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Spatial Steerability of GANs via Self-Supervision
from Discriminator

Jianyuan Wang , Lalit Bhagat , Ceyuan Yang , Yinghao Xu , Yujun Shen , Hongdong Li , and Bolei Zhou

Abstract—Generative models make huge progress to the pho-
torealistic image synthesis in recent years. To enable humans to
steer the image generation process and customize the output, many
works explore the interpretable dimensions of the latent space in
GANs. Existing methods edit the attributes of the output image
such as orientation or color scheme by varying the latent code
along certain directions. However, these methods usually require
additional human annotations for each pretrained model, and they
mostly focus on editing global attributes. In this work, we propose
a self-supervised approach to improve the spatial steerability of
GANs without searching for steerable directions in the latent space
or requiring extra annotations. Specifically, we design randomly
sampled Gaussian heatmaps to be encoded into the intermediate
layers of generative models as spatial inductive bias. Along with
training the GAN model from scratch, these heatmaps are aligned
with the emerging attention of the GAN’s discriminator in a self-
supervised learning manner. During inference, users can interact
with the spatial heatmaps in an intuitive manner, enabling them
to edit the output image by adjusting the scene layout, moving,
or removing objects. Moreover, we incorporate DragGAN into
our framework, which facilitates fine-grained manipulation within
a reasonable time and supports a coarse-to-fine editing process.
Extensive experiments show that the proposed method not only
enables spatial editing over human faces, animal faces, outdoor
scenes, and complicated multi-object indoor scenes but also brings
improvement in synthesis quality.

Index Terms—Interpretability, spatial editing, generative
models.

I. INTRODUCTION

G ENERATIVE Adversarial Network (GAN) has made
huge progress to high-quality image synthesis [1], [2],

[3], [4], [5]. GAN is formulated as a two-player game between
a generator (G) and a discriminator (D) [1], where G maps a
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random distribution to real-world observation, and D competes
with G by distinguishing the generated images from the real
ones. It is found that the latent space of G contains disentangled
subspaces, which align with various image attributes, e.g., the
age of human faces [6], the layout of indoor scenes [7], and
the pose of vehicles [8]. Researchers utilize such properties to
study the knowledge learned by GANs and facilitate interactive
editing over the output image.

However, the existing methods [6], [8], [9], [10], [11], [12]
mostly require additional information like extra annotations or
human selection. For a target attribute and a given generator,
they search for an associated direction in the high-dimensional
latent space and then change the image attribute via varying
the latent code along the found direction. A typical approach
is to first sample numerous images from the latent space, label
them regarding the target attribute, and then learn to find the
tangent direction, which could be expensive, unstable, and some-
times inapplicable. Some recent works [8], [10], [12] identify
the essential directions in the latent space via the techniques
like Principal Component Analysis (PCA). Unfortunately, these
methods cannot guarantee which attributes will be found, and
human still needs to distinguish which attribute each direction
corresponds to and select the meaningful ones. Moreover, the
spatial steerability of generative models, such as moving an
object or changing the local appearance of an object in the output
image, is much less explored.

In this work, we propose a novel self-supervision approach
called SpatialGAN to achieve spatial steerability of GANs with-
out searching for steerable directions in the latent space. It allows
human users to perform various spatial manipulations in the im-
age generation, such as moving an object and removing an object
in a scene, changing the style of a region, or globally controlling
the structure/layout of an image. Some examples are shown in
Fig. 1. Previous work shows that the class specific attention maps
emerge in image classification networks [13]. We reveal that the
discriminator of GAN, as a bi-classifier for adversarial training,
also has emerging attention highlighting the informative region
of the synthesized image. Therefore, we incorporate a design of
spatial heatmaps as inductive bias in the generator, and then learn
to align them with the attention maps from the discriminator in
a self-supervised learning manner. Specifically, we randomly
sample heatmaps and encode them into the intermediate layers
of G to guide its spatial focus. To ensure the encoded heatmaps
focusing on the meaningful regions of the synthesized image,
we regularize the generator’s heatmap to be aligned with the
discriminator’s attention map on the synthesized image. In
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Fig. 1. Illustration of Spatial Manipulations. Our method enables various spatial manipulations for image generation, like moving a bed, a cat, or a building
(green arrow), controlling the image layout, removing a drawing (yellow box), and changing the local appearance (blue box).

other words, we utilize the attention map emerging from the
discriminator to guide the heatmap in the generator. The whole
process follows a self-supervised learning manner and does not
involve extra annotation or statistical information. It trains the
generator to synthesize the image based on the input heatmaps,
and improves the spatial steerability of the model, i.e., we could
edit the heatmap to spatially control the output synthesis during
inference. The preliminary result of such spatial steerability was
shown at our conference version [14], where the main focus was
to improve synthesis quality by incorporating heatmaps as an
inductive bias, and the steerability is a byproduct. We initially
demonstrated this ability in single-object scenes, which sharply
focus on one primary element. This could range from artifacts,
human faces, animals, to more contextual settings like a lone car
on a street or an isolated historical building. Such scenes, due to
their focus on a singular primary element, are relatively straight-
forward to analyze and interpret. Here, moving to indoor scenes,
we address the complexities of multi-object indoor scenes. For
instance, a living room scene might include a sofa, a coffee table,
and artwork on the walls. Each element contributes to the scene’s
overall composition, requiring careful placement to ensure a
realistic representation. These scenes pose a notable challenge
due to their multiple points of focus; a single point on the
heatmap is insufficient for capturing the scene’s full dynamics.
To accurately generate such scenes, it is imperative to understand
not only each object individually but also how they collectively
interact within the space. Compared to the conference version,
this journal paper has achieved notable advancements in spatial
steerability. Specifically, (i) to enable the spatial steerability in
complex indoor scenes with multiple objects, we have developed
a new heatmap construction strategy, encoding method, and self-
supervision training objective; (ii) our enhanced method facili-
tates more sophisticated spatial manipulations, such as removing
objects and changing the style of a local region, as illustrated
in Fig. 1; (iii) we have also significantly improved the synthesis
quality of single-object scenes using a refined heatmap process-
ing strategy; (iv) we integrate the recent progress in point-based
manipulation (e.g., DragGAN [15]) into our method. This inte-
gration combines the strengths of both approaches to achieve

high-quality, fine-grained manipulation in a reasonable time.
Our study demonstrates not only the unique merits of our frame-
work but also its complementary functionality with DragGAN,
highlighting the versatility and effectiveness of our approach; (v)
we develop a new user interface to illustrate our manipulation
ability; and (vi) we present an expanded set of results and provide
a comprehensive analysis that highlights significant advance-
ments in both manipulation capability and synthesis quality.

II. RELATED WORK

A. Generative Adversarial Networks

GANs [1] achieve great success in photorealistic image gen-
eration. It aims to learn the target distribution via a minimax
two-player game of generator and discriminator. The generator
usually takes in a random latent code and produces a synthesis
image. Researchers have developed numerous techniques to
improve the synthesis quality of GANs, through a Laplacian
pyramid framework [16], an all-convolutional deep neural net-
work [2], progressive training [17], spectral normalization [18],
[19], and large-sacle GAN training [3], [20]. Some methods
also incorporate additional information into discriminator or
generator, such as pixel-wise representation [21], 3D pose [22],
or neighboring instances [23]. In recent years, the style-based
architecture StyleGAN [4] and StyleGAN2 [5] have become
the state-of-the-art method for image synthesis by separating
high-level attributes. Diffusion models [24], [25], [26], [27]
advance image synthesis rapid in recent two years. They are a
class of probabilistic generative models that iteratively apply
noise to the data and then learn to reverse this process to
generate new samples that resemble the original data. Prior
works attempt to manipulate the images generated by diffusion
models. However, most of these studies have concentrated on
text-based editing [28], [29], [30]. Despite the high image quality
achieved by diffusion models, it is difficult to have real-time
spatial editing with those models. We hope our GAN-based
methods can inspire new works on diffusion-based interactive
editing.
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Fig. 2. Illustration of SpatialGAN. We conduct spatial encoding in G and align its spatial awareness with D attention maps. Specifically, we randomly sample
spatial heatmaps and encode them into G via the spatial encoding layer (SEL). To implement the alignment during training, we calculate D attention maps over
the generated samples via GradCAM.

B. GAN Manipulation

To understand the generation process of GANs and support
human customization of the output image, researchers have been
trying to control the output synthesis. A popular way is to lever-
age the rich semantic information in the latent space of GAN.
They identify steerable properties as some directions in the latent
space and vary the latent code accordingly. For a certain attribute,
they search for a certain direction in the latent space, and then
alter the target attribute via moving the latent code z along the
searched direction [6], [9], [10], [11], [12]. However, for each
pre-trained GAN model (i.e., pre-trained latent space), these
methods require to annotate a collection of the generated samples
to train linear classifiers in the latent space [6], [7], [9] or utilize
sample statistics [31], [32]. These requirements are expensive
and it can only accommodate limited number of attributes. Some
recent works [8], [10], [12], [33] search for steerable directions
using techniques like Principal Component Analysis (PCA) in
an unsupervised manner. Unfortunately, it does not guarantee the
attributes of found directions. For example, in order to achieve
spatial control of the image generation, the user has to manually
check the effect of found directions, while the one corresponding
to the desired spatial manipulation may not exist. Instead, our
proposed method brings spatial steerability of GANs without
searching for steerable directions in the latent space, which
avoids the requirements of extra annotation or human selection.
A concurrent work [34] achieves similar capabilities by learning
a category-specific middle-level representation. However, this
method necessitates a significantly larger amount of training
data and computational resources compared to our approach.
A recent innovation, DragGAN [15], introduces a point-based
manipulation technique that allows for fine editing by perform-
ing optimization on the latent code during inference. While this
method does provide granular control, it is constrained by the
time-intensive nature of the optimization process, particularly
when broader, more coarse adjustments are required. In contrast,
our method facilitates the movement of objects seamlessly and

intuitively without resorting to any form of optimization, thereby
offering a more efficient alternative for real-time spatial editing
in generative models

III. METHOD

In this section, we first analyze the spatial attention of the
GAN’s discriminator in Section III-A, which serves as the guid-
ance for implementing the pseudo attention mechanism in the
generator. We then introduce the hierarchical heatmap sampling
strategy and the heatmap encoding methods in Section III-B.
Compared to our conference version, we find that a heatmap
with too fine-grained scale may not benefit the image synthesis,
and hence proposes a coarse processing of heatmap to improve
the synthesis quality. Furthermore, to address the complexities
of indoor scenes with multiple objects, we update the method of
heatmap sampling and heatmap encoding. In Section III-C, we
discuss utilizing the emerging attention map from the discrim-
inator as a self-supervision signal for image synthesis which
paves the way for spatial editing. The overall framework is
illustrated in Fig. 2, primarily involving two steps: the explicit
encoding of spatial inductive bias into G and using the emerg-
ing attention map from D to supervise G. Different from the
conference version, we also introduce a new self-supervision
objective tailored for intricate indoor scenes, enabling advanced
spatial manipulations. Lastly, in Section III-D, we extend our
discussion to the integration of our SpatialGAN with Drag-
GAN [15], a point-based image manipulation technique. This
synergy leverages the strengths of both approaches, facilitating
more efficient and flexible manipulations in generative models.

A. Spatial Attention of Discriminator

We first investigate the behavior of D in the spatial domain,
because D is designed to differentiate between the real distribu-
tion and the distribution generated by G, i.e., D acts as both an
adversary and a teacher for G in this two-player game.
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Fig. 3. Spatial visual attention at the intermediate layers of the discriminator,
visualized by GradCAM. A bright color indicates a strong contribution to the
final score. ‘64× 64’ indicates being upsampled from a 64× 64 feature map.
The samples are the real images and the images generated by StyleGAN2 [5].

Prior work on network interpretability, like CAM [13], has
found that a classification network tends to focus on some dis-
criminative spatial regions to categorize a given image. However,
the discriminator in GANs is trained with the relatively weak
supervision, i.e., only having real or fake labels. Whether it
can learn the attentive property from such a bi-classification
task remains unknown. To look under the hood, we apply
GradCAM [35] as an interpretability tool on the well-trained
discriminator of StyleGAN2 [5].

Specifically, for a certain layer and a certain class, Grad-
CAM calculates the importance weight of each neuron by
average-pooling the gradients back-propagated from the final
classification score, over the width and height. It then computes
the attention map as a weighted combination of the impor-
tance weight and the forward activation maps, followed by a
ReLU [36] activation. The attention map has the same spatial
shape as the corresponding feature map. In this work, we report
the GradCAM attention maps all using gradients computed via
maximizing the output of D. It reflects the spatial preference of
D in making a ‘real’ decision. In practice we find the attention
maps are almost the same if instead minimizing the output
of D, which indicates the areas that largely contribute to the
decision are the same for a discriminator, no matter positively or
negatively. The region with higher response within the attention
map contributes more to the decision.

Fig. 3 visualizes some GradCAM results under multiple
feature resolutions. Our examination of discriminators trained
on datasets such as LSUN Cat and LSUN Bedroom reveals
insightful aspects of their spatial behavior. We have following
observations: (1) D learns its own visual attention on both real
and generated images. It suggests that D makes the real/fake
decision by paying more attention to some particular regions.
(2) The visual attention emerging from D shows a hierarchical
property. In the shallow layers (like 64× 64 and 32× 32 resolu-
tions), D is attentive to local structures such as edge lines in the
image. As the layer goes deeper, D progressively concentrates

on the overall location of discriminative contents, e.g., the face
of a cat. (3) The hierarchical attention maps have fewer ‘local
peaks’ at more abstract feature layers with a lower resolution.
For example, there is only one peak in the 4× 4 attention maps.

Building on this understanding, the discriminator of GANs
has its own visual attention when determining a real or fake
image. However, when learning to transform a latent vector into
a realistic image, the generator receives no explicit clue about
which regions to focus on. Specifically, for a particular synthesis,
G has to decode all the needed information from the input latent
code. Furthermore, G has no idea about the spatial preference
of D on making the real/fake decisions. In [14], we introduced
the concept of deploying pseudo attention in G to enhance
its synthesis capability and spatial steerability. In subsequent
sections, we further refine our methods for both indoor and
non-indoor scenes, leading to improvements in synthesis quality
and spatial steerability.

B. Encoding Spatial Heatmap in Generator

Hierarchical Heatmap Sampling: Inspired by the observation
in Section III-A, we propose a hierarchical heatmap sampling
algorithm for single-object scenes. The heatmap is responsible
for teaching G which regions to pay more attention to. Each
heatmap is abstracted as a combination of several sub-regions
and a background. We formulate each sub-region as a 2D map,
Hi, which is sampled subject to a Gaussian distribution,

Hi ∼ N (ci, cov), (1)

where ci and cov denote the mean and the covariance. Ac-
cording to the definition of 2D Gaussian distribution, ci just
represents the coordinates of the region center. The final heatmap
can be written as the sum of all sub-maps,H =

∑n
i=1 Hi, where

n denotes the total number of local regions for G to focus on.
As pointed out in the prior works [4], [7], the generator in

GANs learns image synthesis in a coarse-to-fine manner, where
the early layers provide a rough template and the latter layers
refine the details. To match such a mechanism and be consistent
with the hierarchical spatial attention of discriminators, we
design a hierarchical heatmap sampling algorithm. Concretely,
we first sample a spatial heatmap with (1) for the most abstract
level (i.e., with the lowest resolution), and derive the heatmaps
for other resolutions based on the initial one. The number of
centers, n, and the covariance, cov, adapt according to the
feature resolution.

Multi-Object Heatmap Sampling: Given that indoor scenes
often have several independent objects, a straightforward idea is
to model each object by a hierarchical set of Gaussian heatmaps
as discussed above and encode such a complicated inductive bias
into each layer ofG. However, with hierarchical sampling, mod-
eling multiple objects in an image would lead to too many sub-
regions at high-resolution, which would interact and possibly
conflict with each other. In practice, we find such a conflict would
let the model confused and hinder the optimization during the
training process. Especially, a small modification of a heatmap
sub-region would spread to other sub-regions and result in a
dramatic change over the output synthesis, which troubles the
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Fig. 4. User interface for interactive editing. Users can drag the Gaussian centers to alter heatmaps and synthesize an image corresponding to the new heatmap.
In addition to that users can also change the sigma value of the heatmap center and the local style corresponding to that center. The Bedroom model (left) uses the
same heatmap for all the resolutions while the Cat model (right) uses hierarchical heatmaps. Readers are suggested to view the demo video of interactive editing
on our project page.

Fig. 5. Controlling the room layout by using the same spatial heatmap. For
each row, we adopt different latent codes but use the same spatial heatmap. The
images in the same row show a similar spatial layout, while their appearances
are different. The appearances include colour, texture, lighting, and so on.

spatial editing. Therefore, we abandon the hierarchical sampling
for the multi-object setting. Instead, we model multiple objects
by different Gaussian distributions at the coarsest resolution,
and use this heatmap as the inductive bias for all the synthesis
layers of G, which can be noticed in our illustration for the user
interface Fig. 4. The heatmap in fact points to the rough location
of various objects, which can be viewed as an abstracted scene
layout. In this way, we can control the input heatmap to keep the
scene layout, as shown in Fig. 5.

Heatmap Encoding: We incorporate the spatial heatmaps into
the intermediate features of G to raise its spatial controllability
(no matter for single-object or multi-object scenes). It usually
can be conducted in two ways, via feature concatenation or
feature normalization [37], [38]. We use a spatial encoding
layer (SEL), whose two variants are denoted as SELconcat and
SELnorm. Specifically, the variant SELconcat processes the con-
catenation of heatmap and feature via a convolution layer, and
outputs new feature for the next layer. Inspired by SPADE [38],
the variant SELnorm integrates the hierarchical heatmaps into

Fig. 6. Spatial Encoding, where the left shows how the spatial encoding layer
(SEL) works over StyleGAN2 at each resolution, and the right describes the
internal of the SELnorm. The symbol ‘S’ represents the style in StyleGAN2,
‘N’ is the noise, and ‘H’ indicates the spatial heatmap. Derived from [38], we
incorporate the spatial heatmaps into G via normalization and denormalization.

the per-layer feature maps of G with normalization and denor-
malization operations, as

SELnorm(F,H) = φσ(H)
F − µ(F )

σ(F )
+ φµ(H), (2)

where F denotes an intermediate feature map produced by G,
which is with the same resolution as H . µ(·) and σ(·) respec-
tively stand for the functions of computing channel-wise mean
and standard deviation. φµ(·) and φσ(·) are two learnable func-
tions, whose outputs are point-wise and with a shape of (h,w, 1).
Besides, as shown in Fig. 6, we use a residual connection to
stabilize the intermediate features. If not particularly specified,
we adopt the variant SELnorm since it shows a slightly better
performance.

It is worth noting, although we learn the SELnorm architecture
from SPADE [38], these two methods are clearly different since
SPADE targets at synthesizing images based on a given semantic
segmentation mask, whose training requires paired ground-truth
data, while our model is trained with completely unlabeled data.
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Fig. 7. Illustration of SELindoor , where we integrate the heatmapH and style
S to avoid modifying the intermediate features twice like in Fig. 6.

Meanwhile, SELnorm is just a replaceable component of our
approach.

Coarse Heatmap Processing: To better understand the role
of heatmap encoding, we study the mapping from the input
heatmap to the synthesized image. In our conference ver-
sion [14], the heatmapH is sampled as the same size as the target
image, processed by function φµ(·) and φσ(·), and then down-
sampled to match the resolution of intermediate features. It was
designed to keep the heatmap continuous and consistent with the
final output. However, here we find this is not the optimal choice.
Instead, if we first down-sample the fine-grained heatmap to the
intermediate resolution and then process it via a convolution
layer, the synthesis quality would be improved and the compu-
tation cost is decreased. In other words, we process a ‘coarse’
heatmap. We speculate two reasons for this observation: (1) A
spatially continuous inductive bias may not be necessary. The
heatmap (sampled by a 2D Gaussian distribution) is continuous
while the real attention could be discrete, because the real-world
distribution of objects may be discrete. The network possibly
only needs a rough spatial structure instead of a fine-grained
guidance. (2) For heatmap processing, a global understanding
matters. With the same convolutional layer, down-sampling the
input in fact enlarges the receptive field by times, providing a
global view. We verify these two hypotheses and provide detailed
analysis in Section IV-C.

Multi-Object Heatmap Encoding: To further improve the spa-
tial steerability of the model, we review the heatmap encoding
process. It is worth noting that the intermediate features of
G are successively modified by heatmap H and style S, as
illustrated by the left of Fig. 6. This architecture was designed
following the philosophy that for an image, the spatial structure
should be determined first and then comes to other components
like appearance. However, the feature change brought by styles
may weaken the effect of spatial heatmaps. We empirically
find this phenomenon is obvious in indoor scenes, where we
suppose the multi-object setting increases the difficulty of uti-
lizing the encoded spatial heatmaps. Therefore, we propose a
variant SELindoor, as shown in Fig. 7. It integrates the spatial
heatmaps H and styles S together and encodes their combi-
nation to G, which only modifies the generator features once.
Since H is a heatmap within the range (0,1), the integration
can be effectively conducted via an element-wise product, that

SELindoor(S,H) = S ∗H , from (1, 1, c) and (h,w, 1) to a
shape of (h,w, c).

Moreover, since now one 2D Gaussian (sub-heatmapHi) rep-
resents a separate object, we could employ a unique appearance
code for each sub-heatmap, to reduce their interaction. We utilize
n style codes Si to depict the indoor objects and one Sbg to
control the background appearance:

SELindoor(S,H) =
n∑

i=1

Si ∗Hi + Sbg. (3)

The value of Hi would decay to zero in its edge areas and hence
the corresponding appearance code Si would gradually lose the
effect. All the style codes Si and Sbg share the same feature
dimension. For simplicity, we encode SELindoor(S,H) into G
as same as encoding S, just except being spatial-aware. This
new heatmap encoding method enhances the spatial steerability
of the model, supporting the editing operations like removing
an object or changing the style of a region, as shown in Fig. 1.

C. Spatial Alignment via Self Supervision

Encoding heatmaps into G can explicitly raise its spatial
steerability, but the heatmaps fed intoG are completely arbitrary.
Without further guidance, how G is supposed to utilize the
heatmaps is ambiguous, which influences the spatial steerability
of the model. For example, G has no idea about ‘whether to
pay more or less attention to the highlighted regions in the
heatmap’. Instead, D learns its own visual attention based on
the semantically meaningful image contents. To make the best
usage of the introduced spatial inductive bias, we propose to
involve the spatial attention of D as a self-supervision signal,
which does not require any extra annotation.

Specifically, at each optimization step of G, we use D to pro-
cess the synthesized image and generate a corresponding visual
attention map with the help of GradCAM. Besides competing
with D, G is further trained to minimize the distance between
the attention map induced from D and the input heatmap H .
The loss function can be written as

Lalign = || GradCAMD[G(H, z)]− H ||1. (4)

We truncate the Lalign values if smaller than a constant τ ,
since the sampled heatmaps are not expected to perfectly match
the real attention maps shaped by semantics. The threshold
τ is set as 0.25 for all the experiments. Note that D is not
updated in the process above and only used as a self supervision
signal to train G. Such a regularization loss aligns the spatial
awareness of G with the spatial attention of D, narrowing the
information gap between them. It employs D to tell G how to
leverage the encoded inductive bias and hence raises the spatial
controllability of G. As an adversary, D can also be a good
teacher.

Multi-Object Self-Supervision Objective: For conciseness, the
sub-heatmaps for different indoor objects are treated equally
in the sampling stage. However, some objects may take over
much attention in real-world situations, e.g., a very large bed.
Consequently, we relax the training objective for spatial aware-
ness alignment. Still leveraging discriminator attention as the

Authorized licensed use limited to: UCLA Library. Downloaded on February 22,2025 at 00:39:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: SPATIAL STEERABILITY OF GANs VIA SELF-SUPERVISION FROM DISCRIMINATOR 9499

self-supervision signal, we compare it to the heatmapH and each
sub-heatmapHi, with the minimum distance as the optimization
term:

Lalign_indoor = min
n+1

|| GradCAMD[G(H, z)]− Ĥ ||1, (5)

where Ĥ ∈ {H1, H2, . . ., Hn, H}. The value truncation and
discriminator freezing in Lalign are still used here.

D. Synergy Between DragGAN and SpatialGAN

In this section, we detail the integration of our SpatialGAN
method with the latest point-based image manipulation tech-
nique, DragGAN [15]. DragGAN demonstrates proficiency in
relocating specific parts of an image from one point to another.
Specifically, DragGAN assumes the feature space of a GAN
model is discriminative enough to support precise point tracking
and motion supervision, which is consistent with the observation
in our paper. Therefore, the method optimizes the GAN latent
code w to encourage some given handle points (i.e., starting
points) to move towards their target destinations. To ensure sta-
ble movement and precise manipulation, this process is typically
repeated 30− 200 times.

Direct application of DragGAN’s techniques to SpatialGAN
yielded inferior manipulation results, mainly because of the
architectural differences between SpatialGAN and StyleGAN2,
especially the inclusion of heatmaps in our design. We discov-
ered that effective manipulation in SpatialGAN requires point-
based optimization of both the latent space and the heatmaps. We
have explored two distinct approaches for heatmap optimization:
one by directly optimizing the pixels of heatmaps H , and the
other by focusing on the optimization of the heatmap centers
c. Preliminary results indicate that optimizing the centers of
heatmaps yields more effective manipulation. By simultane-
ously optimizing heatmap centers and latent codes, we not
only augment DragGAN’s capabilities to support SpatialGAN
but also drastically reduces the optimization steps for image
manipulation, requiring just 15–70 steps

However, although DragGAN shows an impressive ability
for granular manipulation, its iterative optimization during in-
ference is time-consuming. Unlike DragGAN, our SpatialGAN
does not require any optimization process during inference. To
leverage the strengths of both methodologies, we propose a two-
step manipulation process: initially, our method is employed for
coarse movement, followed by the application of DragGAN to
refine the movement. Given the handle points and the target
destinations, SpatialGAN will first manipulate the image by
altering the heatmaps to enable the corresponding movement,
which can skip a lot of iterative optimization steps required
by DragGAN. Then, we adopt DragGAN over the manipulated
image to ensure the handle points precisely match the target
destinations. Specifically, the coarse movement is guided by the
condition: if the starting points are within a specified radius r of
the heatmap centers ci, the centers are moved to new positions
c′i according to the formula:

c′i = ci + α · (t− p), (6)

where p is the start point, t is the target point, and α is a factor
determining the extent of movement towards the target. In cases
where the starting points are outside the radius, the heatmap cen-
ters remain unchanged. Following this, point-based optimization
takes over for fine manipulation, where the heatmap centers and
latent code are jointly optimized. The process, described here for
a single handle point, can be easily extended to multiple points.
This hybrid methodology significantly reduces the optimization
steps required for precise alignment, harnessing the strengths of
both SpatialGAN’s efficient coarse adjustment and DragGAN’s
fine manipulation. As a result, the optimization steps are further
condensed to approximately 10–20 iterations, greatly diminish-
ing the time required for manipulation.

The successful integration of SpatialGAN with DragGAN
demonstrates the adaptability of our method, illustrating its com-
patibility with various manipulation techniques. This integration
highlights the potential of SpatialGAN as an advanced toolkit
for the community engaged in spatial editing within generative
models. The comprehensive methodology of our approach, is
systematically illustrated in Fig. 8.

IV. EXPERIMENTS

We evaluate the proposed SpatialGAN on multiple bench-
marks, covering faces, indoor scenes, and outdoor scenes. Sec-
tion IV-A provides the implementation details. The main com-
parison and experimental results are presented in Section IV-B,
that our SpatialGAN can support multiple types of editing, en-
hance the spatial controllability of G, and improve the synthesis
quality. Section IV-C includes comprehensive ablation studies.

A. Implementation Details

Datasets: We conduct the experiments on the FFHQ [4],
LSUN Cat [39], Church [39], and Bedroom [39] datasets. The
FFHQ dataset consists of 70 K high-resolution (1024× 1024)
images of human faces, under Creative Commons BY-NC-SA
4.0 license [40]. Usually, the images are horizontally flipped
to double the size of training samples. The LSUN Cat dataset
contains 1600 K real-world images of different cats, the LSUN
Church dataset includes 126 K images with church scenes, and
the LSUN Bedroom dataset provides around 300 K complex
indoor bedroom images from different views. Following the
setting of [41], we respectively take 200 K LSUN Cat samples
and 200 K LSUN Bedroom images for training. We use all the
FFHQ and LSUN Church images for training. It is worth noting
that all images are resized to 256× 256 resolution.

Spatial Heatmap Sampling and Encoding: In practice, we
find the GradCAM maps on the fine resolutions are too sensitive
to semantic cues. Therefore, we only conduct encoding on the
level 0,1,2 of G, i.e., resolution 4× 4, 8× 8, and 16× 16. For
non-indoor scenes, we heuristically generate 1,2,4 centers (in
other words, sub-heatmaps) on these three levels. The center for
the level 0 heatmap, denoted as c00, is sampled using a Gaussian
distribution with a mean positioned at half the height and width
(h2 ,

w
2 ), and a standard deviation of a third of the height and

width (h3 ,
w
3 ). To maintain heatmap consistency across different

levels, the centers for levels 1 and 2 (c1k and c2k) are sampled
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Fig. 8. Overview of SpatialGAN + DragGAN pipeline. In this example, the cat’s face is initially marked for repositioning. Subsequently, a coarse spatial
adjustment is performed by shifting heatmap centers. Then we jointly optimize the heatmap centers and latent codes, to culminate in the precise alignment of
features with predetermined targets, highlighting the model’s fine-tuning abilities for detailed editing.

based on the position of the level 0 center. In this context, c1k
and c2k represent multiple potential centers at levels 1 and 2,
respectively, with ‘k’ indicating the specific center number. The
standard deviations for these are set at (h6 ,

w
6 ). It’s important to

note that if the center at level 0 shifts, the heatmaps at other levels
will adjust accordingly. Following the coarse-to-fine manner, we
decrease each center’s influence area level by level. Besides, we
drop the sampling if the level 0 center is outside the image. In
our observation, the results of the proposed method are robust to
these hyperparameters for heatmap sampling. Therefore, we use
the same hyperparameters for heatmap sampling on the FFHQ,
LSUN Cat, and LSUN Church datasets. For the indoor setting,
we take n = 3 sub-heatmaps to construct a complete heatmap,
whose centers are sampled via a Gaussian distribution with a
mean of (h2 ,

w
2 ) and a standard deviation of (h2 ,

w
2 ). We encode

this heatmap to all the synthesis layers of G. More implementa-
tion details are provided in the Supplementary Material.

Training and Evaluation: We implement our SpatialGAN
on the official implementation of StyleGAN2, such that the
state-of-the-art image generation method StyleGAN2 [5] serves
as our baseline. We follow the default training configuration
of [41] for the convenience of reproducibility, and keep the
hyperparameters unchanged to validate the effectiveness of our
proposed framework. For example, we train all the models with
a batch size of 64 on 8 GPUs and continue the training until
25 M images have been shown to the discriminator. Our method
increases the training time by around 30% compared to the base-
line. We use FrÃ©chet Inception Distance (FID) [42] between
50 K generated samples and all the available real samples as the
image generation quality indicator.

B. Main Results

Enhanced Spatial Controllability: Building on our previous
discussion, we introduced spatial awareness into the generator
(G), aiming to enhance its spatial steerability. In this section, we
present qualitative results from various datasets to demonstrate
that G effectively concentrates on areas indicated by the input
heatmaps, thereby facilitating a range of spatial editing appli-
cations. For the indoor scenes, by keeping the spatial heatmaps
unchanged, we could control the overall layout (Fig. 5). The

bedrooms generated with the same heatmap (each row) will ar-
range objects in a similar manner, even though the object seman-
tics vary. Furthermore, for the indoor scenes with multi-object
heatmap sampling, we can move objects as shown in Fig. 9(a).
For example, in the right most column of Fig. 9(a), we drag
the sub-heatmap center to the left, and the bed correspondingly
moves to the left, with the object trajectory denoted by a yellow
arrow. It is also worth noting that G could adaptively modify the
nearby texture and structure to produce a reasonable image.

Moreover, since we model the objects with independent sub-
heatmaps and style codes for the indoor setting, it allows remov-
ing objects or changing the style of a partial region. As shown
in Fig. 9(b), we can remove various objects in the indoor scenes.
For example, in the left two columns, a window is gradually
removed as we decrease the area of the associated sub-heatmap.
In other columns, the objects like a painting or a bed are removed.
Although the model slightly adjusts the nearby region to keep the
synthesis reasonable, the overall image is unchanged. The partial
editing samples are shown in Fig. 9(c). As mentioned in Section
III-B, we can edit the style code of a specific sub-heatmap and
hence change the appearance of the corresponding region. For
instance, we can edit the region specified by the blue boxes to
different types of paintings and windows.

Turning our attention to single object scenes, we find that
by keeping the spatial heatmaps unchanged, we can control the
pose of human faces and the viewpoint of churches as shown
in Fig. 10(a) and (b). For instance, as we move the level 0
heatmap of the sample in row 1 in Fig. 10(c), the cat bodies
move under the guidance of heatmap movement, indicated by
red arrows. In the second row of Fig. 10(c), the change in level
1 heatmap leads to a movement in cat eyes. As we slightly
push the top two centers of the level 2 heatmap to the right,
the cat ears subtly turn right while other parts, even the cat
whiskers, remain unchanged. Overall, these qualitative samples,
spanning both indoor and non-indoor scenes, demonstrate the
spatial steerability introduced by our SpatialGAN.

Quantitative Analysis of Spatial Steerability: In order to as-
sess our method’s spatial steerability in a quantitative manner,
we examine how the movement of objects is influenced by
alterations in the heatmap. Ideally, if the center of a sub-heatmap
Hi moves by certain pixels, the corresponding object should
also move by the same pixels in the same direction. With
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Fig. 9. Manipulating Multi-Object Indoor Scenes. (a) Rearranging Objects: By moving one sub-heatmap center (yellow arrows), corresponding objects like
windows and beds are disentangled and moved, with the generator adjusting nearby regions for coherence. (b) Removing Objects: Objects can be removed by
eliminating their associated sub-heatmaps, as shown by the gradual removal of elements like windows and beds, leaving the background and other objects mostly
unchanged. (c) Replacing Objects: The appearance of local regions is altered using unique style codes for each sub-heatmap, enabling variations in paintings,
windows, and light types, as indicated by the blue and green boxes.
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Fig. 10. Qualitative results on the FFHQ (a), the LSUN Church (b), and LSUN Cat dataset (c). Each row uses the same spatial heatmap but different latent codes,
and each column uses the same latent code. We can see that the spatial heatmap roughly controls the pose of the face and the viewpoint of the church building,
which facilitates the interactive spatial editing of the output image. To further show the hierarchical structure, we move the heatmap to the fine-grained level in
the last row. Different from the body movement, the change in 8× 8 heatmap (two centers) mainly moves the cat eyes, and the change in 16× 16 heatmap (four
centers) leads to subtle movement of the cat ears. It is worth noting that, as the content is being manipulated, our G knows to adjust the nearby regions to make
everything coherent.

the help of an off-the-shelf instance segmentation model like
Mask RCNN [43], we can roughly quantify the movement of a
specific object. In detail, for one sub-heatmap Hi, we view its
corresponding object as the one where Hi center lies in. Its
object center is the average position of the pixels belonging
to this object, segmented by Mask RCNN. We move the Hi

center by p and generate a new image, where p is a random 2D
vector. Assuming the overall appearance remains unchanged,
we traverse the objects in the new image and look for the object
with the smallest feature distance to the one in the original
image. We view it as the moved object and compute the vector
of its center movement as q. Project q into the p to get its
movement in the desired direction, p·q

∥p∥ as a scalar. We pick its
ratio over the desired movement scalar, p·q

∥p∥2 , as the indicator
of how effectively the heatmap controls the synthesis, named as
Co-move Ratio. The closer this indicator is to 1, the better. We
evaluate a model’s Co-move Ratio by averaging the results of
50 k synthesis samples. The ablation study was conducted on
the indoor dataset LSUN Bedroom because it contains multi-
ple independent objects and there are publicly available Mask
RCNN models trained on similar scenes.

The results are provided in Table I. The baseline StyleGAN2
is denoted as ‘N/A’ because it does not support such a moving
manipulation. It is noticed that our conference version can move
objects but just roughly, with a Co-move Ratio of 0.32, because

TABLE I
QUANTITATIVE ANALYSIS ON THE IMPROVEMENT OF SPATIAL

CONTROLLABILITY

this version was not designed for scenes with multiple indepen-
dent objects. By adopting multi-object heatmap sampling, we
mitigate the sub-heatmap conflict mentioned in Section III-B
and increase the ratio to 0.41. The largest improvement, from
0.41 to 0.62, is brought by SELindoor, where we (1) integrate
the spatial heatmaps H and styles S to ensure only modifying
the intermediate features once, and (2) employ a unique appear-
ance code for each sub-heatmap. The indoor self-supervision
objective further improves the ratio to 0.69. These results verify
the effectiveness of our designs for multi-object scenes, which
improves the model’s ability to move objects as desired.

Comparison of Manipulation Ability: As discussed before, we
design a two-stage manipulation strategy to leverage the benefits
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TABLE II
QUANTITATIVE ANALYSIS OF SPEED PERFORMANCE

of both SpatialGAN and DragGAN, which largely reduces the
time required for point-based manipulation. Here we provide
a quantitative analysis of the speed in Table II, averaging the
results from 50 manipulation samples. For example, for the
LSUN Cat dataset, moving the cat’s face by 60 pixels takes
DragGAN approximately 31 seconds and30− 200optimization
steps. Instead, the combination of SpatialGAN and DragGAN
not only reduces the manipulation time to 11 seconds but also
significantly decreases the optimization steps to 10− 20. This
hybrid two-stage approach offers both coarse and fine manip-
ulation capabilities, providing a more efficient, dynamic, and
versatile tool for image manipulation tasks. Please also notice
that, without point-based optimization, our SpatialGAN can
conduct manipulation within just one second, although it does
not support granular manipulation.

In addition to speed comparisons, we evaluated the effective-
ness of our SpatialGAN-DragGAN hybrid approach in terms
of the relative distance between the start and target points dur-
ing image manipulation tasks. With DragGAN alone, the final
average distance relative to the image size was approximately
0.015. When employing our SpatialGAN combined with Drag-
GAN, this relative distance averaged around 0.027. This result
demonstrates that, while our method is three times quicker than
DragGAN alone, both methods exhibit comparable accuracy in
spatial manipulation.

Interactive Interface: To further enhance user engagement
and control, we have developed an interactive interface (UI),
as illustrated in Fig. 4. Compared to the conference version,
this interface is versatile, supporting models trained under
both multi-object indoor and single-object settings. Moreover,
utilizing a well-trained SpatialGAN model, users can initiate
the process by selecting a random seed to generate an initial
image. The interface automatically generates heatmaps with
preset centers and sigma values. Users can interactively modify
these heatmaps by clicking and dragging the centers, triggering
real-time image synthesis reflective of these adjustments. The
heatmap alterations are displayed in sequence, corresponding to
feature resolutions of 4× 4, 8× 8, and 16× 16, or levels 0, 1,
and 2, visible on the interface’s right side. For the indoor model,
a consistent multi-object heatmap is applied across all layers,
while for other models, a hierarchical heatmap structure is em-
ployed. Another addition to our interface is the ability to adjust
the heatmap areas. In the context of the multi-object setting, this
feature offers the ability to manipulate the size or even facilitate
the removal of objects associated with specific heatmap centers.
Furthermore, for nuanced control in the multi-object setting,

TABLE III
QUANTITATIVE RESULTS ON THE LSUN CAT, FFHQ, LSUN CHURCH, AND

LSUN BEDROOM DATASETS, ALL TRAINED WITH 25M IMAGES SHOWN TO
DISCRIMINATOR

TABLE IV
ABLATION STUDY OF HEATMAP SAMPLING ON THE SINGLE-OBJECT SCENES

users can select specific centers to alter their corresponding
heatmap areas.

Additionally, our user interface now integrates with the Drag-
GAN optimization pipeline, enhancing the granularity of user
control. As discussed in Section III-D, the combined optimiza-
tion process allows users to precisely adjust object placements
with DragGAN, as well as to perform coarse manipulations
with SpatialGAN. Consequently, the UI provides an intuitive
platform for engaging with the advanced features of the system,
streamlining the user experience in creative image manipulation.

Enhanced Synthesis Quality: SpatialGAN, our proposed
model, notably elevates the quality of synthesis. We present
quantitative evidence of this improvement in Table III. Relative
to the baseline StyleGAN2 and our conference version EqGAN-
SA, SpatialGAN demonstrates consistent enhancements across
a variety of datasets. For the indoor dataset LSUN Bedroom,
SELindoor and Lalign_indoor show an impressive performance,
improving the baseline FID from 4.27 to 2.72. It is also better
than our conference version, whose FID is 2.95, which shows the
advantage of the specific design for multi-object scenes. Tran-
sitioning to non-indoor datasets, the LSUN Cat dataset saw an
FID improvement from 8.36 to 6.57. For context, our conference
version had an FID of 6.81 for this dataset. Similarly, the Church
dataset’s FID was reduced from 3.73 to 2.86, surpassing the
conference version’s FID of 3.11. The results on the LSUN Cat,
FFHQ, and LSUN Church datasets are slightly better than our
conference version [14] because we adopt the coarse heatmap
processing introduced in Section III-B.

C. Analysis and Discussion

Hierarchical Heatmap Sampling for Single Object Scenes:
We conduct an ablation study to validate the effect of hier-
archical heatmap sampling on non-indoor scenes, as provided
in Table IV. Specifically, 2D Gaussian noise is first considered
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TABLE V
ABLATION STUDY OF SPATIAL ENCODING ON SINGLE-OBJECT SCENES

as a straightforward baseline experiment since it provides non-
structured spatial information. Accordingly, 2D Gaussian noise
introduces no performance gains. It indicates, merely feeding
a spatial heatmap but without any region to be emphasized is
insufficient to raise spatial awareness.

Besides, we also use multiple-resolution spatial heatmaps
but discard the hierarchical constraint, referred to as Non-Hie
in Table IV. Namely, spatial heatmaps at different resolutions
are independently sampled. The baseline is obviously improved
by this non-hierarchical spatial heatmap, demonstrating the ef-
fectiveness of the spatial awareness of G. Moreover, when our
hierarchical sampling is adopted, we observe further improve-
ments over the synthesis quality.

Spatial Encoding for Single Object Scenes: In order to raise
the spatial controllability of G, there exist several alternatives to
implement spatial encoding. Therefore, on non-indoor scenes,
we conduct an ablation study to test various methods. For
example, the first way of feeding the spatial heatmap is to flatten
the 2D heatmap as a vector, and then concatenate it with the
original latent code. This setting aims at validating whether
maintaining 2D structure of spatial heatmap is necessary. Be-
sides, we also use two different SEL modules (i.e., SELconcat

and SELnorm) mentioned in Section III-B. Table V presents
the results. Apparently, simply feeding the spatial heatmap but
without the explicit 2D structure leads to no gains compared to
the baseline. It might imply that it is challenging to use a vector
(like the original latent code) to raise the spatial awareness of the
generator. Instead, the proposed SEL module could introduce
substantial improvements, demonstrating the effectiveness of
the encoding implementation. For a fair comparison, all the
ablation studies use Lalign.

Exploring Heatmap Dynamics in Point-Based Optimization:
As previously discussed in the Section III-D, the integration of
DragGAN into our method involves the simultaneous optimiza-
tion of heatmap and latent code for point-based manipulations. In
the beginning, we observed that optimizing only the latent code
– while keeping heatmap points static for single-object scenarios
– imposes limitations. The unchanged heatmap restricts image
transformation, while the evolving latent code attempts to in-
duce change. This discrepancy hinders effective manipulation,
leading to distorted outcomes without meaningful alteration.

Fig. 11. Speed Comparison between DragGAN and SpatialGAN. The images
illustrate shifting a cat’s face a few pixels to the right. While DragGAN requires
approximately 15 seconds to complete this task, our SpatialGAN accomplishes
the same in just 1 s.

Fig. 12. Illustrative comparison of optimization strategies in DragGAN. Ini-
tial Optimization (Top): Shows the Initial image. Heatmap Adjustment
(Middle): Demonstrates the effect of modifying the heatmap values, which leads
to selective adversarial heatmap adjustments. Center Optimization (Bottom):
Depicts the outcome of optimizing heatmap centers, which results in efficient
and harmonious image manipulation. The columns represent the progression of
heatmaps.

Consequently, we experimented with modifying the pixel
values of heatmaps H together with the latent code. This ap-
proach resulted in selective pixel adjustments. As depicted in
Fig. 12, we can observe that only certain pixel values of the
heatmaps would be changed, and such changes mostly happen
at the 32× 32 level. Although this strategy achieved the desired
image manipulation, its lack of explainability and the challenge
it poses for further user manipulation are significant drawbacks.

To synergize with our spatial GAN method, we then op-
timize the heatmap centers, guiding them towards the in-
tended directional movement of images. This strategy en-
ables the heatmap to not only accommodate but also en-
hances the DragGAN optimization process. We employed
an alternating optimization strategy, where in one itera-
tion, we focused on modifying the latent code to initi-
ate directional changes, followed by adjusting the heatmap
centers in the subsequent iteration. This collaborative
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Fig. 13. Robustness and Consistency. We test the response of D to noisy
images and bad generation samples in the top. The bottom visualizes that the
D’s attention is consistent over the training.

adjustment of both elements demonstrated a more efficient and
harmonious manipulation process.

Whether Visual Attention of D is Robust and Consistent? As
discussed in Section III-C, the self-supervised alignment loss
uses the D attention maps to guide G. It assumes the attention
map fromD is stable enough to serve as a self-supervision signal
and valid over the whole training. To validate the design, we
first explore the robustness of D. As shown in the top left of
Fig. 13, we add random Gaussian noise to a real image from the
LSUN Cat dataset, destroying its texture. As the noise amplitude
increasing, we can visually see the noise pattern and the local
appearance has been over smoothed. D is still attentive to the
original important regions, e.g., the human and cat faces. We
then test its response to terrible samples generated by a poorly-
trained G, illustrated in the right top of Fig. 13. The samples
contain distorted human, cat, and background. That is, the visual
attention of D is sufficiently robust to the noise perturbation and
the generated artifacts. Furthermore, as indicated at the bottom
of Fig. 13, we validate whether the visual attention is consistent
throughout the entire training process. At a very early stage of
training,D has already localized the discriminative regions. The
focus of such visual attention is consistently maintained till the
end of the training. The robustness and consistency property of
D attention could successfully provide a support for our self-
supervision objective.

Visualization of Generator Intermediate Features: The spatial
attention of generator is worth investigating. However, CAM
or GradCAM is not a suitable visualization tool because they
both require a classification score, which is not applicable for a
generator. Introducing another classifier may be a solution but
it would introduce the bias of the classifier. As an alternative
solution, we could directly average the intermediate features of
the generator along the feature dimension. Such a visualization
can be viewed as the contribution of a layer towards certain
pixels. As shown in Fig. 14, our generator shows a much clearer
spatial awareness than the baseline which presents random spa-
tial focus, particularly at the 32× 32 resolution.

Fig. 14. Visualization of intermediate features of the generator. Our method
shows a much clearer spatial awareness than the baseline, whose spatial focus
is close to random.

Fig. 15. Real image manipulation. We apply GAN inversion on a real image
to invert it to the latent space of our model, and then enlarge its window and
remove its painting.

Is a Heatmap Necessary to be Continuous? As discussed in
Section III-B, coarse heatmap processing could improve the
synthesis quality (Table III) even though it reduces the heatmap
continuity, which is somehow counter-intuitive. We study the
importance of heatmap continuity by randomly inserting ex-
treme values (0 or 1) into heatmaps, i.e., adding impulse noise.
It would lead to some local jumps but keep the overall spatial
structure in heatmaps. The synthesis quality stays stable as we
gradually increase the impulse noise percentage. For example,
on the LSUN Cat dataset, the model keeps an FID of 6.93 even
if using impulse noise over 5% heatmap pixels. The synthesis
quality is not sensitive to the continuity of the spatial inductive
bias, possibly because the real-world semantics distribution is
not necessary to be continuous. Besides, we empirically find that
heatmap continuity would also not affect spatial controllability.

How Important is the Receptive Field for Heatmap Process-
ing? Another hypothesis for the effect of coarse heatmap pro-
cessing is that a global understanding matters. A large receptive
field will introduce a global view of the spatial structure. Without
coarse heatmap processing, the FID of our model on the LSUN
Cat dataset is 6.81, with the convolution kernel size as 3× 3.
Increasing the kernel size to 7× 7 would improve the result
to 6.72. If adopting dilated convolution [44] to further increase
the receptive field, it would become 6.61, closer to the result
of coarse heatmap processing (6.57). The experiments verify
our speculation that a global understanding of spatial structure
helps. For simplicity, we do not use dilated convolution in our
method.

Real Image Manipulation: Fig. 15 shows an example of
real-image manipulation on a bedroom scene. We first invert
the real image into the latent space and then alter the heatmap
to manipulate the inverted image. It should be noted that the
editability of the inverted latent code highly depends on the GAN
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Fig. 16. More qualitative samples of the of SpatialGAN + DragGAN pipeline,
where we first perform manipulation using SpatialGAN, followed by DragGAN,
and finally another editting by SpatialGAN.

inversion quality, and it remains very challenging to recover the
details of multi-object images [45]. Our method can achieve
reasonable editing output.

Synergy Between DragGAN and SpatialGAN: Fig. 16 shows
more qualitative samples from integrating DragGAN and Spa-
tialGAN.

V. CONCLUSION AND DISCUSSIONS

In this paper, we propose a method to improve the spatial
steerability and synthesis quality of GANs. Specifically, we
notice thatD spontaneously learns its visual attention, which can
serve as a self-supervision signal to raise the spatial awareness of
G. Therefore, we encode spatial heatmaps into the intermediate
features of G, and align the heatmaps and the attention of D
during training. Qualitative results show that our method suc-
cessfully makes G concentrate on specific regions. This method
enables multiple spatial manipulations like moving or removing
objects in the synthesis by altering the encoded heatmaps, and
consistently improves the synthesis quality on various datasets.

Limitation: Though simple and effective, our SpatialGAN is
heuristic and built upon existing techniques. In addition, we
notice the spatial encoding operation would sometimes lead
to a synthesis blurring at the location of heatmaps boundaries,
which may visually affect the manipulation quality. Sometimes,
altering one sub-heatmap would change the appearance of some
remote areas, which is not desired by our design. We consider
SpatialGAN as an empirical study and hope it can inspire more
work on improving the image synthesis quality and controlla-
bility of GANs.

Ethical Consideration: This paper focuses on improving the
spatial controllability of GANs. Although only using public
datasets for research and following their licences, the abuse
of our method may bring negative impacts through deep fake
generation. Such risks would increase as the synthesis results of
GANs are becoming more and more realistic. From the perspec-
tive of academia, these risks may be mitigated by promoting the
research on deep fake detection. It also requires the management
on the models trained with sensitive data.
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