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On the O(1/k) Convergence of Distributed
Gradient Methods Under Random Quantization

Amit Dutta , Graduate Student Member, IEEE , and Thinh T. Doan , Senior Member, IEEE

Abstract—We revisit the so-called distributed two-time-
scale stochastic gradient method for solving a strongly
convex optimization problem over a network of agents in
a bandwidth-limited regime. In this setting, the agents can
only exchange the quantized values of their local variables
using a limited number of communication bits. Due to
quantization errors, the existing best-known convergence
results of this method can only achieve a suboptimal rate
O(1/

√

k ), while the optimal rate is O(1/k ) under no quanti-
zation, where k is the time iteration. The main contribution
of this letter is to address this theoretical gap, where we
study a sufficient condition and develop an innovative
analysis and step-size selection to achieve the optimal
convergence rate O(1/k ) for the distributed gradient meth-
ods given any number of quantization bits. We provide
numerical simulations to illustrate the effectiveness of our
theoretical results.

Index Terms—Distributed optimization, quantized com-
munication, two-time-scale stochastic approximation.

I. INTRODUCTION

I
N THIS letter, we focus on optimization problems defined

over a network of N agents, where the goal is to solve

min
x∈Rd

f (x)
�=

1

N

N
∑

i=1

f i(x), (1)

with f i : Rd → R as the local objective function known only

to agent i. We assume no central coordination and the agents

communicate locally with neighbors over a graph to solve (1).

We are interested in studying distributed consensus stochas-

tic gradient (DCSG) methods to solve problem (1), where each

agent maintains a local estimate of the decision variable x�.

Agents update their variables by communicating with their

neighbors, averaging the received estimates, and then taking

a gradient step of their local functions. A practical challenge
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when implementing this method is the so-called quantization

error when the communication network has limited band-

widths, i.e., agents can only exchange limited information

using a finite number of communication bits. This requires

them to quantize their values before communicating with

others, leading to “quantization errors” in their updates. These

errors present a significant bottleneck in the design and

analysis of distributed optimization algorithms [1].

In our previous work [2], [3], we propose a variant of

DCSG, namely, distributed two-time-scale gradient methods,

to solve problem (1) under quantized communication (see

Algorithm 1 below). However, we showed that this method

only achieves a suboptimal convergence rate due to quanti-

zation errors, i.e., the rate is O(1/
√

k) when f is strongly

convex [3]. This rate is known to be O(1/k) when there is no

quantization.

Main Contribution: The main focus of this letter is to

address the theoretical gap for the convergence complexity of

DCSG under quantization. In particular, we study a sufficient

condition and develop an innovative analysis and step-size

selection to achieve the optimal convergence rate O(1/k) for

the distributed two-time-scale stochastic gradient method given

any number of quantization bits. To illustrate the effectiveness

of our theoretical results, we simulate this method to solve an

example of problem (1) and compare it with the performance

of the classic DCSG without quantization.

A. Related Work

DCSG algorithm was first studied in [4] based on the

classic work on distributed computation in [5]. Until now,

DCSG have been well studied with many advanced theoretical

results; see for example the recent survey in [1]. For example,

DCSG achieves an optimal convergence rate O(1/k) when the

objective function f is strongly convex, which is the same as

the result of the centralized setting.

The practical challenge of quantized communication has

motivated the existing literature to study the performance of

DCSG under quantization errors. In [6], the authors provide

the first convergence result for the convergence of DCSG,

where this method only achieves an approximate convergence

due to quantization errors. The following work in [2] studies

the so-called two-time-scale DCSG, motivated by the special

consensus algorithm with quantization [7], and shows that this

method can find an exact solution of problem (1). However,

this letter requires projecting the iterates to a compact set,

introducing both projection and quantization errors, resulting
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in a suboptimal convergence rate of O(1/k1/3). This limitation

was later addressed in [3], where the quantization bin sizes

increased over time while keeping the number of communi-

cation bits constant, leading to a better, but still suboptimal,

convergence rate of O(1/
√

k). These works demonstrate that

two-time-scale DCSG algorithms can handle quantization

errors, but suffer a suboptimal convergence rate. Recent

works in [8], [9] improve these results, where they propose

a more complicated quantization scheme to obtain optimal

convergence rates. These results, however, only apply to the

deterministic setting and static communication graphs. Our

focus in this letter is to improve the results in [2], [3], where

we propose an innovative step size selection and analysis to

achieve an optimal rate O(1/k) in the stochastic setting. For

ease of exposition, we will consider static graphs. However,

our result can be easily extended to the setting of time-varying

graphs studied in [1].

Other approaches, for example, [10], [11], study communi-

cation compression using quantization. However, they require

an impractical setting, where agents need to use (potentially)

an infinite number of bits for quantization to exchange a real

interval every iteration for decoding. Their results, therefore,

are not applicable to the setting studied in this letter.

B. Notation

We denote ‖x‖ and ‖X‖ the Euclidean norm and the

Frobenius norm of the vector x and matrix X, respectively. Let

1 be the vector whose entries are 1 and I the identity matrix.

Next, we use superscript and subscript, e.g., xi
k, to denote the

agent indices and iterations, respectively.

Random Quantization. Given a real number x ∈ [�, u], we

partition the interval into B equal length bins with endpoints

denoted by τm, m ∈ {1, . . . , B + 1}, such that τ1 = � and

τB+1 = u. The length of each bin �, is defined as � = u−l
B

.

The representation symbols for the quantizers are chosen from

{τm}B+1
m=1, where each τm is mapped into a codeword of b bits.

Thus, for a given number of bits b, the number of bins B =
2b − 1, and � = (l − u)/(2b − 1).

Given x ∈ [τi, τi+1), we assign a probability based on its

relative location within this interval, p = (x−τi)/�. We either

choose τi or τi+1 to represent x using the stochastic rule Q

which follows the following

Q(x) =
{

τi with probability 1 − p,

τi+1 with probability p.
(2)

The random variable Q(x) satisfies the following properties:

E[Q(x)|x] = x, (3)

E

[

(Q(x) − x)2|x
]

≤
�2

4
, (4)

P(|Q(x) − x| ≤ �) = 1. (5)

Thus, the random quantizer is unbiased, has bounded variance,

and ensures the quantized value is almost always within � of

the true value x.

II. DISTRIBUTED CONSENSUS STOCHASTIC GRADIENT

WITH RANDOM QUANTIZATION

The DCSG method with random quantization is formally

presented in Algorithm 1, where each agent i maintains a

Algorithm 1 DCSG Under Random Quantization

Initialize: Each node i initializes {xi
0, αk, βk}

Iteration: For k = 1, . . . , node i ∈ V implements:

Compute quantization qi
k = Q(xi

k) and send to node j ∈ N i

Receive q
j

k from node j ∈ N i and update

xi
k+1 = (1 − βk)x

i
k + βk

∑

j∈N i

aijq
j

k − αk∇f i
(

xi
k; ξ i

k

)

. (6)

local variable xi
k to estimate for the optimal solution x� of

problem (1). At every iteration k, each agent i only exchanges

a quantized value, qi
k = Q(xi

k), with its neighboring agents.

Upon receiving the quantized values from its neighbors j, in (6)

agent i first forms a β−convex combination of its local value

xi
k and the weighted average of these quantized values. The

outcome of the first step is used to update xi
k+1 by using

the sample of agent i’s local gradient scaled by another step

size αk.

Here, the decentralized communication between agents is

modeled by an undirected graph G = (V, E), where V =
1, . . . , N represents the set of vertices and E ⊆ V ×V denotes

the set of edges. We denote by N i = {j ∈ V|(i, j) ∈ E} the

neighboring set of agent i. The matrix A = [aij] represents the

communication structure associated with graph G, i.e., aij ∈
(0, 1) if j ∈ N i otherwise aij = 0. Note that when βk = 1

and qi
k = xi

k, i.e., no quantization, Algorithm 1 reduces to

the classic DCSG method introduced in [4]. However, in (6)

βk is chosen strictly smaller than 1 to remove the impact of

quantization noise. In addition, βk is chosen larger than αk

so that the quantization noise is addressed before the gradient

updates. This is a distributed variant of the so-called two-

time-scale stochastic approximation [12]. It turns out that

by properly choosing αk, βk, Algorithm 1 can find an exact

solution x� of problem (1) even under random quantization [2].

However, as noted the existing results for the convergence

complexity of Algorithm 1 are suboptimal, (e.g., O(1/
√

k)

when f is strongly convex). This rate is O(1/k) when there

is no quantization. Our focus in this letter is, therefore, to

close this gap, where we will provide a sufficient condition to

achieve the optimal convergence rate O(1/k) of Algorithm 1.

III. TECHNICAL ASSUMPTIONS AND PRELIMINARIES

We will consider the following assumptions, which we

assume they always hold to the end of this letter.

Assumption 1 (Lipschitz Smoothness): For all i, the gradient

of fi is Lipschitz continuous with a positive constant Li

‖∇f i(x) − ∇f i(y)‖ ≤ Li‖x − y‖, x, y ∈ R
d. (7)

Assumption 2 (Strong Convexity): The global objective

function f is strongly convex with constant µ > 0

(x − y)T(∇f (x) − ∇f (y)) ≥ µ‖x − y‖2, x, y ∈ R
d. (8)

Assumption 3: The random variables ξ i
k, ∀i and k ≥ 0, are

i.i.d. and there exists a positive constant σ such that ∀x ∈ R
d

E
[

∇f i
(

x, ξ i
k,t

)

| Fk

]

= ∇f i(x), (9)

E

[

‖∇f i
(

x, ξ i
k,t

)

− ∇f i(x)‖2 | Fk

]

≤ σ 2, (10)
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where Fk represents the filtration that contains the history of

all variables generated by Algorithm 1 up to iteration k.

Assumption 4: The optimal solution x� of (1) satisfies

x� ∈
⋂

i

arg min
x∈Rd

f i(x). (11)

Remark 1: Assumption 2 implies that x� is the unique

solution of problem (1). Under Assumption 4, x� is also a

minimizer of each f i. However, Assumption 4 does not imply

that the set of minimizers of f i is unique. Thus, under this

assumption solving problem (1) is equivalent to searching for

a point in the intersection of the minimizer sets of each f i.

We consider the following example where

Assumption 5 holds. Specifically, the global objective is given

by G(x) =
∑N

i=1 ‖Aix − bi‖2, where Ai ∈ R
d×d are rank-

deficient local matrices. Despite the rank deficiency of each

Ai, the aggregate matrix
∑N

i=1 A

i Ai is full rank. This ensures

that G(x) is strongly convex and admits a unique global

minimizer x�. The rank deficiency of Ai implies that each

local objective ‖Aix − bi‖2 is convex but can have multiple

minimizers, resulting in local solution sets Si = {x | Aix = bi}.
By construction, it is possible to choose x� such that it lies

in the column space of Ai for all i, ensuring that x� ∈ Si for

every i. Consequently, x� resides in the intersection of the local

solution sets x� ∈
⋂N

i=1 Si. This setup satisfies Assumption 5,

as x� is the unique minimizer of the global objective G(x) and

lies in the intersection of the local solution sets. In Section V,

we provide another example where this assumption holds.

The above assumption provides a sufficient condition to

establish the optimal convergence rate O(1/k) for the two-

time-scale distributed gradient descent method under random

quantization. While this condition ensures the theoretical

guarantees, it may not be necessary, which we leave for

future studies. Compared to existing works [3], [13], this

additional assumption is required to achieve the optimal

rate for Algorithm 1. However, we do not require that each

function f i is Lipschitz continuous (or bounded gradients) as

assumed in prior works.

Assumption 5: The matrix A = [aij] is doubly stochastic,

i.e.,
∑

i aij =
∑

j aij = 1 for all i, j.

We note that Assumptions 1–5 are standard in the liter-

ature of DCSG. Finally, our result is the same as the one

in [8], where the authors use an adaptive quantization scheme.

However, the result in [8] is for fixed graphs and requires

a certain condition on the number of bits to control the

quantization errors. On the other hand, our result is applicable

to any value of B and can be extended to time-varying graphs

using standard uniform connectivity assumption [6].

For convenience, we introduce the following notation. First,

the quantization error at each agent i is defined as

ei
k = xi

k − qi
k. (12)

We denote X the matrix

X =

⎡

⎢

⎢

⎣

(

x1
k

)T

...
(

xN
k

)T

⎤

⎥

⎥

⎦

, (13)

whose i-th row is (xi)T and x̄ = 1
N

∑

i xi as the average for

a given collection of vectors xi, for iteration k. Let W = I −
1
N

11T and Y be the consensus errors given as

Yk = Xk − 1x̄T
k = WXk, (14)

Using the notation above, the matrix form of (6) is

Xk+1 = (1 − βk)Xk + βkAQk − αkGk(Xk), (15)

x̄k+1 = (1 − βk)x̄k + βkq̄k − αkḡk, (16)

where

Gk(Xk; ξk) =

⎡

⎢

⎢

⎣

(

∇f 1
(

x1
k, ξ

1
k

))T

...
(

∇f N
(

xN
k , ξN

k

))T

⎤

⎥

⎥

⎦

,

ḡk =
1

N

N
∑

i=1

∇f i
(

xi
k, ξ

i
k

)

. (17)

We will consider the following choice of step sizes

αk =
Cα

1 + h + k
, βk =

Cβ

1 + h + k
, Cα ≤ Cβ , (18)

where Cα , Cβ and h > 1 are constants. The choice of these

constants to guarantee an optimal convergence rate O(1/k) for

Algorithm 1 will be given in Theorem 1. Finally, we consider

the following lemmas to characterize the properties of the

iterates generated by Algorithm 1. We present their proofs in

the Appendix.

Lemma 1: For all k ≥ 0 we have

E

[

‖Yk+1‖2
]

≤
(

1 − (1 − σ2)βk +
8αk(L + 1)3N

µ

)

E

[

‖Yk‖2
]

+ 2β2
k Nσ 2

+
(µαk

4
+ 2αkβk(L + 1)2

)

E

[

‖x̄k − x�‖2
]

+
β2

k d2�2N

2
,

(19)

where L =
∑N

i=1 Li and σ2 is the second largest singular value

adopted from the averaging matrix A.

Lemma 2: For all k ≥ 0 we have

E

[

‖x̄k − x�‖2
]

≤
(

1 −
7µαk

4
+ 4αkβk(L + 1)2

)

E

[

‖x̄k+1 − x�‖2
]

+
8αk(L + 1)3N

µ
E

[

‖Yk‖2
]

+
β2

k �2d2

2
+ β2

k σ 2N. (20)

IV. MAIN RESULTS

The focus of this section is to study the convergence of

Algorithm 1 when the global function f is strongly convex

and each local function fi has Lipschitz smooth gradients. Our

main result shows that each iterate xi
k converges to x� at a rate

O(1/k).

To demonstrate the convergence rate of Algorithm 1, we

consider the following aggregate Lyapunov function:

Vk = ‖x̄k − x�‖2 + ‖Yk‖2. (21)

Finally, we present our main result that establishes the

convergence of Algorithm 1, achieved through the analysis

of the aggregate Lyapunov function Vk defined in (21), as

outlined in the following theorem.
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Fig. 1. Convergence of ‖Yk ‖2 on the left and ‖x̄k − x�‖2 on the right under 16-bit quantization.

Theorem 1: Let Cα , Cβ and h > 1 in (18) be chosen as

Cα =
16

3µ
, Cβ ≥

17(L + 1)3NCα

µ(1 − σ2)
, h ≥

48(L + 1)2Cβ

3µ
·

(22)

Then we obtain for all k ≥ 0

E
[

Vk+1

]

≤
h2
E[V0]

(k + h + 1)2
+

d2�2C2
β

k + h + 1
+

3σ 2NC2
β

k + h + 1
· (23)

Remark 2: Theorem 1 indicates that Algorithm 1 converges

to the desired solution at a rate O(1/k), which is the same as

DCSG when there is no quantization. Our result also shows

that the complexity scales proportionally with d2 and �2. The

term �2 is expected as one can view quantization error as

another source of noise with variance �2. On the other hand,

the dependence on the square of dimension, d2, might be

suboptimal. One would expect that the upper bound should

depend linearly on d. At this point, we are uncertain whether

this is an artifact from our analysis or a fundamental result.

We leave this question for our future research.

Proof: Adding (19) into (20) and using (21) we have

E
[

Vk+1

]

≤
(

1 −
3µαk

8

)

E[Vk] + d2�2β2
k + 3σ 2Nβ2

k

+
(

−
3µαk

8
+ 6(L + 1)2αkβk

)

E

[

‖x̄k − x�‖2
]

+
(

−(1 − σ2)βk +
17(L + 1)3Nαk

µ

)

E

[

‖Yk‖2
]

. (24)

Using the definition of step sizes αk and βk in (18) and (22), we

have
3µαk

8
−6(L+1)2αkβk > 0 and (1−σ2)βk − 17(L+1)3N

µ
> 0

which when using into (24) gives

E
[

Vk+1

]

≤
(

1 −
3µαk

8

)

E[Vk] + d2�2β2
k + 3σ 2Nβ2

k

=
k + h − 1

k + h + 1
E[Vk] +

d2�2C2
β

(k + h + 1)2
+

3σ 2NC2
β

(k + k + 1)2
.

Multiplying both sides of the preceding relation with (k + h +
1)2 and since h > 1 we have

(k + h + 1)2
E

[

Vk+1

]

≤ (k + h + 1)(k + h − 1)E[Vk] + d2�2C2
β + 3σ 2NC2

β

≤ h2
E[V0] + d2�2C2

β(k + 1) + 3σ 2NC2
β(k + 1), (25)

which when dividing both sides by (k + h + 1)2 immediately

yields (23). This concludes our proof.

V. SIMULATIONS

We simulate Algorithm 1 to solve a simple example of

problem (1) when N = 25. Specifically, the agents aim to

agree at an unknown point x�, where x� is a 10-dimensional

vector with all elements equal to unity. Each agent i makes

100 noisy observations of x�, denoted as Xi = x� + Zi, where

Zi ∼ N (0, I10). Here, f i(x) = 1
2
E[‖x − Xi‖2] is the local

objective for ith agent with minimizer x�. We also note that

x� is also minimizer of the global function
∑N

i=1 f i(x). Thus

our experimental setup satisfies Assumption 5. Here, note that

this is a special case where the local objectives have a unique

minimizer. For our implementation, we randomly generate a

connected graph G and use A as the Metropolis adjacency

matrix corresponding to G [2].

We implement two sets of simulations. In Figure 1, we

compare the performance of the classic DCSG without quan-

tization [4] and Algorithm 1. For the former, we set αk = 0.15
1+k

,

while αk = 0.15
6+k

and βk = 0.5
6+k

for the latter. Here we have

Cα = 0.15, Cβ = 0.5 and h = 5, which satisfy Cα ≤ Cβ

and h > 1 that meet the step size conditions for Algorithm 1.

Furthermore, for the simulation of the Algorithm 1, each agent

utilizes a 16-bit quantizer based on the random quantization

scheme discussed in Section I-B. As shown in Figure 1

both methods have the same convergence rates to the desired

values, which agrees with our theoretical result. Figure 2

demonstrates that as the number of quantization bits increases,

the algorithm requires fewer iterations to reach the desired

accuracy (e.g., Vk ≤ 0.045), consistent with Theorem 1,

where the upper bound scales proportionally with �2 that gets

smaller as the number of bits increases.

VI. CONCLUDING REMARKS

In this letter, we revisit the distributed two-time-scale

stochastic gradient method under quantized communication.

Our main contribution is to study a sufficient condition

and develop an innovative analysis and step-size selection

to achieve the optimal convergence rate O(1/k) for the

distributed gradient methods given any number of quantization

bits. One interesting question left by this letter is to study

more general conditions to obtain an optimal convergence rate

of DCSG. Another question is to understand whether one can

achieve a linear dependence on the dimension d in our main

results.

Authorized licensed use limited to: Thinh Doan. Downloaded on February 21,2025 at 20:44:55 UTC from IEEE Xplore.  Restrictions apply. 



DUTTA AND DOAN: ON THE O(1/K) CONVERGENCE OF DISTRIBUTED GRADIENT METHODS 2971

Fig. 2. Performance complexity as a function of bits.

APPENDIX

A. Proof of Lemma 1

Proof: From (6) and using the fact that Ek = Qk − Xk and

AW = WA we have,

‖Yk+1‖2 = ‖WXk+1‖2

= ‖(1 − βk)Yk + βkWAEk + βkAYk − αkWGk‖2

= ‖(I − (I − A)βk)Yk + βkWAEk‖2 + α2
k ‖WGk(Xk)‖2

− 2αk((I − (I − A)βk)Yk + βkWAEk)
T (WGk(Xk))

= A + B + C, (26)

where A, B and C are defined in that order. Taking conditional

expectation with respect to Fk and using the unbiasedness of

the random quantizers associated with each agent, term A can

be analyzed as the following

E[A|Fk] = ‖(I − (I − A)βk)Yk‖2 + β2
kE

[

‖WAEk‖2|Fk

]

≤ (1 − (1 − σ2)βk)
2‖Yk‖2 + β2

k

N
∑

i=1

E

[

‖ei
k‖

2|Fk

]

(3)
≤ (1 − (1 − σ2)βk)

2‖Yk‖2 +
Nβ2

k d2�2

4
. (27)

Next, the term B can be analyzed as the following

E
[

B|Fk

]

≤ α2
kE

[

‖Gk(Xk)‖2|Fk

]

= α2
k

N
∑

i=1

E

[

‖∇f i
(

xi
k; ξ i

k

)

− ∇f i
(

xi
k

)

‖2|Fk

]

+ α2
k

N
∑

i=1

‖∇f i
(

xi
k

)

‖2

≤ α2
k

N
∑

i=1

‖
(

∇f i(xi
k) − ∇f i(x̄k)

)

+
(

∇f i(x̄k) − ∇f i(x�)
)

‖2

+ α2
k Nσ 2 ≤ 2α2

k L2‖Yk‖2 + 2α2
k L2N‖x̄k − x�‖2 + β2

k Nσ 2,

(28)

where the last inequality is obtained using Cauchy-Schwarz

inequality and due to αk ≤ βk and Li ≤
∑

i Li. Finally taking

expectation with respect to filtration Fk, we analyze the term

C as

E[C|Fk]

= − 2αkE
[

((I − (I − A)βk)Yk)
T(WGk(Xk; ξk))|Fk

]

− 2αkE
[

βk(WAEk)
T(WGk(Xk; ξk))|Fk

]

= C1 + C2, (29)

where C1 and C2 are defined in that order. Since βk ≤ 1 and

σ2 ∈ (0, 1) we have 1 − (1 − σ2)βk ≤ 1. By Assumption 3,

term C1 can be expressed as

C1 ≤ 2αk‖(I − (I − A)βk)Yk‖‖WGk(Xk)‖
≤ 2αk(1 − (1 − σ2)βk)‖Yk‖‖Gk(Xk)‖
≤ 2αk‖Yk‖‖Gk(Xk) − Gk(x̄k)‖

+ 2αk‖Yk‖‖Gk(x̄k) − Gk

(

x�
)

‖
≤ 2αkL‖Yk‖2 + 2αkL

√
N‖Yk‖‖x̄k − x�‖. (30)

Note that in the above inequality using the Frobenius norm of

a matrix we have obtained,

‖Gk(Xk) − Gk(x̄k)‖ ≤ L

√

√

√

√

N
∑

i=1

‖xi
k − x̄k‖2 = L‖Yk‖.

Similarly, ‖Gk(x̄k) − Gk(x
�)‖ ≤ L

√
N‖x̄k − x�‖. Next, using

the Cauchy-Schwarz inequality, term C1 can be expressed as

C1 ≤
(

2αkL +
4αkL2N

µ

)

‖Yk‖2 +
µαk

4
‖x̄k − x�‖2. (31)

Next using the unbiased property of both the stochastic

gradients and the random quantizer we analyze term C2 as

E[C2|Fk]

= − 2αkβkE
[

(WAEk)
T(W(Gk(Xk; ξk) − Gk(Xk)))|Fk

]

− 2αkβkE
[

(WAEk)
TGk(Xk)|Fk

]

≤ αkβkE

[

‖Ek‖2|Fk

]

+ αkβkE

[

‖Gk(Xk; ξk) − Gk(Xk)‖2|Fk

]

≤
αkβkd2�2N

4
+ αkβkNσ 2 ≤

β2
k d2�2N

4
+ β2

k Nσ 2.

Substituting the above relation and (31) into (29), along

with (27) and (28), and using (1−(1−σ2)βk)
2 ≤ 1−(1−σ2)βk

(as βk ≤ 1, σ2 ∈ (0, 1)), µ ≤ L, and αk ≤ βk, we derive (19)

from (26), completing the proof.

B. Proof of Lemma 2

Proof: From (16) we have the following,

‖x̄k+1 − x�‖2 = ‖x̄k − x� − αkḡk + βkēk‖2

= ‖x̄k − x� − αkḡk‖2 + β2
k ‖ēk‖2

+ 2βk

(

x̄k − x� − αkḡk

)T
ēk. (32)

The first term in the right-hand side of the above equation can

be analyzed as the following,

‖x̄k − x� − αkḡk‖2

= ‖x̄k − x�‖2 + α2
k ‖ḡk‖2 − 2αk

(

x̄k − x�
)T

ḡk. (33)
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We analyze the last term in the right-hand side of the above

equation in expectation. For this, using the unbiased gradient

property, we obtain

E

[

−2αk

(

x̄k − x�
)T

ḡk|Fk

]

= −
2αk

N

N
∑

i=1

(

∇f i(xi
k) − ∇f i(x̄k)

)T(

x̄k − x�
)

−
2αk

N

N
∑

i=1

∇f i(x̄k)
T
(

x̄k − x�
)

≤
2αk

N

N
∑

i=1

Li‖xi
k − x̄k‖‖x̄k − x�‖ − 2αk∇f (x̄k)

T
(

x̄k − x�
)

(8)
≤

2αkL

N

N
∑

i=1

‖xi
k − x̄k‖‖x̄k − x�‖ − 2µαk‖x̄k − x�‖2

≤
7µαk

4
‖x̄k − x�‖2 +

4αkL2

µN
‖Yk‖2, (34)

where the last inequality is obtained using the Cauchy-

Schwarz inequality and using the definition of Yk. Next, we

analyze the second term in the right hand side of (33) as,

E

[

α2
k ‖ḡk‖2|Fk

]

≤
α2

k

N

N
∑

i=1

E

[

‖
(

∇f i(xi
k; ξ i

k) − ∇f i(xi
k)

)

+ ∇f i
(

xi
k

)

‖2|Fk

]

≤
α2

k

N

N
∑

i=1

E

[

‖∇f i
(

xi
k; ξ i

k

)

− ∇f i
(

xi
k

)

‖2|Fk

]

+
α2

k

N

N
∑

i=1

‖
(

∇f i(xi
k) − ∇f i(x̄k)

)

+
(

∇f i(x̄k) − ∇f i(x�)
)

‖2

≤
2α2

k L2

N
‖Yk‖2 + 2α2

k L2‖x̄k − x�‖2 + α2
k σ 2, (35)

where the last inequality is obtained using the Cauchy-

Schwarz inequality and the lipschitz smoothness of the

gradients. Putting the above result along with (34) back

into (33) and using αk ≤ 1 along with µ ≤ L we get

E

[

‖x̄k − x� − αkḡk‖2
]

≤
(

1 −
7µαk

4
+ 2α2

k L2

)

E

[

‖x̄k − x�‖2
]

+
6αk(L + 1)3N

µ
E[‖Yk‖2 + α2

k σ 2. (36)

The second term in the right hand side of (32) can be ana-

lyzed in expectation conditioned on Fk as β2
kE[‖ēk‖2|Fk] ≤

β2
k

N

∑N
i=1 E[‖ei

k‖
2|Fk] ≤ β2

k d2�2

4
, which follows from the

property of random quantization (3). Finally, since both the

stochastic gradients and the random quantizer are unbiased,

we analyze the last term from (32) as,

2βkE

[

(

x̄k − x� − αkḡk

)T
ēk|Fk

]

= 2βkE

[

(

x̄k − x�
)T

ēk|Fk

]

− 2αkβkE
[

ḡT
k ēk|Fk

]

≤ αkβkE

[

‖ḡk‖2|Fk

]

+ αkβkE

[

‖ēk‖2|Fk

]

≤
αkβk

N

N
∑

i=1

E

[

‖
(

∇f i(xi
k; ξ i

k) − ∇f i(xi
k)

)

+ ∇f i
(

xi
k

)

‖2Fk

]

+
β2

k �2d2N

4

=
αkβk

N

N
∑

i=1

E

[

‖∇f i
(

xi
k; ξ i

k

)

− ∇f i
(

xi
k

)

‖2|Fk

]2

+
αkβk

N

N
∑

i=1

‖∇f i
(

xi
k

)

‖2 +
β2

k �2d2

4

≤ αkβkσ
2 +

αkβk

N

N
∑

i=1

‖
(

∇f i(xi
k) − ∇f i(x̄k)

)

−
(

∇f i(x̄k) − ∇f i(x�)
)

‖2 +
β2

k �2d2

4

≤
2αk(L + 1)3N

µ
‖Yk‖2 + 2αkβk(L + 1)2‖x̄k − x�‖2

+
β2

k �2d2

4
+ β2

k σ 2. (37)

Thus, taking expectation on both sides of (32) and using the

above results we arrive at (20). This concludes our proof.
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