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We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large
spin qudit using a spin-cat code, analogous to the continuous-variable cat encoding. With this, we can
correct the dominant error sources, namely processes that can be expressed as error operators that are
linear or quadratic in the components of angular momentum. Such codes tailored to dominant error
sources can exhibit superior thresholds and lower resource overheads when compared to those designed
for unstructured noise models. A key component is the CNOT gate that preserves the rank of spherical ten-
sor operators. Categorizing the dominant errors as phase and amplitude errors, we demonstrate how phase
errors, analogous to phase-flip errors for qubits, can be effectively corrected. Furthermore, we propose a
measurement-free error-correction scheme to address amplitude errors without relying on syndrome mea-
surements. Through an in-depth analysis of logical CNOT gate errors, we establish that the fault-tolerant
threshold for error correction in the spin-cat encoding surpasses that of standard qubit-based encodings.
We consider a specific implementation based on neutral-atom quantum computing, with qudits encoded
in the nuclear spin of 87Sr, and show how to generate the universal gate set, including the rank-preserving
CNOT gate, using quantum control and the Rydberg blockade. These findings pave the way for encoding
a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource
overhead in quantum information processing.
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I. INTRODUCTION

Quantum computers have the potential to provide a sub-
stantial advantage over their classical counterparts [1–5].
However, quantum computers are extremely susceptible
to environmental noise and imprecise control, which hin-
ders achieving their full computational capacity. Fault-
tolerant quantum computation (FTQC), provides a solution
to perform reliable computation even in the presence of
imperfect elementary components [6–9]. The cornerstone
of FTQC is the threshold theorem, which states that if
the error rate of individual components remains below a

*Corresponding author: somanakuttan@unm.edu
†Corresponding author: ideutsch@unm.edu
‡Corresponding author: mmarvian@unm.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

constant threshold, then arbitrarily long quantum compu-
tation can be performed [6,7,10–12]. In addition to the
value of noise threshold, a critical aspect of FTQC is the
resource overhead, quantifying the number of physical sys-
tems required to encode logical information. Despite the
formidable challenges, there has been notable experimen-
tal progress in FTQC, bringing us closer to harnessing the
full potential of quantum computing [13–18].

The conventional approaches for FTQC are mostly
devoted to structureless and uncorrelated noise. An
instance of this is depolarizing noise, where all local Pauli
operators have an equal probability. However, such deco-
herence models often entail stringent threshold require-
ments and result in significant overheads for FTQC
[8,9,19,20]. An alternative strategy involves seeking error-
correcting codes tailored to the prevalent noise sources
of the particular physical platform. When possible, these
tailored approaches can lead to improved thresholds and
reduced resource overhead [12,21]. For instance, biased
qubits in bosonic systems can lead to exponentially
suppressed bit-flip errors compared to phase-flip error
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[22–25]. Additionally, in scenarios where erasure errors
dominate over Pauli errors, tailored error-correcting codes
have proven advantageous [26–28]. By addressing the
specific characteristics of dominant noise sources, these
tailored methods offer promising avenues to enhance the
performance of FTQC.

Another avenue to develop more efficient error-
corrected quantum processors is to take advantage of the
larger Hilbert spaces that can be controlled in individual
subsystems for a given physical platform. While many
platforms offer access to multiple levels, the focus is
often on isolating two well-defined levels for qubit-based
computations. However, a more advantageous approach
emerges when we exploit these multiple levels to cre-
ate qubits naturally resilient to dominant noise channels
[29–33]. The quintessential example is the Gottesman-
Preskill-Kitaev encoding of a qubit in an infinite dimen-
sional oscillator [29]. In this work we will consider encod-
ing a qubit in a spin-J system, corresponding to a qudit
with d = 2J + 1 levels [34–36]. By harnessing the prop-
erties of this qudit with multiple levels, we can establish
logical qubits that possess inherent resistance to the impact
of dominant noise channels, paving the way for more
robust quantum computation.

Other works have previously explored the concept of
encoding a qubit in a large spin [30,31,37]. In this context,
the angular momentum operators form the natural set of
error operators for such encodings, generalizing the Pauli
operator basis for qubits. Earlier studies identified quantum
error-correcting encodings, but these constructions were
not fault tolerant [31,37]. Here, our main objective is to
investigate how we can achieve FTQC, specifically for
a qubit encoded in a large spin. This approach may be
extended to a wide range of physical systems, including
semiconductor systems [30,37], ion traps [38,39], atomic
systems [34–36], molecules [40,41], and superconducting
systems [42,43], wherein spin qudits offer the means to
encode logical qubits.

In this work, we direct our attention to a specific
encoding we call the “spin-cat encoding.” This choice
is motivated by the cat encodings employed in bosonic
continuous-variable systems [24,25], used to correct
photon-loss errors, the dominant errors for the continuous-
variable systems. Similarly, spin-cat encoding can rectify
the dominant error operators in spin systems, namely, the
linear and quadratic angular-momentum operators. Phys-
ically, these arise from uncontrolled Larmor precession
of the spins and optical pumping between magnetic sub-
levels. To achieve fault tolerance with spin-cat encoding,
we develop two key ingredients. First, we show how to
implement a universal gate set that preserves the limited
error space of interest. An essential element here is the
“rank-preserving CNOT” gate that ensures that one does not
convert correctable errors into uncorrectable ones. Second,
aiming at a more easily implemented scheme, we develop a

measurement-free error-correction gadget for spin systems
that require fresh ancilla spins and data-ancilla operations
but no measurements. As we will show, this scheme effec-
tively utilizes the rank-preserving CNOT gate in conjunc-
tion with standard phase-flip error correction to address
and correct angular-momentum errors.

A distinctive aspect of the spin-cat encoding, setting it
apart from other spin encodings [31,37,44,45], is its unique
structural composition. In contrast to these earlier meth-
ods, the error subspaces in the spin-cat encoding partition
the physical space into two-dimensional subspaces where
logical operations act identically. This gives the structure
of a stabilizer code, a feature that plays a pivotal role in
enabling fault-tolerant schemes for error correction.

The remainder of this paper is organized as follows. In
Sec. II we define the cat codes for spin systems and the nat-
ural basis for the dominant error channels. In Sec. III, we
discuss the requirements on gates in order to not spread
correctable errors. We describe the implementation of a
rank-preserving CNOT gate for the encoding of a qubit in
the nuclear spin of 87Sr in Sec. III B and the necessary
measurement and state-preparation steps to implement the
universal gate set in Sec. III C. In Sec. IV, we explain
the protocol for syndrome extraction needed to correct
the errors in spin-cat encoding, and the measurement-free
error correction native to the qubit encoded in the spin. In
Sec. V we obtain the threshold for FTQC based on the log-
ical CNOT gate. We conclude and explore possible future
directions in Sec. VI.

II. GENERALIZATION OF CAT CODE FOR
QUDITS AND SPIN SYSTEMS

In this section, we introduce our encoding, present the
most prevalent types of noises in spin systems, and look
at how they affect an encoded qubit. We consider quantum
information encoded in large spins with angular momen-
tum J , a qudit of dimension d = 2J + 1. The space of local
errors on a spin system is spanned by the irreducible spher-
ical tensor operators T(k)

q (J ) [46] which are orthogonal
polynomials in the spin angular-momentum components,
{Jx, Jy , Jz} of order k, with q ranging from −k to k. The
qudit operator space is spanned by the basis of tensors
from k = 1 to k = 2J . In most platforms, physical errors
are associated with low rank-k tensors for J " 1. For
example, erroneous Larmor precession caused by noisy
magnetic fields are generated by the SU(2) algebra, or
rank-1 tensors. When controlled by laser light, as in atomic
systems, optical pumping arising from photon scattering
can lead to rank-2 errors. Higher rank errors are rare, as
they involve multiphoton processes or higher rank tensor
perturbations. We thus design codes that can correct any
errors in the space spanned by the Kraus operators in the
set of linear and quadratic spin operators {T(1)

q (J ), T(2)
q (J )}

[31]. For J " 1, this is a substantially reduced error space
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(dimension 8) compared to the total space of all possible
errors [dimension (2J + 1)2 − 1].

To design a spin encoding that can efficiently correct this
biased noise structure, we consider the bosonic cat encod-
ing of a qubit [24]. In this encoding, the qubit states |0〉 and
|1〉 are chosen to be,

∣∣C±
α

〉
∝ |α〉 ± |−α〉 , (1)

where |α〉 is a coherent state of a single bosonic mode, for,
e.g., a mode of a microwave cavity as in superconduct-
ing systems. When the dominant source of noise is photon
loss, this encoding exhibits a biased noise channel where
increasing the amplitude α, exponentially suppresses bit-
flip errors when compared to phase-flip errors. It has been
shown that by using simple codes such as a repetition
code to correct phase flips, one can take advantage of this
bias in the noise to achieve significant improvement in the
threshold for FTQC [12,24] for cat qubits.

In this work, we pursue a similar approach for finite-
dimensional spin systems and consider the spin-cat encod-
ing with,

|±〉 ≡ 1√
2

(|J , −J 〉 ± |J , +J 〉) , (2)

where now |0〉 = |J , −J 〉 and |1〉 = |J , J 〉 are the spin
coherent states along the physical quantization (z) axis. We
call this the spin-cat encoding. Similar to previous works
based on continuous-variable bosonic cat states [24,25],
the spin-cat states are defined along the 1 axis of the qubit
Bloch sphere; see Fig. 1(a). Note that, unlike the coherent
states in the continuous-variable setting, the spin coherent
states are perfectly orthogonal to each other.

Despite utilizing a similar encoding, there are significant
differences between the dominant sources of noise and the
easy-to-implement operations in the spin system compared
to bosonic cats. Thus, this encoding requires the develop-
ment of new error-correction procedures that we address
in this work. Central to the continuous-variable cat encod-
ing, as explored in Refs. [24,25], is the reduction in bit-flip
errors. The key to this bias is the presence of an energy
gap between the excited-state manifold and the logical sub-
space, that scales with |α|2. While this encoding offers
significant advantages compared to standard qubit-based
encoding, the leakage to these excited states can have detri-
mental effects on the energy-protected qubits. Dissipative
stabilization can be employed to overcome these errors
[47].

In contrast, in spin-cat encoding we use an alterna-
tive approach for fault tolerance. We consider a primary
layer of encoding where we correct for the physically
relevant errors and then use a second layer of concate-
nation to achieve fault-tolerant quantum computation. We
can achieve this because the physically relevant errors are
a small subset of all the possible errors for the encoded
qubit. For the spin-cat encoding, these physically relevant
errors are composed of spherical tensors of rank 1 and
rank 2, as described above. The key goal of the first layer
of the encoding is to correct for these rank-1 and rank-2
errors. Our protocol is fault tolerant because the univer-
sal gates and error correction performed in the first layer
of encoding do not convert lower-rank spherical tensor
operators to higher-rank operators. We call this “rank-
preserving” error correction. It is a generalization of the
bias-preserving error correction where the dominant error
for the encoded qubit is a single Pauli error. In the second
layer of encoding, the relevant errors are Pauli errors on

(a) (b)

FIG. 1. Qubit encoded in a spin using spin-cat states. (a) The Bloch sphere for the qubit encoded in a spin. The two spin-coherent
states (stretched states) are the computational basis states, lying on the Z axis and the spin-cat states then lie along the X axis. The
spin Wigner function of the states is shown and its strong negativity indicates that spin cats are highly nonclassical. (b) The spin-
cat encoding of a qubit in spin J = 9/2, d = 2J + 1 = 10 levels. The correctable errors divide the qudit into two subspaces, 0̄ and
1̄, shown as blue and purple boxes, respectively. One physical error channel is optical pumping, corresponding to the absorption of
photons (blur arrows) followed by spontaneous emission (wavy red arrows), which can lead to amplitude damping.
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the logical qubit, which can be corrected by any standard
error-correction protocol.

A. Error characterization
To categorize the relevant errors that can be corrected

for the spin-cat encoding, it is useful to define the general-
ized “kitten states” as,

|±〉m = 1√
2

(|0〉m ± |1〉m) , (3)

where,

|0〉m = |J , −J + m〉 ≡ |−J + m〉 ,

|1〉m = |J , J − m〉 ≡ |J − m〉 .
(4)

The case m = 0 is the spin-cat state. The total Hilbert space
of the spin-cat encoding decomposes to d/2 qubit subspace
where each of the qubit subspaces is spanned by the kitten
states |±〉m. (For the remainder of this paper, we consider
J to be half-integer, i.e., even d. The proposed schemes
can be easily adapted for odd d with minor modifications.).
Thus we can write,

Hd =
d
2⊕

i=0

H(i)
2 , (5)

where each H2 is a kitten subspace and Hd is the total
Hilbert space of the qudit. These subspaces are preserved
by rotations about the spin quantization z axis and by π
pulses around axes in the equatorial plane that exchange
|±J 〉.

We also define the following projectors onto 0̄ and 1̄
subspaces that define correctable errors,

#0 =
' 2J−1

2 (∑

k=0

|−J + k〉 〈−J + k| ,

#1 =
' 2J−1

2 (∑

k=0

|J − k〉 〈J − k| .

(6)

See Fig. 1 for an illustration.
The relevant errors on the spin-cat encoding that we

aim to correct are a combination of amplitude and phase
errors. The amplitude errors are defined by the following
transformation:

|±〉m →
' 2J−1

2 (∑

k=0

ck |±〉k , (7)

where ck is an arbitrary complex number. The phase error
is given by the transformation,

|±〉k → |+〉k . (8)

Physically, these occur as follows. First, consider spin
rotations,

UZ = exp(−iθJz),

UX = exp(−iθJx).
(9)

For θ , 1 their actions action on the spin-cat states is

UZ |±〉 ≈ (1 − iθJz) |±〉 = |±〉 − iθJ |+〉 ,

UX |±〉 ≈ (1 − iθJx) |±〉 = |±〉 − iθ
√

J√
2

|±〉1 .
(10)

Thus, the effect of UZ is to introduce a phase error on the
spin-cat states whereas UX generates an amplitude error
that takes a cat state to a kitten state with m = 1. The ratio
of probabilities of amplitude errors to phase errors due to
random rotation errors goes as 1/J , and hence approaches
zero for large values of J .

Next, we consider errors resulting from optical pump-
ing associated with photon scattering. For example, given a
laser photon linearly polarized along the quantization axis,
followed by the emission of q = 0, ±1 helicity photon, the
Lindblad jump (Kraus) operators Wq are given by [48],

W0 = βT(2)
0 ,

W+1 = iαT(1)
−1 − β

√
3
4

T(2)
−1,

W−1 = iαT(1)
1 + β

√
3
4

T(2)
1 ,

(11)

where α,β are real numbers that depend on the atomic
structure and the states being excited by a near reso-
nance laser. (See Appendix B details.) Optical pumping
can include rank-2 tensors as it involves two photons. The
effect of optical pumping introduces both amplitude errors
that change the kitten subspace Eq. (7), and phase errors as
given in Eq. (8). In contrast to errors that result from rank-1
SU(2) rotation, in optical pumping, it is equally important
to correct both amplitude damping and phase errors and
ultimately, we must do so fault tolerantly.

Amplitude errors up to rank K = '2J − 1/2( can be
corrected by identifying whether the system is in a specific
kitten state with a given m value. To correct for the phase
errors, we concatenate the spin-cat code in a repetition
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code with logical states,

|+L〉 = |+〉 |+〉 |+〉 ,

|−L〉 = |−〉 |−〉 |−〉 .
(12)

While we consider a three-qubit repetition code here and
throughout Sec. IV for simplicity, in Sec. V we will look
at repetition codes with more than three qubits in order to
calculate the threshold for fault tolerance. One can then
perform the corresponding error-correction steps similar
to the approach taken in the continuous-variable encod-
ing [24,25]. We call this the “logical-level encoding” to
differentiate it from the physical-level encoding in Eq. (4).

More formally, in Appendix C we show that the logical-
level encodings in Eq. (12) can correct any single spin
angular-momentum errors of the form,

EK =
{

J l
xJ m

y J n
z ; 0 ≤ l + m + n ≤ K = '2J − 1

2
(
}

. (13)

In practice we can restrict our attention to quadratic poly-
nomials.

B. The irreducible spherical tensor basis
The irreducible spherical tensor basis provides a natural

basis to characterize the action of the error operators. In
the basis of the magnetic sublevels, the normalized tensors

are [46]

T(k)
q (J ) =

√
2k + 1
2J + 1

J∑

m,m′=−J

CJm
Jm′;kq |J , m〉

〈
J , m′∣∣ , (14)

where CJ ,m
J ,m′;kq =

〈
J , m

∣∣J , m′; k, q
〉

are the Clebsch-Gordan
coefficients. The spherical tensor operators of rank k are
the solid harmonics consisting of polynomials on the
angular-momentum operators of order k. To track how
errors occur, it is convenient to introduce the following
linear combination of the spherical tensor operators:

S(k)
q (J ) = 1√

2

[
T(k)

q (J ) + (−1)kT(k)
−q(J )

]
,

A(k)
q (J ) = 1√

2

[
T(k)

q (J ) − (−1)kT(k)
−q(J )

]
,

S(k)
0 (J ) = T(k)

0 (J ),

(15)

for 0 ≤ k ≤ 2J + 1 and q > 0. It is straightforward to
check that these operators form another orthonormal basis
for a spin-J system, i.e.,

Tr
{(

S(k)
q

)†
S(k′)

q′

}
= Tr

{(
A(k)

q

)†
A(k′)

q′

}
= δk,k′δq,q′ ,

Tr
{(

S(k)
q

)†
A(k′)

q′

}
= 0,

(16)

for 0 ≤ k, k′ ≤ 2J + 1, 0 ≤ q ≤ k, and 0 ≤ q′ ≤ k′. The action of the operators on the cat and kitten states are given (for
q > 0) as,

S(k)
q |±〉l =

√
2k + 1

2(2J + 1)

[
(−1)kCJ ,−J+l−q

J ,−J+l;k,−q |±〉l−q + CJ ,−J+l+q
J ,−J+l;k,q |±〉l+q

]
,

A(k)
q |±〉l =

√
2k + 1

2(2J + 1)

[
(−1)kCJ ,−J+l−q

J ,−J+l;k,−q |+〉l−q − CJ ,−J+l+q
J ,−J+l;k,q |+〉l+q

]
,

S(k)
0 |±〉l =






√
2k + 1
2J + 1

CJ ,−J+l
J ,−J+l;k,0 |±〉l , if k mod 2 = 0

√
2k + 1
2J + 1

CJ ,−J+l
J ,−J+l;k,0 |+〉l , otherwise.

(17)

Note that the states on the righthand side of the equa-
tions are not normalized, as the operators S(k)

q , A(k)
q are not

unitary. They are the Kraus operators corresponding to the
relevant errors.

The action of the Kraus operator S(k)
q is the amplitude

error given in Eq. (7). The Kraus operator S(k)
0 flips the

kitten states for k mod2 = 1, which corresponds to the
phase error in Eq. (8); the Kraus operators A(k)

q change the
value of the kitten state and also flip their sign. This cor-
responds to the action of both amplitude and phase error.
This basis of the Kraus operators tracks whether the error
is amplitude, phase, or the product of two. The single spin
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errors that a spin-cat code can correct can be written in
terms of the new basis as,

EK =
{

S(k)
q , A(k)

q | 0 ≤ k ≤ K , −k ≤ q ≤ k
}

, (18)

where K = '(2J − 1)/2(.
The logical encoding defined in Eq. (12) introduces a

biased logical qubit so that the rate of bit-flip errors is
exponentially suppressed compared to the phase-flip errors
as a function of the total value of spin J . Any uncorrectable
amplitude error at the physical level of the spin-cat encod-
ing is transformed into a bit-flip error on the logical qubit.
In Fig. 12 we compare the ratio of uncorrectable amplitude
error to phase error for rotation error. It is evident that even
for modest values of J = 5/2, 7/2, and 9/2, the bit-flip
error rate for the logical qubit is significantly suppressed
compared to phase-flip errors.

The proposed encoding can be considered a generalized
version of the Shor code,

|0〉 = 1√
8

(
|↑〉⊗2J+1 + |↓〉⊗2J+1)⊗3 ,

|1〉 = 1√
8

(
|↑〉⊗2J+1 − |↓〉⊗2J+1)⊗3 .

(19)

For the Shor code [49], the inner encoding protects against
bit-flip errors and the outer encoding protects against
phase-flip errors. In our case, the inner-layer protection
originates from the encoding of the qubit in the spin-J
qudit, |↑〉⊗2J+1 = |J , J 〉, |↓〉⊗2J+1 = |J , −J 〉.

III. UNIVERSAL GATE SET AND
RANK-PRESERVING CNOT GATE

In this section, we establish a set of universal fault-
tolerant operations for spin-cat qubits. As discussed above,
similar to Refs. [12,24], our strategy is to first correct
for the dominant errors by encoding the biased qubit in a
repetition code C1. After performing error correction corre-
sponding to code C1, we obtain a logical qubit with reduced
(but less biased) effective errors. We can then achieve
FTQC by employing another level of concatenation using a
generic CSS code C2, as long as the effective noise strength
is below the threshold of the code C2.

To construct the universal gate sets, we target the fol-
lowing physical level gates:

{P|0〉,P|+〉,MX ,MZ , CNOT, ZZ(θ), X , Y, Z}. (20)

Here P denotes state preparation, and M represents the
measurement operators. We require these spin-cat qubit
operations to be “rank preserving” so that they do not con-
vert correctable errors into uncorrectable ones. Using this

gate set, one can construct the following logical universal
gate set for C1:

{P|0〉L ,P|+〉L ,MXL ,MZL , CNOTL} ∪ {P|i〉L ,P|T〉L}. (21)

To prepare the magic states P|i〉L ,P|T〉L , we can utilize
rank-preserving ZZ(θ) at the physical level, similar to the
bias-preserving case of qubits [21] and cat codes [24]. The
gate set given in Eq. (21) has been previously studied as a
possible gate set when there is a significant bias between
different noise channels. For example, when we have a sig-
nificantly large probability of dephasing noise compared to
the bit-flip noise as studied in Ref. [12]. The studies in Ref.
[12] show that for a biased noise, this gate set gives a bet-
ter threshold and overhead compared to the other gate set.
The threshold is improved by a factor of 5 for the gate set
in Eq. (21) for a biased noise compared to the unbiased
noise [12]. Also, the studies in Refs. [12,24], showed that
there is a significant reduction in the overhead for the gate
set for a biased noise.

A. Single-qubit gates
To ensure fault tolerance, a gate U must not turn cor-

rectable errors into uncorrectable errors in a specific level
of encoding, i.e., we require that

UEK U† ∈ EK , (22)

where EK represents the set of correctable errors for the
spin-cat encoding as defined in Eq. (18). Further, to prevent
the propagation of correctable errors into uncorrectable
ones during subsequent computations, the gates U should
act on states for which an error has occurred in the same
manner as they act on states within the logical subspace.
Specifically, these gates must exhibit identical behavior
whether the states are in the cat subspace or the kit-
ten subspace with m > 1, the subspace corresponding to
amplitude damping errors.

By building the gates U in the universal gate set using
operations solely from the spin-J representations of SU(2),
we can guarantee the condition in Eq. (22). To see this,
recall the definition of spherical tensor operators:

UT(k)
q U† =

∑

−k≤q′≤k

Dq,q′T(k)
q′ , (23)

where U = e−iθ n̂.J is a spin-J SU(2) rotation operator and

Dq,q′ =
〈
k, M = q′∣∣ exp

(
−iθ n̂.J

)
|k, M = q〉 , (24)

are the elements of Wigner D matrices [50]. As a result,
SU(2) operators do not change the rank of spherical tensor
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operators. Using the above relationships for the basis of
errors introduced in Eq. (15), we get,

US(k)
q U† =

∑

q′

(
gq,q′S(k)

q′ + g̃q,q′A(k)
q′

)
,

UA(k)
q U† =

∑

q′

(
hq,q′S(k)

q′ + h̃q,q′A(k)
q′

)
,

(25)

where the coefficients {gq,q′ , g̃q,q′ , hq,q′ , h̃q,q′} are given in
Appendix D. Therefore, the SU(2) rotations do not change
the rank of the error operators and obey the condition given
in Eq. (22).

The single-qubit Pauli gates for the qubit encoded in the
spin qudit can be implemented using the following general
SU(2) operations:

X = exp(−iπJx),

Y = exp
(
−iπJy

)
,

Z = exp(−iπJz).

(26)

These are easily implemented by Larmor precession of the
spin.

In contrast, and critically, the Hadamard gate H for the
spin-cat encoding, defined by

H |0〉 = |+〉 ,

H |1〉 = |−〉 ,
(27)

cannot be achieved by SU(2) operations alone. To see this,
note that an SU(2) rotation preserves the projection of the
spin onto a rotated axis. As |0〉 and |1〉 are spin coherent
states (so-called “stretched states”), an SU(2) rotation can-
not be used to prepare a cat state, which is a superposition
of spin coherent states. [The overlap of states generated by
SU(2) operators acting on an eigenstate along z and the
cat state cannot exceed 0.5.] The action of an SU(2) oper-
ator takes an eigenstate along z to an eigenstate along a
rotated axis. The cat state is not an eigenstate of projection
of angular momentum along any axis, and thus it can-
not be mapped from |0〉 = |J , J 〉 by an SU(2) operation.
Therefore,

HEK H † 5∈ EK . (28)

The essential feature of our protocol is to circumvent
this restriction by using ancilla qubits and rank-preserving
CNOT gates to effectively apply a Hadamard gate that pre-
serves the set of correctable errors, which is described in
detail in Appendix F.

B. Rank-preserving CNOT gate
In this section, we develop a rank-preserving CNOT gate,

the key ingredient to realize the universal gate set, using

only SU(2) operations. For concreteness, we provide a
detailed protocol based on the platform of neutral-atom
quantum computing [48,51–54], which has shown increas-
ing promise for scalable FTQC [22,55–58]. In particular,
we consider 87Sr atoms, with a spin qudit encoded in the
nuclear spin I = 9/2, providing a qudit with d = 10 lev-
els [34,35]. When in the ground electronic state, the weak
coupling to the environment and resilience to other back-
ground noise makes the nuclear spin an ideal candidate for
quantum information processing [59–62].

Note, when considering the physical spins of atoms, in
standard notation I is the nuclear spin, J is the total angu-
lar momentum of the electrons, and F is the total electronic
angular momentum plus nuclear spin. Our qudit is encoded
in spin I in the electronic ground state with J = 0 for
87Sr, so that F = I = 9/2. In this section, the spin angu-
lar momentum in which we encode the qudit is F. In the
other sections of this paper, we use J to denote a generic
spin, without reference to its physical encoding.

We target a CNOT gate for the spin-cat encoding that
operates the same for all kitten states. As discussed above
[see Eq. (6)], we divide the qudit into “left” and “right”
subspaces, with projectors onto them #0 and #1, respec-
tively. The gate is formally given as,

CNOT = #0 ⊗ 1 +#1 ⊗ X , (29)

where X = exp(−iπFx). That is, we apply a π rotation
(NOT) to every kitten subspace of the target atom if the
control atom is in the 1 subspace (the amplitude damped
states of |1〉 we can correct), and the identity, if the con-
trol atom is in the 0 subspace (the amplitude damped states
of |0〉 we can correct). Clearly, if the amplitude damping
takes an atom from the 0 to 1 space, or vice versa, the error
cannot be corrected.

The protocol for implementing this gate is presented
in Fig. 2(b). We note that this protocol requires individ-
ual addressing of the atoms. In step I of the protocol,
the population from the ground-state memory is coher-
ently transferred to an auxiliary state where it is more
easily controlled. In 87Sr, we utilize the auxiliary hyperfine
state,

∣∣5s5p; 3P2; F = 9/2, MF
〉

with hyperfine quantum
numbers F = 9/2, MF . This manifold possesses a large
magnetic dipole moment and a long lifetime. For the con-
trol atom, only the population of 1 subspace is transferred
to the auxiliary manifold, whereas for the target atom, the
population from both 1 subspace and 0 subspace is trans-
ferred. Both of these are facilitated by an effective π pulse
between the ground and the auxiliary states, which one can
implement using quantum optimal control, as discussed
below.

In step II, an effective π pulse is applied on the control
atom between the auxiliary and the Rydberg state. In step
III, we apply the same π pulse on the target atom. Due
to the Rydberg blockade, this population exchange occurs
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(a) (b)

FIG. 2. Protocol for implementing a rank-preserving CNOT gate in neutral atomic 87Sr based of optimal control and the Rydberg
blockade. The spin-cat qubit is encoded in the nuclear spin, I = F = 9/2, in the electric ground state, 5s2 1S0. (a) Detailed level
diagram and protocol; (b) high-level schematic. When a gate is to be performed, the qudit is excited from the ground-state memory
to the long-lived auxiliary metastable state, 5s5p 3P2, F = 9/2. Entangling interactions occur through excitation from the auxiliary
state to the Rydberg state, 5s60s 3S1, F = 11/2. The error-correctable subspaces, 0 and 1, are represented by blue and purple colored
boxes, respectively, in the ground (G), auxiliary (A), and Rydberg (R) manifolds. The gate is performed in four steps. Step I: using
quantum optimal control, the population from the ground state is transferred to the auxiliary state while preserving coherence between
magnetic sublevels. Each two-level resonance, |G, MF〉 → |A, MF〉, has a detuning 'A,MF and Rabi frequency (A,MF . For the control
atom, we promote only the population from the 1̄ subspace, whereas for the case of the target atom, we promote the population from
both the 0 and 1 subspaces to the auxiliary state (see the main text for details). Step II: using π -polarized light, local addressing, and
quantum control, transfer the population from the auxiliary to Rydberg states only for the control atom. Step III: apply the same pulse
to the target atom. Due to the Rydberg blockade, this population transfer only occurs when the control atom is in 0 subspace; for the
1 subspace the population is otherwise blockaded. Step IV: using global rf-phase-modulated optimal control, we perform the SU(2)
rotation X = exp(−iπFx) in the auxiliary manifold and simultaneously the identity operator in the Rydberg manifold. The result is a
CNOT gate—if the control atom is in 1 subspace we apply an X gate to the target atom if the control atom is in 0 subspace we implement
an identity operator 1. Finally, we will transfer all the states back to the ground state by reversing steps III–I, thus implementing a
rank-preserving CNOT gate for the spin-cat encoding.

only when the control atom is in 0 subspace. If the state
of the control atom is in 1 subspace, the population from
the auxiliary state of the target atom is blockaded from
transferring to the Rydberg state.

Subsequently in step IV, using a global interaction and
quantum optimal control, we simultaneously implement a
X = exp(−iπFx) rotation in the auxiliary manifold and
an identity operator in the Rydberg manifold of the tar-
get atom. The net effect is that if the control atom is in
1 subspace an X gate has been applied to the target atom
and if the control atom is in 0 subspace the identity oper-
ator has been applied on the target. We transfer all the
states back to the ground state by applying steps III–I in
reverse order. The whole procedure implements the desired
rank-preserving CNOT gate for the spin-cat encoding in
Eq. (29).

In steps I and II of the rank-preserving CNOT gate,
one needs to implement the transfer of population from
the ground to the auxiliary manifold and from the auxil-
iary manifold to the Rydberg manifold, respectively. This
can be achieved by an effective π pulse between these

respective states and using quantum optimal control. In
both these cases we use the control Rabi Hamiltonian

He(t) =
9
2∑

M=− 9
2

−'e,M (t) |e, M 〉 〈e, M |

+(e,M (t)
[
ei)e(t)σ+

e,M + h.c
]

. (30)

To simplify the notation we have denoted the two excited
metastable manifolds by e, where e = A (auxiliary states)
and e = R (Rydberg states). Together with the ground-state
manifold,

|R, M 〉 ≡
∣∣∣∣5s60s; 3S1; F = 11

2
, MF = M

〉
,

|A, M 〉 ≡
∣∣∣∣5s5p; 3P2; F = 9

2
, MF = M

〉
,

|G, M 〉 ≡
∣∣∣∣5s2; 1S0, ; F = 9

2
, MF = M

〉
,

(31)
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and

σ+
e,M ≡ |e, M 〉

〈
e′, M

∣∣ , (32)

where e′ = G (for the interaction between the ground and
auxiliary states) and e′ = A (for the interaction between
auxiliary and Rydberg states). The control task is achieved
by modulation of the amplitude, detuning, and phase of the
exciting lasers. The time-dependent Rabi frequency and
detuning are,

(e,M (t) = Ce,M(e(t),

'e,M (t) = 'e(t) + δe,M ,
(33)

where Ce,M is the ratio of Clebsch-Gordan coefficients,

Ce,M =
〈F , M |1, 0; F , M 〉
〈
F , 9

2

∣∣1, 0; F , 9
2

〉 . (34)

'e is the detuning, and δe,M is the additional detuning due
to the relative Zeeman shift. To implement the particular
target unitary map interest (Utar) we consider modulation
of the amplitude, detuning, and phase of the two lasers that
drive the |G〉 → |A〉 transitions and the |A〉 → |R〉 transi-
tions. The GRAPE algorithm searches for the optimal con-
trol parameters + = {(e(t),'e(t),)e(t)} that maximizes
the fidelity with the target map Utar

F [+] = 1
d2

∣∣∣tr
{

U†
tarU[+, T]

}∣∣∣
2

, (35)

where d is the dimension of the qudit and U[+, T] =
T
[
exp

(
−i
∫ T

0 H [+(t)]dt
)]

is the solution to the time-
dependent Schrödinger equation.

We consider partial isometries for our target maps.
These have fewer constraints than unitary transformations
and hence require fewer resources (time, bandwidth etc.).
For a system of dimension d, one can define a partial
isometry as,

Vtar =
k∑

i=1

|fi〉 〈ei| , (36)

where 1 ≤ k ≤ d is the dimension of the partial isometry
of interest and {|ei〉}, {|fi〉} are two orthonormal bases. The
unitary maps of interest then take the form,

Utar = Vtar + V⊥, (37)

where V⊥ acts on the orthogonal subspace, with dimension
d − k. To find the control waveform that generates the par-
tial isometry, one then optimizes the fidelity between the

target isometry and the isometry generated using quantum
control [63]

FV[+] =
∣∣∣Tr

(
V†

tarV[+, T]
)∣∣∣

2
/k2. (38)

For the case of the rank-preserving CNOT gate, one needs
to implement three target isometries. Firstly, on the control
atom (C) we need to transfer the population from the 1
subspace of the ground manifold to that of the auxiliary
manifold while keeping the population in the 0 subspace
unchanged. The isometry we need to implement is,

V(C)
tar =

− 1
2∑

M=− 9
2

|A, M 〉 〈A, M | +
9
2∑

M= 1
2

|A, M 〉 〈G, M | . (39)

Secondly, we seek to transfer the entire population from
the ground manifold to the auxiliary manifold on the target
atom (T). The isometry is

V(T)
tar =

9
2∑

M=− 9
2

|A, M 〉 〈G, M | . (40)

Finally, we need to implement an isometry that transfers
the population from the auxiliary manifold to the Rydberg
manifold,

V(Ryd)
tar =

9
2∑

M=− 9
2

|R, M 〉 〈A, M | . (41)

All three can be implemented using the Rabi Hamiltonian.
As a proof of principle, we numerically optimize a

piece-wise constant waveform based on the well-known
GRAPE algorithm for quantum optimal control [64–67].
Example waveforms that implement the target isometries
are given in Fig. 3. The total time required is 4π/(rf,
where (rf is the rf-Larmor precession rate, chosen to be
resonant with the Zeeman splitting in the auxiliary auxil-
iary manifold. To achieve high-fidelity control, we have
divided the time into 12 equal time steps. In practice,
other parameterizations could be used to yield smoother
waveforms if bandwidth is limited.

Another important ingredient for the rank-preserving
CNOT gate in Fig. 2 is that we need to apply an rf pulse
that rotates the auxiliary 3P2 state and the Rydberg 3S1
state differently. For the case of the rank-preserving CNOT
gate, one needs to implement an X gate in the auxiliary
manifold and identity in the Rydberg manifold. This can
be achieved because of the different magnetic g factors of
the two spin manifolds. For our specific choice of Ryd-
berg manifold and auxiliary manifold gR/gA ≈ 2 [68]. The
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FIG. 3. Examples of control waveforms that achieve the transfer of populations between spin manifolds while preserving the coher-
ence between magnetic sublevels. Based on Hamiltonian Eq. (30), we modulate the lasers’ amplitude, detuning, and phase, as piecewise
constant functions of time. Using the GRAPE optimal control we find the target isometries. (a) The waveform that implements V(C)

tar ,
which transfer population from 1G subspace to 1̄A subspace while the population in the 0̄G subspace is unchanged. (b) The waveform
that implements V(T)

tar , which transfer population from 1G subspace to 1̄A subspace and 0g subspace to 0̄A subspace. (c) The waveform
that implements V(Ryd)

tar that transfers the population from the auxiliary states to the Rydberg states. For all these three cases we divide
the time into 12 equal time steps.

Hamiltonian describing Larmor precession in each of the
excited manifolds, driven by an rf-magnetic field oscillat-
ing at frequency ω, in the presence of a basis magnetic field
is then

HA = (rf
[
cos(ωt + ))Fx + sin(ωt + ))Fy

]
+ ω0Fz,

HR = 2(rf
[
cos(ωt + ))Fx + sin(ωt + ))Fy

]
+ 2ω0Fz.

(42)

Here (rf is the Larmor precession frequency and ω0 is the
Zeeman shift induced by the bias B field in the 3P2 aux-
iliary manifold. The spin angular-moment operators act in
the respective manifolds. Going to the rotation frame of the
rf oscillation, using the unitary operator U = exp(−iωtFz),
and choosing the rf frequency to be off resonant with
ω = 4/3ω0, gives

H rot
A = (rf

[
cos())Fx + sin())Fy

]
− 1

3
ω0Fz.

H rot
R = 2(rf

[
cos())Fx + sin())Fy

]
+ 2

3
ω0Fz.

(43)

Because of the finite detuning, the total Larmor precession
frequency in the auxiliary and Rydberg manifold is then

(A =

√

(2
rf +

ω2
0

9
,

(R =

√

4(2
rf +

4ω2
0

9
= 2(A.

(44)

Since the total Larmor frequency of the auxiliary auxiliary
and Rydberg manifolds are different, one can use optimiza-
tion techniques such as composite pulses [69] or quantum

optimal control [64,67] to implement separate unitaries in
the auxiliary and Rydberg manifold.

For example, when (rf = ω0/3 using optimal control
one achieves an X gate in the auxiliary manifold and the
identity in the Rydberg manifold by taking the phase to
be a piece-wise constant function time, corresponding to
a series of rf pulses, and a total time, Ttot = (

√
2π/(rf).

The resultant dynamics for the auxiliary and Rydberg man-
ifold are given in Fig. 4. Since the optimization is purely
geometric in nature the same pulse schemes work for any
value of the spin as long as the g factors have this ratio.
For further details on the optimization see Appendix E.

(A) (R)

FIG. 4. Evolution of the spin vector 〈F〉 for the auxiliary (A)
and Rydberg (R) manifolds resulting from rf-driven Larmor pre-
cession with time-varying phases. Optimal control is based on
Hamiltonian Eq. (43) for the piece-wise constant phases and
total time Ttot =

√
2π/(rf. The blue and black dots correspond

to the first and second steps, respectively (see text). An X =
exp(−iπFx) gate acts on the auxiliary manifold and transfers the
population from 1̄A to 0̄A and vice versa. However, for the Ryd-
berg manifold, the pulse sequence acts as an identity operator,
and the population in the 0̄R and 1̄R subspaces remain unaffected.
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The protocol described above can be generalized for
other entangling gates. One can optimize rf phases in
Eq. (43) to implement the identity operator in the Rydberg
manifold and R(θ) = exp

(
−iθ n̂.F

)
, an SU(2) operator, in

the auxiliary manifold. Thus one can implement the gate
ZZ(θ) = exp{−iθZ ⊗ Z} with any angle θ , up to local Z
rotations, for the spin-cat qubits.

C. State preparation and measurement
To complete the universal gate set, one needs to imple-

ment the state preparation and measurement at the physical
level given in Eq. (20). P|0〉, which is the preparation of the
spin coherent state can be achieved with high fidelity using
optical pumping [70]. Also, MZ , which is the measure-
ment in the |F , MF〉 basis can be achieved with high fidelity
in principle [38,71]. However, P|+〉 and MX are not
straightforward to implement without an SU(2) Hadamard
gate. We describe here new approaches unique to spin-cat
encoding and the rank-preserving CNOT gate.

1. Preparation of the spin-cat state
We can generate the spin-cat state |+〉 using multiple

approaches. For example, one can use quantum optimal
control by considering the controllable Hamiltonian

H(t) = (rf
(
cos)(t)Fx + sin)(t)Fy

)
+ βF2

z . (45)

This can be implemented in atomic systems using a com-
bination of tensor light shifts and rf rotations [72]. For
the specific case of 87Sr, we have previously studied how
this can be implemented with high fidelity through the
tensor light shift imparted on the ground-electronic state
nuclear spin [34]. Using quantum optimal control proto-
cols one can generate the state |+〉 from an initial state
|F , MF = F〉.

The light shift will also be accompanied by decoher-
ence to photon scattering and optical pumping. We study
this in Appendix B to calculate the fidelity for the state
preparation,

Fstate = 〈+| ρ |+〉 . (46)

For the particular choice of 87Sr, we find the fidelity for
quantum optimal control is Fstate = 0.9998.

2. Measurement of X
To measure the X operator (MX ), we need to iden-

tify whether the state is in |+〉k or |−〉k for 0 ≤ k ≤
'(2J − 1)/2(. We cannot implement the X measurement
fault tolerantly by applying a Hadamard followed by mea-
suring in the computational basis since Hadamard is not an
SU(2) rank-preserving gate. To surmount these challenges,
similar to Ref. [73], we use an ancilla-assisted measure-
ment protocol, where measurement errors will lead to syn-
drome errors without disturbing the encoded data. Hence,

FIG. 5. Circuit diagram implementing MX . Consider an ini-
tial state α |+〉k + β |−〉k, where 0 ≤ k ≤ '(2J − 1)/2(. The
action of the CNOT gate for an ancilla state |+〉0 ≡ |+〉 gives
us the state, α |+〉k |+〉 + β |−〉k |−〉, thus to identify whether
the state is in |+〉k or |−〉k, we need to measure whether the
ancilla is in |+〉0 or |−〉0. One can achieve this using a destructive
measurement [for more details see Eq. (47)].

we implement the X measurement by adding an ancilla
qubit in the spin-cat state |+〉0, applying a CNOT gate, and
then destructively measuring the ancilla. Since the ancilla
is measured destructively and discarded, we do not need
to implement the X measurement using rank-preserving
operators.

The circuit diagram, which implements the measure-
ment is shown in Fig. 5. After the application of the
CNOT gate, the joint state of the system is α |+〉k |+〉0 +
β |−〉k |−〉0. Measuring whether the ancilla is in |+〉0 or
|−〉0 gives the value of X on the data qubit. To measure
the ancilla in the |±〉0 basis, we use quantum optimal con-
trol techniques to implement the required transformation to
the Mz basis using SU(d) optimal control. We employ the
control Hamiltonian in Eq. (45) to implement the isometry
[35],

Vtarg = |F , MF = F〉 〈+| + |F , MF = −F〉 〈−| . (47)

In practice, this operation will be accompanied by deco-
herence, and the actual map we implement may be written
as

V = e−
∫
L(t)dtV(0), (48)

where

V(0) = |+〉 〈+| + |−〉 〈−| , (49)

and L(t) is the Lindbladian. Thus the fidelity for the
implementation of the isometry is defined as

Fiso = 1
4
|Tr(VtargV†)|2. (50)

As an example, we consider the effect of photon scatter-
ing and optical pumping that accompanies the tensor light
shift. In our simulation, we achieve fidelity of Fiso = 0.999
for 87Sr in the presence of optical pumping described
above.

We have now constructed all the required operations
at the level of the qubit encoded in the spin, as given in
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Eq. (20). We can use these operations to implement a uni-
versal gate set on the spin-cat qubits and to construct the
error correction and logical operations of the C1 code [12].
(See Appendix G for the implementation of logical opera-
tions in C1.) In principle, one can implement all the gates
in Eq. (20) with very high fidelity, however, in practice one
needs to consider other experimental imperfections like the
Doppler effect that could impact the fidelity of these gates.

Generalizations of rank-preserving gate sets at the phys-
ical level can reduce the circuit size for specific applica-
tions [25,74]. For example, we can easily generalize our
construction of the CNOT gate in Sec. III B to implement a
Toffoli gate in spin systems as discussed in Appendix H.
The scheme is similar to the CCZ gate implemented in
Ref. [75]. This utilizes the capability to move neutral
atoms in tweezer arrays, arranging the nearest neighbors to
interact via the Rydberg blockade, while leaving the next-
to-nearest neighbors unaffected. With access to such a gate,
similar to the recent development in the bosonic system
[25], we can implement the following operations:

{P|±〉,MX , CNOT, Toffoli}. (51)

Such a gate set can be used to construct more efficient
fault-tolerant logical-level operations.

IV. SYNDROME MEASUREMENT AND ERROR
RECOVERY

The design of error-correction gadgets plays a major role
in determining the threshold of tolerable noise and also
the required overhead of fault-tolerant schemes mainly due
to the fact that current fault-tolerant designs require many
rounds of error correction to control the spread of errors.
The standard method to perform an error recovery is to
measure the syndromes to identify the errors and then cor-
rect the errors by applying an appropriate unitary operator.
This is the approach we take to correct the phase errors.
We use a repetition code of size n, capable of correcting
up to '(n − 1)/2( phase errors. In this case, the (n − 1)
syndrome measurements for phase error correction are

Sphase = {X1X2, X2X3, . . . , Xn−1Xn}. (52)

These syndrome measurements can be implemented
according to the standard circuits in Fig. 6 (for n = 3)
using the universal operations described in Sec. III.

When the probability of phase errors is larger than
amplitude errors in each spin, increasing the size of the rep-
etition code n can reduce the probability of logical phase
errors. However, increasing n will increase the probability
of logical amplitude errors due to the increase in the num-
ber of the required CNOT gates for the syndrome circuits.
Therefore, we can choose the optimal n that brings the two
types of errors to the same level, determined by the noise
threshold required by the outer CSS code C2.

FIG. 6. Circuit for error correction of a phase error for a qubit
encoded in three spins. The error correction is achieved by mea-
suring the syndromes {X1X2, X2X3} followed by Z = exp(−iπJz)
gate(s) according to the syndrome outcomes.

For the case of amplitude damping, one approach to
diagnose the syndrome is to perform nondestructive mea-
surements to identify the amplitude errors, for example,
by measuring J 2

z . In practice this can be difficult to imple-
ment experimentally. (In this section and below we return
to denote a generic spin J , without reference to a specific
platform.) Instead, we take advantage of the cat encod-
ing and the unique properties of our proposed CNOT gate
to coherently apply the recovery map using fresh ancilla
without performing any measurement. Our construction is
a new example of measurement-free quantum error cor-
rection (MFQEC) [76–81] motivated by the experimental
constraints of spin systems.

To describe our proposed error recovery, we first
observe that we can “swap” the state of two qubits encoded
in the kitten states. Let

|.〉k = α |+〉k + β |−〉k ,

|)〉l = / |+〉l + δ |−〉l ,
(53)

where α,β, / , and δ are arbitrary complex amplitudes.
Three applications of our proposed CNOT gate, as shown
in Fig. 7(a), implement the following transformation (see
Appendix J for a proof):

|.〉k ⊗ |)〉l → |)〉k ⊗ |.〉l . (54)

We expect this construction, which implements the swap of
kitten states, to find applications beyond error correction,
in particular, in algorithmic subroutines native to qudit
platforms, but in this work, we focus on its application in
amplitude correction. We denote this gate by Vs.

If we replace one of the input states with a fixed cat
state, |+〉0, then the recovery circuit can be simplified to
the circuit in Fig. 7(b). Therefore, amplitude errors can be
corrected by consuming fresh ancilla qudits in the cat state,
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(a) (b)

FIG. 7. (a) General circuit for swapping the state of the two
qubits in two different kitten subspaces. (b) The circuit that swaps
the information between the data and ancilla, when the initial
state of the ancilla state is |+〉0.

|+〉0, and applying two CNOT gates. The operation coher-
ently transfers the qubit that is damped at level k back to
level 0, which is our encoded qubit. In Appendix J, we
show that the action of this quantum channel, after trac-
ing the extra subsystem, is exactly equivalent to a recovery
channel implemented by measuring J 2

z and then applying
a unitary correction to transfer the state into the k = 0
subspace.

A. Error correction for optical pumping
To see how phase and amplitude error correction com-

bines to correct any local errors, it is illuminating to
describe the procedure for correcting a dominant noise
channel in atomic systems, optical pumping. (The details
of optical pumping are discussed in Appendix B.) In par-
ticular, consider the example of absorption of a linear
π -polarized laser photon, followed by the spontaneous
emission of a circularly polarized σ+ photon. This process
results in mapping |J , J 〉 to |J , J − 1〉 and also annihilat-
ing any amplitude in the state |J , −J 〉. On the cat states,
this transformation can be rewritten as,

|+〉 → |J , J − 1〉 =
|+〉1 − |−〉1√

2
,

|−〉 → − |J , J − 1〉 = −
|+〉1 − |−〉1√

2
.

(55)

Consider an arbitrary logical state |.〉 = α |+〉L + β |−〉L.
The action of the optical pumping on the first qudit gives

|.〉 →
|+〉1 − |−〉1√

2
⊗ (α |+〉0 |+〉0

− β |−〉0 |−〉0) ≡ |)〉 . (56)

Now we can consider the states after the phase and ampli-
tude error-correction steps. (As these error correction steps
commute with each other, the order in which we perform
them is irrelevant.) The phase error correction is specified
by the syndromes X1X2 and X2X3. If we measure both the
syndromes as +1, the state |)〉 collapses to

|)〉 → α |+〉1 |+〉0 |+〉0 + β |−〉1 |−〉0 |−〉0 . (57)

If the syndrome measurement gives outcome −1 and 1 for
the syndrome X1X2 and X2X3 the state becomes

|)〉 → α |−〉1 |+〉0 |+〉0 + β |+〉1 |−〉0 |−〉0 . (58)

Applying the correction unitary Z1 corresponding to this
syndrome yields

α |+〉1 |+〉0 |+〉0 + β |−〉1 |−〉0 |−〉0 ≡ |)〉ph . (59)

The same state is achieved after performing the correction
for the other two possible syndromes. Thus the state after
the phase error correction collapses to the state Eq. (59).

Next, we can apply measurement-free amplitude error
correction by consuming three ancilla states |+〉0, which
gives,

V⊗3
s |)〉ph |+〉0 |+〉0 |+〉0 = |+〉1 |+〉0 |+〉0 ⊗ |.〉 . (60)

Tracing out the first three subsystems yields the initial state
|.〉 in the three ancilla subsystems. The error-correction
scheme developed here thus corrects the optical pumping
errors.

This quantum error-correction gadget is especially well
suited to the neutral atom platform due to the ability to
move atoms midcircuit. Firstly, the SWAP gates are easy
to implement as we can move individual ancillas and data
atoms into a pairwise configuration to apply the CNOT gates
parallelly. Secondly, at the end of the protocol, the ancilla
atoms can be used as the new data atoms by simply moving
them into the right positions.

V. LOGICAL CNOT GATE AND
FAULT-TOLERANT THRESHOLD

In this section, we provide lower bounds on the noise
level that can be tolerated in our proposed spin-cat code,
while still achieving fault-tolerant quantum computation.
As discussed in Sec. III, to achieve fault tolerance, we need
to guarantee that the effective noise strength in our imple-
mentation of the logical gadgets of the inner code C1, as
specified by Eq. (21), is below the noise threshold needed
for the outer code C2 used in concatenation.

In this concatenated scheme, the main source of error
is the logical CNOT gate of C1, and hence, an upper bound
on its failure probability will provide an estimate for the
threshold of all C2 gadgets [12,24]. The logical CNOT
gadget for the code C1 can be realized using transversal
physical CNOT gates between two code blocks, accompa-
nied by error-correction procedures to correct phase and
amplitude errors, which is illustrated in Fig. 8. For the
sake of generality, we consider each logical CNOT gadget
to consist of r1 applications of phase error correction and
r2 applications of amplitude error correction. We define
r = r1 + r2 and denote the number of the data qudits in
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- -

FIG. 8. The error-corrected logical CNOT gadget. The logical
CNOT gate is implemented by applying a physical CNOT gate
between each qubit (encoded in the spin) of the control and target
blocks transversely. Error-correction steps are performed before
and after the logical CNOT.

each code block by n. The recovery operation for phase
error correction is determined by majority voting of the r1
rounds of syndrome measurement.

We start by estimating the probability of dephasing
errors. In this case, the analysis is similar to the analysis
of biased cat qubits in bosonic systems [24]. Suppose each
physical CNOT gate causes (independent) dephasing errors
on the target and control qubits with probability ε. During
the application of each phase-correction or amplitude-
correction procedures, every qudit is acted upon by at most
two physical CNOTs. Hence, after r1 repetition of phase
corrections and r2 repetition of amplitude corrections the
probability of dephasing error on each qudit, in both the
control and target block, will be at most 2rε. After the
implementation of error-correction steps, the next step is
to implement the transversal CNOTs between the control
and target blocks of data qudits. This operation can propa-
gate phase errors from the target block to the control block.
Therefore, after the action of the transversal CNOT gates,
the probability of dephasing error on each qubit of the
target and control blocks is at most 2rε + ε and 4rε + ε,
respectively.

A logical error would occur if more than (n + 1)/2
qubits are faulty in either the target or the control code
blocks. Thus the upper bound on the logical phase error
probability in the control and the target blocks can be given
as (keeping only the dominant term),

ε
phase
target ≤

(
n

n+1
2

)
(2rε + ε)(n+1)/2,

ε
phase
control ≤

(
n

n+1
2

)
(4rε + ε)(n+1)/2.

(61)

To account for the possible errors in the syndrome mea-
surements in the phase error-correction step, we repeat
measurements of (n − 1) syndromes in the control and the
target blocks r1 times and take the majority vote to apply
error correction. A logical error happens if the syndrome is
incorrect for at least (r1 + 1)/2 rounds of this procedure.
Each syndrome measurement requires two physical CNOT
gates and we also need to account for state preparation and
measurement errors used in each syndrome measurement,

both of which can be performed with much higher accu-
racy compared to the rank-preserving CNOT gate. Also one
needs to account for the dephasing error induced by the
amplitude error correction following the phase error cor-
rection, which has two physical CNOT gates. Therefore, the
upper bound on the probability of a dephasing error in each
syndrome bit is at most 6ε. As a result, the upper bound on
the logical error for the syndrome measurement is given by
(only keeping the dominant term):

ε
phase
EC ≤ 2(n − 1)

(
r1

r1+1
2

)
(6ε)

r1+1
2 . (62)

Next, we establish an upper bound on the probability of
logical errors resulting from amplitude errors on the con-
trol and target, just before the amplitude error-correction
step. An amplitude error on an individual qudit occurs
when a minimum of kmax = (2J − 1)/2 jumps has taken
place. This can be determined by summing the probabil-
ities of kmax jumps, given a total of s CNOT gates and
is expressed as q(s, kmax) as given in Eq. (J13) (s = 2r).
Following the error-correction steps, the subsequent phase
involves implementing transversal CNOT gates between the
control and target blocks of data qudits. This operation,
however, has the potential to propagate amplitude errors
from the control block to the target block. Consequently,
after the application of transversal CNOT gates, the proba-
bility of amplitude errors on each qubit in the target and
control blocks is bounded by

ε
amp
target ≤ 2nq(s = 2r, kmax) + nq(s = 1, kmax),

ε
amp
control ≤ nq(s = 2r, kmax) + nq(s = 1, kmax).

(63)

Next, we provide upper bounds on the probability of logi-
cal error in the amplitude error-correction procedure. An
ideal implementation of the swap protocol described in
Sec. IV would correct the amplitude errors by putting back
the state into the cat manifold, defined as the support of the
projector #0, where

#l = |+〉l 〈+|l + |−〉l 〈−|l . (64)

Imperfect amplitude error correction may arise due to fac-
tors such as small random rotations during the swapping
process intended for error correction, errors caused by opti-
cal pumping, or imperfections in ancilla preparation. For
the case of small random rotation errors and optical pump-
ing, the error operators involve at most two amplitude
jumps as discussed in Sec. II A. Similarly, as discussed in
Sec. III C 1, optical pumping and random rotation errors
can create at most two amplitude jumps during the prepara-
tion of the ancilla state. Thus the imperfect amplitude error
correction can cause at most four amplitude jumps. This
phenomenon is conceptualized in Fig. 9, where the popu-
lation in the cat manifold can leak to #i for i = {1, 2, 3, 4}
manifolds with probabilities pi.
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FIG. 9. Imperfect amplitude error-correction gadget. There are
two sources of imperfection one can associate with the ampli-
tude error correction. The first one is a rotation error or optical
pumping error occurring during the swapping approach to correct
amplitude errors. The second one is due to imperfect preparation
of the ancilla state, where ideally ρA = |+〉0, however, in a non-
ideal setting the ancilla can be in a mixture of |±〉i states where
i = {0, 1, 2, 3, 4}, due to optical pumping or rotation error during
the state preparation. For an ideal amplitude error correction, the
final state lives in the #0 = |+〉 〈+|0 + |−〉0 〈−|0, whereas for
a nonideal setting, there is a small probability to be in the other
manifold #l. The figure shows when the final state is in the #i
where i = {0, 1, 2, 3, 4}.

Errors in the preparation of the ancilla can, in principle,
result in a superposition of |+〉k states with k ≤ 4 instead
of |+〉0. However, the amplitude error correction destroys
any coherence between the cat and kitten subspaces, result-
ing in a mixed state in the cat manifold (see Appendix J).
Hence, to find an upper bound on the success probability
of amplitude correction, we need only to consider the prob-
ability of error in preparing |+〉k states with k ≤ 4, rather
than an arbitrary state in that subspace.

We denote the failure probability of the amplitude error
correction given that the ancilla states is in |+〉k by
q(s, kmax | k) where s is the total number of CNOT gates
before the application of error correction, and kmax is the
minimum rank of the amplitude errors, which create a log-
ical error, i.e., kmax = '(2J + 1)/2( in our construction.
This probability can be calculated by adding the proba-
bilities of cascades of single and two jumps that push the
population from level k to at least kmax level. Assuming
the population leaks only to #i for i = {1, 2, 3, 4} the log-
ical error probability after r2 rounds of amplitude error
correction can be bounded by

εamp ≤ r2

( 4∑

k=0

q(s, kmax | k)pk

)

, (65)

where p0 = 1 −
∑4

i=1 pi. (For a detailed calculation see
Appendix J 1.) As we have 2n total qudits, the logical error
probability of the amplitude error correction blocks for the
logical CNOT gate can be bounded by

εamp
ec ≤ 2nεamp. (66)

Note that unlike phase error correction where the mea-
surement is repeated r1 many times and the correction
is applied based on a majority vote of syndrome results,
amplitude error correction does not involve direct mea-
surement. Therefore, repeated applications of amplitude
error correction without a phase-correction step in between
do not provide extra error-correction power.

(a) (b)

FIG. 10. Logical error as a function of the physical level error (for details of the relation between phase error and amplitude error,
see Appendix A) for the random rotation error for a different value of n. Also, the threshold one needs to achieve CSS encoding in
the second layer of concatenation is given for reference. Figure (a) is for the case of pi = 0 for i 5= 0 and figure (b) is for an imperfect
ancilla state preparation with pi = 10−4 for i 5= 0. We can see whether the swapping error ideal or nonideal does not affect much except
for very low noise and this in turn is because the contribution of the amplitude error is very low for the random rotation error. The
black circle shows the intersection of the logical error with y = x line for the optimal case shown here and the gray circle shows the
intersection of the εCSS with the logical error for the optimal case. The simulation is shown for r1 = 7 and r2 = 1.
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(a) (b)

FIG. 11. Logical error as a function of the physical level error (for details to the relation between phase error and amplitude error,
see Appendix B) for the optical pumping error for different value of n. The targeted threshold for the CSS code in the second layer
of concatenation is given for reference. Figure (a) is for the case of pi = 0 for i 5= 0 and figure (b) is for an imperfect ancilla state
preparation with pi = 10−4 for i 5= 0. We can see a significant change in the behavior depending on whether the amplitude error
correction is ideal or not specifically in the low noise regime. This in turn is due to the fact that for the case of optical pumping, as seen
in Appendix B, there is a significant contribution to the logical error from the amplitude errors. The black circle shows the threshold
value for the optimal value of n and the gray circle shows the intersection of the εCSS with the logical error for the optimal value of n.
The simulation are shown for r1 = 7 and r2 = 1.

Finally adding up all the probabilities of failures for the
various components of the logical CNOT gate, yields an
upper bound on its total logical error probability,

εlogical ≤ εphase
ec + ε

phase
control + ε

phase
target + εamp

ec + ε
amp
control + ε

amp
target.
(67)

To assess the improvement provided by our construction,
we provide estimates of ε for various noise parameters
that guarantee a logical error εlogical below the threshold
demanded by the CSS code C2. For the CSS code C2 we use
the fault-tolerant construction of Ref. [82], with a provable
threshold of εCSS = 0.67 × 10−3.

In Fig. 10 we present the case of the small rotation
error for encoding a qubit in a qudit J = 9/2 with r1 = 7,
r2 = 1, and for different choices of n. The figure on the left
assumes no leakage error in the ancilla state preparation,
i.e., pi = 0 for i 5= 0, and the figure on the right is for a
leakage error of pi = 10−4 for i 5= 0. As is evident in the
figure, the logical error rates for scenarios with and with-
out leakage error exhibit similar characteristics except for
very low noise. This is expected since for small rotation
errors, the probability of amplitude error is exponentially
suppressed as a function of J compared to the phase errors,
see Fig. 12 for more details. In particular, we find that for
n = 21, r1 = 7, and r2 = 1, the physical error ε needed to
achieve the targeted CSS threshold is less than 0.0054.

Next, in Fig. 11 we explore the impact of stronger pho-
ton scattering and optical pumping on the encoding of a

qubit in a qudit with J = 9/2 with r1 = 7, r2 = 1, consid-
ering various choices of n. [For the case of J = 9/2, we
get α = 0.0137 and β = 0.2 in Eq. (11) for stronger pho-
ton scattering and optical pumping. Details of the noise
model and parameters can be found in Appendix B.] The
left panel is the case with no leakage error pi = 0 for i 5= 0,
while the right panel incorporates a leakage error with
pi = 10−4 for i 5= 0.

As can be seen in the figure, for the ideal amplitude
error correction the behavior of both the rotation error and
the case when photon scattering and optical pumping are
stronger are very similar in nature. However, when photon
scattering and optical pumping are stronger, the imper-
fect ancilla preparation during amplitude error correction
plays a more severe role in the overall logical error of
the low-noise regime. The competition between the error-
correction power of the gadget and the extra error due to
the increased number of qudits needed to encode a logical
qubit leads to identifying a “sweet spot” that determines
the optimal number of qudits needed to encode a logical
qubit. In particular, we find that for n = 21, r1 = 7, and
r2 = 1, the physical error needed to achieve the targeted
CSS threshold is ε ≤ 0.0053.

As discussed in detail in Appendix A, the primary error
source for the considered spin systems is the first-order
angular-momentum operators, stemming from potential
unwanted magnetic fields. Additionally, there are second-
order terms in the angular-momentum operators due to
optical pumping [34,83]. Despite this, the presence of extra
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levels in the qudit results in a logical error contribution
from amplitude errors that is notably lower than that from
phase errors. Thus the threshold behavior for both these
error models impacts only the low-noise regimes.

VI. SUMMARY AND OUTLOOK

To achieve the full power of quantum computing, one
needs to execute quantum algorithms on error-corrected
logical qubits. However, meeting the demanding require-
ments for physical qubits and achieving low error rates,
essential for error-corrected logical qubits, remains a sig-
nificant challenge in current quantum implementations
[8,9,19,20]. Recent advancements in noise-tailored error
correction provide a promising avenue for achieving this
by substantially alleviating the stringent demands of error-
corrected logical qubits [12,21,26–28].

In this paper, we follow this direction and introduce
a fault-tolerant quantum computation protocol by encod-
ing a qubit into a spin system, with a spin larger than
J = 1/2. The general scheme that we introduce in this
work is applicable to a wide range of physical spins,
including in semiconductors [30,37], atomic ions [38,39],
neutral atoms [34–36], molecules [40], and superconduct-
ing systems [42,43], where we have spin qudits that can be
coherently controlled and entangled.

The specific encoding we consider in this paper is the
spin-cat encoding, which draws inspiration from the cat-
code encoding for continuous-variable bosonic systems
[12,24]. For this implementation we develop techniques
to perform reliable computation in the presence of dom-
inant noise in spin systems, taking advantage of natively
available interactions. One key factor that distinguishes the
spin-cat encoding from the other encodings of a qubit in a
qudit is that the total Hilbert space of the spin-cat encod-
ing decomposes into a direct sum of qubit subspace. This
induces the structure of a stabilizer code, a feature that
plays a pivotal role in enabling fault-tolerant schemes for
error correction.

Spherical SU(2) tensor operators provide a basis in
which to characterize the error channels and identify the
set of correctable errors. The dominant error sources for
encoding a qubit in a spin are the rank-1 SU(2) rota-
tions and the rank-2 tensors, which can arise, e.g., from
optical pumping between magnetic sublevels. Our codes
are constructed with these physical errors in mind. We
use the concatenation scheme of Ref. [12] to perform
fault-tolerant computation. In addition to using an inner
repetition code that corrects phase errors, we correct
for amplitude-damping errors by consuming fresh ancilla
spins and performing measurement-free error correction
natively for spin systems.

As a concrete application of our proposed scheme, we
focus on the encoding of a qubit in the nuclear spin of
87Sr, characterized by a spin of 9/2. In this scenario, we

systematically build a universal gate set for fault-tolerant
quantum computing, leveraging the available interaction
mechanisms. A pivotal element in the formulation of the
physical-level gate is the rank-preserving CNOT gate. We
elaborate on the implementation details of this gate, by
taking advantage of the metastable states available in 87Sr
and the well-known Rydberg blockade. In addition to the
swap gadget that helps us correct amplitude errors, this
CNOT gate is used in the construction of a universal gate
set.

We also studied the threshold for fault-tolerant error cor-
rection and found that it is much higher than found in
standard protocols of error correction with physical qubits,
and it is similar to the threshold observed in bosonic cat
codes [24]. As a result, our approach demonstrates a sig-
nificant reduction in the required overhead and exhibits
higher fault-tolerance thresholds compared to conventional
qubit-based techniques.

Our work represents another example of designing
resource-efficient fault-tolerant schemes by taking advan-
tage of the native noise characteristics of a given hardware.
In contrast to the earliest work in quantum error correction
where models were constructed for hypothetical qubits and
generic noise models, efforts are being made to develop
error-correcting codes that are symbiotic with the control
methods and noise structures of physical quantum sys-
tems [22,24,30,31,37,73]. A related direction of research
is to engineer qubit encodings with favorable noise prop-
erties [27,84]. This has been made possible because of the
substantial experimental advances in quantum computing
[13–15].

In a similar vein, the structure of our protocol works
well with spin systems and their control methods, regard-
less of the platform in which they are implemented.
It is particularly well suited for the neutral atom plat-
form, where significant experimental advances have been
achieved recently [17,55,57]. We have previously explored
the use of quantum optimal control of spin-9/2 nuclei in
87Sr atoms for arbitrary single-qudit gates [34] and two-
qudit entangling gates [35], where this protocol would be
a natural fit. The unique capabilities of neutral atom plat-
forms, such as reconfigurable connectivity and the ability
to implement hundreds of parallel entangling gates [17]
would assist in the implementation of the fault-tolerant
protocol we proposed here.

This work opens many directions for future research.
One can extend the current protocol for the rank-preserving
CNOT gate in neutral atoms to other, more experimental-
friendly protocols. Specifically, one can explore using the
geometric phase approach [75] or Rydberg dressing-based
approaches [85–88], typically used for entangling gates in
qubits, to realize the rank-preserving CNOT gate. In addi-
tion, similar to continuous-variable cat encoding [24], the
proposed gate set enables the use of other codes, including
topological codes. Another direct extension is to develop
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gate sets to perform computation by encoding a qudit,
rather than a qubit, into the large spin.

Lastly, while we focus on errors caused by random rota-
tions and optical pumping in this paper. Another very
important source of errors we did not consider is leak-
age out of computational subspace, especially in the form
of atom loss in neutral-atom platforms. The conventional
approach to circumvent these errors is to use leakage-
reduction units [89]. In future work, we plan to address
leakage errors using a quantum nondemolition measure-
ment to measure the presence of population in the compu-
tational subspace without destroying the coherence [90].
This measurement converts all leakage errors, including
atom loss, into erasure errors, which are easier to correct.
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APPENDIX A: SMALL ROTATION ERRORS

A main source of decoherence for a qubit encoded in a
spin is small random rotation errors [30,37]. As given in
Eq. (10), for the spin-cat encoding the ratio of phase error
to amplitude error decreases with spin J as 1/J . However,

for the spin-cat encoding, we need '(2J − 1)/2( ampli-
tude errors and jumps for a logical error (logical amplitude
error) to occur, such that these errors are not correctable
by the amplitude error correction [a logical bit-flip error
for the encoding in Eq. (12)]. As such, we look at the
probability of such logical amplitude errors in Fig. 12. In
Fig. 12(a) we show that for a spin J , the logical ampli-
tude error decreases with phase-error probability, and the
decrease shows an exponential behavior with spin J .

To further illustrate the exponential suppression of the
logical error arising from amplitude errors as a function
of spin due to random rotation errors, in Fig. 12(b), the
ratio of logical amplitude error probability to phase error
for rotation error is given as a function of spin J for a dif-
ferent value of phase error. Notably, this ratio exhibits an
exponential trend, and for sufficiently large values of J , the
logical amplitude error becomes negligible. Consequently,
there is no need for amplitude error correction in such
cases. To further illustrate the exponential suppression of
the logical error arising from amplitude errors as a func-
tion of spin due to random rotation errors, in Fig. 12(b),
the ratio of logical amplitude error probability to phase
error for rotation error is given as a function of spin J for
a different value of phase error. Notably, this ratio exhibits
an exponential trend, and for sufficiently large values of
J , the logical amplitude error becomes negligible. Conse-
quently, there is no need for amplitude error correction in
such cases, as one does not need to pump the states back
to {|J 〉 , |−J 〉} manifold as all the designed gates operate
similarly in all the other lower kitten manifolds.
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FIG. 12. Logical amplitude error probabilities due to rotation errors. (a) The ratio of logical amplitude error to phase error is given
as a function of phase error. The probability of logical errors falls as the overall error rate decreases. A logical error occurs when we
have '(2J − 1)/2( amplitude errors and thus as spin J , increases, the ratio decreases exponentially. However, for J = 3/2, a single
amplitude jump creates a logical error and thus the ratio of logical error to phase error is a constant equal to 1/2J . (b) The ratio of
logical error probability due to amplitude errors to phase error for rotation error as a function of spin J . We can see that this ratio
exhibits an exponential trend, and the logical error becomes negligible for sufficiently large values of J . Consequently, fewer rounds
of amplitude error correction will be needed as J increases.

020355-18



FAULT-TOLERANT QUANTUM COMPUTATION... PRX QUANTUM 5, 020355 (2024)

FIG. 13. The error process corresponding to the photon scat-
tering and optical pumping for encoding a qudit in an atomic spin
F. The information is stored in the ground state and is controlled
by laser light with Rabi frequency (L and detuning 'L from an
excited-state manifold, with spin F′. Absorption of a laser pho-
ton (here π polarized) is followed by a spontaneous emission
given by wavy lines. The process causes amplitude errors and
can collapse a cat state to a single magnetic sublevel.

APPENDIX B: PHOTON SCATTERING AND
OPTICAL PUMPING

Another major source of decoherence for the qubit
encoded in a spin is the optical pumping arising from pho-
ton scattering when the spin are manipulated by laser light.
We consider here optical pumping arising from laser exci-
tation with Rabi frequency (L and detuning 'L from a
dominant resonance. Absorption of a laser with polariza-
tion 8εL is followed by a spontaneous emission of photon
eq. A schematic of the error process corresponding to the
photon scattering and optical pumping for atomic spins is
shown in Fig. 13 for the case 8εL = e0.

In this section, the spin angular momentum in which we
encode the qudit is F, and J is the total angular momen-
tum of the electrons. The jump operators for the optical
pumping followed by photon scattering are [83]

Wq =
∑

F ′

(L/2
'FF ′ + i1/2

(e∗
q.DFF ′)(8εL.D†

FF ′), (B1)

where (L is the Rabi frequency and 'FF ′ is the detun-
ing between the ground state and excited with total spin
F and F ′, respectively. 1 is the characteristic linewidth
of the excited state, 8εL is the polarization of the laser,
and q = −1, 0, 1 represent the polarization of the scattered
light. DFF ′ are the dimensionless raising operators from
a ground state with total spin F to an excited state with
spin F ′ and see Ref. [83] for a detailed analysis of these
operators.

By decomposing the dyadic into irreducible tensors, one
can derive a basis independent representation for the jump

operators [83],

= e∗
q.(DFF ′D†

FF ′).8εL

= C0
J ′FF ′e∗

q.8εL + iC1
J ′FF ′(e∗

q × 8εL).F

+ C2
J ′FF ′

[
(e∗

q.F)(8εL.F) + (8εL.F)(e∗
q.F)

2
− 1

3
|e∗

q.8εL|F2
]

(B2)

where J is the electron angular momentum. The above
expression involves only angular-momentum operators of
the form F (rank 1) and F2 (rank 2), and thus for photon
scattering and optical pumping the error operators are lin-
ear and quadratic powers of angular-momentum operators.
Then the Lindblad master equation gives us

dρ(t)
dt

= −i
(

Heffρ(t) − ρ(t)H †
eff

)

+ 1
∑

i

Wqρ(t)W†
q ≡ Lρ(t),

where L is the Lindbladian and Heff = H − i
∑

q W†
qWq/2.

From the jump operators, one can find the probability of
phase errors and amplitude errors by finding the overlap
of the jump operators with the basis operators as given in
Eq. (15).

APPENDIX C: CORRECTABLE SET OF ERRORS

In this section, we find the set of correctable errors for
the logical level encoding C1 in Eq. (12). To find the cor-
rectable set of errors {Ea}, one can use the Knill-Laflamme
conditions [91]:

〈.i| E†
aEb

∣∣.j
〉
= Cabδij , (C1)

where i, j = {0, 1} represents the codespace of interest.
The local angular-momentum errors of interest here

are of the form J l
xJ m

y J n
z . From the locality assumption of

the errors, one can find that for the spin-cat encoding in
Eq. (12),

〈.i| E†
aEb

∣∣.j
〉
= 0 ∀ i 5= j . (C2)

The next condition we need to satisfy for the spin-cat
encoding is,

〈+L| E†
aEb |+L〉 = 〈−L| E†

aEb |−L〉 . (C3)

From the locality assumption of the noise, this condition
translates into two cases. In the first case, the error opera-
tors Ea and Eb act on the same physical system, thus for the
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angular-momentum errors the error-correction condition in
Eq. (C3) becomes,

〈+| J l
xJ m

y J n
z J l′

x J m′
y J n′

z |+〉 = 〈−| J l
xJ m

y J n
z J l′

x J m′
y J n′

z |−〉 .
(C4)

Using an alternative definition of the spin-cat codes,

|±〉 =
1 ± exp

(
iπJy

)
√

2
|J , −J 〉 . (C5)

Equation (C4) transforms into a compact expression:

〈J , J | J l
xJ m

y J n
z J l′

x J m′
y J n′

z |J , −J 〉

= 〈J , −J | J l
xJ m

y J n
z J l′

x J m′
y J n′

z |J , J 〉 = 0. (C6)

Plugging the ladder operators,

J+ = Jx + iJy ,

J− = Jx − iJy ,
(C7)

into Eq. (C6), and using the condition that one needs at
least 2J − 1 operations of J+ or J− to make the overlap
between the states |J , J 〉 and |J , −J 〉 nonzero, the error-
correction condition in Eq. (C4) simplifies to,

l + m + n + l′ + m′ + n′ ≤ 2J − 1. (C8)

Thus we can correct the errors of the form J l
xJ m

y J n
z if

l + m + n ≤ '2J − 1
2

(. (C9)

The second case for Eq. (C3) is when the two error oper-
ators Ea and Eb act on different physical systems. For the
angular-momentum errors this simplifies to,

〈+| J l
xJ m

y J n
z |+〉 〈+| J l′

x J m′
y J n′

z |+〉

= 〈−| J l
xJ m

y J n
z |−〉 〈−| J l′

x J m′
y J n′

z |−〉 . (C10)

Again using Eqs. (C5) and (C7), the error-correction con-
dition is given as

l + m + n ≤ 2J − 1,

l′ + m′ + n′ ≤ 2J − 1.
(C11)

Hence the spin-cat encoding can correct all the errors of
the form,

EK =
{

J l
xJ m

y J n
z ; 0 ≤ l + m + n ≤ K = '2J − 1

2
(
}

.

(C12)

APPENDIX D: ACTION OF THE SU(2)
OPERATORS

The Euler angle representation of an SU(2) operator
V = exp

(
−iθ n̂.J

)
is,

V(α,β, / ) = exp
(
−iθ n̂.J

)
= e−iαJz e−iβJy e−i/ Jz . (D1)

The Wigner D matrix defined in Eq. (24) can be expressed
in terms of Euler angles as,

Dq,q′(α,β, / ) =
〈
k, Jz = q′∣∣ exp

(
−iθ n̂.J

)
|k, Jz = q〉

= e−iq′αdq,q′(β)e−iq/ .
(D2)

Hence, deriving from the definitions of the spherical tensor
operators in Eq. (23), the operators in Eq. (15), and the
inherent properties of the Wigner d matrices,

dq,q′ = (−1)q−q′
d−q,−q′ , (D3)

we find the action of an SU(2) rotation acting on the error
operator, Eq. (15) is

VS(k)
q V†

=
∑

q′

fq,q′(8θ)
√

2

(
T(k)

q′ + (−1)q−q′+ke−2i(qα+q′β)T(k)
−q′

)
,

=
∑

q′
fq,q′S(k)

q +
f̃q,q

2

(
F (k)

q − A(k)
q

)
, (D4)

where to lighten the notation we defined,

f̃q,q = (−1)k
[
1 − (−1)q−q′

e−2i(qα+q′β)
]

fq,q′ . (D5)

Thus,

VS(k)
q V† =

∑

q′
gq,q′S(k)

q + g̃q,qA(k)
q , (D6)

where we have defined,

gq,q′ = fq,q′ +
f̃q,q′

2
,

g̃q,q′ = −
f̃q,q′

2
.

(D7)

Similarly,

VA(k)
q V† =

∑

q′
hq,q′S(k)

q + h̃q,qA(k)
q , (D8)
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where again for simplification of notation,

hq,q′ =
(−1)k

[
1 + (−1)q−q′e−2i(qα+q′β)

]
fq,q′

2
,

h̃q,q′ = fq,q′ − hq,q′ .

(D9)

Thus the action of the SU(2) does not change the rank of
the error operators, A(k)

q , F (k)
q and obey the condition given

in Eq. (22).

APPENDIX E: ROTATING THE GROUND AND
EXCITED MANIFOLD DIFFERENTLY USING

OPTIMAL CONTROL

To implement the rank-preserving CNOT gate in Fig. 2,
one needs to implement X = exp(−iπJx) gate on the aux-
iliary manifold while applying the identity operator on the
Rydberg manifold. For the specific choice of auxiliary and
Rydberg states considered, we have the Hamiltonian in
the rotating field as given by Eq. (43). As we are deal-
ing with SU(2) representations of the spin J , the problem
is isomorphic to the simultaneous control of two two-level
systems and two qubits with different Rabi frequencies and
different detuning. The objective would be to apply a Pauli-
X operation on the first qubit and identity on the second
system. This problem has a quantum speed limit(QSL) of
π/(rf[92].

Since(R = 2(A, a pulse of length π/(A would cause a
full Rabi rotation in the Rydberg manifold and only a half
rotation in the auxiliary manifold. By choosing the phases
of N such pulses, 8) in Eq. (43), one can use quantum
optimal control algorithms to implement the desired trans-
formation. The minimum number of pulses N required
depends on the ratio ω0/(rf. While a solution with N = 2
exists only when ω0/(rf = 3, a solution with N = 3 is
possible if ω0/(rf < 3

√
3, for example, the case of ω0 =

5(rf and T = 3π/(rf is given in Fig. 14. The overall trend
is that with an increasing ratio ω0/(A, we need a larger N .
This protocol is similar to Ref. [75], and takes Nπ/(A,
which is longer than the QSL. We can use waveforms
with a large number of steps to implement a gate in the
minimum time π/(rf, as shown in the example below.

Using the Hamiltonians in Eq. (43), one can also opti-
mize the phase ) to implement a gate R(θ) = exp

(
−iθ n̂.J

)

in the auxiliary manifold and identity on the Rydberg man-
ifold. For example, the pulse scheme for the R = exp(iπJz)
for the auxiliary manifold, which can be used to implement
the rank-preserving CZ gate is given in Fig. 15. The total
time is (rfT = π and total time is divided into ten equal
time steps with ω0 = 3(rf.

Finally, for ω0 " (rf, a field that is resonant for the
auxiliary spin will be far off resonant for the Rydberg
manifold. So we can implement any desired transforma-
tion SU(2) operation in the auxiliary subspace without
disturbing the Rydberg manifold populations.

(A) (R)

FIG. 14. Evolutions of the spin vector 〈8F〉 for the auxiliary
(A) and Rydberg (R) manifolds resulting from rf-driven Larmor
precession with time-varying phases in Eq. (43) for piecewise
constant function with three time steps with a total time Ttot =
3π/(rf and ω0 = 5(rf. For the specific choice of parameters, an
X gate acts on the auxiliary manifold and transfers the popula-
tion from 0A subspace to 1A subspace and vice versa. However,
for the Rydberg manifold, the pulse sequence acts as an identity
operator, and the population in the 0R and 1R subspaces remain
unaffected.

APPENDIX F: IMPLEMENTING HADAMARD
GATE FROM THE PHYSICAL LEVEL GATES

The physical level gates for the spin-cat encoding are
given as,

{Mz,MX ,P|+〉,P|0〉, CNOT, X , Y, Z, ZZ(θ)}. (F1)

0.0 0.2 0.4 0.6 0.8 1.0
–2

–1

0

1

2

3

FIG. 15. The phase )(t) generates an R = exp(iπJz) for the
auxiliary manifold and an identity in the Rydberg manifold,
which can be used to implement the rank-preserving CZ gate.
The total time is (rfT = π , which is divided into ten equal time
steps with ω0 = 3(rf and pulse sequence is found using the
quantum optimal control algorithm GRAPE.
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The Hadamard gate is not in the universal gate set as
it does not preserve the rank. Here we show the imple-
mentation of the Hadamard gate using the rank-preserving
physical-level gates and an ancilla qubit. The circuit dia-
gram corresponding to a teleportation-based scheme for
the Hadamard gate is given in Fig. 16. Consider an initial
arbitrary state,

|.〉 = α |0〉k + β |1〉k , (F2)

and ancilla state,

|+〉0 = 1√
2

(|0〉 + |1〉) . (F3)

Define |)〉 = |.〉 ⊗ |+〉0, then

CNOT |)〉 = CNOT |.〉 ⊗ |+〉0

= 1√
2

(α |0〉k |0〉 + α |1〉k |1〉

+ β |1〉k |0〉 + β |0〉k |1〉) ,

(F4)

and

CZ CNOT |)〉 = (α |−〉k + β |+〉k) |+〉
+ (α |+〉k − β |−〉k) |−〉 . (F5)

Thus one can act the Z or X gate depending on the
measurement of the X operator in the ancilla to get the
state,

H |.〉 = α |+〉k + β |+〉k , (F6)

and implement the action of the Hadamard gate.

APPENDIX G: IMPLEMENTING THE LOGICAL
OPERATOR

In this section, we demonstrate the universal gate set at
the logical level with the physical-level gates for the spin-

FIG. 16. Circuit implementing a fault-tolerant Hadamard gate
using the physical level gates for the spin-cat encoding. This dif-
fers from the standard implementation as we use both CNOT and
CZ gate to implement the action of the target unitary of interest.

cat encoding. The rank-preserving physical-level gates for
the spin-cat encoding are,

{MZ ,MX ,P|+〉,P|0〉, CNOT, X , Y, Z}. (G1)

Consider a universal gate set,

{P|0〉L , P|+〉L ,MXL ,MZL , CNOTL} ∪ {P|i〉L , P|T〉L}. (G2)

In the above equation, the first set generates the Clifford
operations and the second set generates the non-Clifford
states to complete the universal gate set, and P refers
to preparation and M denotes measurement. The logi-
cal preparation of the P|+〉L can be done transversally by
preparing the P|+〉 in the individual systems. For example,
in the case of three physical systems, the logical level state
preparation is,

P|+〉L = |+〉L = |+++〉 . (G3)

In a similar fashion, the construction of additional logical-
level gates follows the approach detailed in Refs. [12,24].
Comprehensive details for the implementation of all other
logical gates are provided in Fig. 17. In (a), the CNOTL
is implemented using the physical CNOT gates. One can
implement the CNOTL by transversal application of the
CNOT gates. In (b), the P|0〉L is prepared by initializing
the system with the state P|+〉L and measuring the parity.
To measure the parity we use an ancilla initialized with
P|0〉 and use physical CNOT gates followed by measuring
the MZ , the final state is P|0〉L and P|1〉L for the measure-
ment outcomes 1 and −1, respectively. In (c) the logical
measurement of Z is implemented with an ancilla state pre-
pared in |+〉 and physical CZ gates followed by measuring
the ancilla in the X basis. Finally (d) implements the logi-
cal measurement by applying the physical CNOT gates and
measurement of X . Access to the gate ZZ(θ) allows one
to construct the non-Clifford part of the universal gate set
with high fidelity as studied in detail in Ref. [21].

APPENDIX H: TOFFOLI GATE

One can generalize the rank-preserving CNOT gate in
Fig. 2 to construct a Toffoli gate, also known as a
controlled-controlled NOT gate. Figure 18 gives the pro-
tocol for creating the rank-preserving Toffoli gate for the
spin-cat encoding using only SU(2) interactions. Again,
similar to the rank-preserving CNOT gate, the Toffoli gate
is implemented in the ground state of 87Sr. The key to the
scheme is the availability of special geometries for the neu-
tral atoms [55,75]. Here we use a geometry such that for
three linearly arranged atoms, the nearest neighbors are
constrained by the Rydberg blockade, but the next-nearest
neighbors are not constrained by it. The central atom acts
as the target atom while its two neighbors are the control
atoms.
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(a) (b)

(c) (d)

FIG. 17. Circuits implementing logical level gates in C1 using the physical-level gates. (a) Logical CNOT CNOTL. To implement
CNOTL, we apply physical CNOT gates transversally on all qubit pairs. (b) Preparation of |0〉L P|0〉L . |0〉L is prepared by initializing the
system with the state P|+〉L and measuring the parity. To measure the parity we use an ancilla initialized with P|0〉 and use physical
CNOT gates followed by measuring the MZ , the final state is |0〉L or |1〉L for the measurement outcomes 1 and −1, respectively. (c)
The logical Z measurement MZL . An ancilla state is prepared in |+〉 and physical CZ gates with the data qubits are applied followed
by measuring the ancilla in the X basis. (d) Logical X measurement MXL . The logical X is measured by applying the physical CNOT
gates and then measurement along X .

In step I of the Toffoli gate, the population is promoted
to the auxiliary state. For the case of the control atoms we
only promote the population of the 0 subspace whereas for
the target atom, the population from both the 0 and 1 sub-
spaces are promoted to the auxiliary state. In step II, we
use a pulse sequence similar to Fig. 3(c) to transfer the
population between the auxiliary and the Rydberg state of
the control atoms using π polarized light. In step III, we
apply the same pulse sequence as in step II to the target
atom, however, due to the Rydberg blockade, the pop-
ulation transfer between the auxiliary and Rydberg state
happens only when both the control atoms are in 1 sub-
space. Then similar to the case of the rank-preserving CNOT
gate in step IV, we implement a X = exp(−iπJx) gate
in the auxiliary manifold and an identity operator in the
Rydberg manifold. Finally, we will transfer all the states
back to the ground state by acting steps III–I in reverse,
thus implementing a rank-preserving Toffoli gate for the
spin-cat encoding up to local rotations.

Thus when one of the control atoms is in the 0 sub-
space, X gate is applied target atom, and when both the
control atoms are in the 1 subspace, the target atoms
remain unchanged. This is the Toffoli gate up to a local
X = exp(−iπJx) rotation on the target atom. In a realistic
implementation of this protocol, one needs to consider the

finite range of the Rydberg blockade while implementing
the pulses for the Toffoli gate. To address this challenge,
the effect of finite blockade effect can be addressed by
using an appropriate control Hamiltonian in the quantum
optimal control and finding control pulses that mitigate the
undesirable effect of the finite blockade.

APPENDIX I: ALTERNATIVE APPROACHES FOR
CAT-STATE PREPARATION AND

MEASUREMENT OF X

One can use alternative approaches than quantum opti-
mal control for cat-state preparation and measurement of
X . In this section, we detail some of those approaches. For
example, one can use an adiabatic approach and one-axis
twisting to create a spin-cat state.

(I) Adiabatic approach. Starting with an initial state
|J , Jz = J 〉 and evolving the Hamiltonian

H(s) = (1 − s)Jx − s
2J

J 2
z , (I1)

adiabatically from s = 0 to s = 1 guarantees the final state
to be close to a cat state |+〉 [84]. This can be implemented
in atomic systems using a combination of tensor light shifts
and rf rotation [34,72].
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FIG. 18. Protocol for a rank-preserving Toffoli gate for spin-
cat encoding using SU(2) operations. Similar to the rank-
preserving CNOT gate Fig. 2, we implement the Toffoli gate in
the ground state of 87Sr and the physical setting is the same as
given in Fig. 2(a). We consider a geometry of atoms such that
the nearest neighbors are constrained by the Rydberg blockade,
but the next-nearest neighbors are not constrained. In step I the
population is promoted to the auxiliary manifold in the atoms. In
the control atoms we promote only the population of the 0 sub-
space whereas for the target atom, the population from both the
0 and 1 subspaces are promoted to the auxiliary state. In step II,
we transfer the population between the auxiliary and the Ryd-
berg manifolds of the control atoms. In step III, we transfer the
population from the auxiliary to the Rydberg manifold of the tar-
get atom. However, due to the Rydberg blockade, this population
transfer only happens when both the control atoms are in 0 sub-
spaces. If even one of the control atoms is in 1 subspace this
transition is blockaded. Then similar to the rank-preserving CNOT
gate, in step IV we implement a X = exp(−iπJx) gate in the aux-
iliary manifold and an identity operator in the Rydberg manifold.
Finally, we will transfer all the states back to the ground state by
acting steps III–I in reverse, thus implementing a rank-preserving
Toffoli gate for the spin-cat encoding.

(II) One-axis twisting: using a time-independent Hamil-
tonian, H = βJ 2

z , for a certain time T = π/(2β), one
can evolve a spin coherent state along Jx to prepare a
high-fidelity cat state.

|+〉 = exp(−iπJx) exp
(
−i
π

2
J 2

z

)
|J , Jx = J 〉 . (I2)

Including the effect of decoherence due to photon scat-
tering and optical pumping for 87Sr, we find the fidelity
for one-axis twisting is 0.9998 whereas for the adiabatic
preparation, one can achieve a fidelity of 0.9889.

Similarly one can use an alternative approach to mea-
sure X , in particular, to know if the ancilla state is in |+〉
or |−〉. We can adiabatically rotate the states using the

Hamiltonian

H(s) = −(1 − s)J 2
z /(J ) + sJx, (I3)

which implements the following transformations:

|+〉0 → |J , Jx = J 〉 ,

|−〉0 → |J , Jx = J − 1〉 ,
(I4)

and then then measuring Jx.
To evaluate the accuracy of X measurement, we define

the target isometry as

Vtarg = |J , Jx = J 〉 〈+| + |J , Jx = J − 1〉 〈−| . (I5)

The implemented isometry using the adiabatic approach is
given as,

V = e−
∫
L(s)dsV(0), (I6)

where L(s) is the Lindbladian including the effects of
decoherence and

V(0) = |+〉 〈+| + |−〉 〈−| . (I7)

Thus the fidelity for the implementation of the isometry is
defined as

Fiso = 1
4
|Tr(VtargV†)|2. (I8)

This approach is similar to the approach taken in bosonic
cat qubits [73]. To measure Jx, we first implement the uni-
tary transformation U = exp

(
−iπ/2Jy

)
to rotate the basis

to |J , Jz〉 and then perform the readily accessible mea-
surement MZ , which we can, in principle, achieve with
a fidelity larger than 99% [71]. Including the effects of
optical pumping as discussed in Appendix B, one can
implement this transformation with a fidelity of Fiso =
0.98 for the 87Sr nuclear spin qudit.

APPENDIX J: ERROR CORRECTION WITHOUT
MEASUREMENT

An alternative to syndrome-based quantum error cor-
rection is measurement-free quantum error correction
(MFQEC) [76–79]. The standard syndrome-based error
correction is given by recovery operation:

R(ρ) =
∑

i

UiMiρM †
i U†

i , (J1)

where for a general state ρ, Mi is the syndrome measure-
ment and Ui is the correction unitary according to the
outcome of the syndrome measurement.
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MFQEC is based on the unitary operator V, which cou-
ples the data and ancilla qubits. The action of which is
given as,

V |.〉 |0〉 =
∑

i

(UiMi ⊗ 1) |.〉 |i〉 . (J2)

Defining ρ =
∑

kl αkl |.〉k 〈. |l, we can find that,

Vρ ⊗ |0〉 〈0| V† =
∑

k,l,i,j

αklUiMi |.〉k 〈. |l M †
j U†

j ⊗ |i〉 〈j | .

(J3)

Partial tracing of the ancilla gives,

ρrec =
∑

i

UiMiρM †
i U†

i . (J4)

Thus the MFQEC is equivalent to syndrome-based error
correction and the key for MFQEC is a specific unitary
gate between the ancilla and the data.

One can consider a fault-tolerant MFQEC scheme for
the amplitude errors. The syndrome for the amplitude
errors is the eigenvalue of J 2

z , which can be extracted by
the projective measurement,

Mk = |+〉k 〈+|k + |−〉k 〈−|k , (J5)

where 0 ≤ k ≤ (2J − 1)/2. Recovery unitaries corre-
sponding to the projective measurement outcomes are

Uk = |+〉0 〈+|k + |+〉k 〈+|0 + |−〉0 〈−|k + |−〉k 〈−|0
+

∑

j 5=k,j 5=0

|+〉j 〈+|j + |−〉j 〈−|j , (J6)

which takes the state from the subspace,

{|+〉k , |−〉k} → {|+〉0 , |−〉0}. (J7)

Consider the following unitary operator, using the defini-
tions from Eqs. (6), (26), and (29) the product of three
alternating CNOT gates can be written as

Vs = #0 ⊗#0 +#1 ⊗#1

+ X#0 ⊗ X#1 + X#1 ⊗ X#0. (J8)

Consider the following states:

|.〉k = α |+〉k + β |−〉k ,

|)〉l = / |+〉l + δ |−〉l ,
(J9)

where α,β, / , and δ are arbitrary complex amplitudes.
The action of the Vs on the state, |ξ〉 = |.〉k ⊗ |)〉l gives,

Vs |ξ〉 = |)〉k ⊗ |.〉l . (J10)

Thus Vs gate swaps the information between two kitten or
cat states. The circuit diagram for the Vs gate for a qubit
encoded in the qudit is given in Fig. 7(a).

When the second qudit is prepared in |+〉0 state, as
shown in Fig. 7(b), the application of the Vs gate gives

|)〉 = Vs |.〉 |+〉0 = |+〉k ⊗ (α |+〉0 + β |−〉0) . (J11)

The above state can also be written as,

|)〉 =
∑

k

UkMk |.〉 |+〉k , (J12)

where the notion of data and ancilla qubits are swapped
for convenience. Thus the unitary operator Vs followed by
partial tracing implements the desired recovery operation.
Thus one can correct the amplitude error fault tolerantly
using a combination of two rank-preserving CNOT gates
and fresh |+〉0 state.

For fault-tolerant gadgets, one needs to repeat the phase
and amplitude error correction multiple times and one
needs to ensure that these two error-correction steps com-
mute with each other. The phase error correction Fig. 6
commutes with measurement-free error correction of the
amplitude error and the details of the calculation are given
in Appendix K.

1. Upper bounds on the probability of the logical error
in the amplitude error correction

In this section, we provide a detailed analysis to find
an upper bound on the probability of a logical error in
the amplitude error correction used in the error-corrected
logical CNOT gadget in Fig. 8.

First, consider the case where ancilla is prepared per-
fectly, i.e., we have ρA = |+〉0 and pi = 0 for i 5= 0 in
Fig. 9. In this case, a logical amplitude error occurs after
s faulty CNOT gates if they create at least kmax = '(2J +
1)/2( many jumps, the probability of which we denote by
q(s, kmax). The number of CNOT gates s is determined by
the number of phase error corrections that appear before an
amplitude correction, in addition to the two CNOTs acting
in the amplitude error correction itself. To find the prob-
ability q(s, kmax), we note that each physical CNOT gate
can create one or two jumps with probabilities p1 and p2,
respectively, and therefore we need to add the probabilities
of cascades of one and two jumps that can create more than
kmax jumps. Therefore, q(s, kmax) can be written as

q(s, kmax) =
∑

i

λi(s, kmax), (J13)

where λi represents the probability of one path such that we
have at least kmax jumps. For example, consider the case of
s = 4 and J = 9/2, then λi represents all the possible com-
binations of one and two jumps, such that the total sum of
these jumps is at least 5. One such possibility is a combi-
nation of (1, 1, 1, 2) where we have one jump occurring at
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the first three CNOTs and two jumps occurring at the last
CNOT.

When the ancilla is imperfect, for example, if it is pre-
pared in the |+〉k state rather than |+〉0, one needs to find
the paths that create kmax − k many jumps. Thus we get,

q(s, kmax | k) =
∑

i

λi(s, kmax | k), (J14)

where λi(s, kmax|k) is the probability of a path where we
have at least kmax jumps given that we already had k jumps
to start with.

We repeat the amplitude error correction r2 many times
in one error-corrected logical CNOT gate. Thus the upper
bound of the logical amplitude error probability after r2
rounds of error correction in Fig. 8 is,

εamp = r2

( 4∑

k=0

q(s, kmax | k)pk

)

, (J15)

where pk is the probability of ancilla starting at |+〉k.

APPENDIX K: COMMUTATIVITY OF THE
ERROR-CORRECTION STEPS

The error correction for the spin-cat encoding follows
two steps. The first step is the phase error correction in
Fig. 6 and the second step is the measurement-free error
correction for correcting amplitude errors given in Fig. 7.
For fault-tolerant gadgets, one needs to repeat these steps
multiple times and we need to ensure that these two error-

correction steps commute with each other such that the
errors do not proliferate uncontrollably. For this, we need
to satisfy,

RampRph (E (ρ)) = RphRamp (E (ρ)) , (K1)

where Ramp,Rph are the recovery maps corresponding to
the amplitude and phase error-correction, respectively. The
recovery map for the amplitude error can be expressed in
terms of the Kraus operators as,

Ramp(ρ) =
∑

j ,i

M amp
j ,i ρ

(
M amp

j ,i

)†
, (K2)

where,

M amp
j ,1 =

(
〈j |(1) Vs |+〉(2)

0

)
⊗ 1 ⊗ 1,

M amp
j ,2 = 1 ⊗

(
〈j |(1) Vs |+〉(2)

0

)
⊗ 1,

M amp
j ,3 = 1 ⊗ 1 ⊗

(
〈j |(1) Vs |+〉(2)

0

)
,

(K3)

and Vs is the unitary operator given in Eq. (J8). The Kraus
operator representation of the phase error correction for
spin-cat encoding is,

Rph(ρ) =
∑

i,j

M ph
i,j ρ

(
M ph

i,j

)†
, (K4)

where

M ph
00 =

∑

i,j ,k

|+〉i |+〉j |+〉k 〈+|i 〈+|j 〈+|k + |−〉i |−〉j |−〉k 〈−|i 〈−|j 〈−|k ,

M ph
01 = Z3

∑

i,j ,k

|+〉i |+〉j |−〉k 〈+|i 〈+|j 〈−|k + |−〉i |−〉j |+〉k 〈−|i 〈−|j 〈+|k ,

M ph
10 = Z1

∑

i,j ,k

|−〉i |+〉j |+〉k 〈−|i 〈+|j 〈+|k + |+〉i |−〉j |−〉k 〈+|i 〈−|j 〈−|k ,

M ph
11 = Z2

∑

i,j ,k

|+〉i |−〉j |+〉k 〈+|i 〈−|j 〈+|k + |−〉i |+〉j |−〉k 〈−|i 〈+|j 〈−|k .

(K5)

To prove the commutativity of the two error-correction steps first consider the Kraus operators M ph
00 and M amp

j ,1 ,
we get

M amp
j ,1 M ph

00 =
∑

klm

〈j |+〉k

(
|+〉(b)

0 |+〉(a)
l |+〉(a)

m 〈+|(a)
k 〈+|(a)

l 〈+|(a)
m + |−〉(b)

0 |−〉(a)
l |−〉(a)

m 〈−|(a)
k 〈−|(a)

l 〈−|(a)
m

)
, (K6)

020355-26



FAULT-TOLERANT QUANTUM COMPUTATION... PRX QUANTUM 5, 020355 (2024)

and,

M ph
00 M amp

j ,1 =
∑

k,l,m

|+〉(b)
k |+〉(a)

l |+〉(a)
m 〈+|(b)

k 〈+|(a)
l 〈+|(a)

m 〈j |(a) ⊗ 1(b)V(ab)
s 1(a) ⊗ |+〉(b)

0

+
∑

k,l,m

|−〉(b)
k |−〉(a)

l |−〉(a)
m 〈−|(b)

k 〈−|(a)
l 〈−|(a)

m 〈j |(a) ⊗ 1(b)V(ab)
s 1(a) ⊗ |+〉(b)

0 . (K7)

Using the resolution of the identity 1 =
∑

p |+〉p 〈+|p + |−〉p 〈−|p in the above equation yields,

M ph
00 M amp

j ,1 = M amp
j ,1 M ph

00 . (K8)

Thus these two Kraus operators commute with each other. Similarly, one can find that,
[
M amp

j ,2

]
M ph

00 = 0,
[
M amp

j ,3

]
M ph

00 = 0. (K9)

Similar calculations also give,
[
M amp

j ,2

]
M ph

10 = 0,
[
M amp

j ,2

]
M ph

01 = 0,
[
M amp

j ,3

]
M ph

01 = 0,
[
M amp

j ,3

]
M ph

11 = 0,
[
M amp

j ,1

]
M ph

10 = 0,
[
M amp

j ,1

]
M ph

10 = 0.

(K10)

Next, consider the Kraus operators, M ph
10 and M amp

j ,1 we get,

M amp
j ,1 M ph

10 =
∑

klm

(−1)k 〈j |+〉k

(
|+〉(b)

0 |+〉(a)
l |+〉(a)

m 〈−|(a)
k 〈+|(a)

l 〈+|(a)
m + |−〉(b)

0 |−〉(a)
l |−〉(a)

m 〈+|(a)
k 〈−|(a)

l 〈−|(a)
m

)
,

M ph
10 M amp

j ,1 =
∑

k,l,m

〈j |+〉k

(
|−〉(b)

0 |+〉(a)
l |+〉(a)

m 〈−|(a)
k 〈+|(a)

l 〈+|(a)
m + |−〉(b)

0 |−〉(a)
l |−〉(a)

m 〈+|(a)
k 〈−|(a)

l 〈−|(a)
m

)
, 5= M amp

j ,1 M ph
10 .

(K11)

Thus these two Kraus operators do not commute with each other, however looking at the full recovery operation,

∑

j

M ph
10 M amp

j ,1 ρ
(

M amp
j ,1

)† (
M ph

10

)†
=
∑

j

∑

k,l,m,k′,l′,m′
〈+|k′ |j 〉 〈j |+〉k Ak,l,mρA†

k′,l′,m′ ,

=
∑

k,l,m,l′,m′
Ak,l,mρA†

k,l′,m′ ,
(K12)

where we have defined,

Ak,l,m ≡ |−〉(b)
0 |+〉(a)

l |+〉(a)
m 〈−|(a)

k 〈+|(a)
l 〈+|(a)

m + |−〉(b)
0 |−〉(a)

l |−〉(a)
m 〈+|(a)

k 〈−|(a)
l 〈−|(a)

m . (K13)

Similarly, we get,

∑

j

M amp
j ,1 M ph

10ρ
(

M ph
10

)† (
M amp

j ,1

)†
=
∑

j

∑

k,l,m,k′,l′,m′
(−1)k+k′ 〈+|k′ |j 〉 〈j |+〉k Ak,l,mρA†

k′,l′,m′ ,

=
∑

k,l,m,l′,m′
Ak,l,mρA†

k,l′,m′ .
(K14)
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Combining Eqs. (K12) and (K14) gives,

∑

j

M amp
j ,1 M ph

10ρ
(

M ph
10

)† (
M amp

j ,1

)†
=
∑

j

M ph
10 M amp

j ,1 ρ
(

M amp
j ,1

)† (
M ph

10

)†

. (K15)

Similarly one can find,

∑

j

M amp
j ,2 M ph

11ρ
(

M ph
11

)† (
M amp

j ,2

)†
=
∑

j

M ph
11 M amp

j ,2 ρ
(

M amp
j ,1

)† (
M ph

01

)†

∑

j

M amp
j ,3 M ph

10ρ
(

M ph
01

)† (
M amp

j ,3

)†
=
∑

j

M ph
01 M amp

j ,3 ρ
(

M amp
j ,3

)† (
M ph

01

)†
.

(K16)

Combining all these we get,

RampRph (E (ρ)) = RphRamp (E (ρ)) , (K17)

and thus the phase error correction and amplitude error
correction commute with each other.
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Moskalev, and Valerii Kelmanovich Khersonskii, Quan-
tum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[47] Harald Putterman, Joseph Iverson, Qian Xu, Liang Jiang,
Oskar Painter, Fernando G. S. L. Brandão, and Kyungjoo
Noh, Stabilizing a bosonic qubit using colored dissipation,
Phys. Rev. Lett. 128, 110502 (2022).

[48] Ivan H. Deutsch and Gavin K. Brennen, Quantum comput-
ing with neutral atoms in an optical lattice, Fortschr. Phys.
48, 925 (2000).

[49] Peter W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Phys. Rev. A 52, R2493 (1995).

[50] J. Sakurai and J. Napolitano, Modern Quantum Mechan-
ics (Person New International edition, Cambridge, 2014),
2nd ed.

[51] Gavin K. Brennen, Carlton M. Caves, Poul S. Jessen, and
Ivan H. Deutsch, Quantum logic gates in optical lattices,
Phys. Rev. Lett. 82, 1060 (1999).

[52] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and
M. D. Lukin, Fast quantum gates for neutral atoms, Phys.
Rev. Lett. 85, 2208 (2000).

[53] M. Saffman, Quantum computing with atomic qubits and
Rydberg interactions: progress and challenges, J. Phys. B:
At., Mol. Opt. Phys. 49, 202001 (2016).

[54] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry
Lahaye, Antoine Browaeys, Georges-Olivier Reymond,
and Christophe Jurczak, Quantum computing with neutral
atoms, Quantum 4, 327 (2020).

[55] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout
T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexan-
der Keesling, Nishad Maskara, Hannes Pichler, Markus
Greiner, et al., A quantum processor based on coher-
ent transport of entangled atom arrays, Nature 604, 451
(2022).

[56] Kevin Singh, Shraddha Anand, Andrew Pocklington,
Jordan T. Kemp, and Hannes Bernien, Dual-element, two-
dimensional atom array with continuous-mode operation,
Phys. Rev. X 12, 011040 (2022).

[57] T.-M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K.
Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, et
al., Multi-qubit entanglement and algorithms on a neutral-
atom quantum computer, Nature 604, 457 (2022).

020355-29

https://doi.org/10.1038/nature18949
https://doi.org/10.1126/sciadv.aay5901
https://doi.org/10.1103/PhysRevX.9.041053
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1038/s41467-022-32094-6
https://doi.org/10.1103/PhysRevX.13.041013
https://doi.org/10.1103/PhysRevA.64.012310
https://arxiv.org/abs/2103.08548
https://doi.org/10.1103/PhysRevA.108.022424
https://doi.org/10.1103/PhysRevA.108.022428
https://doi.org/10.1103/PhysRevA.85.040306
https://doi.org/10.1103/PhysRevA.104.L060401
https://doi.org/10.1103/PRXQuantum.4.040333
https://doi.org/10.22331/q-2023-10-16-1140
https://doi.org/10.1103/PhysRevLett.127.010504
https://doi.org/10.1038/s41567-022-01658-0
https://doi.org/10.1103/PhysRevResearch.2.033128
https://doi.org/10.1103/PhysRevApplied.17.064028
https://arxiv.org/abs/2311.12324
https://doi.org/10.3389/fphy.2022.900612
https://doi.org/10.1103/PhysRevX.11.021010
https://arxiv.org/abs/2305.07023
https://arxiv.org/abs/2310.17652
https://doi.org/10.1103/PhysRevLett.128.110502
https://doi.org/10.1002/1521-3978(200009)48:9/11%7B%25%7D3C925::AID-PROP925%7B%25%7D3E3.0.CO;2-A
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.82.1060
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1103/PhysRevX.12.011040
https://doi.org/10.1038/s41586-022-04603-6


SIVAPRASAD OMANAKUTTAN et al. PRX QUANTUM 5, 020355 (2024)

[58] S. Ebadi, et al., Quantum optimization of maximum inde-
pendent set using Rydberg atom arrays, Science 376, 1209
(2022).

[59] Katrina Barnes, Peter Battaglino, Benjamin J. Bloom,
Kayleigh Cassella, Robin Coxe, Nicole Crisosto, Jonathan
P. King, Stanimir S. Kondov, Krish Kotru, Stuart C. Larsen,
et al., Assembly and coherent control of a register of
nuclear spin qubits, Nat. Commun. 13, 1 (2022).

[60] Andrew J. Daley, Martin M. Boyd, Jun Ye, and Peter Zoller,
Quantum computing with alkaline-earth-metal atoms, Phys.
Rev. Lett. 101, 170504 (2008).

[61] Andrew J. Daley, Quantum computing and quantum simu-
lation with group-II atoms, Quantum Inf. Process. 10, 865
(2011).

[62] David Hayes, Paul S. Julienne, and Ivan H. Deutsch, Quan-
tum logic via the exchange blockade in ultracold collisions,
Phys. Rev. Lett. 98, 070501 (2007).

[63] Line Hjortshøj Pedersen, Niels Martin Møller, and Klaus
Mølmer, Fidelity of quantum operations, Phys. Lett. A 367,
47 (2007).

[64] Seth T. Merkel, Gavin Brennen, Poul S. Jessen, and Ivan
H. Deutsch, Constructing general unitary maps from state
preparations, Phys. Rev. A 80, 023424 (2009).

[65] Seth Merkel, Quantum control of d-dimensional quantum
systems with application to alkali atomic spins, Ph.D. The-
sis, University of New Mexico, 2009, available online at
https://digitalrepository.unm.edu/phyc_etds/44.

[66] Velimir Jurdjevic and Héctor J. Sussmann, Control systems
on Lie groups, J. Differ. Equ. 12, 313 (1972).

[67] Michael Hartmut Goerz, Optimizing robust quantum gates
in open quantum systems, 2015, available online at https://
kobra.uni-kassel.de/handle/123456789/2015052748381.

[68] A. A. Urech, Single strontium atoms in optical tweezers,
2023, available online at https://hdl.handle.net/11245.1/
cb589140-c918-4720-a40a-9b82071c1fa1.

[69] Malcolm H. Levitt, Composite pulses, Prog. Nucl. Magn.
Reson. Spectrosc. 18, 61 (1986).

[70] Matthew N. H. Chow, Bethany J. Little, and Yuan-Yu Jau,
High-fidelity low-loss state detection of alkali-metal atoms
in optical tweezer traps, Phys. Rev. A 108, 032407 (2023).

[71] Katrina Barnes, Peter Battaglino, Benjamin J. Bloom,
Kayleigh Cassella, Robin Coxe, Nicole Crisosto, Jonathan
P. King, Stanimir S. Kondov, Krish Kotru, Stuart C. Larsen,
et al., Assembly and coherent control of a register of
nuclear spin qubits, Nat. Commun. 13, 2779 (2022).

[72] Souma Chaudhury, Seth Merkel, Tobias Herr, Andrew Sil-
berfarb, Ivan H. Deutsch, and Poul S. Jessen, Quantum
control of the hyperfine spin of a Cs atom ensemble, Phys.
Rev. Lett. 99, 163002 (2007).

[73] Shruti Puri, Alexander Grimm, Philippe Campagne-Ibarcq,
Alec Eickbusch, Kyungjoo Noh, Gabrielle Roberts, Liang
Jiang, Mazyar Mirrahimi, Michel H. Devoret, and S. M.
Girvin, Stabilized cat in a driven nonlinear cavity: A fault-
tolerant error syndrome detector, Phys. Rev. X 9, 041009
(2019).

[74] Or Katz, Marko Cetina, and Christopher Monroe, Pro-
grammable n-body interactions with trapped ions, PRX
Quantum 4, 030311 (2023).

[75] Harry Levine, Alexander Keesling, Giulia Semeghini,
Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes
Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler,
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