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Fig. 1. Given multi-view images of a new object (left), denoted as V* <category name>, we create a customized text-to-image diffusion model with object
viewpoint control. The customized model allows users to specify the target viewpoint for the object while synthesizing it in novel appearances and scenes,
such as A green V* car,or A beetle-like V* car.We can also generate panorama images or compose multiple concepts while controlling each object’s

viewpoint by using MultiDiffusion [Bar-Tal et al. 2023] with our model.
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Model customization introduces new concepts to existing text-to-image mod-
els, enabling the generation of these new concepts/objects in novel contexts.
However, such methods lack accurate camera view control with respect to
the new object, and users must resort to prompt engineering (e.g., adding
“top-view”) to achieve coarse view control. In this work, we introduce a new
task — enabling explicit control of the object viewpoint in the customization of
text-to-image diffusion models. This allows us to modify the custom object’s
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properties and generate it in various background scenes via text prompts,
all while incorporating the object viewpoint as an additional control. This
new task presents significant challenges, as one must harmoniously merge
a 3D representation from the multi-view images with the 2D pre-trained
model. To bridge this gap, we propose to condition the diffusion process on
the 3D object features rendered from the target viewpoint. During training,
we fine-tune the 3D feature prediction modules to reconstruct the object’s
appearance and geometry, while reducing overfitting to the input multi-
view images. Our method outperforms existing image editing and model
customization baselines in preserving the custom object’s identity while
following the target object viewpoint and the text prompt.

CCS Concepts: « Computing methodologies — Computer vision; Image
manipulation.
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1 Introduction

Recently, we have witnessed an explosion of works on customizing
text-to-image models [Chen et al. 2023; Gal et al. 2023a; Kumari et al.
2023; Ruiz et al. 2023a]. Such methods enable a model to quickly
acquire visual concepts, such as personal objects and favorite places,
and re-imagine them with new environments and attributes. For
instance, we can customize a model on our teddy bear and prompt it
with “Teddy bear on a bench in the park” However, these methods
lack precise viewpoint control, as the pre-trained model is trained
purely on 2D images without ground truth camera poses. As a
result, users often rely on text prompts such as “front-facing” or
“side-facing”, a tedious and unwieldy process to control views.

What if a user wishes to control the custom object’s viewpoint
while synthesizing it in a different context, e.g., the car in Figure 1?
In this work, we introduce a new task: given multi-view images
of an object, we customize a text-to-image model while enabling
control of the object’s viewpoint. During inference, our method
offers the flexibility of conditioning the generation process on both
a target viewpoint and a text prompt.

Neural rendering methods have allowed us to accurately control
the 3D viewpoint of an existing scene, given multi-view images [Bar-
ron et al. 2021, 2023; Kerbl et al. 2023; Miiller et al. 2022]. Similarly,
we seek to imagine the object from novel views but in a new context.
However, as pre-trained diffusion models, such as Latent Diffusion
models [Rombach et al. 2022], are built upon a purely 2D represen-
tation, connecting the 3D neural representation of the object to the
2D internal features of the diffusion model remains challenging.

In this work, we introduce CustomDiffusion360, a new method
to bridge the gap between 3D neural capture and 2D text-to-image
diffusion models by providing viewpoint control for custom objects.
More concretely, given multi-view images of an object, we introduce
FeatureNeRF blocks in the diffusion model U-Net’s intermediate
feature spaces to learn view-dependent features. To condition the
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generation process on a target viewpoint, we render the FeatureN-
eRF output from this viewpoint and merge it with the diffusion
features using linear projection layers. We only train the new lin-
ear projection layers and FeatureNeRF blocks, added to a subset of
transformer layers, to preserve object identity while maintaining
generalization. The pre-trained model’s parameters remain frozen,
thus keeping our method computationally and storage efficient.

We build our method on Stable Diffusion-XL [Podell et al. 2023]
and show results on various object categories, such as cars, chairs,
motorcycles, teddy bears, and toys. We compare our approach with
image editing [Brooks et al. 2023; Meng et al. 2022], model customiza-
tion [Hu et al. 2022], and NeRF editing methods [Dong and Wang
2023]. Our method achieves high alignment with the custom object’s
identity and target viewpoint while adhering to the user-provided
text prompt. We show that integrating the 3D object information
into the text-to-image model, as done by our method, enhances per-
formance over 2D and 3D editing baseline methods. Additionally,
our method can be combined with other algorithms [Bar-Tal et al.
2023; Meng et al. 2022] for applications such as object viewpoint
adjustment in the same background, panorama synthesis, and object
composition.

2 Related Works

Text-based image synthesis. Large-scale text-to-image mod-
els [Gafni et al. 2022; Kang et al. 2023; Ramesh et al. 2022; Saharia
et al. 2022; Yu et al. 2022] have become ubiquitous for generating
photorealistic images from text prompts. This progress has been
driven by the availability of large-scale datasets [Schuhmann et al.
2021] as well as advancements in model architecture and training ob-
jectives [Dhariwal and Nichol 2021; Karras et al. 2022, 2023; Peebles
and Xie 2023; Sauer et al. 2023]. Among them, diffusion models [Ho
et al. 2020; Song et al. 2021] have emerged as a powerful family of
models that generate images by gradually denoising Gaussian noise.

Image editing with text-to-image diffusion. One of the first works,
SDEdit [Meng et al. 2022], exploited the denoising nature of diffusion
models, guiding generation in later denoising timesteps using edit
instructions while preserving the input image layout. Since then,
various works improved upon this by embedding the input image
into the model’s latent space [Kawar et al. 2023; Mokady et al. 2023;
Parmar et al. 2023; Song et al. 2021] or using cross-attention and
self-attention mechanisms for realistic and targeted edits [Cao et al.
2023; Chefer et al. 2023; Ge et al. 2023; Hertz et al. 2023; Patashnik
et al. 2023]. Recently, several methods train conditional diffusion
models to follow user edit instructions or spatial controls [Brooks
et al. 2023; Zhang and Agrawala 2023]. However, these methods
primarily focus on appearance editing, while our work enables both
viewpoint and appearance control.

Model customization. While pre-trained models can generate com-
mon objects, users often wish to synthesize images with concepts
from their own lives. This has given rise to the emerging technique
of model personalization or customization [Gal et al. 2023a; Kumari
et al. 2023; Ruiz et al. 2023a]. These methods aim at embedding a
new concept, e.g., pet dog, personal car, person, etc., into the output
space of text-to-image models. This enables generating new images
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Fig. 2. Overview. We propose a model customization method that utilizes N reference images defining the 3D structure of an object Y/ (we illustrate with
N = 2 views for simplicity). We modify the diffusion model U-Net with pose-conditioned transformer blocks. Our Pose-conditioned transformer block
features a FeatureNeRF module, which aggregates features from the individual viewpoints to target viewpoint ¢, as shown in detail in Figure 3. The rendered
feature Wy, is concatenated with the target noisy feature Wy and projected to the original channel dimension. We use the diffusion U-Net itself to extract

features of reference images, as shown in the top row. We only fine-tune the new parameters in linear projection layer [ and FeatureNerF in Fpose blocks.

of the concept in unseen scenarios using the text prompt, e.g., my
car in a field of sunflowers. To achieve this, various works fine-tune
a small subset of model parameters [Han et al. 2023; Hu et al. 2022;
Kumari et al. 2023; Tewel et al. 2023] and/or optimize text token
embeddings [Alaluf et al. 2023; Gal et al. 2023a; Voynov et al. 2023;
Zhang et al. 2023] on the few images of the new concept with dif-
ferent regularizations [Kumari et al. 2023; Ruiz et al. 2023a]. More
recently, encoder-based methods have been proposed that train
a model on a vast dataset of concepts [Arar et al. 2023; Gal et al.
2023b; Li et al. 2023; Ruiz et al. 2023b; Shi et al. 2023; Valevski et al.
2023; Wei et al. 2023; Ye et al. 2023b], enabling faster customization.
However, to our knowledge, no existing work allows for controlling
the viewpoint in model customization. Given the ease of capturing
multi-view images of a new concept, this work explores augmenting
model customization with additional object viewpoint control.

View synthesis. Novel view synthesis aims to render a scene from
unseen camera poses, given multi-view images. Recently, the success
of volumetric rendering-based approaches like NeRF [Mildenhall
et al. 2021] have led to numerous follow-up works with better qual-
ity [Barron et al. 2021, 2023], faster speed [Chen et al. 2022; Miiller
et al. 2022], and fewer training views [Deng et al. 2022; Niemeyer
et al. 2022; Tancik et al. 2021; Yu et al. 2021]. Recent works learn
generative models with large-scale multi-view data to learn gen-
eralizable representations for novel view synthesis [Burgess et al.
2024; Chan et al. 2023; Liu et al. 2023, 2024; Sargent et al. 2023; Wu
et al. 2024; Zhou and Tulsiani 2023]. While our work draws motiva-
tion from this line of research, our goal differs - we aim to enable
object viewpoint control in text-to-image personalization, rather
than capturing novel views of real scenes. Concurrent to our work,
ReconFusion [Wu et al. 2024] also trains a PixelNeRF [Yu et al. 2021]
in the latent space of latent diffusion models for 3D reconstruction.
Different from this, we learn volumetric features in the intermediate

attention layers. We also focus on model customization rather than
scene reconstruction. Recently, Cheng et al. [2024] and Hollein et
al. [2024] propose adding camera pose conditioning in text-to-image
diffusion models while we focus on model customization. Custom-
Net [Yuan et al. 2024], a concurrent work, also proposes to generate
custom objects in a target viewpoint in a zero-shot manner. How-
ever, it focuses primarily on generating the new object in different
backgrounds, whereas our method allows any new text prompt and
viewpoint combination as a condition during inference.

3D editing. Loosely related to our work, many works have been
proposed for inserting and manipulating 3D objects within 2D real
photographs by editing the image, using classic geometry-based
approaches [Chen et al. 2013; Karsch et al. 2011; Kholgade et al.
2014] or generative modeling techniques [Michel et al. 2023; Xu
et al. 2023; Yao et al. 2018; Yenphraphai et al. 2024; Zhang et al.
2021]. Instead of editing a single image, our work aims to “edit” the
model weights of a pre-trained diffusion model. Another relevant
line of work edits [Dong and Wang 2023; Haque et al. 2023] or
generates [Metzer et al. 2023; Raj et al. 2023; Shi et al. 2024; Tang
et al. 2023; Xu et al. 2024] a 3D scene given a text prompt or image.
Unlike these methods, we do not aim to edit/generate a multi-view
consistent scene. Our goal is to provide additional viewpoint control
when customizing text-to-image models. This enables specifying the
object viewpoint while generating new backgrounds or composing
multiple objects. Additionally, we show that our method achieves
greater photorealism compared to a 3D editing method for this task.

3  Method

Given multi-view images of a custom object, we aim to embed it
in the text-to-image diffusion model. We construct our method
in order to allow the generation of new variations of the object
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through text prompts while providing control of the object view-
point. Our approach involves fine-tuning the pre-trained model
while conditioning it on a 3D representation of the object learned
in the diffusion model’s feature space. In this section, we briefly
overview the diffusion model and then explain our method in detail.

3.1 Diffusion Models

Diffusion models [Ho et al. 2020; Sohl-Dickstein et al. 2015] are a
class of generative models that sample images by iterative denoising
of a random Gaussian distribution. The training of the diffusion
model consists of a forward Markov process, where real data xq is
gradually transformed to random noise x7 ~ N (0,1) by sequentially
adding Gaussian perturbations in T timesteps, i.e., X; = \/arxo +
\/1T = aze. The model is trained to learn the backward process, i.e.,

potxale) = [ [potxr) [ [ phtxe-ibreofasa. )

The training objective maximizes the variational lower bound, which
can be simplified to a simple reconstruction loss:

IEf’xz,t,c,e~N(0,I) [welle — eg(xs, £, )], )

where ¢ can be any modality to condition the generation process.
The model is trained to predict the noise added to create the input
noisy image x;. During inference, we gradually denoise a random
Gaussian noise over a fixed number of timesteps. Various proposed
sampling strategies [Karras et al. 2022; Lu et al. 2022; Song et al. 2021]
reduce the number of sampling steps compared to the typical 1000
timesteps in training. In our work, we use the Stable Diffusion-XL
(SDXL) [Podell et al. 2023] as the pre-trained text-to-image diffusion
model. It is based on the Latent Diffusion Model (LDM) [Rombach
et al. 2022], which is trained in an autoencoder [Kingma and Welling
2014] latent space.

3.2 Customization with Object Viewpoint Control

Model customization aims to condition the model on a new object,
given N images of the object Y = {yi}gl, i.e., to model p(x|Y, c)
with text prompt c. In contrast, we additionally condition the model
on the object viewpoint, allowing more control in the generation

process. Thus, given a set of multi-view images {y,—}ﬁ\:’ , and the

corresponding camera poses {ni}l{\il,
ditional distribution p(x|{(yi, ﬁi)}llil, ¢, ¢), where c is text prompt
and ¢ is the camera pose corresponding to the target viewpoint.
To achieve this, we fine-tune a pre-trained text-to-image diffusion
model, which models p(x|c), with the additional conditioning of

camera pose ¢ given posed reference images {y;, ﬂi}ﬁ\il.

our goal is to learn the con-

Model architecture. In Figure 2, we show the overall architecture,
with an emphasis on our added pose-conditioning. Each block in
the diffusion model U-Net [Ronneberger et al. 2015] consists of a
ResNet [He et al. 2016], denoted as h, followed by several transformer
layers [Vaswani et al. 2017]. Given the output of an intermediate
ResNet layer z, a standard transformer layer, Fiandard (2, €), consists
of a self-attention layer, denoted as s, followed by cross-attention
with the text prompt, denoted as g, and a feed-forward MLP, denoted
as f. We modify a subset of these transformer layers to incorporate
pose conditioning as we explain next.
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Pose-conditioned transformer layer. We denote the pose-
conditioned transformer layer as Fpose(20, {Zi, 77i}), where zg is
the intermediate target feature (diffusion branch in Figure 2) and
{z;} are the input features corresponding to multi-view reference
images (top two rows in Figure 2). We extract spatial features
{W;} from {z;} using components of pre-trained U-Net itself; i.e.,
Fstandard (Zi> ¢). To condition the diffusion branch on ¢, we learn
a radiance field, denoted as FeatureNeRF, from {W;, ;} in a feed-
forward manner [Yu et al. 2021]. The predicted FeatureNeRF is then
rendered from the target viewpoint ¢ to obtain view-dependent
feature map W .

In the main diffusion branch, we extract the intermediate feature
map after the self and cross-attention layers, i.e., Wx = g(s(zo), c).
We concatenate Wy with the rendered features W and then project
it into the original feature dimension using a linear layer. Thus, the
pose conditioned transformer layer, Fpose (20, {Zi, 7i }, ¢, ¢) performs:

W; = Fgandard(2i,¢), Wy = FeatureNeRF({W;, 7;}, ¢, )
Fpose = f(l(wy ® Wy))

where [ is a learnable weight matrix, which projects the feature into
the input space of feed-forward layer f. We initialize [ such that the
contribution from Wy, is zero at the start of training.

®)

FeatureNeRF.. Here, we describe the aggregation of individual
features W; with poses 7; into a feature map W, from pose ¢.
Given a target ray with direction d from target viewpoint ¢, we
sample points p along the ray and project it to the image plane of
each given view 7;. The projected coordinate is denoted as an. We
then sample the feature from this coordinate in W, predict a feature
for the 3D point p, and aggregate the N predicted features from
each view with function :

VP =MLP(Sample(W;; 77), y(d), y(p)), i = 1,... N
VP =y (VP V),

where y is the frequency encoding. We use the weighted aver-
age [Reizenstein et al. 2021] as the aggregation function i, where
a linear layer predicts the weights based on V;, 7;, and ¢. For each
reference view, d and p are first transformed in the view coordinate
space [Yu et al. 2021]. Given the feature V (superscript p is dropped
for simplicity) for the 3D point, we predict the density and color
using a linear layer:

©)

(0,C) = MLP(V), )

and also update the aggregated feature with text prompt ¢ using
cross-attention:

V = CrossAttn(V, c). (6)
We then render this updated feature volume using the predicted
densities:

N¢
Wy(r) = Z Ti(1- exp(—O'jch))Vj, (7)
=
where r is the target ray, V j is the feature corresponding to the jth

point along the ray, g; is the predicted density of that point, Ny
is the number of sampled points along the ray between the near
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Fig. 3. FeatureNeRF. We predict volumetric features V for each 3D point in
the grid using reference features {W;} (Eqn. 4). Given this feature, we pre-
dict the density o and color rgb using a 2-layer MLP and use the predicted
density o to render V (which has been updated with text cross-attention 9g).
The rgb is only used to calculate reconstruction loss during training.

and far plane of the camera, and T; = exp(— Z{C;i 01 9k) handles
occlusion until that point.

We build our FeatureNeRF design based on PixelNeRF [Yu et al.
2021] but update the aggregated features with text cross-attention
and use learnable weighted averaging to aggregate reference view
features. Through this layer, our focus is on learning 3D features
that the 2D diffusion model can use rather than learning NeRF in a
feature space [Kerr et al. 2023; Ye et al. 2023a].

Training loss. Our training objective includes learning 3D consis-
tent FeatureNeRF modules, which can contribute to the final goal
of reconstructing the target concept in diffusion model’s output
space. Thus, we fine-tune the model using the sum of training losses
corresponding to FeatureNeRF and the default diffusion model re-
construction loss:

Laittusion = ) Mwelle = eg(xe. 1, )|, @®
r

where M is the object mask, with the reconstruction loss being
calculated only in the object mask region. The losses corresponding
to FeatureNeRF consist of RGB reconstruction loss:

Ny
Ligy = ) [IM(r)(Cgr(r) = D Ti(1 = exp(=a;6,)O),  (9)

Jj=1

and two mask-based losses as we only wish to model the object —
(1) silhouette loss [Ravi et al. 2020] Ls which forces the rendered
opacity to be similar to object mask, and (2) background suppression
loss [Boss et al. 2021, 2022] Ly which enforces the density of all
background rays to be zero.

Ny
Lo =Y IIM(r) = )" T;(1 - exp(=0;8))

=

(10)
Ny
Lyg = ) (1=M() D 1I(1 = exp(=a;5)l,
r j=1
Thus, the final training loss is:
L = Liiftusion + ArgbLrgb + AbgLbg + AsLs, (11)
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where M is the object mask and Aygp,, Apg, and As are hyperparam-
eters to control the rendering quality of intermediate images vs.
the final denoised image and are fixed across all experiments. We
assume access to the object’s mask in the image, which is used
to calculate these losses. The losses for FeatureNeRF are averaged
across all pose-conditioned transformer layers. We provide more
training and implementation details in the supplemental material.

4 Experiments

Dataset. We select 14 custom objects from the CO3Dv2 [Reizen-
stein et al. 2021] and NAVI [Jampani et al. 2023] datasets. Specifi-
cally, we select 4 categories with 3 instances each from the CO3Dv2
dataset — car, chair, teddy bear, and motorcycle. From NAVI, we
select 2 unique, toy-like objects. A representative image of each
concept is shown in the supplemental material. We use the camera
poses provided in the dataset. For each instance, we sample ~ 100
images, using half for training and half for evaluation.

Baselines. We compare with three types of relevant baselines.

o First, we compare against 2D image editing using 3 recent,
publicly available methods - LEDITS++ [Brack et al. 2024],
InstructPix2Pix [Brooks et al. 2023], and SDEdit [Meng et al.
2022] with Stable Diffusion-1.5 (and SDXL in the supplemen-
tal material). As image editing methods do not inherently
support viewpoint manipulation, we first render a NeRF [Tan-
cik et al. 2023] of the input scene with the target viewpoint
and then edit the rendered image.

Secondly, we use a customization-based method,
LoRA+Camera pose, where we modify LoRA [Hu et al. 2022;
Ryu 2023] by concatenating the camera pose to the text
embeddings, following recent work Zero-1-to-3 [Liu et al.
2023].

Lastly, we test VICA-NeRF [Dong and Wang 2023], a 3D
editing method that trains a NeRF for each new text prompt.

We provide implementation details in the supplemental material.

Evaluation metrics. To create an evaluation set, we generate 16
prompts per object category using [ChatGPT 2022]. We instruct
ChatGPT to propose four types of prompts: scene change, color
change, object composition, and shape change. We then manu-
ally inspect them to remove implausible or overly complicated text
prompts [Wang et al. 2023]. We evaluate (1) the customization qual-
ity of the generated image and (2) its adherence to the specific pose.

First, to measure customization quality, we use a pairwise human
preference study. A successful customization is comprised of several
aspects: alignment to the target concept, alignment to the input
text prompt, and photorealism of the generated images. In total, we
collect ~ 1000 responses per pairwise study against each baseline
using Amazon Mechanical Turk. We also evaluate our method and
baselines on other standard metrics like CLIP Score [Radford et al.
2021] and DINOv2 [Oquab et al. 2023] image similarity [Ruiz et al.
2023a] to measure the text and image alignment.

To measure whether the generated custom object adheres to
the specified viewpoint, we use a pre-trained model, RayDiffu-
sion [Zhang et al. 2024], to predict the pose from the generated
images and calculate its error relative to the input camera pose.

SA Conference Papers 24, December 03-06, 2024, Tokyo, Japan.
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A V* car next to A V* motorcycle A red V* chair A V* teddybear next A V* toy in a grassy
a picnic table parked on a city in a white to a birthday cake field surrounded
Input in a park. street at night. room. with candles. with wildflowers

Text prompt + Pose

2D Image Editing
SDEdit-1.5

2D Image Editing
InstructPix2Pix

2D Image Editing
LEDITS++

3D Editing
VICA-NeRF

Customization
Lora + Camera pose

Ours

Fig. 4. Qualitative comparison. Given a particular target pose, we show the qualitative comparison of our method with (1) Image editing methods SDEdit,
InstructPix2Pix, and LEDITS++, which edit a NeRF-rendered image from the input pose, (2) ViCA-NeRF, a 3D editing method that trains a NeRF model for
each input prompt, and (3) LoRA + Camera pose, our proposed baseline where we concatenate camera pose information to text embeddings during LoRA
fine-tuning. Our method performs on par or better in keeping the target identity and poses while incorporating the new text prompt—e.g., putting a picnic
table next to the SUV car (1% column)—and following multiple text conditions—e.g., turning the chair red and placing it in a white room (3" column). V* token
is used only in ours and the LoRA + Camera pose method. Ground truth rendering from the given pose is shown as an inset in the first three rows. We show
more sample comparisons in the supplement.
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Sample Target

Scene chan

ge: A Vx rubber duck sitting in a grassy field,
surrounded by wildflowers.

Fig. 5. Qualitative samples with varying object viewpoint and text prompt. Our method learns the identity of custom objects while allowing the user
to control the object viewpoint and generating the object in new contexts using the text prompt, e.g., changing the background scene or object color and
shape. In each row, the images were generated with the same seed while changing the object viewpoint in a turntable manner. We show more samples in the

supplement. Note that each image in a row is independently generated.
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Table 1. Human preference evaluation. Our method is preferred over al-
most all baselines for text alignment, image alignment to the target concept,
and photorealism. We find that LoRA + Camera pose overfits the training
images, as shown in Figure 4.

Method Text Alignment  Image Alignment  Photorealism
SDEdit 40.6 £ 2.7% 36.1 + 2.8% 33.1+3.2%
vs. Ours 59.4 +2.7% 63.9 + 2.8% 66.9 + 3.2%
InstructPix2Pix 448 +2.6%  293+£22%  27.6+2.6%
vs. Ours 55.2 + 2.6% 70.7 £2.2 % 72.4 £ 2.6%
LEDITS++ 325+25%  359+25%  262+28%
vs. Ours 67.5+ 2.5% 64.1+2.5% 73.8 +2.8%
ViCA-NeRF 27.1+28%  244£33%  129x27%
vs. Ours 72.9 + 2.8% 75.6 £33 % 87.1+27%
LoRA + Camerapose 323 +27%  66.9+25%  52.5+28%
vs. Ours 67.7 + 2.7% 33.1+25% 47.5 £ 2.8%

Table 2. Accuracy of object viewpoint condition in generated images
by ours and the LoRA + Camera pose baseline method. We observe that
the baseline usually overfits the training images and does not respect the
target viewpoint condition with new text prompts.

Method Angular error | Camera center error|

Ours 14.19 0.080

LoRA + Camera pose 41.14 0.305

Method
—+@- Ours —+@- SDEdit SD1.5
-+~ InstructPix2Pix SD1.5 —+@+~ LoRA + Camera Pose
LEDITS++ —@~ ViCA-NeRF
0.28
(o] o o
0.26 1 o °
px3 v
l ._%_4 ; Category
S 0241 ° 8 e car
g . ? o s chair
:9; 0.22 o sl o @ v o teddybear
2 N v motorcycle
2 0.20 | o toy
o
4
O o1s
Ll
0.16 . . . : .
0.2 0.3 0.4 0.5 0.6 0.7 0.8

DINO Image Alignment —

Fig. 6. Quantitative comparison. We show CLIP scores (higher is better) vs.
DINO-v2 scores (higher is better). We plot the performance of each method
on each category and the overall mean and standard error (highlighted).
Our method results in higher CLIP text alignment while maintaining visual
similarity to target concepts, as indicated by DINO-v2 scores. The text
alignment of our method compared to SDEdit and InstructPix2Pix is only
marginally better as these methods incorporate the text prompt but at the
cost of photorealism, as we show in Table 1.

More details about the evaluation and prompts are provided in the
supplemental material.
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4.1 Results

Generation quality and adherence. First, we measure the quality of
the generation — adherence to the text prompt, the identity preser-
vation to the customized objects, and photorealism — irrespective
of the object viewpoint. Recall that for each concept, we curate 16
prompts. For each prompt, we generate 3 images at each viewpoint,
covering 6 target viewpoints, resulting in 288 images per concept.
Table 1 shows the pairwise human preference for our method vs.
baselines. Our method is preferred over all baselines except LoRA
+ Camera pose, which we observe to overfit on training images,
thus producing higher image alignment. Figure 6 shows the CLIP
vs. DINO scores for all methods. Ideally, a method should have both
a high CLIP score and a DINO score, but often, there is a trade-
off between text and image alignment. Our method has on-par or
better text alignment relative to the baselines, while having better
image alignment. We observe that image-editing baselines often
require careful hyperparameter tuning for each image. We select
the best-performing hyperparameters and keep them fixed across
all experiments. The camera pose corresponding to the target object
viewpoint is uniformly sampled from ~ 50 validation poses not used
during training. We also randomly perturb the camera position or
focal length. We show sample training and perturbed validation
camera poses for the car object in the supplemental material.

Accuracy of object viewpoint. Previously, we evaluated our method
purely on image customization benchmarks. Next, we evaluate the
accuracy of the object viewpoint conditioning. Table 2 shows the
mean angular error and camera center error between the generated
object’s pose, predicted using RayDiffusion [Zhang et al. 2024], and
the input pose. We only compare with LoRA + Camera pose, as only
this baseline takes the camera pose for the target object viewpoint as
input. We observe that it often overfits training images and fails to
generate the object in the correct viewpoint with new text prompts.
We evaluate this metric only on the objects from the CO3Dv2 dataset
with validation camera poses, as RayDiffusion has been trained on
CO3Dv2 and struggles with other unique objects.

Qualitative comparison. We show the qualitative comparison of
our method with the baselines in Figure 4. We observe that image
editing methods can fail to generate photorealistic results. In the
case of LoRA + Camera pose, it fails to generalize and overfits to
the training views (5 row). Finally, the 3D editing-based method
ViCA-NeRF maintains 3D consistency but generates blurred images,
especially for text prompts that change the background. Figure 5
shows more samples with different text prompts and object view-
points for our method.

Additional comparison to customization + 3D-aware image edit-
ing. We further compare against a two-stage approach that first
generates an image of the custom object using LoRA+DreamBooth
[Ruiz et al. 2023a; Ryu 2023] and then edits the object to a target
viewpoint using two recent 3D-aware image editing methods, Image
Sculpting [Yenphraphai et al. 2024] and Object3DIT [Michel et al.
2023]. For each prompt, we generate 3 images, then edit and rotate
the object to 6 different viewpoints. This results in 288 images per
concept, similar to our evaluation setting. We compare against this
on only the three car objects since Image-Sculpting uses Adobe
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Focal length

,. Sy

A V* teddybear dressed as a construction worker, with orange vest,
and buildings in background

A V* teddybear on a cozy armchair by a fireplace.

Horizontal translation Vertical translation

A V* teddybear sitting on the sand at the beach A V* teddybear sitting on the sand at the beach
Fig. 7. Extrapolating object viewpoint from training viewpoints. Our method can generalize to different viewpoints, including those not within the
training distribution. Top left: We vary the focal length from X0.8 to x1.4 of the original focal length. Top right: We vary the camera position towards the
image plane along the z axis. Bottom row: We vary the camera position along the horizontal and vertical axis.

(c) Composing multiple instances of the object
Fig. 8. Applications. 15 row: Our method can be combined with other image editing methods as well. We use SDEdit with our method to in-paint the car
and rubber duck from different viewpoints while keeping the same background. 2" row: We can generate interesting panorama shots by controlling the object
viewpoint independently in each grid. 3" row: We can also compose the radiance field predicted by FeatureNeRF to control the relative pose while generating
multiple instances of the object.
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Photoshop’s generative fill [Adobe 2023] as one of the intermediate
steps, which requires manually inpainting each image. The CLIP
scores for Image Sculpting and Object3DIT are 0.26 and 0.27, respec-
tively, compared to our score of 0.25. However, their DINO scores
at 0.24 and 0.40 are substantially lower than our 0.48. As shown in
Figure 9, both methods lead to lower-fidelity results. Object3DIT
struggles in many scenarios due to its training on a synthetic dataset,
and Image Sculpting’s performance is highly dependent on single
image-to-3D methods like Zero-1-to-3 [Liu et al. 2023] used in its
pipeline.

Generalization to novel viewpoints. Since our method learns a 3D
radiance field, we can also extrapolate to unseen object viewpoints
at inference time as shown in Figure 7. We generate images while
varying the camera distance from the object (scale), focal length, or
camera position along the horizontal and vertical axis.

Applications. Our method can be combined with existing image
editing methods as well. Figure 8a shows an example where we
use SDEdit [Meng et al. 2022] to generate the object with differ-
ent viewpoints while keeping the same background. We can also
generate interesting panoramas using MultiDiffusion [Bar-Tal et al.
2023], where the object viewpoint in each grid is controlled by our
method, as shown in Figure 8b. Moreover, since we learn a 3D con-
sistent FeatureNeRF for the new object, we can compose multiple
instances of the object [Song et al. 2023], with each instance in a
different viewpoint. Figure 8c shows an example of two teddy bears
facing each other and sitting on armchairs. Here, we additionally
use DenseDiffusion [Kim et al. 2023] to modulate the attention maps
and guide the generation of each object instance to only appear in
the corresponding region predicted by FeatureNeRF.

We show more results and ablation experiments in the supplemen-
tal material, including the role of mask-based losses, the importance
of text cross-attention in FeatureNeRF, and performance with pre-
dicted camera viewpoints.

5 Discussion and Limitations

We introduce a new task of customizing text-to-image models with
object viewpoint control. Our method learns view-dependent object
features in the intermediate feature space of the diffusion model
and conditions the generation on them. This enables synthesizing
the object with varying object viewpoints while controlling other
aspects through text prompts.

Limitations. Though our method outperforms existing image edit-
ing and model customization approaches, it still has several limita-
tions. As we show in Figure 10, our method occasionally struggles at
generalizing to extreme viewpoints that were not seen during train-
ing and resorts to either changing the object identity or generating
the object in a seen viewpoint. We expect this to improve by adding
more viewpoint variations during training. Our method also some-
times struggles to follow the input viewpoint condition when the
text prompt adds multiple objects to the scene. We hypothesize that
in such challenging scenarios, the model is biased towards generat-
ing object-centric front views, as seen in its original training data.
Also, we fine-tune the model for each custom object, which takes
computation time (~ 40 minutes). Exploring pose-conditioning in a
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Object3DIT Ours

Image-Sculpting

A V* car next to a picnic table.

Fig. 9. Comparison to 3D-aware editing methods. We first generate
the image of the custom object using LoORA+DreamBooth (shown as an
inset) and then use the 3D-aware editing method to edit and rotate the
object to a target viewpoint. We show qualitative samples generated by
our method (3" column) with approximately the same target viewpoint
as input. Object3DIT and Image-Sculpting lead to lower fidelity edits than
images generated by our method (3" column) with the target viewpoint
directly as the input condition.

Focal length|

‘-

Object
viewpoint
extrapolation

at riding a V* scooty
= |

Composition
with an
object

Fig. 10. Limitations. Our method can occasionally fail when the target
object viewpoint deviates far from the training images, e.g., reducing the
focal length too much (top left) or rendering the object off-center (top right),
as the pre-trained model is often biased towards generating the object in
the center. Also, it can fail to follow the input text prompt or the exact object
viewpoint when multiple objects are composed in a scene (bottom row).

zero-shot, feed-forward manner [Chen et al. 2023; Gal et al. 2023b]
may help reduce the time and computation. Finally, we focus on
enabling viewpoint control for rigid objects. Future work includes
extending this conditioning to handle dynamic objects that change
the pose in between reference views. One potential way to address
this is using a representation based on dynamic and non-rigid NeRF
methods [Fridovich-Keil et al. 2023; Pumarola et al. 2021; Song et al.
2023].
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