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Abstract

Automatic detection of infant actions from home videos
could aid medical and behavioral specialists in the early
detection of motor impairments in infancy. However, most
computer vision approaches for action recognition are cen-
tered around adult subjects, following datasets and bench-
marks in the field. In this work, we present a data-efficient
pipeline for infant action recognition based on the idea of
modeling an action as a time sequence consisting of two
different stable postures with a transition period between
them. The postures are detected frame-wise from the esti-
mated 2D and 3D infant body poses and the action sequence
is segmented based on the posture-driven low-dimensional
features of each frame. To spur further research in the
field, we also created and release the first-of-its-kind infant
action dataset—InfAct—consisting of 200 fully annotated
home videos representing a wide range of common infant
actions, intended as a public benchmark. Among the ten
more common classes of infant actions, our action recog-
nition model achieved 78.0% accuracy when tested on In-
fAct, highlighting the promise of video-based infant action
recognition as a viable monitoring tool for infant motor de-
velopment'.

1. Introduction

Human action recognition from videos has become an
active area of research in recent years due to advancements
in computer vision [20, 47]. Typical videos involve hu-
man subjects carrying out day-to-day activities in indoor
and outdoor settings. While most research has focused on
adult subjects—due in part to application objectives such as
video surveillance, human-computer interaction, or robotic
design—some recent work has centered around children

'InfAct dataset and infant action recognition model code available
at https://github.com/ostadabbas/Infant -Posture-
based-Action-Recognition

and adolescent subjects, as part of efforts to characterize be-
havioral or movement disorders [2,7,8,19,27,37,38]. Most
recently, our lab has developed infant-domain specific com-
puter vision techniques to enable further understanding and
characterization of infant development [16,39,40,49]. We
aim to extend the benefits of unobtrusive vision-based tools
to the domain of video-based infant actions.

Research on pediatric development has consistently
shown links between early motor development in infancy
and subsequent cognitive, social, and linguistic develop-
ment in childhood [18, 22]. For instance, as early as 6 to
9 months of age, infant gross motor movements are syn-
chronized with their early vocalizations [17]. Specifically,
their babbling is in-rhyme with their limb activity suggest-
ing that these movements set the stage for speech develop-
ment. Links have also been found between poor childhood
motor skills and developmental delays, including but not
restricted to autism spectrum disorders (ASD) and develop-
mental language conditions [10,32].

However, the majority of the research is conducted with
school-aged children or adults due to the nature of the tasks
that require children to understand task instructions. There
are some studies that look at infant motor development,
nonetheless, this work remains scarce. The implication of
video-based action recognition for understanding and char-
acterizing infant development holds immense promise for
improving medical diagnoses and treatment plans. This
technology can help identify at-risk infants, assess the effec-
tiveness of behavioral programs, and promote more mean-
ingful caregiver-infant interactions.

In general, video-based human action can be recognized
from multiple vision centered modalities, such as appear-
ance [11,28], depth [6,23, 33,43], optical flow [5, 13,45],
and body skeletons [30,35,41]. Within each modality cur-
rent state-of-the-art recognition networks have deep struc-
ture and require large-scale labeled action datasets with suf-
ficient variations to produce robust performance. Building
such datasets of videos is much harder than doing so for
images, so popular benchmarks for action recognition are
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Table 1. An overview of the existing infant-specific image/video datasets used in computer vision tasks.

Dataset Content Purpose Age Range  # of Samples Frame Size  Annotations Public

SyRIP [14] Real RGB images of infants collected Pose/Posture Recognition Infant 1,700 images Varies 17 2D & 3D joints location, 4 pos- v
from web and synthetic RGB images ture classes

MINI-RGBD [12]  Synthetic RGB-D videos captured in hos-  Pose Estimation, Medical Infant Infant up to 12 videos (12,000 frames) 640 x 480 24 2D & 3D joints location v
pital Motion Analysis 7 months

BabyPose [26] Depth videos of preterm infants in cribs Pose Estimation, Preterm in- Preterm in- 16 videos (16,000 frames) 640 x 480 12 joints location v
hospitalized in NICU fants’ movement pattern recog-  fants

nition

XIJTU-IDP [44] Depth videos of infants hospitalized in  Pose Estimation Infant up to 27 videos (54,724 frames) 350 x 350 13 joints location X
NICU 5 months

AggPose [4] RGB videos of infants in supine position ~ Pose Estimation Infant 5187 videos (20,748 frames) Unknown 21 joints location v

InfAct (Ours) RGB videos and images of infants col-  Posture/Action Recognition Infant 200 videos (38126 frames)& 400 images ~ Varies 5 posture classes, 20 action classes, v

lected from web

transition state segmentation

smaller in size?, having video samples only in the order of
102 as supposed to 10% in image-based benchmarks. These
challenges are magnified in the case of infant action recog-
nition, with no public dataset of infant actions to date.

In this paper, we introduce a novel infant action recogni-
tion algorithm that deals with data limitations by represent-
ing each infant action as a sequence of a start posture state to
a transition state to an end posture state. These postures are
the main milestone positions that an infant takes in the first
year of their life, defined by the Alberta infant motor scale
(AIMS) [29]. Using postures as low-dimensional represen-
tations of actions allows the model to be conservative with
data usage during supervised steps of the model training.
We also present a video segmenter to detect the onset and
offset of the transition state and then using the segmentation
results and the frame-wise posture-based probabilities, the
action label can be determined. To help push the field for-
ward, we have also curate the first-ever infant action dataset
comprised of 200 infant videos, called InfAct, with accurate
posture state and transition segment annotations.

2. Related Work

Despite the significant progress made in human pose es-
timation and action recognition, most work is exclusively
centered around adult subjects, as evinced by the latest sur-
vey [36] published by IEEE transactions on pattern analy-
sis and machine intelligence (TPAMI) in 2022°. Infant ac-
tion recognition is particularly challenging due to the data
scarcity, caused by privacy concerns, as well as high vari-
ability in infant movements and difficulty in labeling them
by non-experts. In this section, we focus on infant-specific
computer vision work, first reviewing recent research on
capturing infant movements from videos and then listing

2KTH [21] with 2391 video sequences for 6 actions, NTU-60 [34] with
56880 sequences for 60 actions, and Northwestern-UCLA [42] multi-view
action 3D dataset with 1494 video clips for 10 actions.

3In several of the existing human pose datasets, such as MPII Pose [3]
and MS COCO [24] there are some samples of infant images, nonetheless
they are so sparse and not categorized as infant images.

existing datasets created for these tasks.

Infant Pose, Posture, and Action Recognition— Over
the last few years, several approaches ranging from classical
image processing techniques to deep learning-based meth-
ods have been developed for infant pose estimation. In pre-
vious research, we built a domain-adapted infant pose net-
work [14] from a pre-trained adult pose estimation network,
trained and tested on a new image-based dataset, called syn-
thetic and real infant pose (SyRIP). [44] proposed a joint
feature coding model with a ResNet-50 backbone and key
point positional encoding to get high-resolution heatmaps
of infant poses. However, this model only focuses on infant
poses in supine positions. In [4], the authors proposed a
deep aggregation vision transformer framework for infant
pose estimation. By leveraging a new large-scale infant
dataset, called AggPose, with pose labels and clinical la-
bels, their transformer model could detect infant supine po-
sition pose from movement frames in video. Authors in [48]
proposed a hierarchical posture classifier based on 3D hu-
man pose estimation and scene context information. They
combined ResNet-50, stacked hourglass network, and 3D
pose estimation scheme for posture classification, and used
estimated 3D keypoints to predict infant postures. Nonethe-
less, the aforementioned studies have been merely devel-
oped for image-based infant pose or posture prediction, and
there have been limited studies on infant action recogni-
tion. [9] proposed BabyNet to capture infant reaching ac-
tion. BabyNet uses long short-term memory (LSTM) struc-
ture to model motion correlation of different phases of a
reaching action, but does not cover other infant action types.

Infant Pose, Posture, and Action Datasets— Recently,
several infant-specific image/video datasets have been re-
alised, each with their own unique characteristics and ap-
plications (see Table 1 for an overview): (1) babyPose [26]
contains over 1000 videos of preterm infants aged between
2 and 6 months, captured using a depth-sensing camera
along with annotations of 12 limb-joint positions for each
frame. However, it only contains the data of newborns with
limited supine pose and one-fold background. (2) SyRIP
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Figure 1. Overview of our proposed infant action recognition method. It mainly consists of (1) Posture Prediction: employing
an infant pose estimator to predict the pose of the infant at each frame of the video, and then according to the inferred
poses, utilizing an infant pose-based posture classifier to estimate the series of infant postures, (2) Transistion Segmentation:
deploying an infant transition segmentator to extract start and end stable posture segments, and (3) Action Recognition:
identifying action label for the entire video clip based on the start and end posture labels of the corresponding segments after
refinement and majority voting on the posture probability signals. Contents in the dotted boxes indicate intermediate outputs.

[14], from our lab, is an infant pose image dataset includ-
ing 700 real infant images from YouTube/Google Images
and 1000 synthetic infant images generated by rendering
skinned multi-infant linear (SMIL) body model with aug-
mented variations in viewpoints, poses, backgrounds, and
appearances. 17 joints were annotated for all infant im-
ages, and posture labels are also given in four categories
(i.e. supine, prone, sitting , and standing) for each real im-
age. Even though this dataset covers various infant poses
in the wild, it can only be used to train image-wise models
not for dynamic movement learning, such as action or ac-
tivity recognition. (3) MINI-RGBD [12] was proposed as a
benchmark for a standardized evaluation of pose estimation
algorithms in infants. It contains RGB and depth images of
infants up to the age of 7 months lying in supine position.
These images are created by applying SMIL model to build
realistic infant body movement sequences with precise 2D
and 3D 24 joint positions. (4) AggPose [4] was proposed
to train a deep aggregation transformer for human/infant
pose detection. They adopted general movements assess-
ment (GMA) devices to record infant movement videos in
supine position. More than 216 hours of videos and 15 mil-
lion frames were extracted. They randomly sampled 20,748
frames from the videos and let professional clinicians an-
notate infant 21 keypoints locations. Both MINI-RGBD
and AggPose have considerable amounts of data. However,
they only include infants performing very simple poses in
supine positions, and they can only be employed in newborn

pose estimation or behavior analysis. The models trained on
these dataset do not have ability to handle more complicated
poses or movements performed by infants, who are learning
to roll over, sit down, or stand up. Therefore, the need for a
more general infant action dataset is unmet.

3. Methodology

In general, human action recognition aims to understand
human behavior by assigning labels to the actions present in
a given video. In the infant behavior domain, we focus on
the most common actions, which are related to infant mo-
tor development milestones, such as rolling, sitting down,
standing up, etc. Here, we present our data-efficient in-
fant recognition model, alongside our novel infant in-the-
wild action dataset, consisting of annotated video of in-
fant actions each clipped to feature a single transition be-
tween initial and final periods of stable postures (e.g., sit-
ting — sit-to-stand transition — standing). Our three-part
pipeline, illustrated in Figure 1, has the following compo-
nents: (1) a pose-based infant posture classification model
which produces frame-wise posture predictions (and asso-
ciated probabilities), (2) a transition segmentation model
which is trained to predict the start and end times of pe-
riods of posture transition (between periods of stable pos-
ture), and (3) an action recognition model, which classifies
postures in each of the stable posture periods before and
after the transition, by smoothing posture prediction prob-
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ability signals, and then produces a final action label based
on those predicted postures.

Problem Formulation— We conceptualize an infant ac-
tion as a change from one stable posture to another one
with a transition period in between, with stable postures
defined as those lasting at least one second. Some sam-
ples following on this schema are shown in Figure 2. For-
mally, we represent a video X as sequence of 7' image
frames, X = (z',...,2"). The infant action label of
the video takes the form of A = (p*,p¢), where p*, p¢ €
{Supine, Prone, Sitting, Standing, All-fours} are the stable
start and end postures, respectively. These five critical
atomic posture classes are taken from the Alberta infant mo-
tor scale (AIMS) guideline [29]. We also assume p°® # p°,
so there are 20 possible action classes based on the posture
combinations. For given action A, the transition period be-
tween stable postures is given by Y = (y°, y¢), with y* the
index of the last frame of the start posture p®, and y¢ > y°
the index of the first frame of the end posture p°.

3.1. Infant Action Recognition Pipeline

As outlined above, our three-part pipeline, depicted in
Figure 1, consists of a posture predictor, a transition seg-
menter, and an action recognizer.

3.1.1 Posture Prediction

We modify the appearance independent posture classifi-
cation method from [15] to each frame z! of the action
video sequence X to obtain a posture prediction p’, for
t € {1,...,T}. This method in [15] works by first ex-
tracting either a 2D or 3D human skeleton pose prediction
Jt € RV*D where N = 12 is the number of skeleton
joints (corresponding to the shoulders, elbows, wrists, hips,
knees, and ankles), and D € {2, 3} is spatial dimension of
the coordinates. The underlying pose estimators—the fine-
tuned domain-adapted infant pose (FiDIP) model [14] for
2D and the heuristic weakly supervised 3D human pose es-
timation infant (HW-HuP-Infant) model [25] for 3D—were
specifically adapted for the infant domain. Then the pose
Jt is fed into a 2D or 3D pose-based posture classifier, re-
sulting in the posture prediction p!. However, the original
posture classification model in [15] produces one of four
posture classes, so we retrain their network using images
representing our five classes extracted from the synthetic
and real infant pose (SyRIP) dataset [14]. See Section 4.2
for training details.

3.1.2 Transition Segmentation

To predict the frame indices of the transition period, ¥ =
(y*®,y°), we adapt a speech sequence segmentation model
from [1]. As input, we take the underlying feature vectors
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Figure 2. Video examples of InfAct dataset. Here, we ex-
hibit several frames of start posture segment, transition seg-
ment, and end posture segment of each video clip. The color
bar indicates the ground truth of posture labels and transi-
tion segment. All five posture classes are shown here.

p = (p',...,p") from the last layer of the posture estima-
tion model. The datapoint p is used to train the speech se-
quence segmentation model, a bi-directional recurrent neu-
ral network (Bi-RNN), supervised by the ground truth label
Y = (y*®,y°). During training, the model searches through
possible start and end transition timings to minimize the loss
function measuring a distance between the predicted transi-
tion state Y and ground truth label Y.
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3.1.3 Action Recognition

With the initial, transition, and final segments identified, the
task that remains is to predict the posture classes of the sta-
ble start and end segments, which together entail the overall
predicted action class. Our transition segmentation predic-
tion yields frame indices Y = (y°,y¢), and from these we
can derive the sub-sequences of posture predictions for to
the start and end stable posture periods, (p!,...,p¥ ) and
(pYe,...,pT), respectively. We apply different moving av-
erage techniques to smooth out short-term fluctuations and
highlight longer-term trends [46], and obtain smoothed pos-
ture sequences (p*, ..., pY ) and (p¥¢, ..., pT ). Then we ag-
gregate these sequences with majority voting to produce fi-
nal class estimations A = (p®,p¢). See Section 4.4 for
details on the smoothing methods.

3.2. InfAct: An Infant Action Dataset

In order to enable research in computer vision infant ac-
tion comprehension, and to provide a testbed for infant ac-
tion recognition algorithms like ours, we produced a spe-
cialized infant action dataset, which we call InfAct, consist-
ing of 200 video clips of infant activities and 400 images
of infant postures, with structured action and transition seg-
mentation labels. Figure 2 illustrates the form of the video
data, which comprises transitions from a stable starting pos-
ture to a stable ending posture.

Our video sourcing and selection procedure was de-
veloped by our Nth author, an experienced psychologist.
The methodology featured a comprehensive search of pub-
lic videos from YouTube to obtain a representative cross-
section of infant postures and actions, and to ensure the in-
clusion of a wide range of both infant-specific and general
characteristics, including apparent race and ethnicity, stable
and transitional postures, and environmental settings. Strin-
gent selection criteria were applied to ensure that postures
and transitions were represented consistently and with suf-
ficient duration. After selection, videos were pre-processed
and clipped to yield a final set of short videos depicting a
transition between a stable strating posture and a stable end-
ing posture, with broad representation of postures on both
ends, and movements in the transition stage. Finally, the re-
sulting action clips were annotated with start and end times-
tamps for the transition period, and labels for the posture
classes in the initial and final stable posture periods.

Based on visual inspection and evidence from the source
video titles, we estimate that infants in the InfAct dataset
range in age from 3 to 18 months. Clip resolutions vary
from 720 x 576 to 1280 x 720 pixels. Recording envi-
ronments also vary, with 104 videos from living rooms, 71
videos from bedrooms, 20 from outdoors, 3 videos from
bathrooms, 1 recorded from the kitchen, and 1 recorded
from the playground. Figure 3 shows the statistical anal-
ysis of InfAct.

4. Experimental Results

We use data from InfAct to evaluate the performance of
three model components, including posture classification,
transition segmentation, and action recognition (described
in Section 3.1 and illustrated in Figure 1).

4.1. Datasets

To evaluate our action recognition model, we excluded
videos samples from our InfAct dataset having improbable
actions, resulting in 156 videos across the 9 action classes
highlighted in Figure 3. We used 50 videos for final action
recognition test set and the remaining 106 along with the
rest of InfAct videos in the InfAct (totally 150 clips) have
been used to train the segmentation model. We also created
a posture dataset of 400 images by extracting one frame at
the beginning and end of each video in InfAct, and defined a
300-100 train-test split. Furthermore, we re-annotated 700
real infant images from SyRIP dataset with our five posture
classes (modified from the existing four), and defined a 600-
100 train-test split.

4.2. Pose-based Posture Classification

We first trained both the 2D and 3D pose-based posture
classification networks on the SyRIP dataset (400 epochs,
Adam optimizer, learning rate of 0.00006) using a network
with four fully connected layers [15]. We then fine-tuned
the trained network with additional InfAct training image
(10 epochs, learning rate of 0.001, batch size of 50). We
report the posture prediction accuracy scores of both the
initial model trained on SyRIP and the fine-tuned model
trained further on InfAct in Table 2. These results show
that fine-tuning on InfAct notably improves performance,
as does adopting the 3D posture model. The fine-tuned 3D
pose-based posture model reaches a high overall accuracy
of 91.0%. The corresponding prediction confusion matri-
ces are shown in Figure 5 also attest to strong performance.
They also reveal a higher-than-typical confusion between
the prone and all-fours postures, possibly due to the sim-
ilarity of these poses, or simply the limited availability of
training data.

Visualizations of pose and posture predictions are shown
in Figure 4. The first row shows examples in which the
posture is correctly predicted with both 2D and 3D pose
information as inputs. In examples in the second row, the
3D pose-based posture prediction model succeeds while the
2D pose-based model fails, and in the third row, 3D models
fail because predicted 3D poses are wrong. The better per-
formance of the 3D pose-based model could be due to the
underlying 3D pose estimations being more robust across a
variety of camera angles, resulting in more reliable posture
estimations.
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Figure 3. Descriptive Statistics of InfAct dataset. (Left) action classes distribution. The nine common action classes used
for our infant action recognition task are highlighted in orange. (Right) duration analysis of video sequences.

Table 2. Performance of our five-posture classification models trained on SyRIP and fine-tuned posture models on InfAct

test set in accuracy.

Posture Accuracy (%)

Model  Posture Model Average Supine Prone Sitting Standing All-fours
D Trained on SyRIP 77.0 93.8 75.0 67.7 77.8 80.0
Fine-tuned on InfAct 83.0 87.5 75.0 83.9 83.3 86.7
3D Trained on SyRIP 79.0 81.3 60.0 93.6 66.7 86.7
Fine-tuned on InfAct 91.0 93.8 75.0 93.6 100.0 93.3

Sitting

{lalll™
ks

All-fours

All-fours

Figure 4. Visualization of our pose-based posture classi-
fication performance. For each example, the predicted 2D
pose is overlaid on original image, while the predicted 3D
body mesh is overlaid on the other cropped one. Ground
truth label is given in blue box, 2D pose-based posture pre-
diction is in orange box, and 3D pose-based result is in
green box. Wrong predictions are written in red.
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Figure 5. The confusion matrices of infant 2D pose-base
and 3D pose-based posture classification models before and
after fine-tuning on InfAct training images.

4.3. Posture-based Transition Segmentation

The transition segmenter consists of two bidirectional
LSTM layers, each followed by a dropout layer, and is well-
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suited to handle variable-length sequences. We trained this
network on InfAct data with the following configurations of
input derived from the preceding posture estimation model.

Posture Probabilities: For each frame, a vector of five
probabilities from the posture estimation model corre-
sponding to each of the five posture classes. The input
dimension is L x C for a sequence of length L and
C = 5 classes.

Joint Locations: For each frame, a residual vector
obtained by applying principle components analysis
(PCA) [31] to the sequence of keypoint coordinates for
each body joint. The PCA reduction converts coordi-
nate vectors of 17 x 2 or 17 x 3 dimensions, depending
on the spatial dimension, down to K = 10 dimensions,
for an overall input dimension of L x K for a sequence
of length L.

Posture Features: For each frame, a residual vector ob-
tained by applying PCA to the feature vector represen-
tation of the image in the penultimate layer of the pos-
ture estimation model. The PCA reduction converts
coordinate vectors down from 16 to X = 10 dimen-
sions, for an overall input dimension of L x K for a
sequence of length L.

We train the model with the Adam optimizer at a learn-
ing rate of 0.01, with batch size 10. Following the origi-
nal speech segmentation model [ 1], the loss for a prediction
Y = (§°,§°) relative to the ground truth Y = (y*,y°) is
given by the structured loss:

LY, f/) = Z max (O, ||yl - gl|| - 7') ,

1=s,€e

with units in frames, and 7 = 5 frames is a tolerance fac-
tor to allow for natural variations in human annotation. The
video framerate is 25 Hz, and each frame is used in the in-
put to the segmentation model. Test results for the transition
segmentation model based on structured loss are shown on
the left side of Table 3. The results show that, under both
the 2D and 3D paradigms, transition segmentation estima-
tion performance is stronger when posture estimation model
features (such as classification probabilities or last layer fea-
tures) are used as input, compared to the raw joint locations.
This is to be expected, as in our conceptual framework and
in the InfAct dataset, the notion of the transition period is
heavily tied to the notion of posture, which the posture es-
timation model is of course trained to reason about. This is
very clear in the visualizations presented in Figure 6, where
posture probabilities, transition segments, and video frames
are aligned: transitions are strongly correlated with periods
of posture prediction uncertainty.
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Figure 6. Visualized examples of predicted infant posture
probability signals and corresponding estimated transition
segmentation results. The vertical yellow lines indicate the
predicted index of the last frame of the start posture and the
predicted index of the first frame of the end posture respec-
tively, while the black lines indicate the ground truth.

Table 3. Performance of our transition segmentation mod-
els on InfAct test videos.

Structured Loss

Frames S

Posture Estimation  Input Sequence
Posture Probabilities 39.0 1.6
2D Pose-based Joint Locations 58.5 2.3
Posture Features 37.7 1.5
Posture Probabilities 39.2 1.6
3D Pose-based Joint Locations 52.8 2.1
Posture Features 36.5 1.5

The results also show that using 3D pose-based posture
model features (either model probabilities or last layer fea-
tures) as input boosts performance over 2D pose-based pos-
ture features, but interestingly this advantage is erased when
joint locations alone are used as input. The strongest model,
which uses 3D pose-based posture model features as input,
has an average structured loss of 36.5 frames or ~1.5 s,
which is reasonable relative to human perception.
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Table 4. Performance of our action recognition method on InfAct test set with different kinds of input sequences by applying

different refinement methods.

Posture Estimation ~ Posture Feature — Transition Segment

Raw MA EWMA
Acc. (%) Acc. (%) Acc. (%)

Posture Probs. 64.0 66.0 66.0

Pred. from { Joint Locs. 54.0 54.0 54.0

2D Pose-based Posture Preds. Posture Feats.  62.0 66.0 66.0
Ground Truth 70.0 72.0 74.0

Posture Probs. 72.0 72.0 72.0

Pred. from ¢ Joint Locs. 60.0 62.0 62.0

3D Pose-based Posture Preds. Posture Feats. 78.0 78.0 30.0
Ground Truth 86.0 86.0 86.0

4.4. Posture-based Action Recognition

The final step in our pipeline is to predict posture classes
in the starting and ending stable posture periods, and thus
infer the final action class label, as detailed in Section 3.1.3.
The posture prediction is based on majority voting of the
predicted posture class over the two stable posture periods,
with start and end timestamps for those stable periods deter-
mined by the preceding temporal segmentation model. For
our test results, we vary the posture estimation model (2D
or 3D), the transition segmentation input format (posture
model probabilities, joint coordinate locations, or last-layer
posture model features), and also test with the transition
segment determined by the ground truth, for reference. Fur-
thermore, while the majority voting is always based on the
sequence of predicted posture classes (regardless of which
sequence of posture features is fed into the transition seg-
mentation model), we do experiment with two methods of
smoothing this sequence to stabilize the raw signal. In par-
ticular, we apply a moving average (MA) and an exponen-
tially weighted moving average (EWMA) with a fixed win-
dow size of five frames. Taken together, the smoothing and
subsequent majority voting produce a single class label for
each of the starting and ending stable postures, from which
a single overall action class can be inferred for each video
clip. The classification accuracy of this final action class
label against the ground truth label, for each of the method-
ological variations we have discussed, is tabulated in Ta-
ble 4. It should be emphasized that a correct prediction re-
quires that both the starting and ending stable class posture
be correctly identified, highlighting the roughly “squared”
difficulty of the prediction task.

On the whole, the results track and are largely deter-
mined by the performance of the underlying transition seg-
mentation model, with segmentation based on 3D pose-
based posture estimation coming out on top. 3D-based
transition segmentation yields much better results than 2D,
as does posture model-based sequential input for transition
segmentation compared to joint coordinate location sequen-
tial input. Indeed, the extent to which improvements in seg-
mentation results lead to improvements in action recogni-

tion is remarkable—a structured loss delta of ~0.8 s be-
tween the best and worst segmentation performances yields
up to a 24 percentage point gain in action recognition, to
78.0%. Using the ground truth segmentation labels bumps
performance further to 86.0%. This may be explained in
part by the statistical effect alluded to earlier, wherein the
action recognition accuracy is roughly the square of the sta-
ble posture estimation accuracy, so improvements in seg-
mentation leading to improvements in stable posture esti-
mation are magnified for final action recognition. We note
that the performances of the different smoothing methods
are much more balanced, with results slightly favouring the
EWMA. The small training and especially test set sizes
make it difficult to draw definitive conclusions about the
comparative differences among these methods.

The task of infant action recognition from videos is at
present characterized by the extreme limitation on available
video data, let alone high-quality videos with reliable an-
notations. In this context, we have proposed a conception,
dataset, and action recognition model based around the tem-
plate of infant actions as transitions between stable postures.
The results from our pilot study, based on testing on 9 sim-
ple action categories in which we have sufficient data, show
the feasibility of our basic approach.

5. Conclusion

Alongside creating InfAct—a pioneering dataset featur-
ing a range of diverse infant actions and equipped with
posture and action labels—we developed a data-efficient
pipeline for infant action recognition that robustly detects
actions given very limited number of samples for each cat-
egory of common action. The InfAct dataset advances the
field of video-based infant action recognition by offering
a more accurate and objective mechanism to assess infant
motor development. 200 thoroughly annotated home videos
show the potential of video-based infant action recognition
for motor development monitoring. Our proposed pipeline
and dataset can serve as a starting point for future research
in this area, which has been under-explored due to the lack
of appropriate datasets.
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