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Abstract It is generally understood that the origin of ocean diapycnal diffusivity is primarily associated
with the stratified turbulence produced by breaking internal (gravity) waves (IW). However, it requires
significant effort to verify diffusivity values in ocean general circulation models in any particular geographical
region of the ocean due to the scarcity of microstructure measurements. Recent analyses of downscaled IW
fields from an internal‐wave‐admitting global ocean simulation into higher‐resolution regional configurations
northwest of Hawaii have demonstrated a much‐improved fit of the simulated IW spectra to the in‐situ profiler
measurements such as the Garrett‐Munk (GM) spectrum. Here, we employ this dynamically downscaled ocean
simulation to directly analyze the nature of the IW‐breaking and the wave‐turbulence cascade in this region. We
employ a modified version of the Kappa Profile Parameterization (KPP) to infer what the horizontally averaged
vertical profile of diapycnal diffusivity should be, and compare this to the background profile that would be
employed in the ocean component of a low‐resolution coupled climate model such as the Community Earth
System Model (CESM) of the US National Center for Atmospheric Research (NCAR). In pursuing this goal, we
also demonstrate that the wavefield in the high‐resolution regional domain is dominated by a well‐resolved
spectrum of low‐mode IWs that are predictable by solving an appropriate eigenvalue problem for stratified flow.
We finally suggest a new tentative approach to improve the KPP parameterization.

Plain Language Summary A much‐improved spectrum of the simulated internal wave (IW) field
has recently been obtained by downscaling a global ocean model into a higher‐resolution regional configuration.
The global simulation is based on the Massachusetts Institute of Technology general circulation model
(MITgcm) forced by both astronomical tidal potential and surface atmospheric processes. By employing a
mathematical framework to predict the structure of IWs, we first demonstrate that the interior wavefield of the
high‐resolution regional domain is well dominated by a series of low‐order IW modes. Then, we address the
issue as to whether the component of the K‐Profile Parameterization (KPP) associated with IW shear might be
able to explain the physical origins of the background depth dependence of diapycnal diffusivity that would
normally be employed in the ocean component of a modern coupled climate model. Finally, we suggest a
tentative approach to further improve KPP.

1. Introduction
Numerical ocean modeling has experienced great improvements in recent years due to the advance in compu-
tational power; until recently, researchers had been focusing more strongly on the atmospheric component of the
climate system. It is unsurprising because the energized scales of atmospheric motions are an order of magnitude
larger than those of the oceans. However, in the oceanic context, it is crucial to consider not only the scales of
geostrophic motions but also the presence of submesoscale oceanic frontal structures. Additionally, the volume‐
filling field of internal (gravity) waves (IW) plays a vital role, being excited by the interaction of the barotropic
tide with bottom topography and surface wind forcing. Therefore, current ocean models have made significant
advancements in various aspects, including the utilization of concurrent “wind plus tides” forcing. These models
are demonstrating remarkable progress in terms of resolution, bathymetric maps, and parameterization schemes.
Today, direct access to such small scales will require us to begin with high‐resolution results for global
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simulations of the kind described in Arbic et al. (2018) but also to dynamically downscale the results of such
models into an even higher resolution regional domain.

Two of the most prominent examples (Arbic et al., 2018) of such astronomically and atmospherically forced
global simulations are the US Navy runs of the HYbrid Coordinate Ocean Model,HYCOM (Bleck, 2002), and the
NASA simulations of the Massachusetts Institute of Technology general circulation model, MITgcm (Marshall
et al., 1997). The HYCOM wind plus tides global models are typically run with horizontal grid spacings of 1/12.5°
and 1/25°. HYCOM simulations have been more extensively vetted with observations than their MITgcm
counterparts. However, the MITgcm‐based global wind plus tides simulations have been run with higher reso-
lution, in particular with 90 depth levels and with horizontal grid spacings of 1/12°, 1/24°, and 1/48°. In its highest
resolution incarnation, the latter model (referred to below asMITgcm48 or LLC4320) will play a prominent role in
our discussion of ocean turbulent diapycnal diffusivity.

Although global models that include both tidal and atmospheric forcing have been employed for a long time (e.g.,
in Thomas et al. (2001) and Schiller and Fiedler (2007)), it has been only relatively recently that they have been
run with fine horizontal grid spacings (1/12° or less). Müller et al. (2015), based upon HYCOM results, observed
that high‐resolution global models with simultaneous tidal and atmospheric forcing had produced a quasi‐realistic
IW spectrum. Furthermore, they concluded that as the model resolution increased, the frequency and wavenumber
spectra approached observations and theoretical expectations. Further work of Rocha et al. (2016) used the
MITgcm48 simulations and showed that MITgcm‐based models also possess a partial IW spectrum. In fact,
Savage et al. (2017) compared model spectra with those derived from data collected on McLane Moored Profiler
(MMP), as well as the empirical Garrett‐Munk (GM) spectrum of Cairns and Williams (1976). They concluded
that MITgcm48 has a closer spectral continuum of IWs to observations and therefore is preferable over
HYCOM25 for global IW modeling in cases where a filled‐out spectrum rather than internal tide accuracy is the
primary concern.

Internal waves owe their existence in the ocean to stable density stratification: a parcel of fluid that is adiabatically
displaced in the vertical direction will be subjected to a buoyant restoring force that will act to return it to its
original position. The frequency with which a vertically displaced parcel oscillates around its original position is
called the buoyancy frequency, denoted N, and is such that its square is proportional to the strength of the vertical
density gradient (i.e., when considering z to be increasing downward, N2 = g

ρ̄
∂ρ
∂z .) The existence of stable density

stratification enables the existence of a family of freely propagating plane IWs. In a region of the oceans in which
the local vertical component of Earth's angular velocity of rotation is given by the Coriolis parameter f, and N is
fixed, the dispersion relation of these plane waves is:

ω2 =
m2f 2 + N2 (k2 + l2)

m2 + (k2 + l2)
, (1)

in which ω is the temporal frequency, f is also referred to as the inertial frequency, and k, l, and m are zonal,
meridional, and vertical wavenumbers, respectively. Introducing a change of variables of sin2(θ) ≡ m2

k2+l2+m2 ,
Equation 1 can be re‐expressed as follows:

ω2 = N2 cos2(θ) + f 2 sin2(θ). (2)

According to Equation 2, the permissible range for the IWs' frequency ω is such that f ≤ ω ≤ N. However, it is
important to understand that the dispersion relation (1) is for fully non‐hydrostatic plane waves. In contrast, the
MITgcm model used in this study is run in the hydrostatic mode. The dispersion relation in the hydrostatic regime
is as follows:

ω2 = N2k
2 + l2

m2 + f 2, (3)

Although the hydrostatic dispersion relation allows propagation to persist for all frequenciesω > f, for sufficiently
high frequency, the hydrostatic assumption m2 ≫ k2 + l2 would itself be violated.
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LLC4320 is a forward simulation, the results from which is employed herein to force an even higher resolution
regional model that was run in the hydrostatic configuration. LLC4320 is run with a nominal 1/48° horizontal grid
spacing and 90 vertical levels. The horizontal grid spacing is equivalent to ∼2.3 km near the equator and much
less at high latitudes. The thickness of the vertical level spacing increases from 1 m at the surface to 480 m near the
7 km depth level. This internal‐wave‐admitting global ocean simulation was forced by six‐hourly updates of the
atmospheric wind, pressure, and buoyancy fields, taken from the European Center for Medium‐Range Weather
Forecasts (ECMWF), that are applied to the ocean surface. The astronomical tidal potential with which the model
is forced employs the full lunisolar potential based on the solution provided in Ponte et al. (2015). The global
LLC4320 simulation includes interactive sea ice in the polar oceans, as per Losch et al. (2010). Of particular
importance to the work described herein is that the background vertical mixing values of LLC4320 were set based
on the Arctic Ocean optimization of Nguyen et al. (2011). As will be discussed, this Arctic‐Ocean‐centric choice
of background mixing coefficients has some unintended consequences for diapycnal mixing in the global
simulation.

A further significant advance in the ability of ocean models forced by both tides and atmospheric fields to
accurately capture a fully realistic internal gravity wave spectrum was recently achieved in the work of Nelson
et al. (2020). They employed the available LLC4320 simulation and chose a specific period of time and a confined
regional domain to the northwest of Hawaii as a target for analysis of the IW field. The regional domain was
bounded by 24°–32°N, 193°–199°E in the North Pacific Ocean, and is shown in Figure 1. The time window was
particularly chosen to include the season during which MMP observations were made within the region of in-
terest, though not during the same year. Furthermore, the location of the regional domain was also chosen to
encompass the region where a set of four MMP profilers had been deployed (Alford et al., 2007). These profilers
were deployed to measure the IW spectrum at a series of locations in the North Pacific Ocean, along the track of
IW beams coming from the Hawaiian Islands (Figure 1 illustrates the variation of bathymetric depth along the
path of the internal wave beam as well as the positioning of the profilers along this path.) Nelson et al. (2020)
dynamically downscaled LLC4320 to a much finer grid spacing of 250 m in the horizontal and 270 vertical levels.
The same tidal and atmospheric forcing fields as those in LLC4320 and hard boundary conditions at the lateral
boundaries were applied (i.e., the model variables at the lateral boundaries were forced to be equal to the hourly
outputs of LLC4320.) The downscaling method employed no complex data assimilation methods to eliminate
boundary reflections such as those that might be minimized by employing a “sponge” as has often been found to
be useful for the dynamical downscaling of global atmospheric or oceanic dynamical applications (e.g., see Gula
and Peltier (2012); Siyanbola et al. (2023)). Nevertheless, the analyzed high‐resolution data sets were not strongly
contaminated by the “hard” data assimilation method employed for ingesting global model forcing. The most
important results reported in Nelson et al. (2020) consisted first of the demonstration that the high‐resolution
hydrodynamic fluctuations being produced in the regional domain were, indeed, of the form expected if these
fluctuations were IWs. This was established by exploiting the consistency relations between the hydrodynamic
fields that are characteristic of IWs. The second contribution of that paper involved comparing the spectral
characteristics of the IW‐related fluctuations with expectations based upon these characteristics of the empirical
spectrum of Garrett and Munk (Cairns & Williams, 1976) and the profiler measurements.

Empirical identification of the GM spectrum of IWs has been one of the most significant contributions to physical
oceanography in the past 50 years, which relates the IW energy to its associated temporal frequencyω and vertical
wavenumber m distribution (Garrett & Munk, 1971, 1972, 1975). The revision by Cairns and Williams (1976) is
called the GM76 spectrum. This model assumes that spectral energy density is a separable function of ω and m.
For sufficiently large wavenumbers, the energy density can be written as:

E(ω,m) = E0G(ω)H(m), (4)

where G(ω) and H(m) have the following properties:

G(ω)∝ fω−1(ω2 − f 2)−1/2, H(m)∝ (m2 + m 2
∗ )

−1
. (5)

and m* is a fixed reference vertical wavenumber. The normalization properties ∫N
f G(ω)dω = 1 and

∫∞
0 H(m)dm = 1 are held. From Equation 5, it is implied that the energy density for sufficiently high vertical wave
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numbers and temporal frequencies should follow E(ω) ∝ ω−2 and E(m) ∝ m−2, which implies that the continuum
should have a power law form with the power law exponent of −2.

Although the analysis of high resolution dynamically downscaled LLC4320 data in Nelson et al. (2020)
confirmed that the horizontal wavenumber and temporal frequency spectra of kinetic energy were in accord with
the predictions of GM76, the vertical wave number spectrum was found to deviate significantly from the GM76
predictions. Pan et al. (2020) used this high‐resolution regional model and computed the power spectrum of the

horizontal wavenumber K ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√
and temporal frequency ω on a single vertical level at a depth of z= 500 m.

They showed that spectral power is concentrated along a series of dispersion curves that extend from the inertial
frequency f with a positive slope in the K − ω space. Although up to five IW modes of the ocean waveguide are
represented in the high‐resolution regional domain, none of the expected higher‐order modes are similarly well
defined. These high‐order modes are critical because the lack of energy in the high‐mode region causes the
significant deviation of the vertical wavenumber spectrum from the one predicted in the GM76 model captured in
Nelson et al. (2020). In a later work, Thakur et al. (2022) exploited the same regional setup, albeit with lower
horizontal resolutions typical of the global model, and compared the IW continuum of the model with that of
observations. They demonstrated that in ocean models where IWs have begun to be resolved, the background
component of the Kappa‐Profile‐Parameterization (KPP) must be turned off to maintain the proper spectral level

Figure 1. The top‐left panel displays the Northeast Pacific basin, highlighting the study area through the use of a white rectangle. The top‐right panel provides an
enlarged perspective of the simulation domain, featuring the positions of the McLane moored profilers (MMP1, MMP3, and MMP4) as collected by Alford et al. (2007),
represented by red solid blocks. The bottom panel illustrates the bathymetry along the trajectory of the IW beams.
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of IWs. One of the most important contributions of the present paper will be to explain the reason for this
discrepancy between GM76 and the numerically captured vertical wavenumber spectrum. As we will discuss in
detail in what follows, the explanation for this misfit will be found in a peculiarity of the parameterization of
ocean diapycnal diffusivity employed in the design of the global LLC4320. The present paper also explains the
reason behind the improvement in the vertical wavenumber spectrum achieved in Thakur et al. (2022).

Mixing occurs due to various phenomena with over 20 different physical origins (Garrett, 2003) and breaking IWs
are considered the primary source of turbulent diapycnal mixing away from surface and bottom boundary layers
(MacKinnon et al., 2017). Therefore, understanding the physical origins and efficacy of mixing phenomena is
crucial. For example, Alford and Pinkel (2000) measured over two thousand such mixing events in the ther-
mocline and mapped them relative to various fields, enabling them to illustrate different classes of such mixing
events. Mixing associated with IWs and IW‐breaking has also been recently reviewed in MacKinnon et al. (2017).
Because the turbulent mixing is not resolvable in the grid cells of our numerical model, an effective parame-
terization must be employed. However, the high intermittency of turbulent mixing makes it extremely difficult to
measure effective diapycnal mixing observationally. In fact, Baker and Gibson (1987) argue that since the dis-
tribution of the dissipation rate is log‐normal, the fat‐tail of the distribution might cause an underestimation in
observational measurements of diapycnal mixing.

Parameterization schemes for diapycnal mixing have been evolving over time, from a uniform constant space‐
time value to a depth‐dependent function (Bryan & Lewis, 1979), to models that separate the surface bound-
ary layer, which is controlled mostly by buoyancy inputs and wind, from interior processes that are controlled
mostly by convection, shear, and double‐diffusive processes (Gaspar et al., 1990; Large et al., 1994; Pacanowski
& Philander, 1981). Today, the most widely used parameterizations for diapycnal mixing are the KPP scheme
(Large et al., 1994), the Mellor‐Yamada 2.5 level turbulence closure (Mellor & Yamada, 1982), and the Generic
Length Scale (GLS) scheme (Umlauf & Burchard, 2003). An overview of the evolution of such schemes is
discussed in detail in the supporting information of Peltier and Vettoretti (2014).

LLC4320 uses a modified KPP scheme to model subgrid‐scale turbulence. KPP consists of two separate rep-
resentations: one‐ internal mixing and 2‐ boundary layer mixing. A threshold of 0.3 for the bulk Richardson
number determines the depth of the mixed layer upon which the boundary layer mixing scheme acts. On the other
hand, the interior ocean is controlled by the internal mixing scheme of KPP that consists of three components,
each representing a different physical mixing phenomenon. The effective diapycnal diffusivity and turbulent
momentum diffusivity in the interior ocean is assumed to be a linear superposition of these components:

κ = κW + κS + κC, ν = νW + νS + νC, (6)

where “W” denotes the background mixing component that is taken to be a function of depth only and fixed for all
basins of the global ocean, “S” denotes the shear instability component and is taken to be a function of Richardson
number Ri = g

ρ
∂ρ/∂z

(∂u/∂z)2
, and “C” denotes the convective destabilization component, which is activated only when

the fluid becomes statically unstable (Ri < 0.) In this case, streamlines are “overturned”, and the local vertical
density gradient is positive, so the mixing is extremely intense. In the original KPP model of Large et al. (1994),
another term exists that represents mixing due to the action of double diffusion processes that operate in cir-
cumstances where the differences between the molecular diffusivities of heat and salt play an important role.
Although this difference might be important in regions in which thermohaline staircase structures form (e.g., see
Peltier et al. (2020)), in the analyses to be discussed herein, such doubly diffusive influence will play no sig-
nificant role and is not considered in the numerical model as well.

The background and the shear components are the most important aspects of this mixing parameterization in the
present context. The background component of KPP is a crude parameterization of the mean effective depth‐
dependent turbulent value for viscosity and diffusivity. In Figure 2, we compare the peculiar background
component used in LLC4320, which is based on the Arctic optimization of Nguyen et al. (2011), with the same
component of a “standard KPP”. By the background component of a “standard KPP” we mean the form of
background viscosity and diffusivity that are often assumed in a typical low‐resolution ocean component of a
coupled climate model to simulate global warming and climate change processes, in this case, the University of
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Toronto version of theNCARCCSM4model, a structure referred to in the literature asUofT CCSM4 (see Peltier &
Vettoretti, 2014, for a description). This background component has the following form (note that z is in meters):

κW(z) = 0.524 + 0.313tan−1(
z − 1000
222.2

) cm2
/s, νW(z) = 10κW(z). (7)

The most important property of this background is that in the deep ocean below the main thermocline, the dia-
pycnal diffusivity is equal to the value of 1 cm2/s, which Munk (1966) first demonstrated is required to enable the
deep water that forms by convective instability in the polar regions to return to the surface so as to complete the
global overturning circulation.

Notable is the fact that in the high‐resolution LLC4320 global model, the diapycnal diffusivity has been almost
entirely eliminated from the background component of KPP, and the ratio of background viscosity to diffusivity
(i.e., the Prandtl number Pr) is Pr ≈ 1,040. The small constant value of diapycnal diffusivity (5.4 × 10−3 cm2/s) in
the global LLC4320 simulation enabled maintenance of the Arctic halocline (Nguyen et al., 2009) while the
optimized diapycnal viscosity (5.7 cm2/s) has a more traditional value (Nguyen et al., 2011). As we will show in
what follows, this high value of the Prandtl number inhibits the parameterized breaking of IWs in LLC4320.
Therefore, turning off this background component will play a critical role in the analyses of IW breaking, which
will be discussed in detail in Section 3 to follow.

We are interested in employing high‐resolution regional model simulations to better understand the connection
between the parameterized breaking of IWs and the diapycnal diffusivity in the ocean models. Although we
expect this turbulent diffusivity to be a strong function of longitude and latitude, we also expect that its magnitude
in the abyssal ocean should be near 1 cm2/s (Munk, 1966). We intend to employ the background component of the
NCAR CCSM4 model with such magnitude in the abyssal ocean and compare it with the diapycnal diffusivity
profiles we can predict based on our IW‐breaking model.

The importance of obtaining accurate vertical profiles of ocean diapycnal diffusivity throughout the oceans has
been made abundantly clear based on the recognition of the so‐called “pattern effect” upon climate model
sensitivity (Andrews et al., 2018; Dong et al., 2019). This effect is such that if climate sensitivity is determined on
the basis of models that have sea surface temperature (SST) patterns fixed to those observed, then the models are

Figure 2. Comparison of the University of Toronto version of the NCAR CCSM4 depth‐dependent background component of
KPP and the one employed in LLC4320. Also shown on the figure is the fundamental difference between the Prandtl number
associated with these two different versions of the KPP background, which will play an important role in the discussion to
follow in this paper.
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characterized by relatively low climate sensitivity. In contrast, free‐running coupled atmosphere‐ocean models
that deliver SST patterns discordant with observation are characterized by high climate sensitivity. Note that
ocean mixing processes, including turbulent diapycnal diffusivity, are known to provide highly significant
controls upon the SST field.

The analyses presented in this paper aim to investigate whether the weak damping of the IW field, forced by both
tides and winds, allows for a realistic IW spectrum within the high‐resolution regional domain. Additionally, a
crucial aspect under examination is whether this spectrum will support a depth dependence of diapycnal diffu-
sivity. This dependence arises from IW breaking, as represented by the shear component of the KPP parame-
terization. Notably, our study modifies this parameterization to a form applicable for describing turbulence
resulting from IW breaking. In Section 2 of the paper to follow, we will address the quality of the internal tidal
component of the field of IWs in the high‐resolution regional domain and the ability of a mathematical model to
accurately predict the observed modes of the stratified ocean waveguide. In Section 3 of the paper, we investigate
the ability to map the IW‐breaking process into a depth dependence of diapycnal diffusivity that reasonably
approximates that characteristic of the UofT CCSM4 global climate model. Conclusions that follow from these
analyses are offered in Section 4.

2. Internal Waves in the High‐Resolution Regional Domain: Simulations and
Theoretical Predictions
Because the LLC4320 simulation includes the influence of both wind forcing and tidal forcing as described by the
full astronomical potential and because it also includes an acceptably accurate representation of ocean floor
topography, the ocean response to forcings is expected to include a full spectrum of the IWs excited by this
interaction. Because a huge Prandtl number in the background component of KPP is employed, these waves are
inhibited from breaking. If measured in the far field of their excitation sources, these IWs should consist of a
discrete set of the normal modes of the density‐stratified ocean waveguide. In Section 2.1, we will discuss the
extent to which the high‐resolution regional ocean model is able to resolve these modal structures. Section 2.2 will
investigate the extent to which the observed spectrum is mathematically predictable.

2.1. Energy Spectrum of Internal Waves in the High‐Resolution Regional Simulation

We examine the energy spectrum in the horizontal wavenumber K ‐ temporal frequency ω space at a single
vertical level, in order to identify the modal structure of IWs discussed above. For the present paper, we will use
the high‐resolution dynamically downscaled simulation used by Nelson et al. (2020) and Pan et al. (2020), as well
as another high‐resolution dynamically downscaled simulation in which, all aspects are similar to the previous
simulation except that, following Thakur et al. (2022)'s results, the background component of KPP is turned off.
Note that the background component of KPP is turned on in the global model; it is only in the high‐resolution
regional domain that we have control over this parameter. The resulting spectra are presented in Figure 3.

Panel (a) of Figure 3 displays the energy spectrum in the K − ω space for the original simulation of Nelson
et al. (2020) over a single vertical level (z = 500 m). Although it is based on the simulation of Nelson
et al. (2020), the spectrum was not shown there and rather was originally computed and shown in Pan
et al. (2020) (see their Figure 8) Panel (b) of Figure 3 displays the same computation for the new simulation with
the background component of KPP turned off. Comparing these two panels, one observes that turning off the
background component of KPP results in more energy accumulation in the high‐mode (upper‐left hand) region
of the K − ω space. As we will see in the following section of this paper, this small difference will be of
fundamental importance in all that follows. Panel (c) of Figure 3 displays the spectrum of the sea surface height
squared SSH2 in the K − ω space for the simulation with the KPP background turned on. Panel (d) displays the
same spectra for the new simulation with the KPP background turned off. Harmonics of the atmospheric update
frequency (i.e., 6‐hourly updates) are evident as energetic vertical lines on both bottom SSH2 panels. Evident in
all panels is the onset of aliasing in the lowest order modes beyond a certain frequency, which is apparent as
reflection at the right boundary. That aliasing is a consequence of the fact that the highest frequency in the plot is
in fact the Nyquist frequency beyond which all energy is folded back to lower frequency. Figure 3 clearly
demonstrates the presence of IW modes both in the sea surface height and the interior ocean. Although the large‐
scale SSH field variability is primarily controlled by prescribed water mass fluxes at the lateral boundaries of the
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regional domain, the smaller scales are an expression of local submesoscale and internal wave activity, which
can differ from that of the global LLC4320 simulation in the same region. This is of special importance,
particularly after the launch of the Surface Water and Ocean Topography (SWOT) mission, which will provide
researchers with high‐resolution SSH data. As the plot suggests, the SSH data is dominated by the presence of
IW in the interior ocean, which must be filtered out for other analyses, including analyses of mesoscale eddies.
Furthermore, analyses of this kind could relate the interior mixing phenomena with surface signatures that are
easier to observe.

In Section 3.1 below, a detailed explanation of this observed difference between the KPP background on and the
KPP background off cases for the internal wave spectrum will be provided. This explanation will play an
important role in our discussion to follow. In order to understand these differences, first a mathematical
framework for the theoretical study of all modes will be introduced in Section 2.2 below.

2.2. Mathematical Predictability of the Internal Wave Modes

In this subsection, we will use a Galerkin‐method‐based approach to calculate the modal lines and analyze the
damping of each mode caused by the prescribed diffusivity and viscosity. While Equation 1 defines the plane
wave dispersion relation, the underlying assumption is that the vertical wavenumber m can take on any real value.
This is not valid in reality if the full ocean depth is considered as a waveguide; In the ocean with full depth L, the
vertical wavenumber m can only take discrete valuesmj =

2πj
L as shown in the discrete modal structure captured in

Figure 3. To study the system under this realistic condition, we begin by writing the Reynolds‐averaged Navier‐
Stokes (RANS) equations for continuity, momentum, and energy conservation under the turbulent viscosity and
gradient diffusion hypothesis:

Figure 3. Kinetic energy spectrum Ek (K,ω) of the dynamically downscaled model in the horizontal wavenumber‐temporal frequency (K−ω) space. The top row shows
log10E

k (K,ω) (m3 day s−2 rad−1) evaluated at z= 500 m. The bottom row shows the spectrum of sea surface height squared SSH2 (m3 day rad−1) for the same time and
period. The left column shows the spectra for the same high‐resolution simulation as Nelson et al. (2020). The right column shows the spectra for the new simulation
with the background KPP turned off.
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ux + vy + wz = 0

ut + uux + vuy + wuz = −
px
ρ0

+ ν∇2u + f v

vt + uvx + vvy + wvz = −
py
ρ0

+ ν∇2v − f u

wt + uwx + vwy + wwz = −
pz
ρ0

+ ν∇2w − g
ρ
ρ0

ρt + uρx + vρy + wρz = κ∇2ρ

(8)

These equations represent the long‐term mean characteristics of the system over a large ensemble of realizations
of turbulent flow conditions. Note that κ and ν represent the effective diffusivity and viscosity, respectively, that
are induced by smaller‐scale turbulent phenomena. They are usually much larger than molecular diffusivity and
viscosity. Following the standard procedure, we decompose each field into background constant and wave‐like
perturbation terms. The perturbation terms are considered to be as follows:

{u′,v′,w′,p′,ρ′}(x,y,z,t) = {ũ(z), ṽ(z),w̃(z),p̃(z), ρ̃(z)} e(σt−i(kx+ly)), (9)

where

{ũ(z), ṽ(z), p̃(z)} = ∑
J

j=1
{uj,vj,pj} cos(mjz),

{w̃(z), ρ̃(z)} = ∑
J

j=1
{wj,ρj} sin(mjz).

(10)

The above perturbation terms are written assuming that each term's vertical and horizontal dependence are
separable. Besides, the vertical dependencies are projected on a set of orthogonal basis functions. The set of
orthogonal basis functions gj(z) = sin (mjz) are chosen in such a way that they satisfy both orthogonality (i.e.,
2
L∫

L
0 gi(z)gj(z)dz = δij) and the rigid boundary conditions (i.e., w̃(0) = w̃(L) = 0). Although there is another

common way to choose the vertical basis function, which is based on the local stratification (e.g., see Pan
et al. (2021)), this simpler way of using sin/cos terms is sufficient for the purpose of representing the IW field
from the model.

Moreover, σ is the complex frequency with the imaginary part σim ≡ ω being the temporal frequency and the real
part σre being modal attenuation/amplification, and J depends on the resolution of the model (i.e., the number of
modes in terms of which we truncate the vertical modal series.) By assuming Galerkin projection of Equation 9
and substituting the decomposed form of fields into Equation 8, after neglecting second‐order or higher
perturbation terms and also neglecting derivatives of κ and ν, we get:

σΩi = −νk2
j Ωj − fmiwi,

σk2
i wi = −νk2

j m
2
j wj − νk2

j (k
2 + l2)wj −

g
ρ0
(k2 + l2)ρi + fmi,

σρi = −ρzijwj − κk2
j ρj,

(11)

where k2
j ≡ k2 + l2 + m2

j , Ωj ≡ ikvj − iluj, and

ρzij =
2
L
∫

L

0
sin(miz) sin(mjz)

∂ρ̄(z)
∂z

dz. (12)
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Equation 11 defines an eigenvalue problem. Note that there is a long history of analyses of the internal wave
spectrum, based upon the assumption that both κ and ν are zero (Kundu et al., 2015; Lamb, 2014; Wunsch, 1975).
Under these assumptions, the above equations reduce to a single equation for velocity:

∂2w̃(z)
∂z2

+
N2(z) − ω2

ω2 − f 2
(k2 + l2) w̃(z) = 0, (13)

with the boundary condition w̃(0) = w̃(L) = 0. In the current study, we include the viscosity and diffusivity terms
to investigate the potential influence of these dissipation terms on the IW modes.

To solve this eigenvalue problem, we need to calculate the coupling coefficients between the modes ρzij. As it is
evident from Equation 12, the coupling coefficients require the profile of density gradient ∂ρ̄

∂z in the ocean. The
profiles of density change for MMP observations are publicly available. However, these profiles need to be
continuously integrated over depth. Because the data points are discrete, a reanalysis is performed on the profile
data. Figure 4 (left) shows the discrete data points of the stratification profile in green dots at the southernmost
MMP location. The reanalysis curve is fitted assuming that the profile of ∂ρ̄

∂z is identically zero at the top mixed
layers; this can be modeled as a tanh function with a sharp transition; then, the tanh function is immediately
followed by a cosine bell; finally, it exponentially decays. Following this procedure, the reanalysis curve is
superimposed on data points of Figure 4 (left) in the blue line. Using the blue curve of Figure 4 (left) for ∂ρ̄

∂z ,
coupling coefficients between the modes can be computed according to Equation 12. Figure 4 (right) shows the
computed coupling coefficients for the southern‐most MMP observation. Although formally, on the basis of
Equation 12, it is entirely plausible that coupling between IW modes should be produced by depth variation of
buoyancy frequency, in this particular region of the ocean where the depth dependence of buoyancy frequency is
shown in Figure 4 (left), this coupling is so weak that the coefficient matrix in Figure 4 (right) is strongly diagonal
and the IW modes are essentially uncoupled from one another.

Using an eigenvalue solver, Equation 11 can be solved to obtain the complex frequency σ at a specific
K2 ≡ k2 + l2. Figure 5 demonstrates the imaginary part of the results of Equation 11 in the range K ≤ 3 × 10−3 m−1

for three values of water column depth L. Even though the impact of significant changes in the bathymetric depth
by 30% has been explored in the three panels of Figure 5, the impact upon the spectrum is relatively small. This is
a critical point concerning the expected spectrum of internal waves in the ocean, because variations in bathymetric
depth of this kind, away from the regions where the IWs are generated, namely sea mounts and continental shelves
which are shallow, are very modest (the bathymetry along the path of IW beam is shown in Figure 1 (bottom)). So

Figure 4. (Left) The profile of observed ∂ρ̄
∂z at the MMP1 location (green points). The Solid blue line shows the fitted profile using a hyperbolic tangent hat followed by a

cosine bell and a power decay. (Right) The coupling coefficients between the waveguide modes based on Equation 12.
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we are expecting that the variation in the spectrum of IWs measured in the regions away from the regions of
generation should be modest as well. Because the GM spectrum is primarily based upon the high‐frequency
portion of the IW spectrum, it becomes clear why it should be universal to the ocean.

Figure 6(top) shows the theoretically predicted modal branches superimposed upon Figure 3a. It clearly shows the
prediction's accuracy and the association of the linear branches of Figure 3 with IW modes. It is important to note
again that in the LLC4320 simulation, there is no power in the “near‐inertial wedge” where high‐order internal
modes are found. The explanation of this observation will be seen to be especially important in all that follows. In
the supporting information of this paper, we also show the dynamical equations required to describe the modes in
which both κ and ν are strong functions of depth (Eqation SE10 in Supporting Information S1). In this set of
equations, we also obtain the same modal alignment when we employ a depth‐dependent background component
similar to Equation 7. Therefore, while appropriate values for viscosity and diffusivity are critical in describing
the variations of horizontal kinetic energies along each of these modal branches, as well as how damping between
modes changes, no impact on the alignment of modal branches by viscosity and diffusivity terms is evident.

Because we have included damping in our Galerkin analysis, it is possible to evaluate the relative strength of
damping for different modal branches. Figure 6(bottom) illustrates the variation of σre

σim
which is a non‐dimensional

number that represents the attenuation per temporal frequency, as a function of the internal modal branches,
derived based on the Galerkin analysis. What is calculated in Figure 6(bottom) is damping per wave period. This
calculation (Equation 11) requires explicit dissipation in the model to do the analysis. For this purpose, we have
employed precisely the background component of KPP that is characteristic of LLC4320 (i.e., the dotted lines in
Figure 2). Because there is explicit dissipation in this analysis, it will be clear that the temporal eigenvalue must be
complex and the sign of the real part of this eigenvalue must be such as to describe a damping of the IW modes as a
function of time. Figure 6(bottom) demonstrates that this damping is vanishingly small for the low‐order modes
compared to higher‐order modes. This means in LLC4320, even if there is significant forcing of these higher‐
order modes in what we will refer to as the “near‐inertial wedge” in this diagram, we can not expect to see
any well‐defined IW modes to appear in the simulation. They are simply damped so strongly by the KPP
background that has been employed in the simulation that they could not possibly appear.

While we have demonstrated in the above analysis that high‐order modes are expected to be strongly damped in
the presence of the LLC4320 background component of KPP, the most important question that will be addressed
in Section 3 of this paper is: what will be the results if, in the high‐resolution regional simulation, we were to
remove the influence of this very high Prandtl number background, which is a characteristic of the version of KPP
employed in the global model? As we will show, the elimination of this damping on the high‐order modes allows

Figure 5. The modal structure of internal gravity waves at the MMP1 location. (Left) demonstrates the solution to the eigenvalue problem according to Equation 11 for
the case where the water column depth L is 30% less than the actual value of 4,719 m. (Centre) demonstrates the solution where the water column depth L is exactly the
actual value of 4,719 m. (Right) demonstrates the solution where the water column depth L is 30% more than the actual value of 4,719 m.
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them to participate in triad resonances with the low‐order modes, which are required to support a wave‐turbulence
cascade.

3. Ocean Diapycnal Diffusivity: An Initial Exploration of a Modified Version of KPP
In Nelson et al. (2020), it was established that the field of hydrodynamic fluctuations in our North Pacific regional
domain was clearly associated with IWs. In Section 2 above, it was demonstrated that both at the surface in terms
of the spectra of Sea Surface Height squared (SSH2) and at depth in terms of the spectra of horizontal kinetic
energy, the wavefield is dominated by the low‐mode members of the spectrum of IWs. Here, by performing a
series of both dynamically downscaled high‐resolution simulations as well as a series of global‐model resolution
simulations of the regional domain, we will explore the extent to which an appropriately modified version of the
KPP parameterization of Large et al. (1994) may be repurposed to represent the contribution to diapycnal
diffusivity due to IW breaking.

3.1. Turning off the Background Component of KPP

It was previously reported in Thakur et al. (2022) that turning off the background KPP leads to more accumulation
of power in the high‐vertical wavenumber regime of the GM spectrum. The vertical wavenumber spectra for our
series of high‐resolution regional simulations are shown in Figure 7 together with the spectra for the observational
MMP dataset and the GM76 predictions. Deviation of the simulation wavenumber spectrum from that of the

Figure 6. (Top) The modal structure of internal gravity waves at the MMP1 location. The colorful background is the same as
the top‐left panel of Figure 3; it shows the energy spectrum simulated with MITgcm and described in Pan et al. (2020). The
dashed lines represent the modal structure obtained from Equation 11 and shown in Figure 5 (centre). (Bottom) Attenuation
per period across each modal branch when depth‐independent terms for viscosity and diffusivity (identical to those employed
in LLC4320) are used in Equation 11. Attenuation per period is different by more than five orders of magnitude between the
low‐order and high‐order modes.
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theory was previously reported in Nelson et al. (2020), especially in the high
wavenumber portion of the spectrum. Figure 7 confirms, with higher hori-
zontal resolution than that in Thakur et al. (2022), that by turning off the
background component of KPP the vertical wavenumber spectra for the high‐
resolution regional simulations are significantly improved. Although we have
confirmed the results from Thakur et al. (2022) that turning off the KPP
background leads to a dramatic increase in power at high vertical wave-
number, the reason for this increase in power has never been explained. As we
will show in the following paragraphs, the impact of turning off the back-
ground component of KPP on the distribution of power on individual vertical
levels in the simulation will enable us to fully explain this effect upon the
vertical wavenumber spectrum.

In Figure 3 of this paper, we illustrated how energy is distributed in the K− ω
space for both of the runs with KPP background on and off. Figure 8 further
elucidates how energy in the K − ω space redistributes when the background
component of KPP is eliminated. This figure contains one of the most
important findings of this paper. In Figure 8(top), we explicitly show the
difference between panels (a) and (b) of Figure 3. This clearly demonstrates

that despite the observation that the differences appear small in Figure 3, these differences are nevertheless
extremely important. In particular, although the internal modal branches of the low‐order modes are still evident
in Figures 3b and 8(top) shows that there is a significant shift of energy, in the K − ω space, into the near‐inertial
wedge which is entirely unpopulated by energy in the case in which the KPP background is on. A likely
explanation of this shift in power from the low‐order modes into the near‐inertial wedge is that once the back-
ground component of turbulent diffusion of heat and momentum are eliminated from the KPP parameterization,
the only remaining physical process that is active in KPP (i.e., the shear component) does not prevent energy from
moving to the smallest vertical scales, as seen in Thakur et al. (2022). This increased high‐m amplitude in turn
enables nonlinear advective transfer from the low‐m modes to the high‐m modes, thereby draining energy away
from the low‐mmodes and representing part of a cascade‐like process. This is the “evidence of a wave‐turbulence
cascade” that is referred to in the title of this paper (Lvov et al., 2010; Pan et al., 2020). Furthermore, because these
energized high‐order modes in the near‐inertial wedge have high vertical wavenumber, these modes are basically
“carrying the shear” which enables the cascade to produce an accurate mapping using the shear component of
KPP into diapycnal diffusivity. This will be discussed in detail in Section 3.2 below. Moreover, the energy of the
low‐m modes is decreased by approximately 15%–30% when the background component of KPP is turned off. It
was previously shown that the global LLC4320 simulation contains overly strong internal tides (Arbic
et al., 2022; Yu et al., 2019) and by turning off the background component of KPP in the global model, this
situation could potentially be improved.

As described in the introduction section and shown in Figure 2, the background diapycnal diffusivity in the
version of KPP employed in LLC4320 is characterized by a Prandtl number of Pr ≈ 1,040. The characteristic of
such a large Prandtl number is that it keeps the IW shear low by its rapid viscous diffusion, resulting in large
Richardson numbers, thereby preventing IWs from breaking. The breaking is only allowed to occur when the
high‐Prandtl number KPP background is turned off. Clearly, a turbulence cascade from low‐m to high‐m modes
has been enabled by the elimination of this high‐Prandtl number KPP background. It is an important question as to
the pathway, whereby, in this cascade, energy moves from the low‐order IW modes into the near‐inertial wedge of
high‐order modes (with high vertical wavenumbers). One suggestion that remains to be investigated in detail,
concerns the possibility that this pathway may be associated with triad resonances among IWs between the low‐
order modes and the modes in the near‐inertial wedge, which become undamped when the KPP background is
turned off. One should note that “wave breaking” here is a two‐step process. The first step is the mechanism
whereby energy in well‐resolved, low‐order internal wave modes, which is stable when the high turbulent Prandtl
number is active, is depleted when the KPP background is turned off. This low‐mode decay does not lead to the
loss of coherence of such modes from which energy is being extracted because it is occurring through resonant
triad interactions. The second step involves the shear instability of the near‐inertial modes energized by the first
step in the process. Of course, these two steps are occurring essentially simultaneously. This mechanism of in-
ternal wave breaking is to be contrasted with the mechanism of breaking in which the wave amplitude is so large

Figure 7. The solid black curve represents the slope of −2 predicted by the
GM76 model. The solid red curve shows the spectra of the observational
MMP3 dataset. The dashed blue curve represents the spectra for the original
KPP configuration at the MMP3 location. The dashed green, purple, and
orange curves represent the spectra at the MMP3 location for modified
versions of KPP with the background component of KPP turned off and Ricr
set to 0.7, 1.4, and 3.5, respectively. All dashed curves are based on our
series of high‐resolution simulations with a horizontal resolution of 250 m
and 270 vertical levels.
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as to lead to an overturn of the isopycnals locally and to the development of a “patch” of intense turbulence. A
detailed analysis of this mechanism in the atmospheric context of density stratified flow over localized topog-
raphy is provided in Peltier and Clark (1979). The “wave‐turbulence” implicated in the analyses herein is not of
this conventional variety. The resonant increase of kinetic energy in the short vertical wavelength higher‐order
modes in the near‐inertial wedge increases the vertical shear of horizontal velocity in the wavefield, leading to
its increased destabilization and strongly enhanced turbulent diapycnal diffusivity. Such nonlinear triadic in-
teractions should involve a low‐m mode interacting with two high‐m modes and the strength of such energy

Figure 8. (Top) The energy difference in the K−ω space over a single vertical level (z= 500 m) between the cases in which the background component of KPP is turned
off and on. The left panel shows the logarithmic energy spectrum for the run with the KPP background on, and Ricr = 0.7 subtracted from that of the run with the KPP

background off, and Ricr= 0.7; alternatively represented as log10 (
EBG=of f
Ricr=0.7(K,ω)

EBG=on
Ricr=0.7(K,ω)) . The right panel demonstrates the same in the linear space (i.e., 100 ×

EBG=of f
Ricr=0.7(K,ω)

EBG=on
Ricr=0.7(K,ω) − 100).

The color bar in the right panel indicates the percentage of energy reduction in IW modal branches by turning off the background KPP. (Bottom) The first two columns
represent the logarithmic energy spectrum for the cases in which the background component of KPP is turned off and on, respectively. The third column represents the
difference between those logarithmic energy spaces. The fourth column represents the linear percentage reduction of energy. Each row represents a different depth level.
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transfers should then scale bilinearly with two high‐m amplitudes. An initial investigation of the importance of
triad resonances among the IWs in this regional ocean model has been provided in Pan et al. (2020). Overall, the
use of a shear‐based vertical viscosity closure to dissipate energy works more effectively than a linear background
vertical viscosity at representing a partial wave‐turbulence cascade.

Understanding the depth dependence of wave breaking and the subsequent wave‐turbulence cascade is crucial.
This process involves the redistribution of horizontal kinetic energy between the low‐order IW modes and the IWs
within the near‐inertial wedge. The significance lies in how the shear component of the KPP parameterization
maps IW breaking into a depth‐dependent diapycnal diffusivity. This mapping constitutes the ultimate goal of this
paper, and will be the focus of Section 3.2. In Figure 8(bottom), we demonstrate that this interaction of a tur-
bulence cascade that is mediated by the breaking of IW normal modes is not specific to the depth of z = 500 m
upon which all of our previous analyses have been focused. Rather, the same interaction persists at all depths and
even at the surface in terms of SSH2 spectra (as discussed in supporting information of this paper, Figure SF1 in
Supporting Information S1.) This is a critical aspect of what is to follow further in Section 3.2 below. Our goal in
this section is to produce a map associated with the low‐order IW modes into a depth‐dependent profile of
diapycnal diffusivity. We will compare this depth‐dependence of diapycnal diffusivity to that required by the
Munk (1966) analysis. The Munk analysis is characterized by a diapycnal diffusivity in the deep ocean of
approximately 1 cm2/s.

3.2. Modified KPP‐Based Mapping From Internal Wave Shear to Diapycnal Diffusivity: A Tentative
Exploration

The original version of the shear component of KPP was based upon the stratified parallel flow model, to which
the stability theorem of Miles (1961) and Howard (1961) applies. In this model, the shear flow is demonstrated to
be potentially unstable if and only if the gradient Richardson number is less than 0.25 at some height in the
stratified flow. In a field of IWs, the local direction of the strongest shear is unlikely to be aligned with the local
direction of the strongest stratification. In this circumstance, as we will discuss, the critical value of the
Richardson number may be significantly larger than that suggested by the Miles‐Howard Theorem for parallel
flows.

In the shear‐induced component of standard KPP, the diffusivities for both momentum and all scalars are
parameterized as dependent on the local gradient Richardson number, following:

Figure 9. Distribution of time‐averaged Richardson number Ri over three different single vertical levels. Evident from the plot is the log‐normal behavior of the
Richardson number throughout the simulation domain. Due to the fat tail of the log‐normal distribution and considering that hitting a critical value is set to be the
condition for the onset of turbulence in KPP, events with extremely low Richardson numbers are rare, and events with higher Richardson numbers are more frequent,
thus explaining the intermittency of the turbulent events.
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νS = κS = ν0(1 − (
Ri
Ricr

)

2

)

3

, 0 ≤Ri<Ricr

νS = κS = 0, Ri≥Ricr

(14)

where the maximum value of parameterized diffusivity ν0 and the critical Richardson number Ricr are chosen to
be ν0 = 50 cm2/s and Ricr= 0.7 in Large et al. (1994). This parameterization form ensures rapid diffusivity growth
as the Richardson number decreases below the critical value Ricr and the saturation of diffusivities at the value of
ν0 when Ri is close to 0. Although the critical Richardson number for the onset of shear instability in the stratified
flow is 0.25 based on the Miles‐Howard theorem (Howard, 1961; Miles, 1961), in KPP Ricr was selected to have a
larger value of 0.7 to match the diffusivity‐Richardson number relations post‐processed from the microstructure
measurements of Peters et al. (1988). It should be noted that the turbulent measurements of Peters et al. (1988)
were performed in the equatorial ocean where the equatorial undercurrent induces a strong background vertical
shear. This suggests that Equation 14 is initially designed based on the turbulence mixing associated with the
background shear instead of the oscillating shear generated by propagating IWs.

The KPP parameterization, particularly its shear‐induced mixing component described by Equation 14, may need
to be revisited in our current high‐resolution regional model. As the IW continuum is at least partly resolved, the
shear computed at the grid scale in our model can be strongly influenced by the resolved IWs, which is clearly
beyond the scope of description by Equation 14. Therefore, a revised form of shear‐induced mixing needs to be
considered to dissipate energy from the IW fields in our system, in which the value of the critical Richardson
number Ricr in Equation 14 needs to be adjusted.

Insights on the value of Ricr in the IW‐resolving models have been provided in at least two lines of research in the
literature. The first line of research is the parcel‐based argument performed by Hines (1971). In this work, the
energetics of fluid‐parcel exchange have been analyzed in the stratified flow. For a system in which the density
gradient is strictly aligned in the vertical direction, Hines (1971)'s analysis reproduced the conclusion of the
Miles‐Howard theorem; namely, the flow is energetically stable if the Richardson number associated with the
shear is larger than 0.25. However, in the case in which the density gradient is slightly tilted from the vertical
direction (as in the case of isopycnal surfaces perturbed by the IWs) the system becomes inherently unstable from
the energy perspective. The critical value of Ricr = 0.25 provides a criterion that is too strict for the instability to
occur. This fact can also be demonstrated by the linear stability analyses performed on the monochromatic IW
(e.g., Lombard and Riley (1996); Sonmor and Klaassen (1997)). These studies established a complicated picture
of different types of fluid‐dynamical instabilities that act to break the IWs, which showed that instabilities might
occur even if the Richardson number is larger than 0.25.

Figure 10. The logarithmic energy difference in the K− ω space at a single vertical level of z = 500 m. (Left) log10(
EBG=of f
Ricr=1.4(K,ω)

EBG=of f
Ricr=0.7(K,ω)) . Note that a positive red value indicates

that specific modes have more energy despite the shear mechanism's increased dissipation. (Centre) illustrates log10 (
EBG=of f
Ricr=3.5(K,ω)

EBG=of f
Ricr=1.4(K,ω)

) . And finally (Right)

illustrates log10 (
EBG=of f
Ricr=3.5(K,ω)

EBG=on
Ricr=0.7(K,ω)).
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Figure 11. Left panel shows the depth dependence profiles of diapycnal diffusivity over the regional domain for a series of experiments with the global model resolution.
The black dashed‐dotted curve represents a standard background diffusivity, typically used in the ocean component of a low‐resolution climate simulation. The thin
horizontal blue lines represent the midpoint of each vertical depth level in the simulations. The right panel shows the required value for the critical Richardson number
Ricr to generate, on average, the target value used in the parameterized background component of Equation 7 at each depth level.

Figure 12. The left panel shows the depth dependence profiles of diapycnal diffusivity over the regional domain for a series of
experiments with the dynamically downscaled high‐resolution model. The black dashed‐dotted curve represents a standard
background of diffusivity, typically used in the ocean component of a low‐resolution climate simulation. The thin horizontal
blue lines represent the midpoint of each vertical depth level in the simulation. The right panels show the required value for
the critical Richardson number Ricr to generate, on average, the target value used in the parameterized background
component of Equation 7 at each depth level.
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While the above studies showed that the criterion for the onset of instabilities is generally looser in the context of
IW breaking, the proper value for Ricr that needs to be implemented in our high‐resolution regional model remains
unclear. Therefore, by changing the background component of KPP and the critical Richardson number in
Equation 14 to several values larger than 0.7, we have performed several comparison experiments to study the
influences of this number in our model.

Figure 9 sheds further light on the physical origins of the shear mechanism of KPP by plotting the distributions of
time‐averaged Richardson number Ri for this series of dynamically downscaled regional experiments. As pre-
viously mentioned, the large Prandtl number employed in LLC4320 keeps the shear low by its high viscous
diffusion. Richardson number Ri = bouyancy term

f low shear term = g
ρ

∂ρ/∂z
(∂u/∂z)2

which controls the shear component of KPP is a ratio

of two gradients: density gradient and the square of momentum gradient. Prandtl number, on the other hand, is a
ratio of two diffusion coefficients: momentum diffusion and thermal diffusion. The numerator of the latter is
related to the denominator of the former, and vice versa. It's important to note that we are referring to the
“turbulent” Prandtl number, a discussion of which is provided in Salehipour and Peltier (2015). Therefore, the
way that thermal diffusivity controls the rate of diffusion of the density gradient is, of course, exerted by the
turbulent diffusivity of density; just as it is the turbulent momentum diffusivity that controls the rate of diffusion
of the velocity gradient that appears in the denominator of the definition of the Richardson number. When the
Prandtl number is large, momentum is diffused at a larger rate compared to density, which in turn, leads to lower
shear compared to buoyancy. This mechanism ultimately keeps the Richardson number high and prevents the
shear term of KPP from activity. Note that the dependency of the Richardson number on the shear is nonlinear and
this nonlinearity accentuates the impact of the high‐Prandtl number on the Richardson number. Figure 9 makes it
clear that by turning off this high‐Prandtl number background, the distribution of the Richardson number is
significantly shifted to the left, allowing for higher shear activity and, subsequently, more parameterized IW
breaking. However, as the critical Richardson number Ricr increases, the average Richardson number returns to
the right. This is because by increasing the critical Richardson number Ricr, the condition for the onset of the shear
component is loosened, and the shear component of KPP acts more frequently, resulting in a more stable ocean
with higher Richardson numbers. Having a too‐tight value for Ricr, fails to allow the build‐up of the required
global average background diffusivity and viscosity in the ocean, whereas having an overly loose condition might
suppress the development of IWs and shear activity. After turning off the background component of KPP, coming
up with the optimized value of the critical Richardson number Ricr seems to be a necessary next step.

Figure 10 demonstrates the effects of increasing the critical Richardson number Ricr on the quality of expression
of IW modes. The left and the middle panels show that after turning off the background component of KPP, by
merely increasing the critical Richardson number, first from Ricr = 0.7 to Ricr = 1.4 and then from Ricr = 1.4 to
Ricr= 3.5, low‐order modal branches would become more energetic. The right panel, on the other hand, shows the
effect of both turning off the background component of KPP and increasing the critical Richardson number from
Ricr = 0.7 to Ricr = 3.5 simultaneously: a clearer presence of low‐mode IWs is observed without the suppression
of energy in the near‐inertial wedge. However, Figure 7 made it clear that increasing the critical Richardson
number as a fixed parameter for the whole ocean does not improve the wavenumber spectra. Hence, a closer look
at the impact of the critical Richardson number on the profiles of diapycnal diffusivity is needed.

The depth dependence of diapycnal diffusivity profiles for our series of experiments is shown in the left panels of
Figures 11 and 12. All the profiles are averaged over the regional domain and 20 simulation days. Figure 11 shows
the results for the simulations in which the resolution is set to be the same as in the global LLC4320 model, albeit
run over the regional domain. In contrast, Figure 12 shows the results for the regional model in its highest res-
olution. In both figures, the midpoints of vertical depth levels are shown in thin horizontal blue lines to
demonstrate the vertical resolution. It is clear from Figure 12 that when the background component is turned off,
contrary to initial expectations, the diffusivity profile is not inhibited but is actually enhanced and shifted to the
right. This is clear supporting evidence for the finding of Figure 8; in the high‐resolution simulation, when the
background component of KPP is turned off, the model allows the development of parameterized breaking IWs,
which in turn produces more shear and ultimately leads to higher diffusivity. Turning off the background
component of KPP also ensures that the resulting diffusivity and viscosity are mainly shear‐induced because the
convective component of KPP acts much less frequently than its shear counterpart. Now, by changing the critical
Richardson number Ricr in the model and comparing it with the University of Toronto version of the NCAR
CCSM4 depth‐dependent background component of KPP (see Equation 7), we explore whether or not the shear‐
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induced mixing might be able to describe the background diapycnal diffusivity in the ocean. The right panels of
Figures 11 and 12 show that it would be possible to build up the target background diffusivity by increasing Ricr.
However, in its conventional form, KPP might be unable to provide an accurate map from the Richardson number
to the diapycnal diffusivity.

It is generally understood that the intensity of turbulent mixing would increase as the value of the critical
Richardson number Ricr increased. However, the critical Richardson number Ricr on the basis of which the in-
tensity of turbulent mixing may be parameterized is not fixed. Hence, in the analysis to follow, we suggest a
tentative approach in which the arbitrariness of Ricr is exploited, and the possibility of its depth dependence is
allowed. To get a more accurate estimation of what range of values for Ricr is needed to achieve the target
background level of diffusivity of Equation 7, a further number of simulations with different values of Ricr are
performed. Then, for each depth level, a linear interpolation is used to determine the optimum fit value of Ricr that
results in the target diffusivity level described in Equation 7. The right panel of Figure 11 summarizes the result of
this optimal fit for the simulations in which the resolution is set to be the same as in the global model, albeit run
over the regional domain. It is clear from the figure that, in the low‐resolution simulation, the variation in the
critical Richardson number Ricr that is needed to build up the target diffusivity is very large and is extended to
unreasonably high values of Ricr in the deep ocean. Therefore, the KPP's shear component in the low‐resolution
global simulation cannot accurately map the parameterized IW‐breaking process into a depth dependence of
diapycnal diffusivity.

However, the same experiment with the high‐resolution simulation indicates a much more confined range of
required critical Richardson number Ricr. The result for the high‐resolution model is shown in the right panel of
Figure 12. As the plot suggests, in the high‐resolution simulations where the wave‐breaking process is adequately
resolved, a modest change in Ricr can hit the target of Equation 7 and explain the observed average background
diffusivity in the ocean. It is unclear whether the required critical Richardson number Ricr converges to a fixed
depth‐independent value as the resolution is further increased or if it would instead form a mild increasing trend
with depth. Neither is it clear how this trend holds in different geographical locations, and such questions should
be investigated further through this suggested approach.

4. Conclusion
Our goal in the present paper has been to explore the extent to which recent advances in ocean general circulation
modeling might enable the development of a mechanistic connection between the parameterized “breaking” of
ocean IWs and diapycnal diffusivity. Our analyses have relied upon the availability of high‐resolution global
integrations that have been explicitly forced by the astronomical tidal potential as well as by the atmosphere. The
incorporation of simultaneous tidal and atmospheric forcing is especially critical as the most important sources of
ocean IWs involve the interaction of the barotropic M2 tide with bottom topography as well as the generation of
near‐inertial waves by the high‐frequency component of the wind field. The interactions between near‐inertial
waves, internal tides, and, possibly, mesoscale eddies, excite a family of internal waves. For the purpose of
this paper, a particular high‐resolution global model integration has been critical to our analyses, namely that
referred to in the literature as MITgcm48 or LLC4320, a model with approximately 2 km horizontal resolution at
the equator. Equally important as this high horizontal resolution, however, is that this model integration was
conducted with a special version of the KPP parameterization of diapycnal diffusivity in which the background
component was set to a depth‐independent form in which the diffusivities for both momentum and heat were set to
values that are much lower than previously expected, but characterized by a ratio, the Prandtl number that was
very large. The background diapycnal diffusivity was so low that the model could not have operated in climate
mode because, in that mode, a diapycnal diffusivity of approximately 1 cm2/s is required to support the
Meridional Overturning Circulation (MOC). Because of the manner in which it has been configured, this model
offers a unique opportunity for detailed analyses of IW‐related processes.

The first indication of the model's usefulness for such purposes was provided in the paper of Pan et al. (2020). In
their Figure 8, it was shown that when the results of the global model were dynamically downscaled into a
regional domain, 6° by 8° in horizontal extent, in which the horizontal resolution was increased by a further factor
of 8–250 m, the IW field was shown to be especially well resolved with the first five of the lowest order internal
wave modes resolved and their energy levels at a depth of 500 m determined as a function of horizontal wave-
number and temporal frequency. The analyses in Section 2 of this paper have shown that the modal lines on which
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horizontal kinetic energy is concentrated are accurately predicted by a Galerkin analysis of the Sturm‐Liouville
problem when the length scale on which the modal structure is quantized is equal to the bathymetric depth
characteristic of the high‐resolution regional domain. It was also shown that the basic modal structure was un-
affected by the background component of the KPP parameterization employed in LLC4320.

However, this was not the case when one focuses on the energy levels along the individual modal branches in the
K − ω space. When the background component of KPP was left on in the high‐resolution regional domain, the
distribution of the spectra of horizontal kinetic energy was almost entirely confined to the modal lines charac-
teristic of the first five or so lowest‐order modes. All of the energy in the wedge‐shaped region in which the
higher‐order modes were expected to exist was shown to be “trapped” near the origin in K − ω space. However,
when the background component of KPP employed in LLC4320 was turned off in the high‐resolution domain, the
energy levels of the lower‐order modes dropped, and a dramatic increase in energy occurred in the wedge‐shaped
region in which the higher‐order modes were predicted to exist, where the IWs are near‐inertial. The high‐order
modes were clearly being damped by the action of the background component of KPP. When this influence is
eliminated, parameterized breaking occurs through the action of the only remaining component of KPP, namely
the shear component. Because the higher‐order modes are characterized by increased vertical shear in horizontal
velocity, the transfer of energy to these modes results in a sharp decrease in the Richardson number in the field of
internal waves. Therefore, when these high‐wavenumber modes in the near‐inertial wedge become undamped
through the elimination of the background component of KPP, energy cascades are able to produce a more ac-
curate mapping from the shear component of KPP into diapycnal diffusivity. The shear component of KPP would
be expected to capture the parameterized IW‐breaking process. Therefore, we explored what this mapping would
predict for ocean diapycnal diffusivity produced by breaking IWs.

The pathway whereby the higher order modes in the near‐inertial wedge become energized is one of the most
important results of our analyses together with those for the depth dependence of diapycnal diffusivity to be
expected due to internal wave breaking. Our results strongly suggest that this pathway involves triad interactions
between a low‐order internal mode having a low vertical wavenumber m and two high vertical wavenumber
modes from the near‐inertial wedge, the latter being energized by the loss of energy from the former. In work to be
discussed elsewhere, we will provide detailed analyses of these triad interactions. The fact that the higher order
modes are able to participate in triad resonant interactions when the KPP background is eliminated has been fully
explained herein. The high Prandtl number background of the global model plays a crucial role in this explanation.
It endows the higher order modes with strong temporal damping, thereby making resonant interactions with them
impossible.

In exploring the mapping from the shear component of KPP to diapycnal diffusivity, we first had to recognize the
arbitrariness of the assumptions on the basis of which the shear component of KPP was constructed. In particular,
the assumption that a shear flow would be dynamically unstable if the gradient Richardson number was less than
the critical value of Ricr = 0.7 was based upon a weak justification, suggesting that the exact result for parallel
flows, provided by the Miles‐Howard Theorem for which the critical value is 0.25, required modification. It is
clearly a significant question as to whether a parallel flow analogy, even one that has been arbitrarily adjusted as
in KPP, is appropriate to the development of a reliable understanding as to how this process should map into
diapycnal diffusivity. We pointed to the analysis of Hines (1971) to suggest that a further raising of the critical
Richardson number might make the shear component of KPP more appropriate to the case of parameterized IW
breaking. The Hines analysis, which was based upon the application of a parcel method, suggested that if surfaces
of constant shear and constant stratification were misaligned, as they are not in a parallel flow model, then
depending upon the degree of misalignment, the critical value of the Richardson number could be arbitrarily large.
This further modification of KPP may provide a more accurate way of mapping IW shear into breaking wave‐
induced diapycnal diffusivity.

The final, and perhaps the most important result of this paper, concerned the mechanistic prediction of the depth
dependence of diapycnal diffusivity expected to exist due to the breaking of internal waves, as parameterized on
the basis of an appropriately adjusted representation of the KPP mapping from this component of KPP into
diapycnal diffusivity. We demonstrated that, with only a minor further adjustment to the critical Richardson
number assumed in this mapping, when it was applied to the high‐resolution downscaled simulation in the
regional domain, it delivered a prediction of abyssal ocean diapycnal diffusivity that fits the Munk (1966)
constraint required to explain how the deep water that forms at the poles is able to upwell back to the surface, thus
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closing the meridional overturning circulation (MOC) of the oceans. Although it is generally believed that this
must be the case, our analysis appears to be the first to demonstrate this mechanistically.

Acronyms
IW Internal wave

GM The Garrett‐Munk spectrum

KPP The Kappa‐profile parameterization

CESM The Community Earth System Model

NCAR The US National Center for Atmospheric Research

MITgcm Massachusetts Institute of Technology general circulation model

HYCOM HYbrid Coordinate Ocean Model

MMP McLane Moored Profiler

ECMWF European Center for Medium‐Range Weather Forecasts

LLC4320 Same as MITgcm48, the global ocean model forced by both winds and tides

CCSM4 The Community Climate System Model

MOC Meridional Overturning Circulation

Data Availability Statement
The diapycnal diffusivity data for different values of critical Richardson number on the basis of which the analysis
presented in this paper have been performed are available at Momeni et al. (2024) (https://doi.org/10.7910/DVN/
RZUCLE).
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