake and RMSE of 1.099, MSE of 1.261, MAE of 0.783 and MAPE of 7.936% in Sparkling Lake. The two-
cases study indicates that the hybrid model combining the physics-based model with the data-driven model is a promising 
technique for multi-depth lake temperature predicting. This study provides a reference method for accurate prediction of 
temperature at multiple depths in lakes.

Keywords  Hybrid model · Physics-informed · LSTM · Lake multi-depth temperature prediction
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temperatures, resulting in a discernible positive temperature 
stratification profile. In winter, the surface temperature of 
lakes is lower than that of the deep layers, showing inverse 
temperature stratification. The difference between the upper 
and lower water body temperatures in spring and autumn 
was small (Lampert and Somme 2007). Temperature pre-
diction at multiple depths in lakes is a challenging task that 
requires comprehensive consideration of changes in meteo-
rological conditions, modelling of thermal stratification 
phenomena, and the dynamics of water temperatures in dif-
ferent seasons and depths.

Some works related to lake temperature prediction have 
been proposed. Based on the technical approach, they can 
be divided into three categories: the physics-based methods, 
the data-driven methods, and the hybrid methods.

Researchers have focused on the physics-based methods 
that build complex functions to represent the physical and 
thermal processes between the lake and the atmosphere. Sev-
eral models have been proposed to predict lake surface tem-
perature, including regression methods (Kettle et al. 2004; 
Livingstone and Lotter 1998; Sharma 2008) and process-
based numerical models (Martynov et al. 2010; Thiery et al. 
2014). Due to their limitations of not being able to address 
some fundamental processes, Piccolroaz et al. (2013, 2016) 
proposed the air2water model that can reliably estimate lake 
surface temperature based on air temperature alone. The 
physical models for predicting lake temperature at multi-
depths are more complex because they involve the verti-
cal temperature distribution and variations within the lake. 
There have developed numerous models, such as the one-
dimensional model Dynamic Reservoir Simulation Model 
(DYRESM) (Weinberger and Vetter 2012), the General 
Ocean Turbulence model (GOTM) (Burchard 2002) and the 
General Lake Model (GLM) (Read et al. 2017; Hipsey et al. 
2019). We chose GLM as the primary physics-based model 
for predicting lake temperature because of its outstand-
ing performance and extensive usage in lake modelling. It 

considers the effect of inflows/outflows, mixing and surface 
heating and cooling (Menció et al. 2017). The estimation 
and calibration of parameters in GLM models requires con-
siderable observational data and computational resources. 
Accurate estimation and calibration of these parameters is 
a major challenge, especially for large lakes and complex 
environmental conditions.

With the advancement of big data era, the data-driven 
methods have emerged as a promising alternative for lake 
temperature prediction. It provides a flexibility and effective 
solution compared to the physics-based models (DeWeber 
and Wagner 2014). Some works have been reported that are 
adaptive network based on fuzzy inference system (Kara-
bog and Kaya 2019), the standard multiple linear regression 
(Uyanık and Güler 2013), wavelet neural network (Alexan-
dridis and Zapranis 2013) and deep learning neural network 
(Heddam et al. 2020). Recently, for lake surface temperature 
prediction, Yu et al. (2020) presented a hybrid prediction 
model that combines support vector regression (SVR), ana-
lytical hierarchy process (AHP), and backpropagation arti-
ficial neural network (BPANN) algorithms. This model was 
applied to simulate and estimate the surface temperatures 
of 11 lakes in the Yunnan-Guizhou Plateau, and the results 
showed low error rates and strong generalization capabili-
ties. Willard et al. (2022) introduced entity information and 
proposed an entity-aware long and short-term memory net-
work (EA-LSTM) to predict daily surface temperatures for 
lakes in the United States. Hao et al. (2023) proposed an 
Attention-GRU model, which combines the Self-Attention 
mechanism and GRU model for predicting lake surface tem-
perature in Qinghai Lake. Di et al. (2023) used a machine 
learning algorithm by stacking multilayer perceptron and 
random forest (MLP-RF) for the prediction of lake surface 
temperatures. The result showed that the entity information 
is valuable for lake temperature prediction. While surface 
temperature prediction provides valuable insights, it fails 
to capture the complex thermal dynamics that occur below 

Fig. 1  Thermal stratification 
and temperature profile of lake 
in summer. During the summer 
months, thermal stratification 
of lakes usually results in the 
formation of three layers: the 
epilimnion, the thermocline and 
the hypolimnion. The epilimnion 
is warmer, the hypolimnion is 
cooler, and the water tempera-
ture drops sharply between the 
epilimnion and the hypolimnion, 
creating a transition zone known 
as the thermocline
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the lake surface. In this study, we emphasize the problem 
of temperature prediction at multiple depths. When multi-
depth temperature data is available, researchers typically 
employ data-driven models to simulate temperatures at 
different depths separately (Saeed et al. 2016). Saber et al. 
(2020) used ANN to predict the future water temperature 
of Lake Mead at 22 different depths. Quan et al. (2022) 
proposed GA-SVR, a genetic algorithm with support vec-
tor regression model, to simulate the temperature of Long-
yangxia Reservoir at elevations of 2585, 2550 and 2495, 
respectively. The optimal parameters of SVR were obtained 
using GA.

The data-driven models demonstrate their excellent 
capability to a certain extent, but they require large amounts 
of high-quality data. High-quality data is hard to come 
by in complex scenarios, hindering the use of data-driven 
methods.

Recently, some hybrid models combining the data-driven 
model and the physical model have emerged for lake tem-
perature prediction. These studies used the physical model 
to generate synthetics data or incorporated it to constrain the 
optimization objective. For lake multi-depth temperature 
prediction, Daw et al. (2022) proposed the physics-guided 
neural networks (PGNN) model that introduced the result of 
the physical model as a feature for the neural network and 
designed a loss function based on the relationship between 
lake depth and density to ensure the prediction coherence 
of the basic physical process. Subsequently, based on this 
work, Daw et al. (2020) proposed the Physics-Guided Archi-
tecture (PGA) model, which uses auto-encoder structure to 
extract temporal features and LSTM to mine spatial infor-
mation to predict an intermediate physical quantity: den-
sity. PGA combines knowledge of density-depth physics on 
LSTM to have a monotonic recurrence relationship between 
predicted densities. Daw et al. (2020) have recognized that 
lake temperatures have a series relationship in both time and 
space, but PGA models have limited methods for mining 
time series information. Jia et al. (2021) proposed the Phys-
ics-Guided Recurrent Neural Networks model (PGRNN) 
model, which uses simulated data to pre-train data-driven 
model to address the problem of scarcity of observed data. 
PGRNN uses LSTM to exploit time-series relationships for 
lake temperatures, but neglects spatial-series relationships. 
The above models do not learn enough spatial and temporal 

information about lake temperatures and the integration 
with physical models could be further enhanced. Lake tem-
peratures exhibit variations over time and depth. Therefore, 
the lake temperature prediction problem can be viewed as a 
spatiotemporal forecasting task, necessitating the extraction 
of information from both the temporal and spatial dimen-
sions. In this paper, we propose a Physics-Informed Deep 
learning model for Lake multi-depth Temperature predic-
tion, PID4LaTe. It consists of spatial, temporal and physical 
models. Extensive experiments show the superiority of our 
model.

The main contributions of this paper are follows:

(1)	 A hybrid method with a physics-informed deep learn-
ing model is proposed, where the physical model offers 
information that conforms to special theories to enhance 
and regularize the deep learning model.

(2)	 Considering the spatiotemporal change of lake tem-
perature, two LSTMs are introduced to make temporal 
and spatial predictions respectively. The two views can 
clearly extract its latent trends from two different angles 
of view, which is simple but effective.

(3)	 The proposed model is compared with current popular 
models for predicting lake temperature, and the experi-
mental results show the valid of our model in the datas-
ets of Mendota and Sparkling lakes.

Methods

In this part, we present the lake datasets used for training 
and testing our model and the overall framework of our 
proposed Physics-Informed Deep learning model for Lake 
multi-depth Temperature prediction (PID4LaTe).

Datasets

The datasets used in our experiments are temperature data 
from Lake Mendota and Lake Sparkling in the United 
States, which are publicly available from Read et al. (2019) 
and can be downloaded from https://doi.org/10.5281/
zenodo.3497495. Observations of lake temperatures were 
obtained from North Temperate Lakes Long-Term Ecologi-
cal Research Program (Read et al. 2019), specifically dis-
crete temperature profile values. The sampling location for 
the Mendota Lake data is 43.099°N, -89.405°E, and for the 
Sparkling Lake data, it is 46.008°N, -89.701°E. The detailed 
information on the datasets is presented in Table 1. On some 
days we have observations at multiple depths, while on oth-
ers there are few or no observations.

Table 1  Statistics of the datasets
Dataset Time range Time 

span
Depth 
range

Depth 
span

The number of 
observations

Mendota 
Lake

April 15,2009 
to December 
19,2017

1 day 0 m to 
25 m

0.5 m 35,179

Sparkling 
Lake

April 29,2009 
to November 
13,2017

1 day 0 m to 
18 m

0.5 m 26,098
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find the function f : X → Y T . The inputs Xi  consist of 
short-wave radiation, long-wave radiation, wind speed, 
air temperature, relative humidity, rain, snow, as well as 
the value of depth and day of year.

Long-short term memory networks

Sequence prediction is a challenging class of prediction 
problems that need to capture sequence dependencies 
between input variables. Recurrent neural network (RNN) 
is a kind of neural network that can be used specifically to 
deal with sequence dependency. Long short-term memory 
network (LSTM) is a special kind of RNN. Memory units in 
LSTM are able to store and update information. It can store 
historical data to better predict future trends. The network 
structure is shown in Fig. 2.

The LSTM cell consists of an input gate it , an output 
gate ot

, a forget gate ft  and a cell gate ct
. The individual 

gates within the LSTM cell are calculated as follows:

ft = sigmoid (Wfxt + Ufht−1 + bf) � (1)

it = sigmoid (Wixt + Uiht−1 + bi)� (2)

ot = sigmoid (Woxt + Uoht−1 + bo)� (3)

∼
ct = tanh (Wcxt + Ucht−1 + bc) � (4)

For Lake Mendota, we selected temperature measure-
ments at every 0.5 m interval from the surface to a depth of 
25 m. The dataset for Lake Mendota includes temperature 
observations from 15 April 2009 to 19 December 2017, for 
a total of 35,179 observations.

For Lake Sparkling, we selected temperature measure-
ments at every 0.5 m interval from the surface to a depth of 
18 m. The dataset for Lake Sparkling includes temperature 
observations from 29 April 2009 to 13 November 2017, for 
a total of 26,098 observations.

The features used in the experiments comprise daily 
climate conditions recorded between 2009 and 2017. 
Specifically, we focus on 10 features, including the day 
of the year, depth, shortwave radiation, etc., listed in 
Table  2. All meteorological features, except the depth 
feature and the predicted value generated by the GLM 
model, are measured or derived from the meteorological 
dataset. The meteorological dataset was recorded from 
stations located about 2 km and 10 km from Lake Men-
dota and Lake Sparkling. These features have consistent 
values across different depths on a given day. It is worth 
noting that the input features do not include historical 
lake temperature. Considering that there are some days 
when the temperature data is lost, we set up a mask vec-
tor, the vector consists of 0 and 1, where 0 means that the 
temperature data for that day is lost and 1 means that the 
temperature data for that day exists. The loss is calcu-
lated by multiplying the mask vector by the matrix of the 
difference between the true and predicted values.

Problem formulation

The aim of this paper is to predict the temperature at 
varying depths of the lake using given meteorological 
variables. We use X = < X1, X2, ..., XT >∈ RT×m  as 
the input sequence. Xi ∈ Rm  represents the i th feature 
vector. T  represents the window size, while m  refers to 
the feature dimension. Y T = {yT

i }i∈Depth  represents the 
lake temperature at different depths at the time T . Hence, 
the lake temperature prediction task can be defined as to 

Table 2  Details of the features used in this study
Name Units
Day of Year (1-366) days
Depth m
Short-wave Radiation W/m2
Long-wave Radiation W/m2
Air Temperature ℃
Relative Humidity %
Wind Speed m/s
Rain cm
Snow cm
Physical model theoretical value ℃

Fig. 2  The network structure of LSTM.
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(4) Modules-hybrid prediction that fuses the three modules 
to obtain the final predictions.

Physical module

In PID4LaTe, we use the GLM model as the physical model 
for predicting lake temperature. The GLM model consid-
ers surface heat exchange, vertical energy layer mixing 
and other factors. It gives a mapping function between the 
dynamic physical processes and water temperature. The 
GLM model takes meteorological time series data as input. 
In our work, the GLM model first needs to be calibrated. The 
calibration of the GLM model parameters can be expressed 
as the following optimization problem:

min
θ

√
1
s

∑
(T,d)∈s

(yT
d − y_phyT

d )2� (7)

s.t.y_phy = fθ(X_m |θ)

where yT
d  represents the recorded temperature of the lake 

at time T  and depth d , s  is the sample size, y_phy  
denotes the theoretical value based on the physical model, 
which incorporates temperature at each depth from 1 
to T  time points, θ  is the parameter sets, andX_m  

ct = ftct−1 + it
∼
ct � (5)

ht = ottanh (ct)� (6)

where Wf , Uf , Wi , Ui , Wo , Uo , Wc  and Uc  stand for 
weights, bf , bi , bo  and bc  denote bias. sigmoid  is the sig-
moid activation function. tanh  is the hyperbolic tangent 
activation function.

LSTM effectively solves the problems of gradient van-
ishing and gradient explosion in traditional RNNs through 
the gating mechanism. The gating mechanism enables the 
model to better capture long-term dependencies in sequence 
data, and is often able to achieve better results in sequence 
prediction tasks (Sherstinsky 2020). Therefore, we chose 
the LSTM as the prediction model for the sub-module.

PID4LaTe model

The overview of PID4LaTe is shown in Fig. 3, which con-
sists of four major components: (1) Physical module that 
generates the predictions based on general physical knowl-
edge. (2) Spatial prediction module that captures depth 
sequence information using LSTM. (3) Temporal prediction 
module that captures time series information using LSTM. 

Fig. 3  The overview of PID4LaTe. In this model, the time interval is 
one day and the depth interval is 0.5 m. The PID4LaTe model can be 
divided into four modules: (1) Physical module generates the physical 
model theoretical values based on the meteorological time series data. 
(2) Spatial prediction module outputs the predicted values with spatial 
information based on the input features consisting of meteorological 
features, day of the year, depth, and the physical model theoretical 

values. (3) Temporal prediction module outputs the predicted values 
with temporal information based on the input features consisting of 
meteorological features, day of the year, depth, and the physical model 
theoretical values. (4) Modules-hybrid prediction: the outputs of 
Physical module, Spatial prediction module, and Temporal prediction 
module are passed through the Dense layer to get the final temperature 
predictions
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of X_time  is dw*time_window*feature_number . The 
meteorological features X_m  comprise seven variables, 
namely short-wave radiation, long-wave radiation, wind 
speed, air temperature, relative humidity, rain, and snow. 
We include the theoretical value of physical model as a 
data augmentation feature, concatenated with X_m , day 
of the year and depth. The aim of this model is to extract the 
evolving temporal trend at a fixed depth. The output of this 
module is y_timeT  which represents the temperatures at 
different depths at time T , calculated through the temporal 
sequence relationship. The shape of y_timeT  is dw ∗ 1.

Modules-hybrid prediction

Based on the physical module, the temporal prediction mod-
ule and the spatial prediction module, the model derives 
three prediction values. These three values are initially 
transformed into one-dimensional data and subsequently 
passed through a dense layer with a single neuron to obtain 
the final temperature prediction Λ

y
T

d
, corresponding to time 

T  and depth d :

Λ

yT
d =f (w_time ∗ y_timeT

d + w_depth ∗ y_depthT
d

+ w_phy ∗ y_phyT
d + b)

� (9)

The function f  is a linear activation function, while 
w_time ,w_depth  and w_phy  stand for weights, b  
denotes bias. The model generates more accurate prediction 
by considering the temporal and spatial dynamic correla-
tions and physical principles.

The loss function is defined as the root mean square error 
between the predicted value and the true value:

lossrmse =

√
1
s

∑
(T,d)∈s

(yT
d −

Λ
y

T

d )2� (10)

where s is the number of samples. We employ the loss func-
tion lossEc  developed by PGRNN (Jia et al. 2021) according 
to the energy conservation law to ensure reliable prediction 
of lake temperature. It guarantees the interpretability of the 
predicted results. PGRNN has already conducted thorough 
discussions on this topic, thus we will not repeat these anal-
yses. The final loss function is obtained by adding the two:

lossall = lossrmse + λEclossEc � (11)

where λEc  is the coefficient of the energy conservation law 
loss function. The loss function is calculated and then back-
propagated to update the model parameters.

is the meteorological data. The shape of X_m  is 
time_window*meteorological_feature_number .

The parameters of GLM model are linked to the loca-
tion, depth, hypsographic curve, and other morphological 
characteristics of the lake. The objective is to select a set 
of parameter values, denoted as ∧

θ , that best matches the 
model output with the observed data. This optimisation is 
achieved through an adaptive evolution strategy of covari-
ance matrix adaptive evolution strategy, resulting in the the-
oretical temperature values y_phy . The shape of y_phy  is 
time_window*depth_window .

The GLM model is a general model for different lakes. It 
shows the significant relationship between temperature and 
factors such as morphology, hydrology, climatic conditions, 
and others.

The physical model generates simulated values at differ-
ent depths, which are combined with known data to form 
series data at different depths. It plays the role of data aug-
mentation, solving the problem of data shortage in practi-
cal application scenarios. At the same time, the simulation 
value of the physical model as a feature is in accordance 
with the physical law.

Spatial prediction module

Sequence data with different depth information are formed 
after the GLM model augmentation. Considering the spa-
tial extent, the lake temperature shows a smooth evolving 
process over different depths. LSTM has gained popularity 
due to its ability to model long-term dependencies and ease 
of implementation. To capture this dependence relationship, 
we use LSTM to extract the concealed pattern of change 
in depth. The physical model theoretical values y_phyT  
at time T  are incorporated into the input, combined with 
the inputs XT  at time T  to construct the input matrix 
X_depthT . The size of the depth window is dw , with a 
depth interval of 0.5 m. The calculation formula for dw  is:

dw = (D + 0.5)/0.5� (8)

where D  is the maximum depth of the lake. The shape of 
X_depthT  is 1*dw*feature_number . The spatial predic-
tion module generates temperatures y_depthT  at different 
depth during a given time T  based on depth series relation-
ships. The shape of y_depthT  is 1*dw .

Temporal prediction module

In PID4LaTe, the LSTM model is introduced to capture the 
temporal latent correlation. The input X_time  to this mod-
ule includes meteorological features X_m , day of the year, 
depth, and the physical model theoretical value. The shape 
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RQ1  How does the prediction performance of our proposed 
model PID4LaTe compare to the baseline models?

RQ2  How each module in the PID4LaTe contributes to the 
overall model performance?

RQ3  Which sub-module fusion approach has better predic-
tion performance?

RQ4  How do PID4LaTe and the baseline models perform in 
time and depth?

Experiment settings

The experimental environment is as follows: Intel Core 
i9-10900 K CPU, NVIDIA 3090 GPUs. All codes are imple-
mented in Python (3.7.6).

We have standardized all input features to predict lake 
temperature at different times and depths. The LSTM con-
sists of 20 hidden neurons. The number of layers is 2. Epoch 
is a complete run of the process of forward and backward 
propagation of the entire training dataset through the neu-
ral network. In each epoch, all the samples in the training 
dataset are used to update the parameters of the model. The 
learning rate is the step size that controls the updating of the 
model parameters in each iteration. The number of training 
epoch is 600 and the learning rate is 0.001 for the Men-
dota Lake dataset. For the Sparkling Lake dataset, the epoch 
number is 400 and the learning rate is 0.005.

To compare with the baseline models, we follow an 
experimental design similar to as Read et al. (2019). We ran-
domly select some continuous time periods as the test set, 
while the remaining time periods are used as the training set. 
We conduct five experiments, choosing a different test set 
for each experiment. In our experiments, the Mendota Lake 
dataset uses data of 980 dates as the training set and 540 
dates as the test set. The Sparkling Lake dataset uses data 
of 500 dates as the training set and 540 dates as the test set.

Evaluation metrics

We choose Root Mean Square Error (RMSE), Mean Square 
Error (MSE), Mean Absolute Error (MAE) and Mean Abso-
lute Percentage Error (MAPE) as evaluation metrics. They 
are calculated as follows:

RMSE =

√
1
s

∑
(T,d)∈s

(yT
d −

Λ
y

T

d )2 � (12)

MSE =
1
s

∑

(T,d)∈s

(
yT

d −
Λ
y

T

d

)2

� (13)

MAE =
1
s

∑

(T,d)∈s

∣∣∣∣y
T
d −

Λ
y

T

d

∣∣∣∣� (14)

MAPE =
100%

s

∑

(T,d)∈s

∣∣∣∣∣∣∣

Λ
y

T

d − yT
d

yT
d

∣∣∣∣∣∣∣
� (15)

where s  is the number of test samples, yT
d  and Λ

y
T

d
 are the 

true and predicted values at time T  and depth d .

Experiments and results

We did experiments to evaluate the performance of PID-
4LaTe. These experiments are summarized in the following 
research questions:

Model Inputs
PB Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humid-

ity, Wind Speed, Rain, Snow
DL Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humid-

ity, Wind Speed, Rain, Snow, Day of Year, Depth
PGRNN Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humid-

ity, Wind Speed, Rain, Snow, Day of Year, Depth
PID4LaTe Short-wave Radiation, Long-wave Radiation, Air Temperature, Relative Humidity, 

Wind Speed, Rain, Snow, Day of Year, Depth, Physical model theoretical value

Table 3  The inputs of PB, DL, 
PGRNN and PID4LaTe
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Supplementary Table S1 shows the performance of the 
number of hidden neurons on the two datasets. The effect 
of this factor on the model performance is subtle. When the 
number of hidden neurons is set to 20, the model performs 
best on two datasets.

Supplementary Table S2 shows that the learning rate set-
ting has a great impact on model performance. For Mendota 
Lake, the learning rate is set to 0.001 for best performance. 
For Sparkling Lake, the learning rate is set to 0.005 for best 
effect.

Supplementary Fig. S17 shows the optimal value for 
Mendota Lake when the epoch number is 600. The best 
value for Sparkling Lake is taken for an epoch number of 
400.

Performance evaluation (RQ1)

The experimental results are given in Table 4. We can draw 
the following conclusions:

Our model demonstrates the superior performance than 
others on the two datasets. Table 4 shows the values of the 
evaluation metrics of our proposed model and other base-
line models on the train and test datasets in Lake Mendota 
and Lake Sparkling. After five experiments, PID4LaTe per-
forms best in both lakes, with an RMSE of 0.798, MSE of 
0.644, MAE of 0.567 and MAPE of 4.367% in Lake Men-
dota, compared to an RMSE of 1.099, MSE of 1.261, MAE 
of 0.783 and MAPE of 7.936% in Lake Sparkling.

The hybrid models of PGRNN and PID4LaTe are all 
superior to the physics-based model and the data-driven 
model. As can be seen in Table 4, PB performs the worst 
with RMSE of 1.564, MSE of 2.511, MAE of 1.097, and 
MAPE of 8.787% in Lake Mendota and RMSE of 1.600, 
MSE of 2.619, MAE of 1.278, and MAPE of 11.804% in 

Comparison methods

We choose the state-of-the-art models used for multi-depth 
temperature prediction in lakes as the baseline models. 
Table 3 shows the inputs to each model. The baseline mod-
els include:

PB (Read et al. 2017): A Process-Based model, which 
is the physical model. We select the GLM model. It is cali-
brated using the training sets of the two lakes, and the pre-
dicted results are evaluated on the test set.

DL (Jia et al. 2021): A Deep Learning model in which 
the meteorological indicators are features and LSTM is 
used to extract the time series relationships and generate the 
prediction.

PGRNN (Jia et al. 2021): This is a hybrid model which 
unites physical and data-driven models. The model employs 
LSTM to capture the temporal dynamic patterns of lake 
temperature. It is pre-trained using the output of the uncali-
brated GLM model and further fine-tuned using a limited 
set of observations. The model also incorporates additional 
states derived from physical equations into the loss func-
tion to ensure energy conservation. In addition, PGRNN 
is another name for the Process-Guided Deep Learning 
(PGDL) model proposed by Read et al. (2019).

Hyperparameters study

We investigate the influence of the number of hidden neu-
rons, the learning rate and the epoch on the model perfor-
mance. Using an iterative approach, we systematically vary 
these parameters to assess their impact on the overall per-
formance of the model. Hidden neurons ∈ {10,20,30,40}, 
learning rate ∈ {0.05,0.01,0.005,0.001,0.0005}, epoch ∈ 
{100,200,300,400,500,600,700,800}.

Table 4  RMSE, MSE, MAE and MAPE of PB, DL, PGRNN and PID4LaTe on the train and test datasets for the two lakes. (Bold and Italic high-
light the best and second-best model performance respectively.)

Dataset MODEL RMSE MSE MAE MAPE
Train dataset Mendota Lake PB 1.500 2.254 1.057 8.786%

DL 1.074 1.159 0.786 4.099%
PGRNN 0.914 0.838 0.673 4.316%
PID4LaTe 0.495 0.246 0.349 2.676%

Sparkling Lake PB 1.468 2.159 1.097 10.524%
DL 1.465 2.162 1.057 6.163%
PGRNN 1.294 1.688 0.952 6.687%
PID4LaTe 0.437 0.194 0.315 2.995%

Test dataset Mendota Lake PB 1.564 2.511 1.097 8.787%
DL 1.074 1.157 0.786 6.397%
PGRNN 0.914 0.838 0.673 5.488%
PID4LaTe 0.798 0.644 0.567 4.367%

Sparkling Lake PB 1.600 2.619 1.278 11.804%
DL 1.450 2.162 1.057 10.466%
PGRNN 1.281 1.688 0.952 9.402%
PID4LaTe 1.099 1.261 0.783 7.936%
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reduction of 42.2% for the Mendota Lake dataset and 21.6% 
for the Sparkling Lake dataset.

The spatial prediction module can help to reduce the pre-
diction errors. The errors of PID4LaTe-Spa on the Mendota 
Lake and Sparkling Lake datasets increase by 3.4% and 
17.5% respectively when the spatial module is removed. The 
role of the spatial prediction module is not as great as that of 
the temporal prediction module. However, it improves the 
accuracy of the lake temperature prediction to some extent.

The physical module plays a crucial role in improving 
the quantity and quality of the data, thereby enhancing 
the accuracy of prediction. Removing this module leads 
to an increase in errors, with an increase of 2.4% for the 
Mendota Lake dataset and 17.1% for the Sparkling Lake 
dataset. Therefore, the physical prediction module is also 
indispensable.

As a result, all three modules are crucial. They have a 
favorable impact on the prediction of lake temperature.

Analysis of the fusion procession (RQ3)

In addition, we explore different fusion processes for sub-
modules and evaluate their performance. Four fusion tech-
niques have been tested and compared:

Res: Residual model (San and Maulik 2018a, b; Wan et 
al. 2018). The final output of the model is the sum of the 
outputs of the three modules. It adopts data-driven method 
to correct the residual of the physical model.

Ave: This method is to sum the outputs of three modules 
and averages them as the final prediction.

Lake Sparkling, followed by DL with RMSE of 1.074, MSE 
of 1.157, MAE of 0.786 and MAPE of 6.397% in Lake 
Mendota and RMSE of 1.450, MSE of 2.162, MAE of 1.057 
and MAPE of 10.466% in Lake Sparkling.

PID4LaTe has a better performance than PGRNN. The 
RMSE values of PID4LaTe are reduced by 12.7% and 
14.2%, respectively. The improvement of PID4LaTe is sig-
nificant when compared to PGRNN.

Ablation study (RQ2)

To investigate the role of each module in PID4LaTe, we 
design the ablation experiments. We calculate the mean 
of the results from five experiments, while discarding the 
highest and lowest values, to account for cases where cer-
tain models perform exceptionally well or poorly on spe-
cific datasets. The experimental results are shown in Fig. 4, 
where:

(1)	 PID4LaTe: the complete model.
(2)	 PID4LaTe-Tem: remove only the temporal prediction 

module.
(3)	 PID4LaTe-Spa: remove only the spatial prediction 

module.
(4)	 PID4LaTe-Phy: remove only the physical module.

The temporal prediction module shows superior perfor-
mance in lake temperature prediction. Removing the tempo-
ral module results in a significant increase in errors, with a 

Fig. 4  RMSE values of prediction results for PID4LaTe, PID4LaTe-Tem, PID4LaTe-Spa and PID4LaTe-Phy
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result in Sparkling Lake not being as good as that in Men-
dota Lake.

These findings suggest that the fusion process in PID-
4LaTe enables better integration of the three modules, lead-
ing to improved forecast performance.

Performance of predicted temperature in time and 
depth (RQ4)

Due to the lack of lake observations during the winter 
months and the presence of fewer observations in some 
months, we chose data from the spring (May), summer (July 
and August), and autumn (October), when there were more 
observations, to assess the prediction effectiveness of the 
model across the seasons. Figures 5 and 6 show the results 
of the different evaluation metrics for PID4LaTe and the 
baseline models on the predicted values in these months for 
Lake Mendota and Lake Sparkling, respectively. For these 
four months, PID4LaTe performs best on almost all evalua-
tion metrics, consistent with the overall performance evalu-
ation results. For Lake Mendota, we selected data at 10 m 
from 30 April 2017 to 15 November 2017, and for Lake 
Sparkling, data at 8  m from 18 June 2010 to 15 Novem-
ber 2010 were selected. Figures 7 and 8 show the predicted 
compared to the true values for PID4LaTe and the baseline 
models for the selected time ranges at these two lakes. For 
Lake Mendota, we also compared model predictions with 
true values at depths of 0 m, 5 m, 15 m, and 20 m, with 
results shown in Supplementary Fig. S1 through S4. For 
Lake Sparkling, we also compared model predictions with 
true values at depths of 0 m, 4 m, 11 m, and 15 m, with 
results shown in Supplementary Fig. S5 through S8. Over-
all, the predictions of our model are closer to the true values.

In order to evaluate the prediction effectiveness of differ-
ent models at different depths, we selected 25 depths from 
0 m to 24 m with a depth interval of 1 m for Mendota Lake 
and 18 depths from 0 m to 17 m with a depth interval of 
1  m for Sparkling Lake. Figures  9 and 10 show the per-
formance of PID4LaTe and the baseline models for differ-
ent evaluation metrics at different depths in Mendota Lake 
and Sparkling Lake. At shallow depths, PID4LaTe performs 
similarly to the best baseline model. At deeper depths, 
PID4LaTe shows a significant improvement in water tem-
perature compared to the baseline models, which can better 
simulate temperature changes in the lakes. We selected lake 
temperatures at different depths on 28 May 2014 for Lake 
Mendota and 31 May 2011 for Lake Sparkling, and plot-
ted the predicted versus true values of PID4LaTe versus the 
baseline models on both lakes, as shown in Figs. 11 and 12. 
For Mendota Lake, we also compared the model predictions 
with the true values on July 21, 2014, August 20, 2014, and 
October 30, 2014, as shown in Supplementary Fig. S9 to 

BLUE (Xue et al. 2022): It statistically integrates the 
model of the PID4LaTe removal physical prediction module 
with the theoretical value of the physical model based on the 
best linear unbiased estimator to get the final prediction. The 
best linear estimate (XB ) is:

XB =
σP

2

σP
2 + σD

2XD +
σD

2

σP
2 + σD

2XP � (16)

where σP
 and σD

 are the root mean square errors of PID-
4LaTe-Phy and PB predictions, respectively. XD  and XP  
are the temperature values from PID4LaTe-Phy and PB, 
respectively.

PID4LaTe: The final prediction is obtained by feeding 
the outputs of three modules into a dense layer. It learns the 
weights and gets the final prediction.

Table 5 shows the prediction results of different fusion 
techniques for the two lake datasets. Res gives the worst 
results at Lake Mendota with RMSE value of 0.943, MSE of 
0.906, MAE of 0.673 and MAPE of 5.442%. In the residual 
model, the data-driven model acts as a corrective element, 
while the output of the physical model dominates the pre-
diction. The data-driven model plays a lesser role. Ave gives 
better predictions than Res at Lake Mendota with RMSE 
value of 0.842, MSE of 0.717, MAE of 0.603 and MAPE 
of 4.658%. Ave assigns equal weight to the outputs of the 
temporal prediction module, the spatial prediction mod-
ule, and the physical module. PID4LaTe and BLUE exhibit 
similar errors on Mendota Lake. BLUE has an RMSE of 
0.797, MSE of 0.639, MAE of 0.585 and MAPE of 4.515%. 
PID4LaTe has an RMSE of 0.798, MSE of 0.644, MAE of 
0.567 and MAPE of 4.367%. However, PID4LaTe signifi-
cantly outperforms Blue on Sparkling Lake. As BLUE is a 
statistical fusion technique, it is clear from Eq. (16) that the 
results of the fusion are significantly limited by the RMSE 
of PID4LaTe-Phy and PB. The benefits of merging the two 
are only marginally improved. Figure 4 shows that the effi-
ciency of PID4LaTe-Phy in Sparkling Lake is relatively low 
compared to that in Mendota Lake, which leads to the fusion 

Table 5  RMSE, MSE, MAE and MAPE of prediction results for Rse, 
Ave, BLUE and PID4LaTe. (Bold and Italic highlight the best and 
second-best model performance respectively.)
Dataset MODEL RMSE MSE MAE MAPE
Mendota Lake Rse 0.943 0.906 0.673 5.442%

Ave 0.842 0.717 0.603 4.658%
BLUE 0.797 0.639 0.585 4.515%
PID4LaTe 0.798 0.644 0.567 4.367%

Sparkling Lake Rse 1.135 1.314 0.809 8.092%
Ave 1.118 1.267 0.820 7.812%
BLUE 1.230 1.530 0.934 8.876%
PID4LaTe 1.099 1.261 0.783 7.936%
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Fig. 6  RMSE, MSE, MAE and MAPE of prediction results for PB, DL, PGRNN and PID4LaTe on the Sparkling Lake in May, July, August and 
October

 

Fig. 5  RMSE, MSE, MAE and MAPE of prediction results for PB, DL, PGRNN and PID4LaTe on the Mendota Lake in May, July, August and 
October
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better at shallower depths in May, July, and August. PID-
4LaTe is slightly worse than PGDL. PID4LaTe works bet-
ter at deeper depths. In October, PID4LaTe outperforms the 
other models overall at various depths. For Sparkling Lake, 
PID4LaTe performs slightly better than the other baseline 
models at shallower depths in July and August, and signifi-
cantly better at deeper depths. In May and October, PID-
4LaTe is similar to the optimal baseline model at shallower 
depths, and PID4LaTe performs better at deeper depths. 
This suggests that when the lake is thermally stratified, 
PID4LaTe can better simulate lake temperatures in the ther-
mocline and deeper depths. Taken together, the prediction 
performance of PID4LaTe is similar to that of the optimal 
baseline model at shallow depths, and at deeper depths PID-
4LaTe can simulate the temperature change of the lake bet-
ter than the baseline models. It can more accurately simulate 

S11. For Sparkling Lake, we compared the model predic-
tions with the true values on July 30, 2011, August 9, 2011, 
and October 6, 2011, as shown in Supplementary Fig. S12 
to S14. The results show that the temperature distribution 
of PID4LaTe at deeper depths is closest to the true values.

Lake temperatures show a clear seasonal stratification 
phenomenon, with significant thermal stratification occur-
ring in summer and winter, while in spring and autumn the 
lake undergoes an overturning phenomenon that reduces the 
temperature difference between the top and bottom of the 
lake. Due to the lack of winter observations and the pres-
ence of fewer observations in some months, we evaluated 
the prediction results for Lake Mendota and Lake Sparkling 
at different depths in summer (July, August), spring (May) 
and autumn (October). As shown in Supplementary Fig. 
S14 and S15, for Lake Mendota, the PGDL model performs 

Fig. 8  Temperature predictions for PB, DL, PGRNN and PID4LaTe at 8 m in Lake Sparkling from 18 June 2010 to 15 November 2010

 

Fig. 7  Temperature predictions for PB, DL, PGRNN and PID4LaTe at 10 m in Lake Mendota from 30 April 2017 to 15 November 2017
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Fig. 10  RMSE, MSE, MAE and MAPE of prediction results for PB, DL, PGRNN and PID4LaTe on the Sparkling Lake at different depths

 

Fig. 9  RMSE, MSE, MAE and MAPE of prediction results for PB, DL, PGRNN and PID4LaTe on the Mendota Lake at different depths
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with the physical model is proposed to predict lake tem-
peratures at different depths. The results of the study show 
that combining the spatio-temporal mining module with the 
physical model could result in accurate multi-depth temper-
ature modelling of lakes.

PGRNN and PID4LaTe have better prediction perfor-
mance than DL and PB for both lakes. PB has the worst 
performance. PB simulates the dynamics of thermal strati-
fication. However, predicting the stratification dynamics 

temperatures during periods of thermal stratification and 
mixing in lakes.

Discussion

Lake temperature plays a crucial role in maintaining a bal-
anced underwater ecosystem (Prakash 2021). In this study, 
a hybrid model PID4LaTe that fuses the data-driven model 

Fig. 12  Temperature predictions for PB, DL, PGRNN and PID4LaTe at different depths in Lake Sparkling, 31 May 2011

 

Fig. 11  Temperature predictions for PB, DL, PGRNN and PID4LaTe at different depths in Lake Mendota, 28 May 2014
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further analyzed. In addition, the spatio-temporal mining 
method of this model does not learn the spatio-temporal 
dynamic correlation, which needs to be studied by choosing 
a more advanced deep learning model.

Conclusions

The combination of data-driven model and physical model 
can improve the prediction of lake temperature at mul-
tiple depths more effectively. We consider the relationship 
between lake temperatures over time series and depth series, 
and fuse the spatio-temporal model with the physical model 
to propose a hybrid model: PID4LaTe. The model can effec-
tively improve the accuracy of lake temperature prediction. 
Among the sub-modules of the model, the temporal predic-
tion module plays the most important role, followed by the 
spatial prediction module, and finally the physical module.

By analyzing the prediction results in both temporal 
and spatial dimensions, we found that the PID4LaTe pro-
posed in this paper has better prediction performance in 
summer (July, August), spring (May) and autumn (Octo-
ber) compared to PB, DL and PGRNN models. PID4LaTe 
outperforms the PB, DL and PGRNN models at all depths, 
especially at deeper depths, and is able to simulate tempera-
tures during thermal stratification and mixing in lakes more 
accurately.

The results of this study will help future researchers in 
lake ecological studies, environmental protection and policy 
development. Further research could explore different neu-
ral network models and machine learning approaches, as 
well as more advanced fusion methods of data-driven and 
physical models to improve and increase the accuracy of 
lake temperature modelling.
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based on the underlying process is very challenging for the 
physical models including GLM. DL learns patterns from 
the data and is able to reduce prediction errors for com-
plex processes in lakes. But a combination of physical and 
data-driven models is more effective. PID4LaTe is superior 
to PGRNN. One reason is that it takes into account depth 
sequences that the PGRNN does not. Its spatial prediction 
module helps to better mine the complex temperature varia-
tions at different depths. Another is that PID4LaTe benefits 
from the combination of the physical model and the data-
driven model. All this highlights the advantages of PID-
4LaTe over existing models by leveraging both depth and 
time series relationships and effectively utilizing the physi-
cal model to improve prediction.

PID4LaTe outperforms the PGRNN, DL and PB mod-
els in terms of prediction performance for selected lake 
temperatures in summer (July, August), spring (May) and 
autumn (October). In the shallow layer of the lake, the pre-
diction performance of the PID4LaTe model is similar to 
that of the optimal baseline models. In the deeper layer, the 
PID4LaTe model is able to simulate the temperature varia-
tion of the lake better than the baseline models, showing an 
obvious enhancement effect. This improvement is due to the 
fusion effect of the physical model and the use of the physi-
cal model output as a feature for data augmentation in the 
depth prediction module, which learns more depth informa-
tion. It can be concluded that the PID4LaTe model is able to 
simulate lake temperatures more accurately when thermal 
stratification and mixing occur.

The temporal prediction module, the spatial prediction 
module and the physical module of PID4LaTe are required. 
The temporal prediction module plays the main role, 
because most of the input features of the model change over 
time. The data contain more time series information. The 
mining of time series information by the temporal predic-
tion module can greatly improve the prediction accuracy. 
Lake temperature prediction involves temperature at mul-
tiple depths. The same sequence relationship exists between 
the depths, which requires the spatial prediction module to 
mine the information. Although the model mines informa-
tion in both temporal and spatial dimensions, the predictions 
made by the physical model based on complex physical 
knowledge cannot be ignored. The sub-modules fusion 
process of PID4LaTe allows the model to learn the weights 
of the sub-modules summation on its own to obtain more 
accurate predictions compared to Res, Ave and BLUE. The 
fusion method of PID4LaTe can combine the advantages of 
the sub-modules to a great extent, which can improve the 
prediction results.

There are some limitations in this study: due to the lim-
ited datasets of the studied lake, the applicability of the 
model proposed in this study to other lakes needs to be 
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