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Abstract

In response to the challenges faced in documenting med-
ical procedures in military settings, where time constraints
and cognitive load limit the completion of life-saving Tac-
tical Combat Casualty Care (TCCC) Cards, we present a
novel end-to-end computer vision pipeline for autonomous
detection and documentation of common military emer-
gency medical treatments. Our pipeline is specifically de-
signed to handle limited and challenging data encountered
in military scenarios. To support the development of this
pipeline, we introduce SimTrl, a labeled dataset comprising
116 twenty-second videos capturing patients undergoing
Sfour prevalent treatment procedures. Our pipeline incorpo-
rates training and fine-tuning of object detection and human
pose estimation models, complemented by a proprietary
pose-enhancement algorithm and a range of unique filter-
ing and post-processing techniques. Through comprehen-
sive development and optimization, our pipeline achieves
exceptional performance, demonstrating 100% precision
and 62% recall on our dedicated 23-video test set. Fur-
thermore, the pipeline automates the generation of TCCC-
relevant information, significantly improving the efficiency
of TCCC documentation. Comparative analysis against
previous state-of-the-art techniques in emergency medical
autonomous documentation demonstrates that our pipeline
performs exceptionallyt
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1 Our code and the manually annotated dataset can be found at http
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1. Introduction

In 2009, Secretary of Defense Robert Gates’ Golden
Hour policy mandated that all critically injured military per-
sonnel, known as ‘“battlefield casualties,” that are at risk
of losing life, limb, or eyesight, would receive a medical
evacuation from the point of injury to surgical care within
sixty minutes or less [30]. The Golden Hour originates from
renowned military surgeon R. Adam Cowley, who identified
the urgency for treatment in the hour following an injury,
stating “There is a golden hour between life and death. If
you are critically injured, you have less than 60 minutes to
survive. You might not die right then; it may be three days
or two weeks later — but something has happened in your
body that is irreparable” [27]. Studies later determined that
this time was much lower, between 19 and 23 minutes [3].

Currently, combat medics are required to use a portion
of this valuable, limited time to document interventions on
the casualty via a tactical combat casualty care (TCCC)
Card, which is essential for informing higher echelons of
care (flight medics and hospital surgeons) of the casualty’s
status. An estimated time for a combat medic filling out
a TCCC Card and conducting a patient hand-off is about
3 minutes [23]. However, numerous studies indicate this
TCCC documentation leads to an increased survival rate
among casualties [24, 5]. By doctrine, this card should be
attached to the casualty [6]. Unfortunately, two senior US
Army combat medics interviewed by this project estimated
that only 10 — 15% of TCCC Cards reach the surgical team
receiving the casualty [23, 22]. Because of the inherent time
constraints and the unreliability of the TCCC Card, casualty
status is often communicated only verbally at the patient
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hand-off. This communication is conducted between the
combat medic and flight medic in a noisy, high-stress envi-
ronment via the much shorter and less informative MIST
Report - a report summarizing Mechanism of injury, In-
juries, Symptoms, and Treatments for a patient [28].

In this paper, we introduce a novel pipeline utilizing
computer vision for autonomous TCCC documentation,
shown in Fig. 1. To do so, we introduce the first-of-its-
kind Simulated Trauma Interventions (SimTrl) dataset, train
computer vision models with limited and challenging data,
propose a variety of filtering methods, develop our own al-
gorithm to support pose algorithms facing challenging par-
tial body data, and design unique evaluation metrics spe-
cific to our use-case. If implemented as a fielded prototype,
this software would significantly decrease the time and cog-
nitive load combat medics currently face when document-
ing casualty status. As a result, medics could solely con-
centrate on delivering life-saving interventions. Moreover,
with automated generation and digital formatting, such a
system would guarantee that every TCCC Card (as shown
in Fig. 2) reaches all levels of medical care before the ar-
rival of the casualty, ensuring comprehensive coverage and
enabling preparation for specific procedures at higher eche-
lons of care.

2. Related Works

In recent years, the field of emergency medicine, both in
military and civilian contexts, has faced challenges in ef-
ficiently documenting and transmitting casualty treatment
information across different levels of care. Several stud-
ies have addressed this issue, employing various techniques
with differing levels of automation [26, 20, 31, 25, 10]. One
notable manual approach was the US Air Force’s BATDOK
system, which provided combat medics with a user interface
for manual data entry [14]. However, feedback from mili-
tary combat medics revealed that this manual data entry was
impractical in high-stress combat environments [25, 22, 23].
To enhance autonomy, researchers explored two primary
avenues: wearable biosensors and machine learning (ML)
methods.

Considering wearable biosensors, several studies have
successfully achieved autonomous detection of critical bio-
metrics for emergency treatment, including the BATDOK
system. However, these technologies primarily focused
on capturing physiological data and did not provide actual
treatment information [2, 26]. The application of machine
learning (ML) has been primarily limited to the use of auto-
matic speech recognition (ASR) for documenting medical
treatments. Woo et al. utilized noise-resilient ASR, multi-
style training, customized lexicon, and speech enhancement
to predict medically relevant treatment speech at a word er-
ror rate of 33.3% [31] to fill out a TCCC Card. This was
done by using the Switchboard and Common Voice datasets

to train a base ASR model; subsequent modular model im-
provements were made by generating battlefield noise with
a generative adversarial network and domain-specific med-
ical and military data from the Carnegie Mellon Univer-
sity Sphinx Knowledge Base Tool. Similarly, McGeorge
et al. heavily relied on ASR and systemic functional gram-
mar models to detect and parse medically relevant text [20].
This group also introduced a small computer vision compo-
nent, but this was limited to optical character recognition for
implementing patient identification. While these advance-
ments reduced the need for manual documentation, they still
required medical teams to provide speech input, adding to
the cognitive load of combat medics in high-stress military
environments.

The application of computer vision in the medical field
has seen significant progress [7]; however, its utilization in
emergency treatment documentation remains limited. A no-
table study by Heard et al. introduced a pipeline that utilized
Myo devices on a medic’s hands to extract arm movements
and electromyography data, enabling the detection of var-
ious emergency room treatments [10]. Despite this effort,
the study’s performance fell short of achieving more than
50% accuracy for all treatments.

One of the primary reasons for the scarcity of com-
puter vision-based research in this domain is the inher-
ent challenges associated with the data. Firstly, the avail-
ability of visual data within medical treatment spaces is
constrained due to legal and ethical medical privacy con-
cerns, resulting in limited datasets [11]. Secondly, ego-
centric data captured from medics treating patients often
exhibit partial body views and rare poses. Patients are
frequently in a lying-down position, which presents chal-
lenges for pose algorithms, as important information such
as facial features may be occluded in many frames. Sev-
eral studies have endeavored to address these challenges
[18, 19, 17, 8]. For instance, Vyas et al. developed a
3D synthetic model generation pipeline to augment body
pose data, mitigating the issues posed by limited data in
critical applications like healthcare [29]. Liu et al. intro-
duced the Simultaneously-collected multimodal Lying Pose
dataset to specifically tackle the challenges associated with
lying-down, partially occluded poses [16].

To overcome the hurdles associated with autonomously
documenting emergency military medical treatments, we
have devised an innovative computer vision-based end-to-
end pipeline. This pipeline has been designed to operate
effectively, even when faced with limited and challenging
data, allowing for real-time identification of treatments ad-
ministered to military casualties.

3. Methods

In this section, we present our end-to-end pipeline for the
detection and documentation of casualty status, supported
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Figure 1. Illustration of our comprehensive pipeline for casualty status documentation. The pipeline consists of two main stages,
shown from left to right. In the first stage (Pairing Matrix Creation), the input video is processed frame by frame, and relevant
detections are analyzed and summarized to generate a pairing matrix. In the second stage (Video Post Processing), the summa-
rized detections undergo post-processing to extract TCCC-relevant information. Subsequently, in the Results Generation stage, the
pipeline generates a digital TCCC card formatted with the extracted information, and its metrics are reported based on the ground

truth data.
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(TCCC) Card.

care

by our novel dataset called Simulated Trauma Interven-
tions (SimTrI). We begin by introducing the SimTrI dataset,
which serves as the foundation for training and evaluating
our pipeline. Subsequently, we delve into the details of the
pipeline, which encompasses the entire process from receiv-
ing a video as input to generating treatment information in
a matrix format, mirroring a portion of the content typically
seen on a TCCC Card.

3.1. SimTrI Dataset

Due to operational security concerns and the unavail-
ability of public datasets, we collaborated with US Army
Special Forces combat medics to generate a unique dataset
specifically designed for our study. This dataset, named
Simulated Trauma Interventions (SimTrI), consists of 116
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Figure 3. Example screenshots from a variety of videos in the

Simulated Trauma Interventions (SimTrl) dataset. Faces are
blurred to protect the identities of the personnel used in these ex-
ample images.

egocentric videos that were carefully recorded and ap-
proved by the school and Army Institutional Review Boards
(IRB). SimTrI features simulated casualties represented by
a mannequin and three human subjects with diverse racial
backgrounds and body types. The videos capture the perfor-
mance of four standard military trauma care interventions:
tourniquet application, pressure dressing, hemostatic dress-
ing, and chest seal placement. These interventions were se-
lected because they allow for a range of anatomical place-
ment options, necessitating the incorporation of a localiza-
tion component into our research pipeline. Furthermore,
these treatments are commonly taught to all military per-
sonnel as part of Combat Life Saver (CLS) training [9]. Itis
essential to emphasize that the individuals responsible for
video documentation in SimTrl are CLS certified military



personnel, ensuring the accuracy and adherence to estab-
lished medical protocols. The videos were recorded using
a helmet-mounted camera positioned approximately three
inches above the forehead. The camera was set to record at
a rate of 30 frames per second and aligned with the user’s
line of sight.

In Fig. 3, we provide sample screenshots from various
videos within the SimTrI dataset, illustrating the diversity
of scenarios and interventions captured in the dataset. By
creating the SimTrI dataset in collaboration with US Army
Special Forces combat medics, we have obtained a valuable
resource for training and evaluating our research pipeline.
This dataset enables us to explore new solutions for the de-
tection and documentation of trauma interventions in mili-
tary settings, ultimately enhancing the care provided to ca-
sualties in the field.

Nevertheless, the process of capturing the SimTrI dataset
presented certain difficulties. Due to the unique poses and
movements of the casualties, as well as the close proximity
of the medics to the patient, there were instances where the
recorded frames focused primarily on a specific body part,
without capturing the face and neck regions. This partic-
ular challenge poses a significant obstacle for current hu-
man pose estimation (HPE) algorithms, as they heavily rely
on visible face and neck features to accurately estimate the
pose of an individual.

3.2. Casualty Status Documentation Pipeline

Treatment detection, pose estimation, and the pairing
process for treatment localization are the key components
of our pipeline, as shown in Fig. 1. To achieve this, we cus-
tomized and incorporated YOLOVS5 [12] and Lightweight
OpenPose (LOP) [21] as the backbone for treatment detec-
tion and pose estimation, respectively. These frames are
then processed through the pipeline’s components, enabling
treatment detection, pose estimation, and ultimately visual-
izing the treatments on the TCCC card.

Problem Formulation— This pipeline takes a set of
frames, denoted as F, as input. Let f denote an individual
frame in F, such that F' = {f1,..., fy}, where g = |F.
T; is defined as the array of all treatments detected in frame
fi- Additionally, K; is defined as the pose key point array
corresponding to the patient in frame f;. If there are multi-
ple pose arrays detected in f;, the largest pose (by bounding
box area which encloses key points) is selected as K;. Fi-
nally, it is important to note the treatment detector is trained
on m classes, and the pose detector is trained to recognize
n key points to form a human skeleton.

It is critical to pair any detected treatment with a pose key
point, in order to localize the treatment to part of the body.
To do this, a pairing matrix is used to count the number of
pairings made between any detected treatment and pose key
point. Upon initiating the pipeline and receiving F' as input,
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this pairing matrix, denoted as P, is initialized with shape
(n x m). All values in P are initially set to 0. P is shown
below.

Poo Pon

P =

pmn

Pmo

Per-Frame Detector— After P is initialized, the per-frame
detector (PFD) is sequentially run on all f € F, updating P
with the treatment-key point pairings made in each frame.
PFD is introduced in Fig. 1 and expounded upon in Fig. 4.
PFD receives a frame f; as input and runs it through the
treatment detector and the human pose estimation (HPE)
model to output 7; and K. If either T; or K; is empty, f; is
ignored, and PFD moves on to the next frame. Otherwise,
PFD optionally employees a pose enhancement algorithm
to enhance K;, and then maps any detected treatment to the
nearest key point while also considering various restriction
criteria to filter erroneous detections, as described below.

Pose-Enhancement Algorithm— Given that the data is
challenging as many frames only show part of the patient
and the patient is often taking on a rare pose, the pipeline
may optionally utilize our custom pose-improvement al-
gorithm introduced by this paper, called Pose-Enhancing
Transformation Algorithm (PeTA). PeTA is used to enhance
any K; which is incomplete, by adding missing key points
to K; based on poses from previous frames.

PeTA continually estimates a mean casualty pose matrix
B of shape (n x 2) which contains all key points of the stan-
dard LOP pose representation. B may then be used to esti-
mate missing joints in frames for which the detected pose is
incomplete. To iteratively build B for any frame f;, a run-
ning Procrustes average [13] is calculated from the set of all
frames prior to f; with complete key point arrays. The first
frame’s key point array of this set is used as the initial esti-
mate of B. Each subsequent frame’s key point array in the
set is mapped to B by finding the optimal similitude trans-
formation (rotation, translation, and scale) that minimizes
the median of squares between corresponding key points.
Least median of squares (LMedS) is applied to optimize the
transformation and enhance resilience against outliers and
noise. The mapped key points are averaged. B is then up-
dated to this new average, and the process is repeated for all
remaining frames in the set.

B becomes useful when a K; does not contain all n
points, but only detects a subset of points, as often happens
on the challenging data in this topic — that is, 3 < |K;| < n.
In this case, B may be used to estimate the missing joints in
K;, denoted as K;_,issing. To do this, it is first necessary
to estimate an optimal similitude transformation between B
and K, to produce a transformation matrix, denoted as 7.
LMedS is once again utilized to increase robustness. 7 is
then applied to B to obtain an estimate of the current key
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points K = 7(B). The missing points are then taken from
this estimate so that K;_issing = I?i,missmg.

Finally, the estimated missing key points are concate-
nated to K, to form a complete pose key point array. An
example of this process is shown in Fig. 5. It is important
to note that some of the key points inferred from PeTA are
often outside the frame, due to the partial-body nature of
the data. Ultimately, PeTA enables estimation of pose key
points for frames which fail to detect a full pose but still
detect a partial pose. However, for frames that detect fewer
than four pose key points (|K;| < 3), PeTA is not utilized
and the frame is not considered in treatment-key point map-
ping.

Treatment Key Point Mapping— For any treatment t; €
T; for some frame f;, it is assumed this treatment is on the
casualty and must be mapped to some key point k; € K;. To
do this, for all ¢; € T}, a binary mapping is performed to the
nearest pose key point in K; and P is updated accordingly
forVt € T; as:

0 if any r € R is False
Pop=Pr+19 1 else argmin dist(k, t) ey
keK;
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A set of restriction criteria R, are also introduced in
Eq. (1) to remove pairings that are unlikely to be cor-
rect. Any criterion may be tuned to achieve a more
or less restrictive pipeline. R is summarized as R
{diStmin, T€Amin, JOINESmin }. Here, disty;, indicates the
normalized minimum pixel distance requirement between
a potential key point-treatment pairing. Next, areami, in-
dicates the minimum normalized pixel area requirement of
a K; bounding box for the pose to be valid and used for
key point-treatment pairing. Lastly, jointsyi, indicates the
minimum number of joints in K; for the pose to be valid. If
any criterion in R is false, the pairing is not counted.

Video Post-Processing— After all f € F' have been an-
alyzed, P is now denoted as P*. Going forward, each col-
umn in P*, denoted as P;_ is considered independently, as
it forms a histogram indicating the various body locations a
given treatment class has been mapped to throughout the
entirety of F'. Now, the casualty may be analyzed at limb-
treatment level pairings by summing the entries from P/
that correspond to the same limb to produce L;.,. Then,
for each Lj_, any limbs that are invalid for a given treat-

ment are dropped (for example, a tourniquet may not be
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placed on head, so these erroneous entries are replaced with
a 0). The process of converting a treatment column (or his-
togram) from the joint level to the limb level is depicted in
Fig. 6.

Next, temporal outlier detections for Lj., may be fil-
tered. This filtering process is optional. To determine if any
pairing in some Lj is a temporal outlier, its z-score is com-
puted, denoted as z, with respect to other pairings within
the same L}. For any frame f;, it is assigned a value of 1
if f; contributed to L}, and a 0 if it did not contribute. A
window of w frames preceding f; is then considered, where
all frames also have a value of either 1 or 0. The average
of the window (i, and the standard deviation of the window
o, are calculated.

The z-score z is computed using the formula: z =
fiztw 1t measures the number of standard deviations by
wh1éh the pairing value of f; deviates from the average
within the window. If the calculated z-score z exceeds a
predefined threshold ¢, we consider the pairing at frame f;
as an outlier and remove it from further consideration in Lj.
The purpose of this filtering step is to identify and exclude
pairings that are temporally distant from other pairings, and
therefore likely erroneous. This process of z-score filtering
is conducted for all L;_,. Fig. 7 demonstrates an example
of this process.

Generating Metrics and Results— Finally, majority
voting over L. is performed to output a TCCC Card pre-
diction for the m treatments the treatment detector is trained
on. To model this digital TCCC Card, a new binary array
denoted as H is created with shape (m x
dicates a treatment on a limb is present at the respective
index, and 0 indicates the opposite. To predict H from L*,
the following is used:

1
H, = 0

where, forany ¢t € T and ¢ € L, H, , will be 1 if the corre-
sponding Ly , is greater than the maximum value across all
limbs for that t times some constant ¢, such that ¢ < 1.

* *
L}, > max; Lt,é X ¢ )
otherwise,

Using L* and H, this paper reports two types of metrics
- TCCC metrics to determine the accuracy of the outputted
TCCC Card and raw metrics to determine the accuracy of
L*. Per-video ground truth labels denoted as Y are utilized
to determine these metrics. Similar to H, Y is a binary
array with shape (m x |L|), where 1 indicates a treatment
on a limb is present at the respective index, and 0 indicates
the opposite.

For TCCC metrics, true positives T' Py, false positives
F' Py, and false negatives F' N are provided. For raw met-
rics, only true positives TPy, and false positives F'P;, are
provided since per-frame truth labels are unavailable to de-
termine the accuracy of negatively predicted frames.

The calculation for TCCC metrics are shown in Eq. (3)
through Eq. (5) and the calculation for raw metrics are
shown in Eq. (6) through Eq. (7), where Y =1-Y and
H =1 — H. From these equations, this paper reports pre-
cision Py and Pr for TCCC and Raw metrics respectively,
and recall Ry for TCCC metrics.

m |L|

TPy =Y Hapx Ya 3)
a b
m |L]| .

FPy =Y Hap x Yo )
a b
m_ Ll

Np =Y HaxYa 5)

a b
m |L|

TPL = > Lix Y (6)
a b
m |L| X

FPL=Y Y LiyxYa (7
a b

4. Experimental Results

This section presents the experimental results for our
pipeline. We begin by discussing the performance of our
treatment detector and pose estimation models. Subse-
quently, we evaluate the overall performance of our pipeline
using different pipeline configurations. All the results are
obtained using our dedicated 23-video test set, which is a
subset of the SimTrl dataset. All videos in the test set are of
one human subject in uniform. This human subject was not
present in any training or fine-tuning sets.

4.1. Treatment Detection Results

We trained our modified YOLOvVS5 model with three
datasets: (1) the BBN PTG-MAGIC dataset (soon to
be publicly available) [1], (2) an open-source RoboFlow
dataset [4], and (3) our SimTrl dataset. We utilized an
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Figure 7. Example of Z-Score Filtering for Leg Detections. The x-axis indicates the frame number within the test video, while the
y-axis indicates the presence of a pairing from the given treatment to the respective limb. This example graph demonstrates the
utilization of Z-Score filtering to effectively eliminate erroneous detections on the right leg while preserving accurate detections on

the left leg.

Table 1. Training data and results for the highest-performing
YOLOvVS model.

Treatment Annotations Precision Recall
Tourniquet 13459 87% 54%
Pressure Dressing 9652 94% 80%
Hemostatic Dressing 982 80% 96%
Chest Seal 11211 94% 92%
Average 8826 89% 81%

Table 2. An overview of the pose estimation models, including
their names, the number of annotations used in fine-tuning - human
or mannequin - and their performance measured as Percentage of
Correct Keypoints (PCK). The Base model is the out-of-the-box
LOP model. Mann and HuMann are fine-tuned on mannequin data
and both mannequin and human data respectively.

Model Name Human Mannequin PCK
Base 0 0 38%
Mann 0 553 51%
HuMann 540 553 57%

80%-20% train-test split, initialized with the YOLOVS pre-
trained weights and freezing no layers. For the purpose of
labelling, we defined four classes each corresponding to the
various treatments we seek to predict in SimTrl. Tourni-
quets presented a unique challenge as they are small and
often blend in with the body. In addition, the appearance of
a tourniquet significantly changes once it is applied to the
body. This often resulted in a large number of false nega-
tives. The training set annotations and model performance
are summarized in Table 1.

4.2. Pose Estimation Results

For developing our HPE model, we utilized the pub-
licly provided LOP training weights, trained initially on the
COCO dataset [15] for 370,000 training iterations. We fine-
tuned these weights with different strategies using labeled
images from both mannequin and human videos in SimTrl
and evaluated these models on 152 randomly selected im-

ages of humans in uniform from SimTrl. The 2nd and 3rd
columns of Table 2 show the number of images in the train-
ing set for various fine-tuned pose models for human and
mannequin data respectively with roughly the same num-
ber of images with and without uniform clothing. The Per-
centage of Correct Keypoints (PCK) scores are reported in
the last column of Table 2. The best results are obtained
when we use both mannequin and human images in train-
ing. Apart from having relatively small training and test
datasets, a particular challenge to this data is the lack of face
or neck in many images as pose estimation relies on detect-
ing and associating key features on the body with one an-
other. Additionally, the uniform worn by the subject is un-
like the clothing found in most HPE training datasets. How-
ever, our model learns well, and the mannequin-only model
clearly shows generalizability to human test data. This indi-
cates strong potential for scalability, as human data is more
difficult to obtain within the medical domain, but if man-
nequin data may achieve similar results, this pipeline may
be easily scaled for broader future use.

4.3. End to End Pipeline Results

We evaluated the overall performance of our end-to-end
pipeline with SimTrl. We analyzed our pipeline’s precision
and recall based on Eq. (3) through Eq. (7). The results are
reported in Table 3.

In these results, we evaluated the impact of various pa-
rameters. We considered all HPE models (see Table 2), the
z-score filtering window size w (if z-score is applied), the
majority vote ¢ value in Eq. (2), as well as the use of PeTA.
We also considered the restriction parameters R in Eq. (1).

Our results indicate our pipeline could provide the soft-
ware backbone of a promising solution to emergency med-
ical documentation. While our baseline model alone strug-
gles to achieve high-level results, we demonstrate in Table 3
that the iterative improvements our pipeline implemented
throughout Section 3 enable favorable results.

First, we show our base pipeline with no parameters in
use, providing a baseline score. Next, we show that post-
video filtering via majority voting and z-score filtering lead

1825



Table 3. Results of our pipeline with different parameters. In the table, 7, F, and NA represent True, False, and Not Applied, respectively.
Pr and Rt denote TCCC precision and recall for the respective pipelines, while Pr indicates raw precision for the respective pipeline.

HPFE w dmin Omin jmin C PeTA PR PT RT
Base NA 1 0 1 0 F 67%  37%  48%
Base 60 1 0 1 5 F 73%  68%  48%
Base 60 1 0 1 .5 T 8%  90%  59%
Base 60 .25 1 10 5 F 91% 96%  52%
Mann 60 1 .1 5 5 F 94% 100% 57%
Mann 60 .25 1 5 5 F 94%  96%  62%
HuMann 60 1 1 1 .5 F 9% 100% 62%
HuMann 60 .25 3 1 5 T 9%  96%  62%
Mann 60 5 1 1 5 T 93% 100% 62%

to improvements in all metrics. Then we demonstrate that
the addition of either filtering with I? parameters or utilizing
PeTA can improve results. However, we found that utilizing
both at the same time provided sub-optimal results on the
Base LOP model.

We next consider LOP fine-tuned models. We show
with relatively little data, fine-tuning our LOP model with
mannequin-only data leads to significant improvement for
our overall pipeline, indicating promising results for the
generalizability of mannequin data to our problem set.
However, utilizing both mannequin and human data leads
to slightly higher metrics for our pipeline, as expected given
the test data is solely human data.

Consequently, we add PeTA for our optimal Mann and
HuMann pipeline configurations. Here, it is important to
note that the most important metrics are the TCCC-metrics,
as this predicts the accuracy of a TCCC card, the end goal
output. When we compare our optimal Mann pipeline con-
figuration with PeTA, against the overall optimal configu-
ration (which uses HuMann, but no PeTA), we find these
pipelines produce the exact same TCCC-metrics. The im-
plications of this must not be understated. This implies
that by fine-tuning only on mannequin data and tuning our
pipeline parameters, we may achieve the same TCCC re-
sults that we would achieve with human data. Given sig-
nificant ethical and legal considerations often slow progress
for the collection of human data, these results indicate this
research may scale more rapidly than it would if it were de-
pendent on human data for optimal results.

It is worth noting that in the context of combat medics,
high precision is considered more important than high re-
call [23]. This is because false positives can be more detri-
mental than false negatives, as they would require medics
to verify the accuracy of the entered data, which could be
time-consuming and hinder their workflow. Conversely,
false negatives, where certain areas are left blank, do not un-
dermine the medics’ trust in the software or discourage its
usage, as they can easily fill in the missed areas while still

benefiting from the detections in other areas. Therefore, our
ability to achieve high precision is a promising outcome for
future research aiming to develop a fielded prototype based
on this software pipeline.

5. Conclusion and Future Work

In response to the critical need for automated TCCC
Card documentation within the US military, we have in-
troduced a comprehensive end-to-end pipeline for military
treatment documentation. In addition to this processing
pipeline, we have created and curated the SimTrI dataset,
which represents a significant contribution to this applica-
tion domain and enables researchers to develop new com-
puter vision solutions.

Our processing pipeline leverages state-of-the-art tech-
niques, utilizing human pose estimation and object detec-
tion as its foundation, while incorporating various filtering
and post-processing methods to enhance the accuracy of the
results. Despite encountering several challenges during the
development process, including the limited number of la-
beled frames and the partial visibility of facial features or
the full body of casualties in the SimTrI dataset, we have
achieved highly favorable results. Our pipeline attained an
excellent precision rate of 100% in accurately predicting
TCCC-relevant information, with a recall rate of 62%, in-
dicating a substantial level of accuracy in identifying and
localizing treatments administered.

Looking ahead, there are several exciting avenues for
further advancements. Future work should focus on ex-
panding the capabilities of our pipeline to encompass a
wider range of treatments and incorporate a more diverse
set of patients, thereby enhancing its applicability and ver-
satility in various scenarios. Furthermore, optimizing the
recall rate will be a key objective, aiming to increase the
percentage of accurately predicted TCCC Cards. Addition-
ally, ongoing efforts will be dedicated to refining and im-
proving the underlying machine learning models that form
the foundation of our pipeline.
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