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On the O(1/k) Convergence of Distributed
Gradient Methods Under Random Quantization
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Abstract—We revisit the so-called distributed two-time-
scale stochastic gradient method for solving a strongly
convex optimization problem over a network of agents in
a bandwidth-limited regime. In this setting, the agents can
only exchange the quantized values of their local variables
using a limited number of communication bits. Due to
quantization errors, the existing best-known convergence
results of this method can only achieve a suboptimal rate
O(1/v/k), while the optimal rate is O(1/k) under no quanti-
zation, where k is the time iteration. The main contribution
of this letter is to address this theoretical gap, where we
study a sufficient condition and develop an innovative
analysis and step-size selection to achieve the optimal
convergence rate O(1/k) for the distributed gradient meth-
ods given any number of quantization bits. We provide
numerical simulations to illustrate the effectiveness of our
theoretical results.

Index Terms—Distributed optimization, quantized com-
munication, two-time-scale stochastic approximation.

. INTRODUCTION

N THIS letter, we focus on optimization problems defined
over a network of N agents, where the goal is to solve

. Al N ;
minf() = ;jf ), (1)

with f7 : RY — R as the local objective function known only
to agent i. We assume no central coordination and the agents
communicate locally with neighbors over a graph to solve (1).

We are interested in studying distributed consensus stochas-
tic gradient (DCSG) methods to solve problem (1), where each
agent maintains a local estimate of the decision variable x*.
Agents update their variables by communicating with their
neighbors, averaging the received estimates, and then taking
a gradient step of their local functions. A practical challenge
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when implementing this method is the so-called quantization
error when the communication network has limited band-
widths, i.e., agents can only exchange limited information
using a finite number of communication bits. This requires
them to quantize their values before communicating with
others, leading to “quantization errors” in their updates. These
errors present a significant bottleneck in the design and
analysis of distributed optimization algorithms [1].

In our previous work [2], [3], we propose a variant of
DCSG, namely, distributed two-time-scale gradient methods,
to solve problem (1) under quantized communication (see
Algorithm 1 below). However, we showed that this method
only achieves a suboptimal convergence rate due to quanti-
zation errors, i.e., the rate is O(1/+/k) when f is strongly
convex [3]. This rate is known to be O(1/k) when there is no
quantization.

Main Contribution: The main focus of this letter is to
address the theoretical gap for the convergence complexity of
DCSG under quantization. In particular, we study a sufficient
condition and develop an innovative analysis and step-size
selection to achieve the optimal convergence rate O(1/k) for
the distributed two-time-scale stochastic gradient method given
any number of quantization bits. To illustrate the effectiveness
of our theoretical results, we simulate this method to solve an
example of problem (1) and compare it with the performance
of the classic DCSG without quantization.

A. Related Work

DCSG algorithm was first studied in [4] based on the
classic work on distributed computation in [5]. Until now,
DCSG have been well studied with many advanced theoretical
results; see for example the recent survey in [1]. For example,
DCSG achieves an optimal convergence rate O(1/k) when the
objective function f is strongly convex, which is the same as
the result of the centralized setting.

The practical challenge of quantized communication has
motivated the existing literature to study the performance of
DCSG under quantization errors. In [6], the authors provide
the first convergence result for the convergence of DCSG,
where this method only achieves an approximate convergence
due to quantization errors. The following work in [2] studies
the so-called two-time-scale DCSG, motivated by the special
consensus algorithm with quantization [7], and shows that this
method can find an exact solution of problem (1). However,
this letter requires projecting the iterates to a compact set,
introducing both projection and quantization errors, resulting
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in a suboptimal convergence rate of O(1/k!/3). This limitation
was later addressed in [3], where the quantization bin sizes
increased over time while keeping the number of communi-
cation bits constant, leading to a better, but still suboptimal,
convergence rate of O(1/+/k). These works demonstrate that
two-time-scale DCSG algorithms can handle quantization
errors, but suffer a suboptimal convergence rate. Recent
works in [8], [9] improve these results, where they propose
a more complicated quantization scheme to obtain optimal
convergence rates. These results, however, only apply to the
deterministic setting and static communication graphs. Our
focus in this letter is to improve the results in [2], [3], where
we propose an innovative step size selection and analysis to
achieve an optimal rate O(1/k) in the stochastic setting. For
ease of exposition, we will consider static graphs. However,
our result can be easily extended to the setting of time-varying
graphs studied in [1].

Other approaches, for example, [10], [11], study communi-
cation compression using quantization. However, they require
an impractical setting, where agents need to use (potentially)
an infinite number of bits for quantization to exchange a real
interval every iteration for decoding. Their results, therefore,
are not applicable to the setting studied in this letter.

B. Notation

We denote ||x|| and ||X]|| the Euclidean norm and the
Frobenius norm of the vector x and matrix X, respectively. Let
1 be the vector whose entries are 1 and I the identity matrix.
Next, we use superscript and subscript, e.g., x};, to denote the
agent indices and iterations, respectively.

Random Quantization. Given a real number x € [£, u], we
partition the interval into B equal length bins with endpoints
denoted by t,,m € {1,...,B + 1}, such that 1y = ¢ and
7p+1 = u. The length of each bin A, is defined as A = ”TTI.
The representation symbols for the quantizers are chosen from
{'l:m}f;'ll, where each 1, is mapped into a codeword of b bits.
Thus, for a given number of bits b, the number of bins B =
20 —1,and A = (I —u)/20 —1).

Given x € [1;, 7;41), We assign a probability based on its
relative location within this interval, p = (x—1t;)/A. We either
choose t; or 7;4] to represent x using the stochastic rule Q
which follows the following

| ou with probability 1 — p,
Q) = { tie1 with probability p. &
The random variable Q(x) satisfies the following properties:
E[QM)|x] = x, 3)
2 A
E[(Qw - vk = —. )
PIQM) —x =A) =1 &)

Thus, the random quantizer is unbiased, has bounded variance,
and ensures the quantized value is almost always within A of
the true value x.

[1. DISTRIBUTED CONSENSUS STOCHASTIC GRADIENT
WITH RANDOM QUANTIZATION

The DCSG method with random quantization is formally
presented in Algorithm 1, where each agent i maintains a

Algorithm 1 DCSG Under Random Quantization

Initialize: Each node i initializes {xf), Ak, B}
Iteration: For k =1, .. ., node i € V implements: .
Compute quantization g; = Q(x;) and send to node j € N

Receive qﬁ( from node j € N and update

My = (1= Boxk+ B > ayg, — aaVF (d: &l). (6)
jeNi

local variable x;( to estimate for the optimal solution x* of
problem (1). At every iteration k, each agent i only exchanges
a quantized value, q}; = Q(x;;), with its neighboring agents.
Upon receiving the quantized values from its neighbors j, in (6)
agent i first forms a f—convex combination of its local value
x}; and the weighted average of these quantized values. The
outcome of the first step is used to update x}; 41 by using
the sample of agent i’s local gradient scaled by another step
size aj.

Here, the decentralized communication between agents is
modeled by an undirected graph G = (V, &), where V =
1,..., N represents the set of vertices and £ C V x )V denotes
the set of edges. We denote by NV = {j € V|(i,j) € &} the
neighboring set of agent i. The matrix A = [a¥] represents the
communication structure associated with graph G, ie., a/ €
(0, 1) if j € N otherwise a/ = 0. Note that when f; = 1
and qf{ = x};, i.e., no quantization, Algorithm 1 reduces to
the classic DCSG method introduced in [4]. However, in (6)
Br is chosen strictly smaller than 1 to remove the impact of
quantization noise. In addition, B is chosen larger than oy
so that the quantization noise is addressed before the gradient
updates. This is a distributed variant of the so-called two-
time-scale stochastic approximation [12]. It turns out that
by properly choosing oy, Bi, Algorithm 1 can find an exact
solution x* of problem (1) even under random quantization [2].
However, as noted the existing results for the convergence
complexity of Algorithm 1 are suboptimal, (e.g., O(1/v/k)
when f is strongly convex). This rate is O(1/k) when there
is no quantization. Our focus in this letter is, therefore, to
close this gap, where we will provide a sufficient condition to
achieve the optimal convergence rate O(1/k) of Algorithm 1.

[1l. TECHNICAL ASSUMPTIONS AND PRELIMINARIES

We will consider the following assumptions, which we
assume they always hold to the end of this letter.

Assumption 1 (Lipschitz Smoothness): For all i, the gradient
of f; is Lipschitz continuous with a positive constant L

IVFi) — VEOI < Llx—yll, x,ye R (7

Assumption 2 (Strong Convexity): The global objective
function f is strongly convex with constant p > 0

@ —»T(VF®) — VFO) = ullx—ylI%, x,y e R (8)

Assumption 3: The random variables §,§, Vi and k > 0, are
i.i.d. and there exists a positive constant o such that Vx € R¢

E[Vf'(x. &) | Fe] = Vf' (). ©)
E[IVF (v 6) — VA @I? 1 B <0 (10)
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where Fj represents the filtration that contains the history of Y. =X — lic,{ = WX, (14)
all variables generated by Algorithm 1 up to iteration k. . . . .
Assumption 4: The optimal solution x* of (1) satisfies Using the notation above, the matrix form of (6) is
e ﬂ arg mil}lfi(x). (1n )fk—i-l =(1- ,Bk){(k + ﬂk_AQk —_Olka(Xk)a (15)
i <R X1 = (L= Bk + Bk — ks (16)
Remark 1: Assumption 2 implies that x* is the unique here
solution of problem (1). Under Assumption 4, x* is also a T
minimizer of each f*. However, Assumption 4 does not imply (Vf : (x}(, ékl ))
that the set of minimizers of f* is unique. Thus, under this Gi(Xy; &) = . ,
assumption solving problem (1) is equivalent to searching for : T
a point in the intersection of the minimizer sets of each f*. (Vf N (ka & ))
We  consider the  following  example  where 1 Y o
Assumption 5 holds Spemﬁcally, the global objectlve is given gk = N Z V' (%, &)- (17
by G(x) = Z 1 1Aix — b; |2, where A; € R?*? are rank- i=1
deficient local matrices. Desplte the rank deficiency of each . . . . .
We will der the foll h f st
A;, the aggregate matrix Zl 1A A; is full rank. This ensures © WIT considet the foflowing cllolce of step sizes
that G(x) is strongly convex and admits a unique global Gy G
minimizer x*. The rank deficiency of A; implies that each Ttk B = 1+h+k Co = Cp (18)

local objective ||A;x — b;||? is convex but can have multiple
minimizers, resulting in local solution sets S; = {x | Ajx = b;}.
By construction, it is possible to choose x* such that it lies
in the column space of A; for all i, ensuring that x* € §; for
every i. Consequently, x* resides in the intersection of the local
solution sets x* € ﬂf’: 1 Si. This setup satisfies Assumption 5,
as x* is the unique minimizer of the global objective G(x) and
lies in the intersection of the local solution sets. In Section V,
we provide another example where this assumption holds.
The above assumption provides a sufficient condition to
establish the optimal convergence rate O(1/k) for the two-
time-scale distributed gradient descent method under random
quantization. While this condition ensures the theoretical
guarantees, it may not be necessary, which we leave for
future studies. Compared to existing works [3], [13], this
additional assumption is required to achieve the optimal
rate for Algorithm 1. However, we do not require that each
function f? is Lipschitz continuous (or bounded gradients) as
assumed in prior works.
Assumption 5: The matrix A =
ie., Y alf—z a’ =1 for all i, j.
We note that Assumptions 1-5 are standard in the liter-
ature of DCSG. Finally, our result is the same as the one
in [8], where the authors use an adaptive quantization scheme.
However, the result in [8] is for fixed graphs and requires
a certain condition on the number of bits to control the
quantization errors. On the other hand, our result is applicable
to any value of B and can be extended to time-varying graphs
using standard uniform connectivity assumption [6].
For convenience, we introduce the following notation. First,
the quantization error at each agent i is defined as

[4¥] is doubly stochastic,

e =x —qi. (12)
We denote X the matrix
nT
(xk)
x=| : | (13)
T
()

whose i-th row is (x)7 and ¥ = Ilvzixi as the average for
a given collection of vectors x', for iteration k. Let W =1 —
Al,llT and Y be the consensus errors given as

where Cy, Cg and h > 1 are constants. The choice of these
constants to guarantee an optimal convergence rate O(1/k) for
Algorithm 1 will be given in Theorem 1. Finally, we consider
the following lemmas to characterize the properties of the
iterates generated by Algorithm 1. We present their proofs in
the Appendix.

Lemma 1: For all k > 0 we have

E[I¥es ]

8ax (L + 1)3N) [
I

< <1 — (- o)fi+ E[IY4I?] + 247No

Bid* AN

o —
+ (5 + 20+ D)E[ 15— 12| + 2

)

19)

where L = Zf’z | L' and o, is the second largest singular value
adopted from the averaging matrix A.
Lemma 2: For all k > 0 we have

B[ 5 - x*I1?]
7
< (1 - % + 4oy (L + 1) ) [||3_Ck+1 —X*||2]
132 2 2

F—— 1B

8oy (L + 1)°N
T %E[HY,{HZ] o2N. (20)

IV. MAIN RESULTS

The focus of this section is to study the convergence of
Algorithm 1 when the global function f is strongly convex
and each local function f; has Lipschitz smooth gradients. Our
main result shows that each iterate x}; converges to x* at a rate
O1/k).

To demonstrate the convergence rate of Algorithm 1, we
consider the following aggregate Lyapunov function:

= 1% — x*[12 + 1 Ykl% Q1)

Finally, we present our main result that establishes the
convergence of Algorithm 1, achieved through the analysis
of the aggregate Lyapunov function Vj defined in (21), as
outlined in the following theorem.
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Fig. 1. Convergence of \|Yk||2 on the left and || xx — x*|12 on the right under 16-bit quantization.

Theorem 1: Let Cy, Cg and h > 1 in (18) be chosen as

16 17(L + 1)3NC 48(L + 1)2C
c, = 16 CﬂZ(Jr) o Z(+)ﬂ
3up u(l —o2) 3u
(22)
Then we obtain for all £ > 0
R2E[Vo] d*A*C3  30°NCj
E[Vig1] < 3 - (23)
(k+h+1)? k+h+1 k+h+1

Remark 2: Theorem 1 indicates that Algorithm 1 converges
to the desired solution at a rate O(1/k), which is the same as
DCSG when there is no quantization. Our result also shows
that the complexity scales proportionally with d> and A%, The
term AZ is expected as one can view quantization error as
another source of noise with variance A2. On the other hand,
the dependence on the square of dimension, d”, might be
suboptimal. One would expect that the upper bound should
depend linearly on d. At this point, we are uncertain whether
this is an artifact from our analysis or a fundamental result.
We leave this question for our future research.

Proof: Adding (19) into (20) and using (21) we have

E[Vit1]
3
< (1 ’; k)IE[Vk]+d2A B2 + 30N B2

3
+ <—% +6(L+ 1)2otkﬂk)E[||5Ck - X*||2]

17(L + 1)3Notk>E[
"

+ (—(1 — o)fi+ IIP]. @4

Using the definition of step sizes o«; and S in (18) and (22), we
3

have 4% —6(L+1)%afr > 0 and (1—02)fr— w >0

which when using into (24) gives

E[Viy1]

3
< <1 ’;“")JE[vk] +d* N2} + 302N}

k+h—1 dZAZCf3 3(;2Nc§
T k+h+1 k+h+1?  (k+k+1D?

Multiplying both sides of the preceding relation with (k+ i+
1)2 and since & > 1 we have

(k+h+1)*E[Viyi]
< (k+h+ Dk +h—DE[V;] +d>A>C} +30°NC
< W’E[Vol + d*A*Ch(k+ 1) + 30 NCz(k+ 1), (25)

E[Vi] +

which when dividing both sides by (k + & + 1)> immediately
yields (23). This concludes our proof. |

V. SIMULATIONS

We simulate Algorithm 1 to solve a simple example of
problem (1) when N = 25. Specifically, the agents aim to
agree at an unknown point x*, where x* is a 10-dimensional
vector with all elements equal to unity. Each agent i makes
100 noisy observations of x*, denoted as X! = x* + Z!, where

L~ N0, 110) Here, fi(x) = SE[|lx — X||%] is the local
ObjeCtIVC for i agent with minimizer x*. We also note that
x* is also minimizer of the global functlon Z - fi(x). Thus
our experimental setup satisfies Assumption 5. Here, note that
this is a special case where the local objectives have a unique
minimizer. For our implementation, we randomly generate a
connected graph G and use A as the Metropolis adjacency
matrix corresponding to G [2].

We implement two sets of simulations. In Figure 1, we
compare the performance of the classic DCSG without quan-

tization [4] and Algorithm 1. For the former, we set oy = %,

while a; = g—fj{ and B; = %{ for the latter. Here we have

Cy = 0.15,Cg = 0.5 and h = 5, which satisfy C, < Cg
and / > 1 that meet the step size conditions for Algorithm 1.
Furthermore, for the simulation of the Algorithm 1, each agent
utilizes a 16-bit quantizer based on the random quantization
scheme discussed in Section I-B. As shown in Figure 1
both methods have the same convergence rates to the desired
values, which agrees with our theoretical result. Figure 2
demonstrates that as the number of quantization bits increases,
the algorithm requires fewer iterations to reach the desired
accuracy (e.g., Vi < 0.045), consistent with Theorem 1,
where the upper bound scales proportionally with A2 that gets
smaller as the number of bits increases.

VI. CONCLUDING REMARKS

In this letter, we revisit the distributed two-time-scale
stochastic gradient method under quantized communication.
Our main contribution is to study a sufficient condition
and develop an innovative analysis and step-size selection
to achieve the optimal convergence rate O(1/k) for the
distributed gradient methods given any number of quantization
bits. One interesting question left by this letter is to study
more general conditions to obtain an optimal convergence rate
of DCSG. Another question is to understand whether one can
achieve a linear dependence on the dimension d in our main
results.
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Vi <0.045
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Fig. 2. Performance complexity as a function of bits.

APPENDIX
A. Proof of Lemma 1

Proof: From (6) and using the fact that E; = Qi — X and
AW = WA we have,

I eg1l? = IWXgq 1117
= [I(1 = B Y + P WAE, + BAY) — WGy |?
= (X=X = A)BYYx + BWAELI + o WG (Xp) |1
— 204((1 = (1= A) B Y + BWAED (WGL(X)))
=A+B+C, (26)
where A, B and C are defined in that order. Taking conditional
expectation with respect to F; and using the unbiasedness of

the random quantizers associated with each agent, term A can
be analyzed as the following

EAIF] = 10— A= ABOYel? + BEE[WAEL I 7]

N
(1= (1 =onB0’ IV + B D E[ k17
i=1

3) 22 A2
2 (1= (1 = oIVl + ‘34 .

Next, the term B can be analyzed as the following

IA

27)

E[BI7] < ofE[ 16k X017

N
= o Y E[IVF (4 &) = V() 1217

i=1

+akZIIVf’ 1)

N

< of Y I(VFG) - VF ) +
i=1

+ a,%Noz < 2ak

(VA @) — V)2
VI + 20PN T = | o+ BENo,
(28)

where the last inequality is obtained using Cauchy-Schwarz
inequality and due to ax < B¢ and L' < ), L'. Finally taking

expectation with respect to filtration Fj, we analyze the term
C as
E[C]Fi]
= —24E[(d— A - A)B)Y) (WGr(Xs: &)1 Fi]
— 204 B[ B (WAE) " (WG (X &)1 F¢]

=Cy + Gy, (29)

where C; and C; are defined in that order. Since f; < 1 and
o3 € (0,1) we have 1 — (1 — 02)Br < 1. By Assumption 3,
term C; can be expressed as
C1 < 204X = X = A)B) Yi WG (X
< 2o (1 — (1 = 02) B Y N G Xi) ||
< 204 Yr G Xk) — Gr(xi) |l
+ 20| Yi | Gr(r) — G (x*)

< 204 L|| Yil|I* + 20 LN Yil 13 — x*[. - (30)

Note that in the above inequality using the Frobenius norm of
a matrix we have obtained,

1Gx(Xi) — Gr(x)ll < L Z Il — Xl = LI Yl

i=1

Similarly, ||Gi(xx) — Gr(xM)| < LV/N| % — x*||. Next, using
the Cauchy-Schwarz inequality, term C; can be expressed as

Ao L*N

Hag *
Ci < (2akL+ >||Yk||2 i SR NIV

Next using the unbiased property of both the stochastic
gradients and the random quantizer we analyze term C; as

E[Cy|Fk]
= — 204 SE[(WAEW)T (W(Gk (X &)
— 20k S E[(WAEW) T Gy (X0) | Fi ]
< BB IE4?1 7

+ BB G (X 60 — G(Xi) 1217

2 A2 2 2 2
< aBrd” AN ,3 A“N N ,3
4
Substituting the above relation and (31) into (29), along
with (27) and (28), and using (1—(1 —02)B)? < 1—(1—02) Bk
(as Br < 1,07 € (0,1)), u <L, and oy < Bk, we derive (19)
from (26), completing the proof. |

— G (X)) Fi]

+ agfiNo? <

B. Proof of Lemma 2
Proof: From (16) we have the following,
X1 — X117 = 1% — x* — ok + Brekll?
= 1% — x* — ewll® + Bllexl®
_ . _\T-
+ 2,3k(xk —x - akgk) k. (32)

The first term in the right-hand side of the above equation can
be analyzed as the following,
1% — x* — cgell®

_ . - - T =
= 1% — x* 112 + o lgell® — 200 (X — x*) 8. (33)
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We analyze the last term in the right-hand side of the above ok Pr P i i i iNn2
equation in expectation. For this, using the unbiased gradient = N ZE[”(Vf (3 &) — Vf (xk)) +Vf (xk)” Fi k]
property, we obtain i=1

, BEAd*N
]E[—Zak()_ck—x*) gkufk] t—
Zosz o . T _O‘kﬁkNE V(- £l Vii2]_—2
= — (Ve = v G) (- ) = T: IVF* (i &) — VI (i) 171 F
i=1 =
2 Oékﬂk ﬂkA2d2
ZVf%xk) (T — x*) an 4
i=1
2 P , -
< “"ZLnxk—xknuxk—x | — 200V G0 (% — x*) < o’ +—Z;"(Vf’<x2>—vfl<xk>)
i=1 =
) ) 2A2d2
(8)201L —(VFi(x) — VA2 BeATd”
S Y o = Rl — ) — 2ale — 5°I (v/ (x")3 PO+
=1 2ar(L 4 1)°N .
Tnar = ST YR 20 B+ 1P — 2
<T”_ XN+ ||Yk||2 (34) At
. o . . + 2t + Bio (37)
where the last inequality is obtained using the Cauchy- 4

Schwarz inequality and using the definition of Yj. Next, we
analyze the second term in the right hand side of (33) as,

E[a,%uguFm]

Thus, taking expectation on both sides of (32) and using the
above results we arrive at (20). This concludes our proof. H
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