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ABSTRACT: We demonstrate a low-temperature synthesis of
ultrasmall (<2 nm) HgTe quantum dots (QDs) with superlative
optical properties in the near and shortwave infrared. The tunable
cold-injection synthesis produces HgTe QDs ranging from 1.7 to 2.3
nm in diameter, with photoluminescence maxima ranging from 900
to 1180 nm and a full-width at half-maximum of ∼100 nm (∼130
meV). The synthesized quantum dots display high photolumines-
cence quantum yields (PLQY) ranging from 80 to 95% based on
both relative and absolute methods. Furthermore, samples retain
their high PLQY (∼60%) in the solid state, allowing for first-of-their-
kind photoluminescence imaging and blinking studies of HgTe QDs.
The facile synthesis allows for the isolation of small, photostable
HgTe quantum dots, which can provide valuable insight into the
extremes of quantum confinement.

■ INTRODUCTION
Colloidal quantum dots (QDs) are nanometer sized crystals
that display size dependent optical properties due to quantum
confinement. Due to the semimetal/narrow bandgaps of bulk
mercury chalcogenides and their concomitant large Bohr
exciton radii (∼40 nm), HgX (X = S, Se, Te) nanocrystals
display extreme bandgap tunability, from 1.5 eV to 20 meV
(830 nm to 6.2 μm) for HgTe.1−3 For this reason, HgX QDs
are explored as low-cost solution processable alternatives for
midwave infrared (3−5 μm) photodetection.4,5 However,
using HgTe QDs to explore short wave infrared (1 to 2 μm)
imaging remains unexplored. There is great commercial
interest in short wave infrared (SWIR) imaging due to the
high spatiotemporal resolution for applications such as defense,
noninvasive biomedical imaging, mobile devices, machine
vision, advanced drive-assistance programs in cars, and
more.6−9 To date, most mercury chalcogenide QD research
has focused on larger particles with optical bandgaps beyond
the current detection range of commercial SWIR cameras
(greater than 1600 nm).10−13 Considerably less is known
about the synthetic routes and optical properties of small (<3
nm) HgTe QDs, despite potential applications in near and
shortwave infrared (NIR/SWIR) technologies such as SWIR
imaging agents, photodetectors, light-emitting diodes, and
other optoelectronic applications.10−12,14−18

In 2001, Rogach et al. reported HgTe nanocrystals with an
excitonic absorbance feature at 830 nm (1.5 eV), photo-
luminesence spanning from 800 to 1400 nm and a photo-

luminescence quantum yield (PLQY) of 50%.2 In 2021, Prado
et al. observed a small HgTe cluster with an excitonic
absorbance feature at 900 nm (1.37 meV).14 Once isolated, the
sample displayed an absorbance maxima of around 1100 nm
(1.12 eV) and a PLQY of 75%. Similarly, 2 to 3 monolayer
HgTe/HgSe nanoplatelets have been synthesized via cation
exchange from cadmium chalcogenide materials availing
extreme confinement and optical bandgaps from 600−885
nm (1.9−1.4 eV) and quantum yields from 10% to 56%.19−22

However, in all these reports, despite high QYs, the fine-tuning
of these nanomaterials in the near-infrared spectral window
was not demonstrated.
Here, we present a novel “cold” injection approach to

directly synthesize a series of ultrasmall (<2 nm) HgTe QDs
with NIR/SWIR bandgaps. We estimate the size of these QDs
through X-ray diffraction (XRD) and transmission electron
microscopy (TEM) imaging to range from 1.72 to 2.39 nm in
diameter. Interestingly, the ultrasmall s retain a high PLQY
(40−80%) in a variety of polar and nonpolar solvents as well as
in thin films. Comparative imaging on a SWIR InGaAs camera
demonstrates their brightness in comparison to reference dye
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IR-1061. The solid-state stability of the QDs allows for the first
single-particle photoluminescence imaging of HgTe QDs and
the observation of photoluminescence intermittency (blinking)
consistent with single QD resolution. Our results indicate that
HgTe QDs can access the extreme confinement regimes and
motivate the use of small HgTe QDs as candidates for high-
efficiency emitters for NIR/SWIR device applications.

■ EXPERIMENTAL SECTION
Chemicals. Toxic mercury(II) acetate (99%) purchased from

Sigma-Aldrich was used with extra care. All the chemicals were used as
received from the manufacturer unless otherwise stated. The following
solvents and reagents were purchased and used as recieved from
Thermo-Fischer Scientific; n-trioctylphosphine (TOP), tetrachloro-
ethylene (TCE), n-hexanes, acetone, ethanol, 2-propanol, dichloro-
methane (DCM), and methanol. Oleylamine (70%), Tellurium
powder (99%), 1-dodecanethiol (DDT), and infrared dyes IR-140
and IR-1061 were purchased from Sigma-Aldrich.
TOPTe Preparation. TOPTe was prepared in a glovebox at room

temperature according to the published procedure.23 A stock solution
of 1.0 M TOPTe was prepared by dissolving tellurium powder (250
mg) in n-trioctylphosphine (2 mL) inside the glovebox. The Te/TOP
solution was allowed to stir overnight to form a clear yellow solution.
The 1.0 M stock solution was diluted to 0.50 M with tetrachloro-
ethylene for the QD synthesis.
Synthetic Procedure of the “Cold” Injection HgTe QDs. The

reaction is performed under ambient atmosphere. Mercury(II) acetate
(0.150 g, 471 μmol) is dissolved in 6 mL of oleylamine (70%). Light
heat is applied to the stirring solution until all the mercury salt has
dissolved. Once the mercury has dissolved, the solution is allowed to
cool to room temperature. The reaction flask is placed in an ice bath
and cooled to approximately 6 °C. The tellurium source solution is
then injected into the reaction flask, causing an immediate color
change to brown. The injected tellurium source solution contains 0.50
M TOPTe (0.250 mL, 125 μmol) and dodecanethiol (10 μL of a 20
mM DDT solution in TCE, 0.2 μmol). The reaction is allowed to
react in the ice bath (∼5 min), then removed and allowed to stir at
room temperature for the remainder of the reaction. Aliquots of the
solution are removed to probe the reaction via absorbance
measurements where the appearance and shift of an excitonic feature
is monitored.

If the reaction is fully cooled in an ice bath (∼6 °C), an excitonic
feature at 715 nm is observed almost immediately after injection. The
observed absorbance features shift continuously for approximately 1
h. The size and optical properties of the QD can be tuned by the
reaction length before quenching. The reaction is quenched with a 20
mM DDT solution in TCE (4 mL, 80 μmol). The quenched product
is then isolated through centrifuging with a 1:1 ratio of 2-propanol at
12,500 rpm for 3:00 min. The isolated powder is washed once with 2
mL of 2-propanol and dissolved into 5 mL of TCE. The isolated
product is stored overnight in the freezer to increase stability. If the
samples are left out at room temperature for more than 24 h, ripening
is observed along with a decrease in PLQY.
Photophysical Characterization. All the samples used for

optical characterization were concentrated at an optical density
(O.D.) of 0.10 or less. Absorption spectra were recorded with an
Agilent Cary 60 UV−vis spectrophotometer. Photoluminescence
spectra were measured with a Horiba Scientific PTI QuantaMaster400
spectrometer equipped with liquid nitrogen-cooled InGaAs photo-
diode and Si photomultiplier tube detectors. Absolute photo-
luminescence quantum yield (PLQY) measurements were recorded
with a petite integrating sphere on the Horiba spectrometer. Infrared
emitting dyes IR-140 (Qf = 0.167)24 and IR-1061 (Qf = 5.0 × 10−3)25

were used as references for the relative quantum yield measurements.
Photoluminescent lifetime measurements were performed on a home-
built optical set up, using short-wave sensing superconducting
nanowire single photon detectors (SNSPDs) and a time-lagged
single-photon counting module.26 For lifetime measurements, a 405
nm laser at a 1 MHz repetition rate was used.

■ RESULTS AND DISCUSSION
We described the synthetic procedure in detail in the
experimental section. Our method differs from prior
approaches to isolating small HgTe QDs in several ways.
First, we utilize low temperatures (<10 °C compared to 25−
100 °C)14,23 to suitably slow the reaction and access early time
kinetics of these nanoclusters.14,23 Lower temperatures
necessitate the use of mercury(II) acetate as the precursor
salt, which has a higher solubility in oleylamine in contrast to
other common mercury halide salt precursors. Finally, we add
a small amount of 1-dodecanethiol (DDT) into our tellurium
source solution. The S−Hg bond of dodecanethiol is known to
be strong, which enables strong surface passivation and
decreased aggregation in the nucleation phase of HgTe QD
growth.27,28

In a typical synthesis, mercury(II) acetate is dissolved into
excess oleylamine and held in a water ice bath. A solution
containing tellurium dissolved in trioctylphosphine (TOPTe)
and DDT is injected into the cooled reaction mixture, upon
which the solution turns brown. Aliquots of the reaction are
extracted and probed using UV−vis spectroscopy over 1 h.
The reaction is quenched with a solution of excess
dodecanethiol diluted in TCE resulting in well-suspended
QDs capped with DDT. We then centrifuged the product and
redissolved the QDs in TCE for optical characterization. The
rate of reaction, size, and optical properties of the synthesized
HgTe QDs can be tuned based on the temperature of the Hg/
oleylamine solution in the ice bath before TOPTe injection or
the reaction length before quenching. In Figure 1a, we show
the absorbance and photoluminescence spectra of QD samples
synthesized under the same conditions (6 °C injection) and
differ only in the reaction time. After approximately 1 h, no
further shifts in the absorbance spectrum are observed
suggesting that the tellurium source is consumed. Therefore,
from nucleation the excitonic absorbance feature can be tuned
around 250 nm. The surface passivation and atomic percentage
of the QDs was analyzed using energy dispersive spectroscopy
(EDS). The EDS confirms the HgTe identity of the QDs, and
that they are passivated with DDT (S1).
When the reaction is quenched immediately after TOPTe

injection, a strong excitonic feature is observed in the
absorbance spectrum at 715 nm (1.73 eV) (Figure 1a). This
represents the lowest absorbance wavelength and smallest
particles produced via this synthetic method. We also compare
absorbance features of small HgTe QDs nearest to ours in size
from the literature as seen in Figure 1b, demonstrating the
difference in the band gaps. To the best of our knowledge
there are only two reports of HgTe QDs with absorbance
features at 900 nm or below, which still exhibit red-shifted
absorbance features (830 nm, 900 nm) and PL maxima (1050
nm, 1200 nm) than our smallest sample with absorbance at
715 nm and PL maxima at 915 nm. (Figure 1a,b).2,14

Throughout the course of one reaction, the PL maxima can
be tuned to ∼200 nm. A fully cooled reaction flask will
produce QDs with PL maxima ranging from 915 to 1100 nm
(Figure 1a). When the reaction flask is not allowed to fully
cool, the reaction can be extended to isolate QDs with PL
maxima up to ∼1200 nm (Figure S2). The QD samples show
relatively narrow full-width at half-maximum (FWHM) of their
photoluminescence spectra ranging from 100 to 154 nm
(130−140 meV) for the smallest to largest QDs sampled,
which is consistent or prior reports of the FWHM for HgTe
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QDs of similar photoluminescence wavelengths; 130 nm (110
meV),14 195 nm (190 meV).2 In a standard reaction, the
FWHM broadens (100 to 134 nm) as a function of reaction
time (Figure 1a). The increase in the FWHM as the reaction
progresses over long reaction times provide an early suggestion
that an Ostwald ripening mechanism may be responsible for
the growth of the QDs.29 Similar FWHM behavior and
reaction kinetics were observed in a single injection synthesis
of InAs QDs, attributed to an Ostwald ripening mechanism of
growth.13

To estimate the size of the ultrasmall HgTe QDs, we used
powder X-ray diffraction (PXRD) measurements and TEM
imaging. TEM sizing analysis was performed on the smallest
and largest samples from the synthesis, and was found to be
1.65 and 2.29 nm (±0.30 nm), respectively (Figure 2a). Sizing
distributions collected from TEM analysis were plotted, and
the histograms were fit to a Gaussian function (Figures 2b, S3).
The sizing distributions have a standard deviation for the
smallest QD sample (1.65 nm) of 0.28 nm and 0.36 nm for the
larger QDs (2.29 nm) imaged. We performed PXRD on five
zinc blende HgTe QDs and used the Scherrer equation to
estimate particle diameter (S4).30 The (111) reflection was fit
to a Gaussian equation to extract the FWHM for the Scherrer
equation (Figure 2c). The analyzed samples were found to
range in size from 1.72 to 2.29 nm (±0.30 nm).31 The PXRD
results were corroborated with TEM imaging (Figure 2b,c).
TEM sizing analysis was performed on the smallest and largest
samples from the synthesis which were found to be 1.64 and
2.40 nm (±0.30 nm) respectively (Figure 2c). Our samples
follow a consistent trend when the absorbance feature is
plotted as a function of particle diameter, as shown in the
sizing curve presented (Figure 2d). The sizing curve focuses on
HgTe QDs with interband transitions of 10 μm or less (or
under 20 nm in diameter), where the data points and fits were
gathered from various references.3,12,14,27,32−36 Current fits for
the HgTe QD sizing curve are prove to be outdated and break
down as the synthetic scaffold of sizes continues to expand

Figure 1. (a) Absorbance and photoluminescence (PL) spectra of the
solution samples isolated from a standard cold injection reaction
performed at 6 °C. All the spectra were recorded in TCE. Absorbance
spectra are denoted in black dashed lines, while PL is shown in solid
color. The reaction length of each sample is denoted, and the
Gaussian fit used to extract the FWHM is shown over the PL spectra.
The λmax and FWHM of each PL spectra is denoted. (b) Absorbance
and PL spectra of HgTe QDs most similar in size and photophysical
properties from literature.2,14 The λmax and FWHM of each PL
spectrum is denoted. Spectra reproduced with permission from ref 2.
(Copyright 2001 Wiley) and14 (Copyright 2021 American Chemical
Society).

Figure 2. (a) TEM images of QDs used for sizing analysis. The left image shows the smallest sample size (1.65 nm) and the largest sample size
(2.29 nm). (b) The corresponding sizing distribution histogram from the TEM image. The histogram for the smallest QD sampled (1.65 nm) is
shown on the left in red, where the largest QD sampled is shown on the right in blue (2.29 nm). Both histograms are fit to a Gaussian function
shown in black. The statistics of the sizing distributions can be found in the Supporting Information (S3). (c) PXRD pattern of a HgTe QD sized
to be 1.72 nm via Scherrer analysis. Diagnostic zinc blende reflections are labeled. The simulated HgTe zinc blende pattern is included. (d) Sizing
curve extracted from the related references and empirical fit from literature. The plot features the absorbance of characterized HgTe QDs from
literature as a function of particle diameter. Our data points are plotted in the inset. (e) Crystal maker graphics of a 1.7 nm zinc blende HgTe QD
(∼87 atoms) and a 3 nm HgTe QD (∼400 atoms).
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(Figure 2d). Our data collected from the PXRD are included
and plotted in the inset (Figure 2d). Our calculated sizes align
well with the trend, though we are able to sample a much
smaller range of sizes (down to ∼1.7 nm) than those
previously isolated (∼3 nm).14,33,36 For context, 2.7 nm QDs
(reported by Prado et al.14) contain ∼400 atoms, whereas 1.7
nm samples contain ∼90 atoms (Figure 2e). The small size of
our ∼90 atom QDs is similar in scale to the magic size clusters
isolated in Cd chalcogenide syntheses.37−41

The small HgTe QDs are colloidally stable and display a
bright photoluminescence. Photoluminescent quantum yields
(PLQY) were evaluated using both an integrating sphere
(absolute) and via comparison to known standards (relative)
(S5). With little optimization, PLQYs were above 80% for all
samples, and near unity for the NIR QDs (Figure 3a) in TCE.
Our results confirm prior reports of high QY (>50%) in small
HgX QDs.2,14,15 Furthermore, excited-state photolumines-
cence decay measurements were performed on representative
HgTe QD samples (S6). Upon 405 nm pulsed excitation, the
QDs show a nearly monoexponential lifetime of ∼7 ns (Figure
S8). The primary lifetime of 7 ns is consistent with the
lifetimes observed for the excitonic transitions in HgTe QDs
(2 ns)42 and highly confined 2 to 3 monolayer HgTe
nanoplatelets (7−50 ns).19,20

We then investigated the photoluminescence of HgTe QDs
in a variety of organic solvents such as hexanes, acetone,
dichloromethane, and ethanol. A stock HgTe QD solution was

diluted to have the same optical density at the excitation
source wavelength of 890 nm in each of the solvents tested. To
compare the brightness of the photoluminescence, the samples
were uniformly excited with 890 nm light and imaged with a
SWIR camera alongside one another (S7). A reference dye IR-
1061 with a known PLQY was also included in a capillary tube
in the image for comparison.25 The QD photoluminescence is
the brightest and most stable in hexanes, followed by acetone,
DCM, and ethanol (Figure 3b). To demonstrate the relative
brightness of the sample in each solvent, the pixel intensity
across the image was plotted (Figure 3b). Compared to the
bright HgTe QD samples, the dye has very little pixel intensity,
which is consistent with the low QY of IR-1061 of 5.0 ×
10−3.25 The trend in the relative brightness was corroborated
through quantum yield measurements in each of the tested
solvents (S8). The sample had the highest PLQY in TCE
(90%) calculated with IR-1061 as the reference dye. The
PLQY results for each studied solvent corroborated the trend
observed in the SWIR images. The QY remains the highest in
hexanes (83%), followed by acetone (66%) and DCM (56%),
and wad found to be the lowest in ethanol (36%). Although
these samples are highly emissive in polar solvents, such as
ethanol, the photostability of the QDs decreases over hours in
such solvents. Future work will focus on surface ligand
modification to improve polar solvent solubility and long-term
photostability.

Figure 3. (a) Photoluminescence quantum yield (PLQY) plotted as a function of PL maxima. Reference dyes IR-106125 and IR-14024 were used to
measure the PLQY via relative methods (S5). (b) Capillary image of a HgTe QDs dissolved in various solvents and concentration matched at the
excitation wavelength of 890 nm. The samples were uniformly excited and imaged alongside one another to compare the relative brightness in each
solvent. A reference dye IR-1061 (QY = 5 × 10−3)25 was included for qualitative comparison. A rectangular ROI was drawn over the relevant area
of the raw image and used to crop the images to the displayed size. The average signal intensity is plotted as a function of horizontal distance and is
shown below. Camera settings were as follows: gain = 1, ET = 0.1 ms. (c) PL and absorbance of HgTe QD sample thin film and in solution
dissolved in TCE. The solution and film sample were concentration matched to the excitation wavelength of 890 nm. The raw PL intensity of the
thin film sample (blue) and solution state (green) sample are plotted along with the absorption from each sample.
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The small HgTe QDs retain their photoluminescence
properties in the solid state. The solid-state photoluminescence
was investigated in thin films. A representative QD sample was
concentrated to match the optical density of a drop-cast thin
film (Figure 3c). The representative QD sample used in the
comparative experiment has a relatively small Stokes shift in
the solution (∼50 nm). The Stokes shift can vary between
samples likely due to a larger distribution of sizes in some
samples. For example, a sample of similar PL wavelengths
shown in Figure 1a has a larger Stokes shift (∼100 nm) in
comparison to the representative sample from Figure 3c (∼50
nm). We compared the relative photoluminescence intensity
and spectra of the representative sample in film and solution.
The film retains the majority of the photoluminescence
intensity that the solution sample has. In thin film, a red
shift in the photoluminescence maximum (from 1050 to 1100
nm) and broadening of the FWHM (by 40 nm) are observed
(Figure 3c). The red shift in photoluminescence observed in
the solid state may be due to energy transfer occurring, film
inhomogeneity, or reabsorption.21,42 To estimate the relative
quantum yield of the film, the ratio of the optical density and
integrated PL intensity in solution and film were compared.
The solution QD sample in TCE was found to have a PLQY of
∼80% through absolute and relative methods. By comparing
the ratio of the absorbance O.D. and integrated photo-
luminescence spectra of the QDs in film and solution, we
estimated the PLQY of the film to be ∼60%. We then imaged
the photoluminescence of solid HgTe QDs on a SWIR InGaS
camera in the same method as described previously (S7). The
HgTe powders display bright photoluminesence on the SWIR
camera (S9), which is significant as the photoluminesence of
QDs can commonly quench in the solid state.42−44 However,
our QD samples can retain strong solid-state photolumines-
cence and ∼60% quantum yields in thin films.

The photostability of the QDs in thin films allowed us to
study the photoluminescence spectra and intermittency under
a fluorescence microscope with single particle resolution. The
photoluminescence dynamics of other infrared nanocrystals,
PbS and InAs QDs, have been investigated at the single
particle level.45−51 However, no single particle study has been
performed on HgTe QDs before. A home-built wide-field
photoluminescence microscope was utilized to study the single
particle photoluminescence of the ultrasmall HgTe QDs (S10).
The thin films used for single particle imaging were prepared
by drop casting a diluted hexanes solution of QDs onto a glass
coverslip at a small incline. The film was excited by a 405 nm
continuous wave diode laser with an intensity of 200 W/cm2.
The photoluminescence of the film was recorded over time
using an EMCCD camera. It is noteworthy that in our case the
efficiency of the camera is <20% in the spectral region of
interest (∼950 nm). The low camera efficiency in this region
makes it challenging to record any photoluminescence,
however the high PLQY and brightness enables imaging of
the QDs at single particle resolution.
The thin films used for single-particle imaging were well

dispersed with bright QDs, as shown in the photoluminescent
images and video (Figure 4a and Video S1). We analyzed the
photoluminescence intensity traces of 50 individual QDs. All
the single QDs sampled display photoluminescence inter-
mittency (blinking), where discrete periods of no photo-
luminescence intensity (or off states) are observed (Figure 4b
and Video S1). It is important to note that at a 405 nm
excitation, the thin films exhibit a lower quantum yield (by
∼20%), which likely increases the amount of blinking
observed. The blinking behavior is similar to that observed
universally for other types of nanocrystals.46,48,51 Blinking in
nanocrystalline systems is often attributed to a range of
possible phenomena, including Auger recombination in
charged QDs and nonradiative channels related to traps or

Figure 4. (a) Photoluminescence (PL) microscopy image of thin film of QDs at room temperature obtained using a wide-field fluorescence
microscope (S10). (b) PL intensity time-trace (red) of a single QD and the background (black). The background trace is recorded from an area on
the film where no particles existed. The right panel shows the frequency of the PL intensity trace of QD. (c) The PL spectra of three single QDs
and the ensemble film. The detector efficiency is plotted over the PL traces to show the low efficiency PL region of interest.
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hot-carrier trapping.46,52−57 Power law analysis was performed
on a plot of the on/off times of the single QDs sampled (S11).
The on/off times show statistical power law distributions
consistent with the dispersive kinetics, which could be due to
possible charge trapping and detrapping in the QDs.
Despite observed blinking, the QDs were photostable under

405 nm excitation for longer than 6 min. The photo-
luminescence spectra of 10 single HgTe QDs were analyzed
and compared with that of the ensemble film (Figure 4c). All
single QD spectra analyzed have a FWHM narrower than the
FWHM of the ensemble film. For single QDs sampled, the
FWHM ranges from 103 to 125 meV, whereas the ensemble
spectrum has a FWHM of 150 meV. Since the single QD
FWHM values are narrower than the ensemble, this indicates
some amount of inhomogeneous broadening in the ensemble
spectra and room for improvement in the synthesis. However,
we note that these are approximate values, as the camera
efficiency declines precipitously above 900 nm. The single QD
and ensemble photoluminescence FWHM observed are similar
to those observed for other HgTe QD syntheses (110 meV,
195 meV)2,14 and PbS QDs (∼100 meV in the NIR).46,47,50

■ CONCLUSION
There are several nanocrystal systems that have optical
transitions in the near and shortwave infrared. Lead
chalcogenides can be quantum confined to emit from 1.5 to
0.3 eV (830 to 4000 nm), and have reported quantum yields in
solution ranging from 3 to 90% strongly depending on the
optical bandgap, but are limited by the bulk bandgaps (e.g.,
PbTe bandgap of 0.32 eV).58−65 InAs and InSb also display
size tunable SWIR bandgaps, ranging from 1.7 to 0.3 eV (730
to 4000 nm) with quantum yields of 2−82%, again variable
and depending on shelling procedures.13,29,66−68 However,
HgTe appears to have some unique properties. First, as
demonstrated in this manuscript, HgTe QDs display high
quantum yields, which are air-stable without a core−shell
procedure unlike the aforementioned indium and lead
materials, which require shells to obtain high PLQY.13,69

Second, HgTe QDs appear to show rather short radiative
lifetimes (2−10 ns) consistent with other II−VI materials, but
considerably shorter than Pb chalcogenides (>1 μs).42,70,71
Third, HgTe QDs can be synthesized in air, and appear to be
resistant against oxidative damage, unlike lead and indium-
based nanomaterials.14 Finally, as HgTe materials have no bulk
bandgap, they can be quantum confined for long wave infrared
(8−12 μm) to NIR/SWIR bandgaps.11,32 Insight into the
synthesis and properties is thus very widely applicable to next-
generation sensor and camera technologies.
Nonetheless, we acknowledge the potential disadvantages of

HgTe nanocrystals. First, Hg is a highly toxic metal, and the
mercury salts used for HgTe syntheses are known to be acutely
toxic if ingested or inhaled and corrosive to skin, so they must
be handled with care.72 Second, since HgTe QDs form at
relatively low temperatures (0−100 °C), the as-synthesized
stability has not been established at elevated temperatures. The
low-temperature syntheses result in QDs, which are non-
spherical and approaches to improve monodispersity remain a
challenge.23,73,74 Finally, we lack much fundamental insight
into their underlying spectroscopic and physical properties in
comparison to other II−VI, IV−VI, and III−V materials.75−77

However, the superlative PLQY (>80%) of core-only HgTe
QDs, the short lifetimes, and relative synthetic ease suggest
future work may address these challenges.

Indeed, in our current manuscript, we utilize mercury
acetate, which has proven to be less toxic and corrosive than
the more common halogen precursor salt, mercury chloride.78

Both mercury acetate and mercury chloride can form toxic
fumes upon heating; therefore, by utilizing low temperatures,
our synthesis reduces the risk of forming excess fumes.79,80

Additionally, low temperatures may mitigate the formation of
dangerous organomercury products, similar to cadmium
chalcogenides, where organocadmium byproducts are sug-
gested as short-lived intermediates during high-temperature
cadmium chalcogenide QD syntheses.81

We demonstrate a tunable low-temperature synthesis for the
direct isolation of a variety of HgTe QDs under 2 nm in size.
Using a cold-injection synthesis, we produced a size series that
maintains high PLQY and solid-state photoluminescence. The
smallest of these samples represent clusters of roughly 90
atoms or less. Due to the excellent photoluminescence
properties, the first single-particle photoluminescence imaging
study on HgTe QDs was also performed. Overall, the
presented cold injection synthesis provides an interesting
platform to investigate the initial stages of HgTe nucleation
and the smallest bounds of confinement for bulk HgTe. The
efficient PLQY (>80%) and bright solid-state photolumines-
cence of the presented QDs motivate the use of small (<3 nm)
HgTe QDs as emitters in NIR/SWIR devices.
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