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Fault-tolerant syndrome extraction is a key ingredient in implementing fault-tolerant quantum com-
putation. While conventional methods use a number of extra qubits that are linear in the weight of the
syndrome, several improvements have been introduced using flag gadgets. In this work, we develop a
framework to design flag gadgets using classical codes. Using this framework, we show how to per-
form fault-tolerant syndrome extraction for any stabilizer code with arbitrary distance using exponentially
fewer qubits than conventional methods when qubit measurement and reset are relatively slow compared
to a round of error correction. In particular, our method requires only (2t + 1)t

⌈
log2(w)

⌉
flag qubits to

fault-tolerantly measure a weight-w stabilizer. We further take advantage of the saving provided by our
construction to fault-tolerantly measure multiple stabilizers using a single gadget and show that it main-
tains the same exponential advantage when it is used to fault-tolerantly extract the syndromes of quantum
low-density parity-check codes. Using the developed framework, we perform computer-assisted search to
find several small examples where our constructions reduce the number of qubits required. These small
examples may be relevant to near-term experiments on small-scale quantum computers.
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I. INTRODUCTION

A key challenge in designing fault-tolerant circuits is
to control the spread of faults in the computation. The
spread of faults in performing certain quantum opera-
tions can be controlled by the transversal implementation
of the encoded operation, i.e., performing encoded oper-
ations using parallel local operations. Incorporating this
strategy to perform syndrome measurement requires using
many ancilla qubits and preparing certain less noisy highly
entangled quantum states, both of which need to be done
using faulty quantum operations. To satisfy these require-
ments, the traditional strategy has been to take a conser-
vative approach to detecting errors in any circuit location
by introducing many ancillary qubits and gates, and dis-
carding and restarting the fault-tolerant subroutine any
time that an error is detected. Since syndrome extraction
is the most frequently needed subroutine in fault-tolerant
constructions, this strategy leads to significant overhead
in the number of qubits and gates to make a quantum
algorithm fault tolerant. For example, Shor’s fault-tolerant
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error-correction scheme [1,2] requires at least as many
ancilla qubits as the weight of the syndrome measurement,
Steane’s error-correction scheme [3] requires as many
ancilla qubits as the size of the code block, and recent
progress has shown how to interpolate between the cost
of these two schemes [4,5]. Recently, it has been shown
that carefully designing gadgets that can “flag” the loca-
tion of errors and adopting a more relaxed strategy in the
error correction procedure can lead to substantial savings
in the overhead cost of fault-tolerant schemes [6,7].

The flag-qubit paradigm [6,8–10] allows low-weight
errors during syndrome extraction to propagate to high-
weight correlated errors on the data. However, extra struc-
ture is added to the syndrome extraction circuit so that
the low-weight errors can be identified and the corre-
lated errors can be corrected. As originally presented
[6], the flag-qubit technique only applies to the extrac-
tion of a handful of different syndromes and may require
adaptive measurements, where syndrome measurements
depend upon the flag pattern received. Since its incep-
tion, the technique has been extended in many directions
[9,11–22] and has enabled several recent experiments
[23–27], allowing for realizations of fault tolerance using
current hardware in some cases.

In particular, flag gadgets have been shown to apply
to any stabilizer code [8]. In architectures that allow for
relatively fast qubit measurement and reset, syndrome
extraction can be performed fault-tolerantly using only
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a constant number of ancilla qubits [8]. However, when
qubit measurement and reset is slow or unavailable, this
construction uses a number of ancilla qubits that scales
linearly with the weight of the syndrome to be extracted,
similar to conventional methods such as Shor’s method
[1]. Most relevant to this work, it has been shown that flag
gadgets can be used for fault-tolerant syndrome extraction
of any distance-3 code, using only a number of ancilla
qubits logarithmic in the weight of the stabilizer, without
requiring fast qubit measurement or reset [9].

An open question relating to flag gadgets is whether a
qubit saving over conventional methods can be realized for
general codes, without restricting the form or distance and
without requiring fast measurement and reset. We answer
this open question affirmatively and constructively.

In this work, we develop a framework to use clas-
sical codes in designing flag gadgets. This framework
protects the qubit used for syndrome extraction with the
parity checks used by a classical code with the same dis-
tance as the quantum code. The measurement of each
flag qubit used corresponds to the result of one of the
parity checks in the classical code. The resulting flag-
qubit measurements can then be used to locate propagating
errors on the syndrome, in analogy to the way in which
parity checks for a classical code locate errors on a code-
word. We show that locating propagating errors on the
syndrome is sufficient to ensure fault-tolerant syndrome
extraction. In addition, we show how the parity checks
can be approximately implemented under physically rele-
vant constraints such as limitations on the number of gates
that can act on a qubit simultaneously and that the effect of
imprecision can be handled by repeating the parity checks
in space.

Using this framework, we present a construction that can
be applied to any stabilizer code, with arbitrary distance.
For a distance d = 2t + 1 quantum code, this construc-
tion uses the parity-check matrix for the distance-d Bose-
Chaudhuri-Hocquenghem (BCH) code, repeated in space
d times. The BCH code uses only t

⌈
log2(w + 1)

⌉
parity

checks for a w-bit codeword, so our construction uses only
(2t + 1)t

⌈
log2 w

⌉
flag qubits for extracting a weight-w sta-

bilizer of a distance-d quantum code with slow reset, which
is an exponential saving comparing to the conventional
methods that use O(w) many qubits.

Additionally, we show that we can apply our frame-
work to a sequence of stabilizer measurements, instead of
a single stabilizer measurement. Because of the logarith-
mic scaling of the proposed method, this technique allows
for constructions that use vastly fewer qubits than conven-
tional methods, when qubit measurement and reset is rel-
atively slow. In particular, we show that in the absence of
qubit reset, our proposed scheme can extract the syndrome
of any quantum low-density parity-check (qLDPC) code
[28] with exponentially fewer ancilla qubits compared to
Shor-style syndrome extraction.

The mathematical framework proposed in this work pro-
vides a systematic approach to designing fault-tolerant
gadgets, by enabling computer-assisted search to optimize
the resources. We provide many examples of optimized
small gadgets that are potentially suitable for near-term
experiments. In addition, we provide three algorithms to
decode the flags, i.e., to identify the locations of errors
based on the flag patterns. We also discuss the savings
provided using our constructions when the qubit reset is
available but is slow compared to the two-qubit gates.

Our framework focuses on protecting the measurement
of one or more stabilizer measurements against prop-
agating errors. Because of this focus, our construction
can straightforwardly replace any instance of Shor syn-
drome extraction, without requiring modification of the
rest of the error-correction procedure, and therefore allows
our construction to introduce qubit savings for alternative
fault-tolerant error-correction procedures [29–31].

The organization of this paper is as follows. In Sec. II,
we outline the main ideas of the flag-qubit paradigm. In
Sec. III, we introduce our framework to represent flag
gadgets and syndrome-extraction circuits using a binary
matrix and state the fault-tolerance requirements in this
language. In Sec. IV, we first present the intuition in the
design of our framework under some simplifying assump-
tions on the connectivity of the device. In Sec. V, we
remove the simplifying assumption and impose physically
relevant constraints on the connectivity of the device and
provide a proof that our construction is fault tolerant. The
cost analysis is provided in Sec. V D and in Sec. VI we
discuss alternative decoding schemes. Section VII out-
lines a technique to apply our construction to multiple
syndrome-extraction circuits as if they were one larger
syndrome-extraction circuit, and Sec. VIII analyzes the
resources required by this technique, as opposed to flag-
ging each measurement separately. In Sec. IX, we present
the results of numerical simulations verifying fault toler-
ance for certain codes, in addition to providing examples of
computer-assisted designs of syndrome measurements for
small codes. Section X analyzes the trade-offs between our
construction and other methods for fault-tolerant syndrome
extraction as measurement and reset times vary.

II. FLAG GADGETS

The idea of using flag gadgets is to attach a simple quan-
tum circuit to the syndrome qubit, such that we can identify
the location of low-weight errors on the syndrome and
correct the propagated errors on the data qubits.

This idea is illustrated in Fig. 1, using a simple example
to measure X ⊗3. Flag qubits are connected to the syndrome
qubit by controlled-NOT (CNOT) gates. Given the structure
of the circuit, there are two types of faults that we need to
consider: syndrome faults and flag faults. Syndrome faults
have nontrivial support on the syndrome qubit, while flag
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FIG. 1. An illustration of a flag-qubit circuit for measuring
X ⊗3. The two qubits prepared in the |0〉 state are the flags and
the qubit prepared in the |+〉 state is the syndrome qubit. If an
error that can propagate to the data (an X error on the syndrome)
occurs in the green (leftmost) region, only the top flag will pro-
duce a −1 result when measured. If an error occurs in the violet
(middle) region, both flags will produce −1. If an error occurs
in the aqua (rightmost) region, only the second flag will pro-
duce −1. Therefore, considering only errors on syndrome qubit,
using the flag patterns we can distinguish and correct errors that
propagate to the data.

faults have nontrivial support on a flag qubit. The errors
on the syndrome qubit can spread to data qubits. Faults
with trivial support on the syndrome qubit do not spread to
data but can cause a “fake” flag pattern, which can trigger
a correction step that introduces more errors on the data.
The flags should identify syndrome faults while remaining
resistant to flag faults.

If a flag qubit produces −1 upon being measured, we
know that an error on the syndrome qubit has occurred
before an odd number of CNOTs connecting the syndrome
qubit to this flag qubit (or that a flag error occurred). We
can then think of a pair of CNOTs connected to a single
flag qubit as a “flag,” which causes the flag qubit to switch
sign whenever an error occurs on the syndrome qubit in the
region it flags (the region between the two CNOTs). This is
illustrated in Fig. 1. The error on the syndrome qubit is
then inferred from the pattern of +1 and −1 given by the
flag qubits (i.e., from the flag pattern).

Note that flag gadgets have been used to enable two
distinct error-correction strategies. Flag gadgets were first
used to protect error correction using adaptive syndrome
extraction, where the choice of stabilizers measured is con-
ditional on the results of the previous flag and stabilizer
measurements [6,11,14,16,32]. However, subsequent gen-
eralizations have removed this requirement and instead
focus on inferring errors during a static set of stabilizer
measurements [8,9]. It is the latter picture on which we
focus.

The other consideration in designing flag gadgets is the
qubit reset time. Some flag-gadget constructions, such as
in Ref. [8,10], assume that flag qubits can be reused within
one stabilizer measurement. This requires that qubit mea-
surement and reset are relatively fast, or requires idling
while qubits are measured and reset (allowing more errors
to be introduced). Note also that Ref. [8] gives the same

asymptotic scaling as Shor’s method in the absence of
fast measurement and reset. Our construction in general
does not require qubits to be reset quickly but may benefit
from a fast reset. The resources required are analyzed for
different reset time scales in Sec. X.

The idea of using flag gadgets has been extended in
various directions. Flag gadgets have been applied to
measuring the syndrome for the seven-qubit Steane code
[11], topological and subsystem codes [12,13], cyclic
Calderbank-Shor-Steane (CSS) codes [14], color codes
[15,16], concatenated codes [17], state preparation [9,
18–20], entanglement certification [21], and circuit ver-
ification [22]. The technique has also been applied to
schemes for reducing the number of stabilizer measure-
ments required for fault tolerance [33] and to measuring
stabilizers for a distance-3 CSS code in parallel [34]. Flag
gadgets have been shown to be equivalent to encoding the
ancilla qubit as a logical ancilla in certain cases [32]. The
use of flag gadgets to protect against hardware-specific
noise models has also been explored [35–38].

III. FRAMEWORK FOR DESCRIBING FLAG
GADGETS

In this section, we introduce notation to describe the flag
gadgets using certain binary matrices and state the fault-
tolerance requirement using this notation.

We assume that the stabilizer σ1 ⊗ · · · ⊗ σn, where σ ∈
{I , X , Y, Z}, is measured by performing a controlled-σi
gate on the ith data qubit with the control prepared in
the |+〉 state and then measuring the control (syndrome)
qubit in the X basis. Then, the only errors on the syn-
drome qubit that can propagate to the data qubits are X
errors. In the examples and simulations presented in this
paper, we assume that the stabilizer is of the form X ⊗w

but the results can be directly applied to measuring general
stabilizer operators.

Flag gadgets are used to identify where on the syndrome
qubit X errors have occurred by initializing flag qubits in
the |0〉 state and allowing X errors to propagate to the flag
qubits. By measuring the flag qubits, we can deduce the
propagated error as a function of the form of the stabilizer.

Since we only need to identify the location of X errors
on the syndrome qubit, we describe the error on the syn-
drome qubit es by a binary column vector of height l and
weight ts, where l is the number of possible locations for an
error (which depends on the weight of the stabilizer and on
the flag construction). Throughout this work, we call es the
syndrome error. In our construction based upon classical
codes, an X directly after preparing |+〉 on the syndrome
qubit is a stabilizer and hence we often omit this location
from es when convenient. A key ingredient in specifying
the fault-tolerant property of a circuit, and also in our con-
structions, is a description of how error propagates from
the syndrome qubit onto flag qubits.
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Definition 1. Let F be the matrix that describes how the
syndrome error propagates to the flag qubits, i.e., Fes is
a binary column vector with (Fes)i = 1 if and only if an
odd number of errors from the syndrome qubit propagate
to flag qubit i.

Similarly, describe the flag error ef by a binary vector
column of height f and weight tf , corresponding to the
errors occurring on the flag qubits, where f is the number
of flag qubits that a construction uses. Since errors on the
flag qubits do not propagate to the data, only the parity of
the error on a flag qubit needs to be considered, justifying
the definition of ef as a binary vector. Therefore, measur-
ing the flag qubits reveals Fes ⊕ ef . Based on the result
of flag measurements, we infer the data qubits to which
we need to apply a correction; we call the corresponding
map R.

We also define a matrix describing how errors propagate
to the data.

Definition 2. Define D such that (Des)i = 1 if and only
if an odd number of syndrome errors has propagated to data
qubit i.

The goal of using flag qubits is to fault-tolerantly extract
a syndrome using a few qubits. In this work, we use fault
tolerance in the strong sense [31,39].

Definition 3. Syndrome extraction is said to be
(strongly) fault tolerant up to t errors if the following
conditions hold:

(1) If the data qubits are a weight-r Pauli correction
from codeword c before syndrome extraction, and s
faults occur during syndrome extraction and r + s ≤
t after syndrome extraction, the data qubits are at
most a weight-(r + s) Pauli correction from code-
word c.

(2) If the data qubits are a weight-r Pauli correction
from codeword c before syndrome extraction and
s faults occur during syndrome extraction, after
syndrome extraction the data qubits are at most a
weight-(r + s) Pauli correction from any codeword
c′.

This definition is justified by the fact that if (t + 1)2

rounds of strongly fault-tolerant syndrome extraction are
followed by a recovery operation according to Shor error
correction [40] (or (t + 3)2/4 − 1 rounds using the cor-
rection procedure according to Tansuwannont et al. [31]),
then the entire error-correction procedure is strongly fault
tolerant [8,31].

Given these definitions, we succeed in fault-tolerantly
identifying errors on the syndrome qubit if, for any es, ef

such that ts + tf ≤ t, the residual error

Des ⊕ R(Fes ⊕ ef ) (1)

has weight at most tf + ts up to a stabilizer.
We can describe a flag-gadget circuit diagram using a

(f + 1) × l binary matrix C as follows.

Definition 4. The last row of C specifies the loca-
tion of the CNOTs connecting the syndrome qubit to the
data qubits. This row has w many nonzero elements. The
remaining f rows describe the location of CNOTs con-
necting the syndrome qubit to flag qubits. The matrix
element Ci,j = 1 if and only if there is a CNOT between
the syndrome qubit and ith flag qubit at location j.

Given such a circuit matrix C, we can define the physical
parity-check matrix Fc.

Definition 5. The matrix Fc is f × l and has as element
(i, j ) the sum

∑l−j
k=0 Ci,l−k (over Z2).

This matrix Fc encodes how the syndrome errors propa-
gate to the flag qubits, just as F does, but corresponds to a
concrete physically implementable circuit C.

In this definition, we do not keep the row that encodes
the location of the CNOTs connecting to the data. However,
other than neglecting the data qubits, Fc completely char-
acterizes C, so we can work with the two representations
interchangeably. In our construction, we start with a matrix
F based upon some classical code and modify it to pro-
duce Fc so that C (the circuit matrix) satisfies some set
of physically motivated constraints (described in Sec. V).
Analogously, we define Dc as the matrix that describes how
errors on the syndrome qubit propagate to the data relative
to a given circuit C. This is summarized in Fig. 2.

The fault-tolerant requirement of the syndrome-
measurement circuit can be summarized [in a similar form
to Eq. (1)] using the circuit diagram matrix C by requiring

min(
∣∣Dces ⊕ R(Fces ⊕ ef )

∣∣ , w −
∣∣Dces ⊕ R(Fces ⊕ ef )

∣∣)

≤ k (2)

for k := tf + ts ≤ t, where we have included the fact that
the syndrome that we measure is a stabilizer. Of course, in
the case that Fc = F and Dc = D, this reduces to Eq. (1).

IV. FLAG GADGETS BASED ON CLASSICAL
CODES

We now show that by constructing the flag gadgets
according to the parity checks of appropriate classical
codes, we can fault-tolerantly identify and correct syn-
drome faults in measuring any stabilizer. For simplic-
ity, in this section, we assume that multiple CNOTs can
be performed simultaneously and only suffer weight-1
faults—we will remove these assumptions in Sec. V.
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F c =

C =

Dc =




0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0




FLAG1
FLAG2
FLAG3





1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0





FLAG1
FLAG2
FLAG3
DATA

Z FLAG1
Z FLAG2
Z FLAG3

• • • • • • • • • • • • • • • • • • • X SY N
DATA





1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0





FIG. 2. An illustration of how a physical parity-check matrix Fc and its associated circuit matrix C correspond to a physical circuit
and its associated data matrix Dc.

A. Flagged syndrome extraction for a distance-3 code
We start with an illustrative example, in which we show

how to fault-tolerantly measure a weight-(w + 1) stabilizer
of a distance-3 code using 3

⌈
log2 w

⌉
flag qubits and one

syndrome qubit. Consider

F =




H
H
H



 ,

where

H =




1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1





is the parity-check matrix for the Hamming code on w
(physical) bits. Imposing no physical constraints, we let
Fc = F . The corresponding circuit is then uniquely iden-
tified by specifying one data CNOT per column of F . An
example circuit of the last three flag qubits for w = 8 is
shown in Fig. 3 (the other six flag qubits are excluded due
to space constraints).

Clearly, if an error occurs on the syndrome qubit
between data CNOTs i and i + 1, the flag pattern produced
is the same (replacing 1s with 0s and −1s with 1s) as the
result of the multiplication Fe, where e is a binary vector
with a single 1 as the ith entry. This allows us to prove an
illustrative first lemma.

Lemma 1. Given

Fc = F =




H
H
H



 ,

we can fault-tolerantly identify the location of a single fault
on the syndrome qubit, up to a stabilizer.

Proof. Suppose that the flag pattern is given by P. Con-
sider two errors, e1 and e2, that produce the flag pattern
P. We will show that the errors must propagate to the data
identically (i.e., De1 = De2) up to a stabilizer.

FLAG1 Z

FLAG2 Z

FLAG3 Z

SY N • • • • • • • • X

DATA

FIG. 3. The parity-check matrix for the [7, 4, 3] Hamming
code implemented with CNOTs, with spaces between data CNOTs
corresponding to physical bits of the codeword.
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For the purposes of this proof, call the trivial error (the
no-error case) a syndrome error. Syndrome errors produce
a flag pattern of weight either 0 (corresponding to an error
before or after all CNOTs composing the flag gadget, or
the trivial error) or at least 3, since columns of F have at
least 3 nonzero entries (since columns of H have at least 1
nonzero entry).

Consider first the case in which e1 is a flag error, while
e2 is a syndrome error. A flag error produces a flag pattern
with exactly one nonzero entry, so the flag patterns cannot
be the same and this case is impossible.

Next, suppose that e1 and e2 are both flag errors. Then,
they do not propagate to the data.

Now suppose that e1 and e2 are both syndrome errors.
If the flag pattern has zero nonzero entries, both errors
propagate to a stabilizer. If the flag pattern is of weight at
least 3, both errors must be between the same pair of data
CNOTs, since the columns of F are distinct and hence only
an error between data CNOTs i, i + 1 produces column Fi.
So De1 = De2.

This shows that any two errors with the same flag pattern
propagate to the same error on the data, so we can assign a
unique correction to any flag pattern. !

B. Flagged syndrome extraction for a distance-d code
The picture is similar when we consider more than one

error occurring during syndrome extraction.

Lemma 2. Consider the flag gadget based on the binary
matrix

F =




H
. . .
H





consisting of d repetitions of H , where H is a parity-
check matrix for the distance-d BCH code [41,42] (for
a summary of the BCH-code parity-check matrix, see
Appendix A). We show that two errors, e1 and e2, such
that |e1| + |e2| < d and which produce the same (fixed)
flag pattern P for this flag gadget satisfy De1 = De2 up to
a stabilizer.

Proof. Since H is the parity-check matrix for a dis-
tance d = 2t + 1 code, the column-wise sum

∑n
k=1 Hk is

nonzero, where Hk is the kth column of H and 1 ≤ n ≤ 2t.
This implies that

∣∣∑n
k=1 Fk

∣∣ ≥ 2t + 1 for all n such that
1 ≤ n ≤ 2t. Consequently, any flag pattern P has exactly
one associated set of up to t columns {Fk}0≤k≤t, up to
including the all-zeros column (corresponding to an error
before or after all CNOTs), such that

∣∣P ⊕
∑

k Fk
∣∣ ≤ t. To

see this, observe by the triangle inequality that if there were
two such sets of columns, their sum would have weight
strictly less than 2t + 1. Each column Fk included implies
that an odd number of syndrome errors have occurred
between data CNOTs k and k + 1. This implies that any two

errors e1 and e2 with a different parity of syndrome errors
between data CNOTs i, i + 1 for any i (i.e., any two errors
such that De1 *= De2) have distinct flag patterns and we can
again assign a unique correction to each flag pattern. !

This shows that in the case in which any number of
CNOTs can act simultaneously, our construction is capable
of perfectly identifying De for any e composed of syn-
drome and flag errors. In Sec. V, we show that in the
absence of the ability to perform multiple CNOTs simul-
taneously, our construction is still able to approximately
infer De and that the approximation is fault tolerant.

V. IMPOSING PHYSICAL CONSTRAINTS

When implementing a quantum error-correcting code
on hardware, there are many physical constraints to work
around; e.g., connectivity constraints, constraints on how
many qubits can be involved in a gate, and constraints on
how many gates can act simultaneously.

We consider a physically motivated constraint that we
believe to be one of the more difficult ones to overcome:
two CNOTs with a common control or target qubit cannot be
applied simultaneously. We show that this constraint does
not affect our construction. First, in Sec. V A, we provide
a method to modify a given parity-check matrix so that the
corresponding circuit does not use more than one CNOT at
once. Then, in Sec. V B, we show that this modification
still allows for fault-tolerantly identifying syndrome faults
by repeating a classical parity-check matrix.

A. Unfolding a parity-check matrix
In this section, we describe an “unfolding” procedure

to construct C or, equivalently, Fc, matrices that sat-
isfy Eq. (2) when starting with an F matrix of a certain
form but that do not require performing multiple CNOTs
simultaneously. We will describe a form for F such that
this unfolding procedure is sufficient to satisfy Eq. (2) in
Sec. V B. We assume that F is some number of parity-
check matrices for a BCH code [41,42] stacked on top
of each other (for a brief summary of BCH codes, see
Appendix A).

Given an F matrix, we first append a zero column to the
right and left sides of the matrix. Then we add columns
between adjacent columns of the appended matrix such
that two consecutive columns differ in exactly one element.
More precisely, we define a new matrix Fc such that

{
Fc

i,0 = Fi, +i,
Fc

i,k = Fi ⊕ [Fi ⊕ Fi+1][k], +i, k,
(3)

where Fc
i,k is a column of the unfolded matrix, with two

indices, i and k, which together specify the column in ques-
tion. The notation [Fi ⊕ Fi+1][k] denotes a column vector
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of the same dimensions as Fi and the same elements up to
the kth nonzero element of Fi ⊕ Fi+1, with zeros after the
kth nonzero element. For each index i, the second index, k,
is bounded above by the number places where columns Fi

and Fi+1 differ. By indexing k from zero, we recover F by
considering the columns Fi,0 for i ranging over the column
indices of F . The matrix Fc then has the form

Fc =
(
F1, F1 ⊕ [F1 ⊕ F2][1], . . . | F2, F2 ⊕ [F2 ⊕ F3][1], . . . |Fm, Fm ⊕ [Fm ⊕ Fm+1][1], . . .

)
. (4)

Each column of the unfolded parity-check matrix consists
of a stack of subcolumns, each subcolumn being either a
column of H or the zero column, except for at most one
subcolumn that describes the transition between columns
of H . The matrix Fc and the location of the data CNOTs
uniquely specify C by just considering the difference of
two consecutive columns of Fc—for a small example, see
Fig. 4.

B. General fault-tolerant flag gadgets
We now use the unfolding method presented in Sec. V A

to construct general fault-tolerant flag gadgets. The proof
is analogous to the proof in Sec. IV B and follows from the
observation that the independence of columns of H guar-
antees that any two errors with the same flag pattern must
be very similar.

Given an arbitrary t, define F as the stack of 2t + 1
copies of the parity-check matrix, H , where H defines a
distance 2t + 1 error-correcting code (e.g., the BCH code)
on top of each other, i.e., define

F =




H1
...

H2t+1



 ,

where Hk is simply one copy of H .
As in Sec. IV A, define D to correspond to the physical

implementation in which a data CNOT comes between each
pair of columns of F .

Note that in this definition of D, we do not distinguish
between an error directly before a data CNOT and an error
directly after a data CNOT. This is consistent with the fact
that we cannot distinguish these two errors by any flag
construction and it does not impact fault tolerance, since
misidentifying an error directly before a data CNOT as an
error directly after a data CNOT (or vice versa) leads to at
most one error on the data (which is allowable since the
original number of errors is at least one).

Lemma 3. Let e1 and e2 be two errors that produce the
same flag pattern P. Denoting the vector of all syndrome
errors by e := e1,s ⊕ e2,s, we have |De2i ⊕ De2i+1| ≤ 1 for
ej the j th nonzero component of e.

Proof. We will show that syndrome errors occur in
pairs, with at most one data CNOT between members of the
pair.

Write P as e1,f ⊕
∑

i∈I1
Fc

1,i, where I1 is the set of indices
corresponding to nonzero entries of e1,s. This defines the
set of columns Fc

1,i corresponding to each syndrome error
in e1. Decomposing P in terms of e2 defines the set of
columns Fc

2,i corresponding to each syndrome error in e2.
Assuming that each Hk has r rows, define Fk

∗,i as the vec-
tor consisting of the r(k − 1)th through rkth entries of F∗,i,
and similarly for ek

∗,f .
Consider the set of all Hk such that:

(1) Fk
1,i is a column of Hk, or is the zero vector

(2) Fk
2,i is a column of Hk, or is the zero vector

(3) Hk is affected by zero flag errors (i.e., ek
1,f is the zero

vector, as is ek
2,f )

We first show that there exists at least one such Hk. Start
with the set N = {Hk}k≤2t+1. For each column F1,i, at most
one subcolumn of F1,i is both not a column of H and not
the zero vector. After removing all submatrices that do not
satisfy (1), we are left considering a set N ′ of size at least
|N | −

∣∣e1,s
∣∣, since Fk

∗,i is neither a column of Hk nor the
zero vector for at most one k and i ranges from 1 to |e1,s|.
Similarly, after removing all submatrices that do not sat-
isfy (2), we are left to consider at least |N | −

∣∣e1,s
∣∣ −

∣∣e2,s
∣∣

submatrices. Finally, after removing all submatrices that do
not satisfy (3), we are left to consider at least |N | −

∣∣e1,s
∣∣ −∣∣e2,s

∣∣ −
∣∣e1,f

∣∣ −
∣∣e2,f

∣∣ submatrices.
Noting that |N | = 2t + 1 and that

∣∣e1,s
∣∣ +

∣∣e2,s
∣∣ +∣∣e1,f

∣∣ +
∣∣e2,f

∣∣ ≤ 2t, we see that we have at least 2t + 1 −
2t = 1 submatrix satisfying (1)–(3).

We can now let k be any index such that Hk satisfies
the three conditions given. We use the columns of Hk to
characterize the relation between e1,s and e2,s.

Recall that Fk
1,i and Fk

2,i are either columns of Hk or
the zero vector by assumption. Since e1 and e2 have the
same syndrome and ek

1,f = ek
2,f = 0 by assumption, we

must have
⊕

i∈I1
Fk

1,i ⊕
⊕

i∈I2
Fk

2,i = 0. Since H has dis-
tance 2t + 1, the sum of any distinct 2t of its columns
is nonzero. Since the sum is zero, the columns must be
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F =




1 1 0

· · · 1 0 1
1 1 1



 appending !0→−−−−−−−−#




1 1 0 0

· · · 1 0 1 0
1 1 1 0



 unfolding→−−−−−−#




1 1 0 0 0 0

· · · 1 0 0 1 0 0
1 1 1 1 1 0



 = F c

C =





0 0 0 1 0 0 0 0
· · · 0 1 0 0 1 0 1 0
· · · 0 0 0 0 0 0 0 1

1 0 1 0 0 1 0 0





FIG. 4. An example of the unfolding procedure, with columns of the original parity-check matrix in green and transition columns in
purple. The first, third, sixth, and eighth columns correspond to the CNOTs connecting to the data, while the remaining columns are the
differences between consecutive columns of Fc. Because they are weight 1, they also correspond to a single CNOT.

nondistinct. In particular, either Fk
∗,i = 0 or Fk

∗,i = Fk
∗,j with

a unique j paired to each i. By Appendix B, we can assume
that zero-vector columns correspond to errors before or
after measurement, which will propagate to a stabilizer.
Each pair of errors corresponding to a pair of identi-
cal columns must have at most one data CNOT between
them, since columns of H are distinct and each column
is expanded to cover exactly one data CNOT. !

Lemma 4. Let S be an arbitrary flag pattern. Con-
sider the set of all errors that produce the given flag
pattern, E := {e = es + ef : Fces ⊕ ef = S, |es| + |ef | ≤
t}. Then, for any e1, e2 ∈ E such that |e1| ≤ |e2|, we have∣∣De1,s ⊕ De2,s

∣∣ ≤
∣∣e2,s

∣∣ ≤ |e2|.

Proof. Let e1, e2 ∈ E have syndrome error weights∣∣e1,s
∣∣ = k and

∣∣e2,s
∣∣ = n with k ≤ n.

We know that each component error (except for possi-
bly one in the boundary, which does not affect De anyway)
has a paired error with at most one data CNOT in between
by Lemma 3. Consider all of the component errors of e1,s
that have their pair in e2,s. If there are l of these, De1,s ⊕
De2,s has weight at most l + [(n − l)/2] + [(k − l)/2] =
l − [(n + k − 2l)/2] = [(n + k)/2] ≤ (2n/2) = n.

We obtain the term on the left-hand side by considering
the error e2,s and applying the error e1,s as the correction.
Then, we note the following:

(1) When we apply e1,s to the syndrome qubit, the l cor-
rections that have their pair in e2,s each introduce at
most one error on the data (corresponding to the data
CNOT possibly in the middle of the pair).

(2) The k − l errors that are not part of e2,s but that are
included in the correction consist of pairs and so
their correction introduces at most (k − l)/2 errors.

(3) The n − l errors that are part of e2,s that we do
not correct are pairs (separated by at most one data
CNOT) and hence introduce at most (n − l)/2 errors,
which stay on the data after correction. !

Corollary 1. Fc satisfies the condition in Eq. (2).

Proof. Again letting S be arbitrary, consider the set
of all errors that produce S, namely, E := {e = ef + es :
Fces ⊕ ef = S, ts + tf ≤ t}. Then, let the correction oper-
ator be given by Dcc, where c is defined as arg mine∈E |e|.
We wish to show that

∣∣Dces ⊕ R(Fces ⊕ ef )
∣∣ ≤ ts +

tf for any e ∈ E. Rewriting, we wish to show that
|Dcc ⊕ Dces| ≤ ts + tf . This holds by Lemma 4, since by
definition |c| ≤ |e|. !

C. Application to non-CSS syndrome measurements
Suppose that we wish to measure an operator X ⊗nZ⊗m.

Note that this applies to the measurement of Y-type oper-
ators if n and m are not disjoint. To measure this operator,
usually some of the CNOTs (corresponding to the X terms
in the syndrome) are replaced with controlled phase gates,
while the syndrome qubit is still measured in the X basis.
This means that the only type of error that can propagate
from the syndrome qubit to the data is still an X -type error.
As such, we can use exactly the same set of flags that we
use to protect the syndrome for a CSS code.

In Fig. 5, this is illustrated for measuring the XZZXI
syndrome of the [[5, 1, 3]] perfect code.

D. Cost analysis to implement a single stabilizer
Having produced a fault-tolerant flag-qubit construc-

tion, we analyze the circumstances in which it outperforms
other constructions to protect a single stabilizer measure-
ment. We mainly focus on the number of flag qubits used,
as for near-term small-scale devices the number of qubits
is severely limited; and also for large-scale devices, reduc-
ing the number of qubits needed for fault tolerance allows
for more efficient use of hardware.

In our construction, the number of flag qubits used
is (2t + 1)n(w, t), where n(w, t) is the number of rows
in the classical parity-check matrix. For the BCH code
on w bits with distance 2t + 1, the number of rows is
given by t

⌈
log2(w)

⌉
(see Appendix A) for a total cost of

(2t2 + t)
⌈

log2(w)
⌉

flag qubits.
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FLAG1 Z

FLAG2 Z

FLAG3 Z

FLAG4 Z

FLAG5 Z

FLAG6 Z

FLAG7 Z

FLAG8 Z

FLAG9 Z

SY N • • • • • • • • • • • • • • • • • • • • • • X

DATA

DATA Z

DATA Z

DATA

FIG. 5. An example of our flag construction for measuring the XZZXI syndrome of the five-qubit perfect code. Note that if we were
to measure XXXXI , the flag circuit would be identical.

For t = O(1), this is asymptotically logarithmic in the
weight of the stabilizer, which is optimal. However, for
small w, t, the constant factors can be large. For exam-
ple, for w = 15 and t = 2, the number of flag qubits used
is (10)(4) = 40, which is outperformed by the various
schemes for fault tolerance that scale linearly in the weight
of the syndrome, ignoring the cost of state preparation.
Even reducing the number of repetitions to t + 2, as in
Sec. IX, yields 32 flag qubits. It is only once w ≥ 70
(or w ≥ 48, assuming that we only need to repeat t + 2
times) that our construction outperforms schemes that
scale linearly in the weight of the syndrome.

This suggests that the exponential saving provided by
our constructions only shows up in codes with high-weight
stabilizers, such as Bacon-Shor [43] codes on certain
choices of the lattice. However, in Sec. VII, we present
a slight modification to the syndrome-extraction procedure
that allows our construction to protect multiple syndromes
at once. The estimates using the analytical results are also
large because we wish to prove the fault tolerance of the
general construction. If we use our framework for numer-
ical searches, we see that it can provide resource savings
even for small codes (see Sec. IX).

Comparisons of the scaling of our construction versus
other flag constructions can be found in Table I.

Note that our framework also captures previous flag-
gadget constructions; the construction given by Reichardt
et al. [6] can be seen as a repetition code and the con-
struction given by Prabhu et al. [9] is based upon a punc-
tured Hamming code. In our generalization, the increased
overhead is mostly due to the qualitatively different fault-
tolerance requirements imposed by increasing the distance.
In Sec. IX, we also explore using our framework to numer-
ically search for small flag gadgets and show that the
overhead can be substantially reduced in some cases.

We now briefly address the cost in CNOTs to implement
our construction. As a very pessimistic upper bound, each
row of the parity-check matrix H will alternate between
0 and 1, requiring w CNOTs per row for a weight-w syn-
drome. With (2t + 1)t

⌈
log2 w

⌉
total rows, this implies a

maximum CNOT cost of (2t + 1)tw
⌈

log2 w
⌉

∼ t2w log2 w.
Realistic parity-check matrices do not have rows that alter-
nate between 0 and 1, making this upper bound very
loose.

VI. DECODING PROCEDURES

Given a certain flag pattern, we must be able to infer a
correction to apply to the data; i.e., we must decode the flag
pattern. In this section, we outline two different decoding
algorithms.

A. Brute force
Section V B implicitly defines a decoder. We construct

a table of errors and how they propagate. We can consider
the set of all errors e1, . . . , en that have the same syndrome

TABLE I. A comparison of the resources required to use our
construction versus other methods that apply to general weight
stabilizers.

w t Our construction Prabhu et al. [9]

25 1 16 6
50 1 19 7
75 1 22 8
100 1 22 8
25 2 51 N/a
50 2 61 N/a
75 2 71 N/a
100 2 71 N/a
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FIG. 6. An example of the decoding process for a set of errors
e1, e2, and e3 with a common syndrome. In green is the set of all
corrections that do not increase the number of errors on the data
regardless of which physical error produced the observed syn-
drome. Note that this figure is only for illustrative purposes. By
using at least 2t + 1 repetitions with our construction, a picture
with overlapping balls, neither strictly contained in the other, will
not arise. Instead, the center of each small ball will be contained
in each larger ball.

(i.e., Fcei = Fcej for all i, j ). Since we cannot distinguish
between e1, . . . , en, we need to find some correction that
will correct any ei fault tolerantly.

We can phrase this condition in terms of Hamming balls
drawn about the data error to which each ei propagates.
Succinctly, there exists a fault-tolerant recovery map R if
and only if, for arbitrary flag pattern P, we have

⋂

ei∈{e:Fce=P}
B|ei|(D

cei) *= ∅,

where Br(d) is the Hamming ball with radius r around the
point d in the space of all possible errors (or corrections)
on the data. This is obvious if we observe that B|ei|(D

cei)
is the set of corrections that do not increase the number
of errors on the data from the original number of physical
errors. This condition is illustrated in Fig. 6.

The brute-force decoding algorithm simply computes
the intersection of all Hamming balls with appropriate radii
centered at the data errors arising from collections of faults
with the same flag pattern and picks an arbitrary member
of the intersection as the correction to apply.

B. Majority-vote decoder
Another natural procedure presents itself. Intuitively, we

can use the repetition of the parity-check matrix H to cor-
rect the errors on the flag pattern (i.e., flag errors) and then

use the new flag pattern obtained to apply a correction that
does not increase the number of errors on the data from the
original number of physical errors based by decoding the
classical code hidden inside our flag qubits.

First, we define a useful concept.

Definition 6. For an error e and a matrix F composed of
repetitions of a parity-check matrix H , we call repetition i
error free if e has support entirely on columns of H or zero
columns.

This definition captures the repetitions of H that give
the same information that the classical parity-check matrix
would give were it to act perfectly upon a codeword with
errors.

Lemma 5. If F is composed of (t + 1)2 repetitions of
a classical parity-check matrix H , the following correc-
tion procedure produces a fault-tolerant correction for any
error-producing flag pattern P:

(1) Divide P into (t + 1)2 subcolumns, Pi, 1 ≤ i ≤ (t +
1)2.

(2) Let P∗ be the subcolumn that occurs most fre-
quently.

(3) Taking P∗ as the syndrome for the classical parity-
check matrix H , decode P∗ and apply the correction
indicated.

Proof. Note that for any error e, the classically com-
puted correction associated with a subpattern produced by
an error-free repetition is a fault-tolerant correction for e.

The fact that such a correction is fault tolerant follows
from the fact that in an error-free repetition, the correc-
tion produced by the classical decoder exactly identifies
the parity of syndrome errors in the area covered by each
column of H . So at worst, the correction produced neglects
to correct some even number of errors in each region cov-
ered by a single column of H . As before, the area covered
covers at most one data CNOT and hence neglecting to cor-
rect these errors still yields a fault-tolerant correction. So
it is enough to show that the most common subpattern is
produced by an error-free repetition.

If e is incident upon a column of repetition i that is not
a column of H and e is incident upon a column of repe-
tition j that is not a column of H , but for all repetitions
k for i < k < j , all errors are incident upon a column of
H or the zero column and no repetition k suffers a flag
error, all subpatterns from repetitions i + 1 to j − 1 are
identical. So a single error ei ∈ e can divide a region of rep-
etitions into two regions with possibly different patterns,
with some arbitrary subpattern in between. So it is enough
to show that dividing a region of length (t + 1)2 − t into t
subregions produces at least one subregion of length t + 1.
Since [(t + 1)2 − t]/t > t + 2 − 1 = t + 1, this condition
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is satisfied. So the most common subpattern has multiplic-
ity at least t + 1 and hence can only be produced by t + 1
error-free repetitions in a row. !

C. Intermediate decoder
Finally, we present an intermediate decoding algorithm.

This algorithm still scales exponentially with t but not as
badly as the brute-force version. It also only requires 2t + 1
repetitions of the parity-check matrix, as does the brute-
force version.

We first decode each subpattern with a decoder for the
BCH code (skipping any that cannot be decoded). Write
the decoded error as a bit string of syndrome errors. The
results of decoding any two error-free repetitions must dif-
fer by a bit string of the form

∑k
i=1 0f1(i)110f2(i), where k is

upper bounded by the number of non-error-free repetitions
between them and 0f0,1(i) denotes some number of zeros
that depends on i.

The locations of the 11 substrings in each term of the
sum in the difference vector correspond to the location of
a transition error. Assuming that we suffer at most t errors,
there are at least t + 1 error-free repetitions, which differ
from each other in the way described above. Recall that a
minimum-weight error that is error free in repetition i and
produces the flag pattern P is a fault-tolerant correction for
any other error that is error free in repetition i and produces
P. So the problem is reduced to finding a minimal number
of strings of the form 0f1(i)110f2(i) and then assigning each
one to a repetition, such that each consecutive pair of the
remaining repetitions differ from each according to the sum
of strings assigned to repetitions between them. After find-
ing such a set of difference vectors, we can choose any of
the remaining repetitions as the correction.

D. Comparison of decoding costs
The brute-force decoder described in Sec. VI A requires

compiling a table of all errors and their syndromes. Clearly,
the dominant term in the time cost for this decoder is the
cost of considering every error. The number of distinct
errors is given by

t∑

k=0

(
n
k

)
,

where n is the total number of CNOTs used in the cir-
cuit (equivalently, the weight of C), which is proportional
to the number of flag qubits f . This scales exponentially
with the number of flag qubits. If l is the least num-
ber of CNOTs attached to a flag qubit, then this decoding
algorithm requires "(

∑t
k=0

(l(2t+1)+w
k

)
) operations. Using

the bound
∑t

k=0
(n

k

)
= "(2H (t/n)n), we can lower bound

this by "(2l(2t)2H (l)) = "(22lt), where H(x) is the binary
entropy of 0 ≤ x ≤ 1.

However, the majority-vote decoding procedure in
Sec. VI B only requires finding the most frequently occur-
ring subpattern of length t log2 w, before decoding one
classical syndrome.

In the case of the BCH code, the decoding algorithm
requires O(wt) operations [44]. Finding the most fre-
quent subpattern takes O(t5 log2(w)) operations for a total
complexity of O(t5 log2 w + wt).

Finally the intermediate decoder in Sec. VI C has com-
plexity O(

(w
t

)(2t+1
t

)
), where the first term is the number

of ways to choose the left or right location of the transi-
tion columns and the second term is the number of ways
to choose the repetition into which each transition column
falls.

VII. PROTECTING SEVERAL STABILIZER
MEASUREMENTS

In general, several syndromes need to be extracted con-
secutively and the entire sequence needs to be repeated
to account for measurement errors (in the Shor error-
correction picture). In this section, we show that the flag-
qubit construction in Sec. V B can be trivially modified to
identify error locations in this whole sequence of repeated
measurements. Because our construction enjoys sublinear
scaling, flagging the entire sequence of syndrome extrac-
tion requires fewer qubits than flagging each measurement
separately.

A. Connecting and flagging a sequence of stabilizers
Consider a syndrome-extraction circuit in the form of

Fig. 7(a). We can modify this circuit by adding CNOTs
connecting subsequent pairs of syndrome qubits, with-
out changing the measurement outcomes observed, as in
Fig. 7(b). This modification means that X errors on syn-
drome qubit i will propagate to all syndrome qubits j >
i. X errors that propagate from one syndrome qubit to
another propagate to trivial errors (stabilizers) on the data
and do not affect the measurement results since we mea-
sure in the X basis. Adding this modification means that
a flag gadget starting on syndrome qubit i and ending on
syndrome qubit j > i, as in Fig. 7(d), will flag if there is an
odd number of errors in the range that it covers, regard-
less of which syndrome qubit they occur on (where we
interpret any errors occurring after the connecting CNOT as
unflagged measurement errors). By modifying the circuit
one more time and connecting consecutive stabilizer mea-
surements via an ancilla prepared in the |0〉 state, instead
of directly, we can ensure that preparation errors on a later
syndrome qubit do not propagate to measurement errors on
an earlier syndrome qubit [Fig. 7(c)].

Suppose that we wish to measure L stabilizers, each
with weight wi. To ensure fault tolerance, each round of
measurement must be repeated s times, where s depends
on the properties of the code. Usually, s is taken to be
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Syndrome1 • X

Syndrome2 • X

P P ′...





DATA

Syndrome1 • X

Syndrome2 • • X

P P ′...





DATA

Syndrome1 • X

Propagator •
Syndrome2 • • X

P P ′...





DATA

Flag · · · · · · Z

Syndrome 1 • • X

Propagator •
Syndrome 2 • • • X

P P ′...





DATA

Z F lag • · · · • · · · X

X F lag · · · · · · Z

Syndrome 1 • • X

Propagator •
Syndrome 2 • • • X

P P ′...





DATA

Z F lag • · · · • · · · X

X F lag · · · · · · Z

Syndrome1 • • X

Propagator Z

Syndrome2 • • • X

P P ′...





DATA

(a) (b) (c)

(d) (e) (f)

FIG. 7. The syndrome extraction of P and P ′ (where P and P ′ are multiqubit Pauli operators). (a) Conventional syndrome extrac-
tion. (b) Connected syndrome extraction. (c) Connected syndrome extraction with a propagator qubit. (d) Connected syndrome
extraction with an example flag qubit. (e) Syndrome extraction with an added Z-type flag. (f) Syndrome extraction using a virtual
connection.

(t + 1)2, so that if at most t errors occur, we are guaran-
teed to see the syndrome corresponding to a fault-tolerant
correction appearing t + 1 times in a row [29,40]. We
define the total weight W as

∑L
i=1 wi. For convenience,

we assume that wi = w for all i, so that the total weight
is just Lw. This is not essential for the construction, how-
ever, and Lw can be replaced by W if desired in the
following discussion. Connecting all of these extractions
together in the form outlined above leads to a circuit
with sW distinct locations that need to be identified by
the flag gadgets. Our construction in Sec. V B holds and
we can identify up to t errors distributed between these
sW locations using only (2t + 1)t

⌈
log2(sW + 1)

⌉
flag

qubits.
To ensure that one Z error on a flag qubit cannot cause

multiple measurement errors in the connected setting, we
employ precisely the same solution that we used to ensure
that errors on the syndrome qubit do not cause high-weight
data errors. We wish to track errors on each flag such that
any Z error causes at most one unflagged measurement
error, meaning that if we measure L stabilizers s times,
there are sL − 1 logically distinct locations on each flag
qubit. If we construct a new flag gadget for each orig-
inal flag qubit to flag the L − 1 distinct locations, fault
tolerance is restored, at the cost of (2t + 1)t

⌈
log2(sL)

⌉

additional Z-type flags per flag qubit. This is illustrated in
Fig. 7(e) and its fault tolerance is treated more carefully in
Appendix C.

B. Error propagation and time ordering
We now wish to make a few observations. First, sL − 1

is an upper bound on the number of logically distinct loca-
tions per flag qubit. This is because a Z error occurs before
the measurement of stabilizer i propagates trivially from
a flag qubit to syndrome qubit i if the flag qubit is con-
nected to syndrome qubit i by an even number of CNOTs.
Additionally, the Z-type flags can benefit from the same
numerical search demonstrated for small flag gadgets in
Sec. IX. Finally, since we only measure flag qubits after
all rounds of syndrome extraction, we allow low-weight
errors on the syndrome qubits to propagate to high-weight
errors on the data. This means that some of the syndrome
bits measured will be incorrect, since we do not measure
the flags until all syndromes have been extracted. How-
ever, since the syndrome-extraction circuit is a Clifford
circuit, after measuring the flags we can track the propa-
gation of errors classically and correct any syndrome bits
necessary before applying the correction implied by the
(updated) syndromes. This also holds for the measurement
errors caused by Z errors on the flag qubits, caught by
the Z-type flags. Additionally, since we do not measure
flags until after all syndromes have been extracted, we
cannot stop early if we see t + 1 identical syndromes in a
row—instead, we have to continue measuring syndromes
for a full s repetitions.

This method of connecting syndrome qubits naively
increases the time required for a round of syndrome
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extraction, since the connections induce a time ordering
that disallows extracting syndrome bits in parallel. How-
ever, the time ordering is not necessary. Instead of using
the propagator ancilla to connect syndrome qubits, we can
measure the ancilla in the Z basis and then adjust the flag
measurements according to the measurement result (simu-
lating the propagation of the possible X error through the
CNOTs classically). Using this virtual connection removes
any time ordering and allows for a flag circuit based on our
construction to protect multiple syndrome extractions act-
ing in parallel [see Fig. 7(f)]. Note that removing the time
ordering means that there are exactly sL − 1 locations per
flag for each Z-type flag gadget to identify.

VIII. RESOURCE ANALYSIS

Consider a code defined by L (independent) stabilizer
generators, each with weight w. Assuming that qubits can-
not be reset (for a discussion on when this constraint is
relaxed, see Sec. X), the total number of qubits required to
do s rounds of syndrome extraction using Shor error cor-
rection or similar methods is linear in Lsw. In contrast, the
number of qubits required by our construction for fault-
tolerant extraction is given by O(t2 log2(w)) in the case
of separate syndromes, or (2t + 1)t

⌈
log2(Lsw + 1)

⌉
(2t +

1)t
⌈

log2(Ls)
⌉

+ 2Ls − 1 in the case of connected syn-
dromes (Sec. VII), where 2t + 1 is the distance of the code.
As discussed in Sec. V D, the construction clearly provides
an advantage when the weight of the stabilizer w is large.
In this section, we show that by connecting multiple syn-
dromes, similar advantage is gained for codes with small
weight w, such as qLDPC codes.

It is important to emphasize that one main advantage
of our construction is that we only need to prepare sim-
ple single-qubit states, in contrast to Shor, Steane, or Knill
error correction, in which access to highly entangled fault-
tolerantly prepared ancilla states is assumed. In particular,
in these schemes, the required resources to produce such
an entangled state can significantly increase with the dis-
tance of the code 2t + 1. Throughout all comparisons in
this section, we have neglected the cost of preparing the
ancilla states. Including the cost of fault-tolerantly prepar-
ing the ancilla states would increase the resource savings
offered by our construction. In fact, preparation of the code
states used in Steane or Knill error correction is often
performed using Shor error correction [40], so our com-
parisons to Shor error correction can be seen as providing
generous lower bounds on comparisons to Steane or Knill
error correction.

A. Applicability to qLDPC codes
Any family of codes with parameters that result in a

small ratio t4 log2 Lsw log2 Ls/Lsw can benefit from our
construction. One important family to consider is qLDPC

codes [28], where the weight of each stabilizer is a con-
stant independent of the number of qubits n, i.e., w = O(1).
Note that this constraint also fixes the number of indepen-
dent stabilizers to be L = #(n), since each qubit must be
included in at least one stabilizer for the code to be able to
correct any single error. For this family of codes, we make
the following observation.

Remark. For any code with Lw = "(t2+ε) for ε > 0,
our construction requires exponentially close to two qubits
per stabilizer measurement.

To see this, note that for Shor-style syndrome extrac-
tion, we have s = #(t2) and therefore the ratio scales
as #

(
log2 Lt2 log2 L/poly(L)

)
, which is bounded above

by #
(
(log2 n)2/poly(n)

)
for any error-correcting qLDPC

code (we suppress constant factors in all big-# expres-
sions). Code families in which this condition is satisfied
include qLDPC codes, for which the distance grows more
slowly than

√
n, such as hyperbolic surface codes [45,46].

A regime in which our scheme does not provide an
advantage for qLDPC codes is when they both satisfy
the single-shot property (s = O(1)) [47–49] and have lin-
ear distance (t = #(n)). Although we focus on qLDPC
codes in this section, if w grows with n, our observation
still holds, i.e., Lw = "(t2+ε) implies that asymptotically
the scheme requires close to two qubits per stabilizer
measurement.

B. Small-size codes
We now examine how our analytical construction per-

forms on small-size codes. Although our choice of code to
design flag qubits achieves the logarithmic scaling in the
total stabilizer weight that we aimed for, the magnitude of
the prefactors for this specific choice makes it impracti-
cal to connect syndrome qubits for small codes. However,
only for distance-3 codes, there exists another construc-
tion that scales logarithmically in stabilizer weight and can
be applied to arbitrary weight stabilizers [9]. Applying our
framework to this construction, we can demonstrate the
effectiveness of our method to connect flagged syndrome
qubits.

Similarly to Sec. VIII, we consider a code defined by
L stabilizer generators, each with weight w, which are
each measured s times. The construction by Prabhu et
al. [9] uses

⌈
log2 w

⌉
flag qubits to fault-tolerantly mea-

sure a single stabilizer of a distance-3 code. Applying
our construction for connecting syndromes yields a total
ancilla cost of

⌈
log2 Lsw

⌉ ⌈
log2 Ls

⌉
+ 2Ls − 1. Note that

we apply our Z-type flag construction using the same flag
construction as the (X -type) stabilizer flags to achieve this
scaling. With the smaller prefactors, we can clearly see
the advantage of connecting syndrome qubits in Table II.
In Table III, we compare our construction to Shor-style
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TABLE II. A comparison of the number of extra qubits needed to do syndrome extraction fault tolerant to distance 3 with and without
flag qubits for regimes involving few qubits. The first row is the quantum Hamming code [50], while the second is the quantum Golay
code [50] (treated as a distance-3 code). Shor EC means Shor-style error correction.

Shor EC Connected syndrome extraction Prabhu et al. [9]
n s w L Lsw

⌈
log2(Lsw)

⌉ ⌈
log2(Ls)

⌉
+ 2Ls − 1 Ls

⌈
log2(w) + 1

⌉

31 4 16 10 1240 139 200
23 4 8 22 2024 245 352

syndrome extraction for distances where other flag con-
structions are not applicable. The numbers provided give
a lower bound on w and L to achieve an advantage when
w ≈ L. Similar advantages can be observed if either of w
or L is much larger than the other. For instance, taking
four copies of the [[5, 1, 3]] code concatenated with itself,
considered as a [[100, 4, 5]] code, yields 96 stabilizers with
average weight 20/3 and gives an approximate 630-qubit
advantage over Shor’s scheme.

It also is important to note that it is not always necessary
to measure all of the stabilizers (t + 1)2 times in Shor-style
error correction [29,30,53]. Given that our construction
is agnostic to the form of the measured stabilizers, we
can directly apply it to an error-correction procedure that
uses fewer repetitions, such as a recent scheme for short
syndrome-measurement sequences [31]. In our resource
estimates in this section, we have considered using (t + 1)2

rounds of syndrome extraction.

IX. COMPUTER SIMULATIONS

So far, we have focused on analytical asymptotics but
with the framework provided by Sec. III, we can do
computer-aided searches for fault-tolerant flag-gadget con-
structions. In this section, we search for stabilizer weights
where it is possible to use fewer than 2t + 1 repetitions of
the BCH-code parity-check matrix as well as very small
examples for distance-5 codes. The code we have devel-
oped to perform these simulations is publicly available on
LoboGit.

The construction given in Sec. V B only gives an upper
bound on the number of repetitions required; it does not

always take 2t + 1 repetitions in order to achieve fault tol-
erance for up to t errors. In particular, for measuring a
weight-15 syndrome, fault tolerance is achieved using only
t + 1 or t + 2 repetitions of the BCH code, as opposed to
2t + 1 (see Table IV). This shows that certain parity-check
matrices have properties that reduce the negative effects of
columns produced by transitioning from one column of the
check matrix to another.

Similarly, numerical simulations show that three repeti-
tions of the two-error-correcting BCH code on 13 bits are
sufficient to deduce fault-tolerant corrections for extracting
a weight-13 stabilizer of a distance-5 code. In Appendix D,
we argue that we can double the weight of the stabilizer by
making a small modification to the correction procedure
but no change to the flag qubit pattern. This is not guar-
anteed to hold when using three repetitions of the parity-
check matrix instead of 2t + 1 = 5 but simulations show
that in this case, replacing the weight-13 stabilizer with a
weight-26 stabilizer and using three repetitions of the BCH
code on 13 bits does indeed allow for fault-tolerant correc-
tions. This is significant since the parity-check matrix for
the BCH code on 13 bits has eight rows. This means that
we use 24 flag qubits and one syndrome qubit for a total
cost of 25 qubits to extract a weight-26 stabilizer, which is
less costly than Shor error correction (which would use 26
qubits). Since in this example, t = 2, previous flag-qubit
constructions do not apply (assuming slow reset).

Numerical simulations also show that it is possible to
fault-tolerantly extract an arbitrary weight-5 stabilizer for
a distance-5 code using only two flag qubits, for a total
cost of three ancilla qubits. The circuit to do so is shown
in Fig. 8, while the correction rules are shown in Table VI.

TABLE III. A comparison of the number of extra qubits needed to do syndrome extraction fault-tolerantly to distances 5 and 7 with
and without flag qubits. The first row is taken from the [[105, 61, 5]] quantum BCH code, while the second is from the [[119, 23, 7]]
quantum BCH code [51]. In both examples, w is taken to be 1n/22, the average weight of the stabilizers produced via the CSS
construction. The third row is the [[512, 501, 3]] quantum Hamming code [50] concatenated with the [[5, 1, 3]] perfect code [52] to
produce a [[2560, 501, 9]] code. In this example, the average stabilizer weight w is slightly higher than 10 and the resources are
computed as such.

Shor EC Connected syndrome extraction
t s w L Lsw (2t + 1)2t2

⌈
log2(Lsw + 1)

⌉
×

⌈
log2(Ls)

⌉
+ 2Ls − 1

2 9 52 44 20 592 14 291
3 16 59 96 90 624 85 538
4 25 10 2059 518 400 496 933
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TABLE IV. The fault-tolerance results for w = 15, d = 2t + 1,
and r repetitions of the parity-check matrix for a distance-d BCH
code. “N” indicates non-fault-tolerant parameters, while “Y”
indicates fault-tolerant parameters. These results are obtained
using the numerical methods described in Sec. IX.

t r

2 3 4 5

1 Y Y Y Y
2 N Y Y Y
3 N N N Y

The circuit and correction rules have both been obtained
by brute force. This method yields a two-qubit advantage
over Shor syndrome extraction and a three-qubit advan-
tage over the alternative flag-gadget construction given for
stabilizer codes of any distance [8]. Note that, in contrast
to the definition of es given in Sec. III, we must consider
X errors on the syndrome qubit that occur before the first
CNOT. This has been accounted for in the simulations.

These examples are summarized in Table V.
In general, this method of syndrome extraction yields

performance improvements for any code with relatively
high-weight syndromes (or high total weight, as in
Sec. VII). One example of such a family of codes is
produced when choosing the set of stabilizers measured
according to some classical code [29,30]. Generally, the
weight of the stabilizers measured is much greater than
the weight of the stabilizer generators—e.g., a distance-
d (for d sufficiently large) rotated surface code equipped
with the [16, ∗, d] BCH code measures stabilizers of weight
approximately 28. Other examples can be obtained from
code concatenation, which leads to high-weight stabilizers
being measured after only a few concatenations.

X. QUBIT RESET

Although we have focused on the regime in which qubit
reset is slow or impractical, our construction can also pro-
vide a reduction in the number of qubits necessary for
fault-tolerant error correction when qubit reset is practical.

FLAG1
FLAG2

Z

Z

SYN • • • • • • • • • • X

DATA1
DATA2
DATA3
DATA4
DATA5

FIG. 8. A flag gadget for fault-tolerantly extracting a weight-5
stabilizer.

TABLE V. The total number of ancilla qubits (including the
syndrome qubit) sufficient to measure a weight-w stabilizer of
a distance-5 code fault tolerantly and the number of repetitions
of the BCH parity-check matrix used. Note that the example
for a weight-5 stabilizer does not use the parity-check-matrix
construction.

w 5 15 26

Qubits 3 25 25
Repetitions None 3 3

In general, as qubit measurement and reset gets faster, our
construction provides fewer reductions.

Suppose that qubits can be reset in parallel in time τ
and single-qubit measurements can be performed in time µ
(where a CNOT takes unit time). Note that if qubits cannot
be reset (in parallel), the method of connected syndrome
extraction presented in Sec. VII is more useful than if
qubits can be reset (in parallel). In Table II, we implicitly
assume that τ is arbitrarily large.

However, it is of course possible to reset qubits.
We perform resource estimation for a round of error
correction for Shor syndrome extraction and flagged
(connected) syndrome extraction. The maximum num-
ber of qubits required for flagged syndrome extraction is
given simply by (2t + 1)t

⌈
log2(sW + 1)

⌉
+ 2Ls − 1 (or⌈

log2(Lsw)
⌉ ⌈

log2(Ls)
⌉

+ 2Ls − 1 for distance 3) as in
Sec. VII. To estimate the resources required for Shor syn-
drome extraction, we use Algorithm 1, which provides
a lower bound on the number of qubits necessary when
doing a round of error correction as fast as possible.

To provide a concrete example, we consider the recent
experiments on superconducting hardware [54], where the
measurement and reset times are approximately 500 ns and
160 ns, respectively. With a CNOT time of approximately
13 ns [55], this corresponds to τ = 38.5 and µ = 12.3.
Resource estimation shows that for these values of τ and
µ, our construction yields a qubit advantage over Shor EC
for the [[9, 1, 3]] Shor code but not for the [[7, 1, 3]] color
code. This aligns with the fact that the stabilizers that need
to be protected in the Shor code (the weight-6 X -type sta-
bilizers) are higher weight than the stabilizers for the color
code (which are weight-4), meaning that Shor syndrome

TABLE VI. One choice of fault-tolerant correction rules for the
circuit presented in Fig. 8. Note that there are other choices for
the fault-tolerant correction rules.

FLAG1, FLAG2 measurements Correction on DATA

+1, +1 I
+1, −1 X1
−1, +1 I
−1, −1 X1X2X3
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ALGORITHM 1. An outline of our strategy for estimating
resources required for Shor EC.

input a set of generators G and a stack of available qubits p
used ← ∅
busy ← ∅
for each generator g ∈ G do

move any qubits which have become non-busy from busy
to top of p

selected ← first |g| qubits from p
used ← used ∪ selected
busy ← selected and times selected qubits will become

available again
end for
return used

extraction requires fewer ancilla qubits to be used simulta-
neously when extracting the syndromes for the color code.
This again shows that our construction is especially useful
when measuring high-weight stabilizers.

Other recent experiments on ion-trap hardware [56] give
measurement times corresponding to µ = 13. Although
reset times are not given, we assume a comparable time
scale and set τ = 13 for resource estimation. In this
regime, where CNOTs are relatively slow, we begin to see
qubit advantages for our construction on a distance-3 code
when stabilizers are weight approximately 13.

It may be possible to achieve qubit advantages using our
construction even in the case that τ and µ are relatively
small and when measuring low-weight stabilizers by using
fewer than 2t + 1 repetitions of the parity-check matrix.
The numerical results in Sec. IX show that it is not always
necessary to use 2t + 1 repetitions of the parity-check
matrix and it is often sufficient to use t + 1 repetitions.

XI. CONCLUSIONS

In this work, we have developed a framework to design
flag gadgets based on classical codes. This framework
allows for enough freedom to achieve logarithmic cost
scaling with the appropriate choice of code (e.g., the BCH
code), to perform fault-tolerant syndrome measurement of
any general quantum code.

To maximize the gain from this exponential saving,
we have proposed methods to fault-tolerantly measure
multiple stabilizers using a single gadget. We have pro-
posed several small examples of the constructions using a
computer-assisted search that can be appropriate for near-
term experiments on small quantum computers. We have
discussed the overhead when slow qubit reset is available
and proposed several decoding strategies.

This work leaves several questions open. In Sec. V B,
we have assumed that columns introduced by the unfold-
ing procedure in Sec. V A were completely arbitrary, and
hence used 2t + 1 repetitions of the parity-check matrix to

guarantee that they would not cause non-fault-tolerant cor-
rections. However, it may be possible to characterize these
columns in a way that allows for fewer repetitions (or,
in the extreme case, to remove these columns altogether).
Incorporating other physically relevant constraints, such as
geometric locality of interactions, is another direction to
pursue.

In addition, our construction uses a two-step procedure,
in which first the propagated errors from the syndrome
onto data are corrected and then the syndrome bits are
used to do error correction according to the quantum code.
However, one can integrate the information from the flag
qubits and the syndrome bits in order to directly infer the
correction to apply to the data, possibly using fewer flag
qubits than the two-step version, and one can add structure
between multiple syndrome qubits (as in, e.g., Ref. [11]).

Finally, throughout the analytical portion of this work,
we have used the parity-check matrix for the BCH code
because of the favorable scaling that it provides. However,
our framework also allows for the systematic design of flag
gadgets when the number of ancilla qubits or the number
of measurements is only one of many goals. By consid-
ering different classical codes, one can easily incorporate
constraints based on CNOT count, connectivity, or other
physically relevant parameters. Additionally, in Sec. IX,
we search over small flag gadgets in a brute-force way
and show that even smaller flag gadgets exist than those
produced by considering the BCH code.

The code that we have developed to perform these
simulations is publicly available on LoboGit [57].
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APPENDIX A: BCH CODES

Given m such that 2m ≥ w, the BCH code correcting up
to t ≤ w/2 errors out of w locations uses at most mt par-
ity checks. The parity-check matrix is constructed using
a primitive element α of GF(2m) (i.e., an element α of
the finite field with 2m elements such that every nonzero
element of GF(2m) can be written as αi for some i).

The (redundant) parity-check matrix H ′ is defined as

H ′ :=





1 α α2 . . . αw−1

1 α2 (α2)2 . . . (α3)w−1

...
1 α2t (α2t)2 . . . (α2t)w−1




.
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It is easy enough to see that
∑

(αi)2 = 0 if and only
if

∑
αi = 0 since GF(2m) is a field of characteristic

two—consequently, every other row of H ′ is redundant.
We can remove every other row so that Hij = (α2j +1)i+1,
for i and j starting at zero.

Representing elements of GF(2m) as bit strings of length
m produces a parity-check matrix with tm rows. Since
2m ≥ w, this corresponds to t

⌈
log2 w

⌉
rows (or parity

checks).
We now show that H ′ yields enough information to cor-

rect up to t errors. Recall that this is equivalent to any set
of up to 2t columns of H ′ being linearly independent. Sup-
pose for the sake of contradiction that H ′v = 0 for some
v such that |v| ≤ 2t, where we use the full (redundant)
matrix H ′. Then,





αj1 αj2 . . . αj|v|

(αj1)2 (αj2)2 . . . (αj|v|)2

...
(αj1)2t (αj2)2t . . . (αj|v|)2t









1
1
...
1



 = 0

for all ji such that vji = 1. Since 2t ≤ w, we can truncate
this equation to the first 2t rows so that the matrix on
the left-hand side is square. Factoring out a power of αji

from the ji column shows that this equation reduces to the
determinant of a Vandermonde matrix being equal to zero,
which is a contradiction. Since H has the same column-
independence properties as H ′, this concludes the proof
that H is a parity-check matrix for a t-error-correcting
code. Note that it is possible that the true distance of the
code given by ker H is greater than 2t + 1.

APPENDIX B: ORDERING COLUMNS OF
PARITY-CHECK MATRIX

In Sec. V A, we have required that the parity-check
matrix in question admits an ordering of its columns such
that, when unfolded, there are no zero columns between
two nonzero columns. Here, we provide an explicit order-
ing satisfying this constraint.

Lemma 6. For any arbitrary binary matrix H that does
not contain the zero vector as a column, there exists a
matrix H ′ obtained by reordering columns of H such that
+k,i : H ′

i ⊕ [H ′
i ⊕ H ′

i−1][k] *= 0.

Proof. Obtain H ′ from H by sorting the columns of H in
descending order from left to right, where we interpret each
column as a binary integer with the highest significance bit
at the bottom.

Suppose for the sake of contradiction that there exist
some i and k such that H ′

i ⊕ [H ′
i ⊕ H ′

i−1][k] = 0. Let the
index of the kth nonzero element of H ′

i ⊕ H ′
i−1 be called j .

Since H ′
i ⊕ [H ′

i ⊕ H ′
i−1][k] = 0, we have that H ′

i is zero
after index j . By the ordering assumption, this implies that
H ′

i−1 is zero after index j as well.

Similarly, since the first j elements of H ′
i ⊕ [H ′

i ⊕ H ′
i−1]

are equal to the first j elements of H ′
i ⊕ H ′

i ⊕ [H ′
i−1] =

H ′
i−1, we have that the first j elements of H ′

i−1 are zero.
So H ′

i−1 is the zero vector. This contradicts our assumption
on H .

Therefore, sorting the columns in descending order
yields an ordering that does not produce the zero vector
as an intermediate column. !

APPENDIX C: FAULT TOLERANCE OF
FLAGGED CONNECTED SYNDROMES

We prove that the flagged connected syndrome proce-
dure given in Sec. VII is fault tolerant. First, we more
precisely describe the construction proposed. As in Sec. II,
we identify certain (sets of) locations of the circuit with
bits of a classical codeword. Here, bit i of classical code-
word j corresponds to all locations after the first CNOT on
flag qubit j from which a Z error would propagate to syn-
drome qubit i and before the last such CNOT. We can see
that each classical codeword will be of length at most Ls.
Having identified locations in the circuit with a classical
codeword, we now construct Z-type flag gadgets corre-
sponding to the parity-check matrix of the BCH code on
at most Ls bits, one gadget for each classical codeword, as
in Sec. II. These flag gadgets have the same form as X -
type flag gadgets, except that a CNOT with control i and
target j now has control j and target i and flag qubits are
prepared in a |+〉 state and measured in the X basis. This
is illustrated in Fig. 7(e).

Lemma 7. The above construction is fault tolerant.

Proof. Consider first the performance of the X -type flag
gadgets, without including the Z-type gadgets. If no Z
errors occur on the X -type flag qubits, syndrome extrac-
tion is fault tolerant. This is because if k ≤ t errors are
suffered on the syndromes, we identify a correction that
leaves at most k errors on the data. This is equivalent to
perfectly identifying the error on the data that has prop-
agated from the syndrome and also suffering k unknown
errors on the data. Crucially, the effect that the errors left
on the data until the flags are measured have on the later
stabilizer measurements can be tracked and accounted for.
So flagging connected syndromes and only applying the
corrections implied by the flags at the end does not impact
fault tolerance.

Similarly, if a Z error on a flag qubit propagates to at
most one syndrome qubit, syndrome extraction is fault
tolerant, since flag qubits are measured in the Z basis
(i.e., Z errors on the flag qubits only propagate to one
(measurement) error in this case). So it is enough to show
that adding Z-type flag gadgets to each X -type flag qubit
ensures this propagation of Z errors and is itself fault
tolerant.
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As in Sec. V B, our construction allows us to identify
the location of up k ≤ t flipped bits on the classical code-
word (i.e., regions with odd-parity Z errors) up to some
imprecision. This imprecision means that we may identify
an error on bit i as an error on bit i + 1. However, a cor-
rection exists that leads to the Z error propagating to at
most one syndrome qubit in both cases (namely, assume
that there was a Z error at the beginning of location i + 1
and correct accordingly). This shows that the Z-type flag
gadgets allow us to ignore the effect of Z-type errors on
the X -type flag qubits.

Finally, we must show that errors on the Z-type flags
do not propagate to high-weight errors. This is clear, since
each Z-type flag is connected to exactly one X -type flag
qubit, which is measured in the Z basis. Therefore, only
X errors affect the measurement result. Since X errors do
not affect the measurement result of the Z-type flags (since
they are measured in the X basis), one error on the Z-type
flags causes at most one measurement error. !

APPENDIX D: REDUCING EFFECTIVE
STABILIZER WEIGHT BY 1

2

In Ref. [9], the authors make the observation that plac-
ing two data CNOTs in each region uniquely identified by
a flag pattern is sufficient to ensure fault tolerance. To
show this, the correction rule is changed slightly so that
instead of applying a correction anywhere in the flagged
region, the correction must be applied between the pair of
data CNOTs. We can apply this optimization to our con-
struction as well, when we repeat the parity-check matrix
at least 2t + 1 times. It might also be possible to apply
this optimization when repeating fewer than 2t + 1 times
but proving this requires stronger characterizations of the
transition columns.

In the case in which we use (t + 1)2 repetitions (as in
Sec. VI) and apply the correction associated with the most
frequent flag subpattern, the modification is obvious. If the
BCH decoder gives {ei} as the correction, where ei corre-
sponds to applying a correction in a certain region, it is
enough to simply assume that the correction falls between
the pair of data CNOTs in that region.

The procedure is similar for the case in which we use
fewer repetitions (Sec. V B). For a given flag pattern P,
the algorithm outlined produces a correction of minimal
weight that has the same flag pattern. The only difference
when we add a data CNOT as a pair to each previous data
CNOT is that the set of minimal-weight corrections may
include non-fault-tolerant corrections. However, the cor-
rection corresponding to the case in which each component
of the correction is between the new pair of data CNOTs
is fault tolerant. So we just need some rules for identi-
fying this correction. It is clear that if every component
correction comes after an odd number of data CNOTs, the
total correction will consist of corrections falling between

pairs of data CNOTs and will hence be fault tolerant. Such a
correction will always exist in the set of minimal-weight
corrections with syndrome P, since shifting a compo-
nent correction past at most one data CNOT within the
same region of flags does not change the weight or the
syndrome.

It is important to note that it may not be possible
to replace each data CNOT (qubit) with two data CNOTs
(qubits) in general. It is only possible in our construction
because of the fact that errors with the same flag pattern
differ in a very specific way—namely, that if two errors
e1, e2 have the same flag pattern, each physical error on
the syndrome can be paired with another physical error on
the syndrome from either e1 or e2 with at most one data
CNOT in between (or two data CNOTs in between when
replacing each data CNOT by two data CNOTs), as proven
in Lemma 3.
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