Economical routes to size-specific assembly of self-closing structures
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Programmable self-assembly has seen an explosion in the diversity of synthetic crystalline materi-
als, but developing strategies that target ‘self-limiting’ assemblies has remained a challenge. Among
these, self-closing structures, in which the local curvature defines the finite global size, are prone to
polymorphism due to thermal bending fluctuations, a problem that worsens with increasing target
size. Here we show that assembly complexity can be used to eliminate this source of polymorphism
in the assembly of tubules. Using many distinct components, we prune the local density of off-target
geometries, increasing the selectivity of the tubule width and helicity to nearly 100%. We further
show that by reducing the design constraints to target either the pitch or the width alone, fewer
components are needed to reach complete selectivity. Combining experiments with theory, we re-
veal an economical limit, which determines the minimum number of components required to create

arbitrary assembly sizes with full selectivity.

INTRODUCTION

The design and control of self-assembly pathways is a
promising route for creating complex, functional nano-
materials [1]. Recent successes in colloidal self-assembly
focus primarily on synthesizing spatially unbounded,
dense crystalline materials, or spatially-limited architec-
tures, like clusters, membranes, and filaments, whose di-
mensions are specified by the building-block sizes [2-15].
However, Nature is brimming with examples from a dif-
ferent class of structures that have self-regulated cavity
sizes that are much larger than the size of the individual
building blocks. Importantly, these self-limiting cavity
sizes are essential to the functionality of various biological
devices and materials, such as responsive containers that
can selectively package specific genetic material, as in vi-
ral capsids [16], or photonic nanostructures, like those
found in some butterfly wings that produce their struc-
tural coloration [17]. Inspired by these examples, syn-
thetic colloidal assembly has recently taken a large leap
forward by developing new colloidal building blocks with
directional binding, complex geometries, and specific in-
teractions that can target assembly of similar self-limiting
architectures, such as icosahedral shells and cylindrical
tubules [18-20].

A common strategy used by Nature to assemble self-
limiting structures exploits self-closure [21], in which ac-
cumulated curvature between bound subunits allows the
assembly to close upon itself during growth, terminating
assembly in one or more directions. While translating
this principle of self-closure could open new doors in syn-
thetic colloidal assembly, self-closure has an associated
fundamental challenge that must be solved to assemble
precise, self-limiting architectures: Thermal fluctuations
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give rise to variations in the curvature of the growing as-
sembly, leading to a distribution of the cavity sizes that
result in the final structures [22]. Such variability has
been seen with biological subunits, such as the dispersity
of the protofilament number of microtubules assembled
in vitro [23-25] and the polymorphism of hepatitis B cap-
sids [26], as well as in synthetic systems of DNA and de
novo proteins that target rings [18], tubules [20, 27, 28],
and capsids [13, 29, 30]. This problem relates to the
fact that the programmed angles between subunits lead
to closed loops around the cavities, as seen for different
discrete assemblies in Fig. 1A. Though a certain average
curvature may be targeted, the finite bending rigidity of
the assemblies leads to a spread of sizes that these loops
can form [21, 31-33]. Moreover, the larger the number
of subunits in the loop, the broader the distribution of
states that can be accessed, and thus the ability to selec-
tively assemble the target structure becomes more diffi-
cult with increasing loop size. Because the self-limiting
cavity sizes are fundamental to how these types of struc-
tures function, developing generally applicable solutions
to this challenge is essential to realizing synthetic self-
limiting architectures with functionalities that rival their
natural counterparts. This is particularly critical in the
regime of large self-closing sizes where the physical effects
of bending fluctuations are increasingly pernicious.

In this article, we establish a systematic approach to
combat polymorphism by increasing the complexity of an
assembly and illuminate the physical relationship that
specifies the minimal amount of complexity that needs
to be encoded to achieve any single target structure with
complete selectivity. Our approach extends symmetry-
based theories, such as that from Caspar and Klug [16],
which identify the minimum number of components re-
quired to form a given structure. In particular, we
demonstrate our strategy for the specific case of assem-
bling cylindrical tubules from triangular DNA origami
subunits (Fig. 1B-E). We increase the complexity of our
assemblies by incorporating a multi-component, periodic
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FIG. 1. Improving selectivity in self-closing assemblies. (A) Examples of self-closing architectures—the unit cell of a P-
surface (right), a cylinder (middle), and an icosahedral shell (left)—and closed loops of monomers (denoted in red). Fluctuations
in the angles between subunits lead to a distribution of closure sizes in loops. (B) Schematic of closure fluctuations for a tubule.
Tubules form from wrapping a sheet while satisfying a periodic boundary condition. Any discrete assembly can be represented
by a unique vector between two vertices on the triangulated plane, corresponding to the circumference of that tubule. The pair
of numbers (m,n) represents the number of steps in the m and n directions of the lattice to create this circumference vector.
States accessible to thermal fluctuations around the target state lie within the dotted circle. Examples of target and off-target
assemblies are shown. (C) Scheme for removing off-target states. Accessible states are shown as purple and states allowed by
the coloring pattern are white. As the number of colors increases, the distance between similar vertices grows and eventually
removes all allowed off-target states from the fluctuation area (red circle). The repeating unit cell of the coloring pattern is
shown by the shaded parallelogram.
(D) Experimental scheme for realizing colorings of tubules. Lines on the monomer edges denote ssDNA locations. Arrows
between colored monomers show binding rules. (E) Example TEM micrograph for the 16-color tubule. The bottom shows a
single layer of the tubule. 10-nm-diameter gold-nanoparticles identify the red component. Scale bar is 200 nm.

coloring pattern that specifies the arrangement of vari-
ous components within the tubule. By using colorings
with more types of components, fewer tubule geometries
are commensurate with both the geometry of the tubule
and the periodicity of the coloring, which reduces the
number of off-target states that are thermally accessible.
By borrowing ideas from two-dimensional addressable as-
sembly [13, 34, 35], we decouple the interactions between
subunits from the geometry of the monomer to realize as-
semblies built from up to 16 unique components, demon-
strating that our strategy allows assembly with essen-
tially arbitrarily high complexity. Ultimately, we iden-
tify an economical threshold—which grows as the size of
the cavity squared—where a single assembly state can be
selected with a minimal amount of coloring complexity
and rationalize this limit using a simple Helfrich energy
model. We conclude by showing that one can specifically
target lower dimensional properties, like the width or the
pitch, and that this approach provides a more economical
scaling that is proportional to the self-limiting size.

RESULTS

IMPROVING SPECIFICITY USING MULTIPLE
COMPONENTS

Our strategy works as follows. A cylindrical tubule
can be conceptualized as a sheet that closes upon itself.
Because you can tile a sheet with identical equilateral
triangles, only one component is required [20] and any
tubule state can be identified with a unique pair of num-
bers (m,n) that corresponds to the shortest closed path
around the tubule (directions m and n in Fig. 1B). But
having only a single component also allows the sheet to
close on itself in many different ways since all vertices of
the triangulation are identical, Fig. 1B. While a single
tubule state can be preferred, as specified by the assem-
bly’s curvature, the finite bending rigidity of the sheet
could admit many neighboring tubules, with similar cur-
vatures and therefore similar bending energies. These ac-
cessible geometries can be thought of as off-target states
that occupy an area of vertices around some ground-state
vertex. The challenge of eliminating polymorphism in the
final structures then boils down to removing all undesired
states from within this area.

To accomplish this goal, we color triangles in a pe-
riodic way using an increasing number of colors, which
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FIG. 2. Increased selectivity with increased complexity. (A, B, C) (a) Probability distributions of different tubule types
for 1-, 4-, and 14-color assemblies with the (6,0) monomer. Each circle denotes a single (m, n) tubule type and the area of each
point denotes the relative probability. Illustrations of the most probable tubule for each distribution are shown with each plot.
Distributions come from measurements of 271, 115, and 153 tubule sections, respectively. (b) Representative TEM images of
(6,0) tubule assemblies with the 1-, 4-, and 14-color designs. (D, E, F) (a) Probability distributions for 1-, 4-; and 16-color
assemblies with the (10,0) monomer. Distributions come from measurements of 241, 271, and 144 tubule sections, respectively.
(b) Representative TEM images of (10,0) tubule assemblies with the 1-, 4-, and 16-color designs. Tubules in B(b), C(b),
E(b), and F(b) have the corresponding tiling overlayed with a single color (red triangles) labeled with 10-nm-diameter gold
nanoparticles. Only positive n points are shown since single TEM images cannot differentiate between left and right-handed

structures. All scale bars are 200 nm. TEM images have been bandpass-filtered to improve contrast.

removes translational symmetries of the sheet and re-
duces the number of allowed closure states, Fig. 1C [36].
We note that we are referring to the mathematical con-
cept of coloring and that colors of particles can be imple-
mented through varying the chemical specificity or DNA
sequences that mediate the interparticle interactions. As
additional complexity of coloring is used, the allowed clo-
sure states are pushed further apart and eventually, there
are no allowed vertices within the area of fluctuations. At
this point, only a single accessible assembly state is per-
mitted by the matching rules.

We develop an experimental system to test this con-
cept, comprised of triangular subunits made via DNA
origami, that targets a user-specified cylindrical tubule

by controlling the interaction specificity and the dihe-
dral angles between neighboring subunits [20]. To encode
the dihedral angles, we bevel each side of the triangle.
The monomers also need specific interactions to preserve
their orientation with respect to the tubule axis. To re-
alize specific interactions, we place six single-stranded
DNA (ssDNA) segments with six-base-long binding do-
mains along each edge (Fig. 1D). Using sticky-end hy-
bridization allows us to encode many low cross-talk in-
teractions [15, 35, 37-39] without changing any internal
routing of the DNA origami, which could otherwise have
unintended effects on the monomer structure [19, 20, 40].
Finally, we assemble tubules at a constant temperature
chosen such that the intersubunit interactions are weak



and reversible (SM Sec. S1).

We find that a single component assembles a distri-
bution of tubules with varying width and helicity. We
first design a triangular monomer that targets a (6,0)
tubule and classify the tubules that assemble with trans-
mission electron microscopy (TEM). In particular, we
measure both the width and pitch of each tubule to
identify its (m,n) type, and then construct a distribu-
tion of states, Fig. 2A. The distribution reveals that the
monomer prefers to form (7,0) tubules—close to our tar-
get of (6,0)—but that over half of the observed tubules
form other assembly states distributed near the preferred
state, including both achiral and chiral tubules.

To circumvent the formation of off-target states, we
engineer the free-energy landscape around the preferred
state by building the tubule from a periodic arrangement
of a larger number of components. More specifically,
we generate a matrix of pairwise subunit interactions by
finding periodic colorings of the plane for varying num-
bers of colors, Fig. 1C (SM Sec. S2). The set of adjacent
colors specifies which unique, specific interactions are re-
quired to assemble that pattern, which we implement by
designing the sticky-end sequences of our origami sub-
units. Each color then corresponds to a subunit with a
unique set of intersubunit interactions. Going forward,
we refer to a component as a ‘color’. Changing the area
and aspect ratio of the unit cell of the periodic colorings
allows us to control which tubule states remain accessible
to the system.

By choosing colorings that permit the preferred (7,0)
state, we aim to reduce the density of nearby, undesired
assemblies. Figures 2B and C show the distributions of
4- and 14-color assemblies. As the number of colors,
Neolors, increases we find that the density of available
states decreases and the probability of the most likely
tubule state, which we call ‘selectivity’, increases. Impor-
tantly, images of individual tubules show that the qual-
ity of assemblies does not diminish as Ncolors increases,
Fig. 2B(b) and C(b). We also confirm the specificity of
the intersubunit interactions by labeling a single color
with 10-nm-diameter gold nanoparticles and performing
TEM tomography. While we cannot unambiguously in-
fer the colors of all of the components, we can conclude
that the pattern of gold nanoparticles is consistent with
our designed coloring in all cases.

Because fluctuations of the dihedral angles between
adjacent subunits give rise to the breadth of states, we
expect that targeting a larger diameter tubule will re-
sult in a broader distribution of off-target structures and
thus will require a greater degree of complexity to achieve
full selectivity. To test this hypothesis we design a sec-
ond DNA origami monomer with bevel angles targeting a
(10,0) tubule. Figure 2D shows the distribution of states
for this monomer and an example of an assembled tubule.
As anticipated, the number of off-target states increases
in comparison to the (6,0) tubule. Again, we can im-
prove selectivity through increased assembly complexity.
Figures 2E and F show 4- and 16-color assemblies and a
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FIG. 3. Scaling for increased selectivity. (A) Proba-
bility of the most common assembly state, called selectivity,
against Neolors- (B) Selectivity rescaled by the fluctuation
area Noolors B/ C?. C values are taken from the most prob-
able tubule state. Fitting the single-component assemblies
to the Helfrich model provides estimated values of the bend-
ing rigidity of 10.0 kg7 and 6.7 kg7 for the (6,0) and (10,0)
monomers, respectively. See SM Sec. S7 and Reference [32]
for a description of the theory.

corresponding increase in the assembly selectivity. As be-
fore, we see that the quality of tubules is preserved with
increasing complexity and that the interaction specificity
is consistent with our designed colorings, as seen in the
TEM images.

We use a simple Helfrich model to relate the distribu-
tion of available states to the physical properties of the
assembly [32, 41, 42]. The model assumes that tubule
assembly begins with the formation of a circular patch
whose curvature can fluctuate. The sheet then grows
isotropically until it becomes large enough that it can
close upon itself to become a tubule. We assume that
once a tubule has closed, it can no longer open, and
therefore has a fixed (m,n) type. Thus, the distribu-
tion of states is determined by the thermal fluctuations
at the point of closure. We find that the area of states
in (m,n) space that can form around the target due to
thermal fluctuations is proportional to C?/B, where C is
the preferred circumference non-dimensionalized by the
monomer edge length and B is the bending rigidity non-
dimensionalized by kg7 (SM Sec. S7). This area is
independent of the assembly complexity. Our coloring
patterns introduce another lengthscale: the distance be-
tween similar vertices. This length grows with the size
of the unit cell of the coloring. The area of the unit cell
increases as Neolors (Fig. 1C). When these two areas are
comparable, we expect that the nearest allowed off-target
assembly is outside the area accessible by thermal fluctu-
ations. Thus, we expect a crossover to 100% selectivity
when

]V'colorsB/C’2 Z 1. (1)

Our data of the selectivity collapse when replotted
according to our Helfrich model. In particular, Fig. 3
shows that the selectivity increases linearly with an in-
creasing number of colors and plateaus to full selectivity



when Neolors B/ C? ~ 1. This crossover point corresponds
to the most economical way to target a single assembly
state, after which additional complexity provides no fur-
ther benefit.

LIMITING LOWER-DIMENSIONAL
PROPERTIES OF ASSEMBLIES

While the promise of complete selectively is tantaliz-
ing, the scaling of the number of components with the
square of the self-limited length becomes daunting for
larger structures. Therefore, we explore the possibil-
ity that targeting a lower-dimensional quantity, like the
width or pitch, could be accomplished using fewer com-
ponents. For each tubule, i.e., each (m,n), there is a
unique width and pitch of the assembly that is dictated
by the geometry. We can approximate the width, w,
and pitch, p, of a tubule as w = vm? +n? + mn and
p = wv3n/(2m + n). From these expressions, we can
plot lines of constant w and p on our (m,n) plot, shown
in Fig. 4A. We note that lines of constant n or m + n
approximate the lines of constant pitch or width, respec-
tively. Particularly in the limit of m > n, p = v/3n/2,
and in the limit of m ~ n, w = v/3(m +n)/2. Therefore,
we are able to target families of nearly constant width or
pitch using linear colorings, in which seams of the same
color lie along a single lattice direction, by aligning them
along either n or m — n directions, Fig. 4B.

We validate this scheme in experiment and confirm
that it yields tubule distributions that are highly selec-
tive in their width or pitch. By labeling a single color
with gold nanoparticles we can see that lines of the same
color correspond to lattice directions that are closest to
the circumferential or axial directions for the pitch- and
width-controlled tubules, respectively (Fig. 4C). We also
compare the distributions of tubule widths and pitch for
two of our (10,0) tubule experiments against a single-
color experiment, and find that our linear colorings cre-
ate assemblies with tightly peaked distributions for the
desired property, Fig. 4D (SM Fig. S20).

Using a similar argument from the Helfrich model, we
find that placing reduced constraints on the assembly
leads to an economical threshold that scales linearly with
the self-limited length scale, rather than quadratically as
before. Since we target seams of similar states, we are
now concerned not with the area of thermal fluctuations,
but with their linear extent, C/ V/B. For linear colorings,
the separation between the same component type grows
as Neolors-

To compare our experimental data to the Helfrich
model, we plot the selectivity of tubule states with the
same n or m + n against Ncolors\/E/C’. Figure 4E
shows that our data collapse in agreement with the Hel-
frich model, with the economical point occurring when
NcolorS\/E/C ~ 1. However, we find that reducing the
design constraints comes at the cost that the uncon-
strained dimension (e.g. the pitch when one targets the
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FIG. 4. Limiting single degrees of freedom in assem-
bly. (A) Iso-contours of the pitch and width for tubules
for varying m and n. Experimental distributions overlaid on
the plots that accessible states are lines of neighboring points
that lie on lines of constant n and m + n, respectively. (B)
Schematic of allowed states for linear colorings for pitch or
width alignment and (C) TEM images of 4-color width- and
pitch-controlled tubules with the (10,0) monomer. Lines show
seams of labeled particles (solid and dashed lines denote the
top and bottom layers of the tubule). (D) Probability distri-
butions for the pitch and width of multi-component tubules
compared to one-color tubules. Units for the pitch and width
are the edge length of a monomer. Complete (m,n) distri-
butions of these assemblies are shown in (A). (E) Selectivity
of tubules that have the same m + n (width-control, circles)
or the same n (pitch-control, squares). The dashed lines are
theoretical predictions from SM Fig. S7. (F) Selectivity of
the unconstrained dimension versus Neolors-

width) does not see any improvement in selectivity for
increasing complexity, Fig. 4F.
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FIG. 5. Tubule length limitation. For achiral tubules
(such as those made by the (6,0) monomer), a linear coloring
constrains tubules to length n by neutering one edge of the
n-th color. Dashed and solid red lines denote the neutered
interactions for n =3 and 7. TEM images for 3-, 7-, and 19-
color assemblies are shown. All scale bars are 100 nm.

Whereas we have so far focused on constraining the
(m,n) states that can form, we conclude by showing how
assembly complexity can also be used to constrain a dif-
ferent aspect of the tubule geometry: their length. We
use the same class of linear colorings as above, but now we
passivate a single edge of one color to prevent the further
addition of monomers along that seam, Fig. 5. In this
way, the number of colors constrains the tubule length.
In Fig. 5 we show representative TEM micrographs of
our (6,0) monomer with 3-, 7-, and 19-color assemblies.
In all cases, we find that the system reaches an equi-
librium state characterized by a mixture of monomers,
small clusters, and finite, n-length assemblies (SM Sec.
S8). The spirit of this type of constraint is different than
those mentioned previously since we are not increasing
the complexity to reduce the number of states accessible
by thermal fluctuations, but rather to cap the growth of
assemblies, highlighting the various ways that assembly
complexity can be used to engineer self-limitation.

DISCUSSION

In this work, we have demonstrated a scheme for pre-
venting off-target assemblies by increasing the complex-
ity of the initial assembly mixture. By imposing complex
colorings, implemented through matrices of specific inter-
subunit attractions, assembly states that were accessible
due to fluctuations in the curvature become disallowed,
leading to full selectivity of the target geometry. By im-
posing different numbers of constraints on the assembly,
we were able to either achieve full selectivity for both the
pitch and width of tubules (Fig. 2 and 3) or either one
separately (Fig. 4). The benefit of selecting a single di-
mension of the structure, say the width, is that it can be
done using substantially fewer colors, which becomes es-
sential as the self-limiting dimension becomes arbitrarily

large relative to the subunit size. Unfortunately, target-
ing the pitch or width alone comes with a lack of selectiv-
ity for the unconstrained dimension, e.g. the pitch. We
show examples of this trade-off in SM Fig. S10. While in
the limit of large target sizes selectivity eventually falls
off, we showed that increasing the complexity mitigates
the marginal losses of selectivity, enhanced by a factor of
Neolors over the standard Helfrich expectation.

We anticipate that our strategy is generalizable to
other self-closing architectures. A useful point of com-
parison is the Caspar-Klug (CK) construction for icosa-
hedral capsids [16]. By utilizing the symmetry of icosahe-
dral shells, the CK rules provide a method for determin-
ing the minimal number of components needed to form
a shell of arbitrary size. However, for too low of a bend-
ing modulus, capsids can assemble asymmetric, defective
structures. These defects often come from disclinations
that form at 5-fold or 3-fold points. By increasing the
number of colors around certain symmetry points in the
structure, beyond the minimum prescribed by CK theory,
we anticipate that strategies like the one we present here
could reduce the propensity for these types of systems to
form defects. Examples of such a scheme are illustrated
in SM Sec. S11 for both an icosahedral capsid [19], as
well as the triply periodic Schwarz P-surface [43]. While
the benefits of adding complexity by lowering symmetry
appear similar at face value to the tubule case in terms of
preventing nearby off-target states, there are open ques-
tions for these distinct topologies, most notably, what is
the density of the nearest off-target states and how do
the energy gaps between these off-target states depend
on the self-closing size, as well as the relative cost for
angular versus stretching distortions of the assembly.

Despite the great improvement in specificity that we
see using multi-color assemblies, there are still challenges
that need to be overcome. The foremost is the kinetics
of growth. The timescale for assembly increases with in-
creasing complexity since the chance of the correct color
monomer finding a binding site at the growth front de-
creases with Neojors (SM Sec. S9). This decrease in as-
sembly rate could be compensated for by increasing the
monomer concentration, but this strategy could become
costly. Instead, future strategies may exploit hierarchical
pathways to assembly both for accelerating assembly and
possibly reducing the desired complexity if certain kinetic
paths can be found that disallow off-target structures.
An important aspect of the kinetics that this work reveals
is that assembly near the economical point is favorable.
In the 14-color assembly with the (6,0) monomer, even
though all closed structures formed the same (m, n) state,
a small fraction of assemblies missed the point of closure
and overgrew as a sheet that wrapped around itself like
a scroll (SM Fig. S19). We hypothesize that this type of
misassembly will become even more prevalent if the as-
sembly complexity passes the point of optimal economy,
NcolorsB/02 > 1.

An important consideration with all types of multi-
component assemblies is the possibility of crosstalk be-



tween different components that can stabilize unintended
contacts [34, 44]. In this context, we can ask why our
designs worked so well and do not seem to suffer from
the inevitability of cross-talk between a limited set of
DNA sequences [38]7 Here we highlight that the site ad-
dressability of DNA origami allows for the inclusion of
interaction geometry as an additional knob for tuning
the specificity of interactions [35]. In fact, for some of
our interaction patterns, we reused strands from other
interactions but altered their arrangement on the faces
of the interacting edges. This combination of sequence
specificity and spatial commensurability greatly increases
the number of unique interactions that can be specified
by a finite library of DNA sequences. Furthermore, in-
creasing the number of sticky ends per side could be used
to increase this combinatoric aspect further, allowing for
many more components than have been explored here.

Coloring, the process of finding allowed, distinguish-
able identities for particles in a structure, is an attractive
way to increase the complexity of assemblies, though the
inverse design challenge of finding an appropriate color-
ing for a desired outcome is not always straightforward.
Here we were able to exploit the symmetries and peri-
odicity of the tubule to generate any desired coloring.
More complex geometries, such as capsids or gyroids,
require considering local point symmetries of the struc-
ture [16, 19, 43, 45] to encode the correct interactions,
while fully addressable clusters often reveal their allowed
colorings through detailed searches of all possible interac-
tions [46]. Recent efforts have also shown that colorings
can be used to encode hierarchical structures into crys-
talline self-assemblies [15]. As assembly structures be-
come more complex, finding the right scheme to encode
large libraries of interactions may require new methods,
such as SAT-assembly [47, 48]. Additionally, it will be
equally important to be able to predict and thus pro-
gram the right binding free energies to facilitate robust
assembly [49-51].

Another successful DNA nanotechnology platform for
assembling tubules uses small complexes of DNA, called
DNA tiles, as building blocks [27, 52]. However, this
system has a couple of key differences from our origami-
based approach that fundamentally alter the mechanism
of self-closure and the design principles for precisely tar-
geting tubules of a specific diameter and helicity. First,
owing to the high bending flexibility of the DNA tiles,
self-closure is kinetically driven and tubule assembly is
biased toward the narrowest tubules that can form. As
a consequence, precisely specifying the tubule diameter
using multicomponent assembly requires going all the
way to the fully-addressable limit [53], in which the self-
limiting diameter is controlled directly by the number
of components, in contrast to our approach, in which
the economical limit is determined by a balance between
geometrical specificity and interaction specificity. Sec-
ond, the rigidity of the DNA tiles is anisotropic, re-
sulting in a wide dispersity in the diameters but a nar-
row dispersity in the helicity of assemblies [54]. There-

fore, tile assembly only requires using multiple ‘colors’ of
tiles to program the diameter, whereas our origami ap-
proach requires using coloring to control both the diame-
ter and the pitch. Beyond coloring, other strategies have
also been employed to program the assembly of tubules
from DNA tiles, such as using well-defined seeds to tem-
plate growth [28] or exploiting steric interactions between
bound nanoparticles [55]. It will be exciting to see how
these types of strategies can be translated to cases like
ours that use subunits with vastly different mechanical
properties.

Going forward, our scheme could be expanded to
systems with subunits with both unique interactions and
unique geometries to target a wider range of self-limiting
architectures. Whereas we focused on a base monomer
with fixed geometry, other target structures have the
need for varying subunit geometries, as with icosahedral
shells [19] or for surfaces with varying Gaussian curva-
ture, such as helical cylinders, toroids, or open crystalline
structures [43]. Moreover, many studies have recently
demonstrated that DNA origami can be dynamically
reconfigured [56-59], so it is within sight to imagine a
base monomer with adjustable edge lengths or bevel an-
gles that could be used to produce new nanoscale devices.

MATERIALS AND METHODS

Folding DNA origami. To assemble our DNA
origami monomers, we make a solution with 50 nM of
p8064 scaffold (Tilibit), 200 nM of each staple strand (In-
tegrated DNA Technologies [IDT]; Nanobase structures
234 and 235 [60] for sequences), and 1x folding buffer.
We then anneal this solution using a temperature pro-
tocol described below. Our folding buffer, from here on
referred to as FoBX, contains 5 mM Tris Base, 1 mM
EDTA, 5 mM NaCl, and X mM MgCl,. We use a Tetrad
(Bio-Rad) thermocycler to anneal our samples.

To find the best folding conditions for each sample, we
follow a standard screening procedure to search multiple
MgCl, concentrations and temperature ranges [20, 40],
and select the protocol that optimizes the yield of
monomers while limiting the number of aggregates that
form. All particles used in this study were folded at
17.5 mM MgCly with the following annealing protocol:
(i) hold the sample at 65 °C for 15 minutes, (ii) ramp
the temperature from 58 °C to 50 °C with steps of 1 °C
per hour, (ili) hold at 50 °C until the sample can be
removed for further processing.

Agarose gel electrophoresis. We use agarose
gel electrophoresis to assess the folding protocols and
purify our samples with gel extraction. We prepare
all gels by bringing a solution of 1.5% (w/w) agarose
in 0.5X TBE to a boil in a microwave. Once the
solution is homogenous, we cool it to 60 °C using
a water bath. We then add MgCl, and SYBR-safe



(Invitrogen) to have concentrations of 5.5 mM MgCly
and 0.5x SYBR-safe. We pour the solution into an
Owl B2 gel cast and add gel combs (20 puL wells for
screening folding conditions or 200 ulL wells for gel
extraction), which cools to room temperature. A buffer
solution of 0.5x TBE and 5.5 mM MgCly, chilled at
4 °C for an hour, is poured into the gel box. Agarose
gel electrophoresis is run at 110 V for 1.5-2 hours in a
4 °C cold room. We scan the gel with a Typhoon FLA
9500 laser scanner (GE Healthcare) at 100 pm resolution.

Sample purification. After folding, we purify our
DNA origami particles to remove all excess staples and
misfolded aggregates using gel purification. If the par-
ticles have self-complementary interactions, they are di-
luted 2:1 with 1xFoB2 and held at 47 °C for 30 minutes
to unbind higher-order assemblies. The folded particles
are run through an agarose gel (now at a 1xSYBR-safe
concentration for visualization) using a custom gel comb,
which can hold around 2 mL of solution per gel. We use
a blue fluorescent light table to identify the gel band con-
taining the monomers. The monomer band is then ex-
tracted using a razor blade. We place the gel slices into
a Freeze 'N Squeeze spin column (Bio-Rad), freeze it in
a -20 °C freezer for 5 minutes, and then spin the solution
down for 5 minutes at 12 krcf. The concentration of the
DNA origami particles in the subnatant is measured us-
ing a Nanodrop (Thermo Scientific). We assume that the
solution consists only of monomers, where each monomer
has 8064 base pairs.

Since the concentration of particles obtained after gel
purification is typically not high enough for assembly, we
concentrate the solution using ultrafiltration [40]. First,
a 0.5-mL Amicon 100-kDa ultrafiltration spin column
(Millipore) is equilibrated by centrifuging down 0.5 mL
of 1xFoB5 buffer at 5 krcf for 7 minutes. Then, the DNA
origami solution is added and centrifuged at 14 krcf for
15 minutes. We remove the flow-through and repeat the
process until all of the DNA origami solution is filtered.
Finally, we flip the filter upside down into a new Amicon
tube and spin down the solution at 1 krcf for 2 minutes.
The concentration of the final DNA origami solution is
then measured using a Nanodrop.

Tubule assembly. Assembly experiments are con-
ducted with DNA origami particle concentrations rang-
ing from 2 nM to 30 nM. For assemblies that are made
up of multiple colors, the quoted concentration is the
total concentration of all subunits, e.g. for a 10-nM
experiment with N colors, each color has a concentra-
tion of 10/N nM. Assembly solutions have volumes up
to 50 uL with the desired DNA origami concentration in a
1xFoB20 buffer. The solution is placed in a 200 uL. PCR
tube and loaded into a thermocycler (Bio-Rad), which is
held at a constant temperature, ranging between 30 °C
and 50 °C. The thermocycler lid is held at 100 °C to
prevent condensation of water on the cap of the PCR
tube.

Since DNA hybridization is highly sensitive to tem-
perature, we expect that there should be a narrow
range of temperatures over which the system can
assemble by monomer addition. To make sure that we
assemble tubules within this regime, we prepare many
samples over a broad range of temperatures. At high
temperatures, we find that there are no large assemblies,
implying that we are above the melting transition for our
ssDNA interactions. As we lower the temperature, we
find a transition to the formation of assembled tubules,
but with increasing defect density as the temperature
decreases. For this reason, all assembly experiments are
conducted just below the melting transition.

Labeling tubules with gold nanoparticles.
We first attach thiol-modified ssDNA (5-HS-CgHjo-
TTTTTAACCATTCTCTTCCT-3’, IDT) to 10-nm-
diameter gold nanoparticles (AuNP) (Ted Pella) using
a protocol similar to that in ref. [61]. We first reduce the
thiolated strands using tris(2-carboxyethyl) phosphine
(TCEP) solution (Sigma-Aldrich) by holding a mixture
of 10 mM TCEP (pH 8) and 100 pM thiol-DNA at room
temperature for one hour on a vortex shaker. We remove
excess TCEP with a 10-kDa Amicon filter in three washes
of a 50 mM HEPES buffer (pH 7.4); we follow this with
filter centrifugation at 4 krcf for 50 min at 4 °C. After
purification, we store thiolated DNA strands at -20 °C
until needed. To attach thiolated DNA to AuNPs, we
mix DNA with AuNPs at a ratio of 300:1 in a 1x bo-
rate buffer (Thermo Scientific) and rotate the mixture
at room temperature for 2 hours. After incubation, we
increase the salt concentration in a stepwise manner to
0.25 M NaCl using a 2.5 M NaCl solution in five steps.
After each salt addition, we rotate the AuNP solution at
room temperature for 30 min. After the last addition,
we let the AulNP solution age in the rotator overnight.
To remove excess thiol-DNA strands, we wash the DNA-
AuNP conjugates four times by centrifugation using a
1x borate buffer with 0.1 M NaCl. In each wash step,
we centrifuge the DNA-AuNP solutions at 6.6 krcf for 1
hour. After the last wash, we measure the DNA-AuNP
concentration using a Nanodrop, and store the solution
at 4 °C.

To attach AuNPs to tubules, we incorporate handles
on the interior edges of the DNA origami subunit with a
complementary sequence (5-AGGAAGAGAATGGTT-
3, IDT) to the DNA on the AuNP. For a multi-
component assembly, only one subunit type has handles
that bind to the AuNPs. After tubules have been
assembled, we dilute the assembly solution into a
mixture with final concentrations of 1 nM DNA origami
monomers and 2 nM AuNP in 1xFoB20 and incubate at
32 °C overnight. After incubation, samples are ready to
be prepared for imaging.

Fluorescence microscopy. We incubate our DNA
origami tubules with YOYO-1 dye (Invitrogen) at room
temperature for a minimum of half an hour in a solution



of 5 nM monomers, 500 nM YOYO-1, and 1xFoB at
the MgClsy concentration of the assembly. This ratio of
YOYO-1 to DNA origami is chosen so that there are
100 dye molecules per structure, a limit in which the
dye’s impact on the structural integrity of the origami
should be negligible [62]. 1.6 pL of the solution is
pipetted onto a microscope slide that has been cleaned
with Alconox, ethanol (90%), acetone, deionized water,
and subsequently plasma-cleaned. After deposition,
a plasma-cleaned coverslip is placed on the droplet
at an angle and carefully lowered so that the liquid
film is as thin as possible. We find that this reduces
the sample thickness to about the width of a tubule
without damaging the tubules, allowing them to lie
flat on the surface. Samples are imaged on a TE2000
Nikon inverted microscope with a Blackfly USB3 (FLIR)

camera.

Negative-stain TEM. We first prepare a solution of
uranyl formate (UFo). We boil doubly distilled water to
deoxygenate it and then mix in UFo powder to create
a 2% (w/w) UFo solution. We cover the solution with
aluminum foil to avoid light exposure and vortex it vig-
orously for 20 minutes, after which we filter the solution
with a 0.2 um filter. Lastly, we divide the solution into
0.2 mL aliquots, which are stored in a -80 °C freezer until
further use.

Before each negative-stain TEM experiment, we take a
0.2 mL UFo aliquot out from the freezer to thaw at room
temperature. We add 4 puL of 1 M NaOH and vortex
the solution vigorously for 15 seconds. The solution is
centrifuged at 4 °C and 16 krcf for 8 minutes. We extract
170 uL of the supernatant for staining and discard the
rest.

The EM samples are prepared using FCF400-Cu grids
(Electron Microscopy Sciences). We glow discharge the
grid prior to use at -20 mA for 30 seconds at 0.1 mbar,
using a Quorum Emitech K100X glow discharger. We
place 4 uL of the sample on the carbon side of the grid
for 1 minute to allow adsorption of the sample to the grid.
During this time, 5 uLL and 18 uL droplets of UFo solution
are placed on a piece of parafilm. After the adsorption
period, the remaining sample solution is blotted on 11 pm
Whatman filter paper. We then touch the carbon side of
the grid to the 5 uL. drop and blot it away immediately
to wash away any buffer solution from the grid. This step
is followed by picking up the 18 uLL UFo drop onto the
carbon side of the grid and letting it rest for 30 seconds to
deposit the stain. The UFo solution is then blotted and
any excess fluid is vacuumed away. Grids are allowed to
dry for a minimum of 15 minutes before insertion into
the TEM.

We image the grids using an FEI Morgagni TEM
operated at 80 kV with a Nanosprinth CMOS camera
(AMT). The microscope is operated at 80 kV and images
are acquired between x8,000 to x20,000 magnification.

TEM tomography. To obtain a tilt-series, we use

an FEI F20 equipped with a Gatan Ultrascan 4kx4k
CCD camera, operated at 200 kV. The grid is observed
at x18000 magnification from -50 degrees to 50 degrees
in 2-degree increments. The data is analyzed and the
z-stack is reconstructed using IMOD [63].

Cryo-electron microscopy. Higher concentrations
of DNA origami are used for cryo-EM grids than for
assembly experiments. To ensure that particles remain
isolated from each other in the ice, we use passivated
monomers, which have no ssDNA strands protruding
from the faces of the DNA origami. To prepare samples,
we fold between 1-2 mL of the folding mixture (50 nM
scaffold concentration), gel purify it, and concentrate the
sample by ultrafiltration, as described above. EM sam-
ples are prepared on glow-discharged C-flat 1.2/1.3 400
mesh grids (Protochip). Plunge-freezing of grids in liquid
ethane is performed with an FEI Vitrobot with sample
volumes of 3 uL, blot times of 16 s, a blot force of -1, and
a drain time of 0 s at 20 °C and 100% humidity.

Cryo-EM images for the (10,0) DNA origami monomer
are acquired with the FEI Tundra TEM with a field emis-
sion gun electron source operated at 100 kV and equipped
with an FEI Falcon II direct electron detector at a mag-
nification of x59000. Single-particle acquisition is per-
formed with SerialEM. The defocus is varied from -0.5
pum to -4 um with a pixel size of 2.023 Angstrom.

Cryo-EM images for the (6,0) DNA origami monomer
are acquired with a Tecnai F30 TEM with a field
emission gun electron source operated at 300 kV and
equipped with an FEI Falcon II direct electron detector
at a magnification of x39000. Single-particle acquisition
is performed with SerialEM. The defocus is set to -2
pwm for all acquisitions with a pixel size of 2.87 Angstrom.

Single-particle reconstruction. Image process-
ing is performed using RELION-3 [64].  Contrast-
transfer-function (CTF) estimation is performed using
CTFFIND4.1 [65]. After picking single particles, we
perform a reference-free 2D classification from which
the best 2D class averages are selected for processing,
estimated by visual inspection. The particles in these 2D
class averages are used to calculate an initial 3D model.
A single round of 3D classification is used to remove
heterogeneous monomers and the remaining particles
are used for 3D auto-refinement and post-processing.
Figures S21 and S22 show views of the reconstructions
and the resolution curves. The post-processed maps are
deposited in the Electron Microscopy Data Bank with
entry EMD-43226 and EMD-43227.
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S1. DETERMINING ASSEMBLY CONDITIONS FOR SSDNA INTERACTIONS

Since DNA hybridization is sensitive to both salt species and concentration as well as the temperature of assembly
we conduct a screening of a variety of conditions to see where we find tubule assembly. To explore this we conducted
assembly experiments with both MgCls (Fig. S1A) and NaCl (Fig. S1B) as the cation. For both of these salts, we
looked for assemblies at different temperatures. In general, regardless of the cation species or concentration, there is
a characteristic temperature, called the melting temperature, that separates the solution having assemblies and the
solution remaining as monomers. We have seen that the closer an experiment is to the melting temperature the better
the overall quality of tubules that we find, see the TEM images in Fig. STA. We did not find an appreciable difference
in the quality of the tubule between the types of salts. At too high of a salt concentration, about 30 mM MgClsy, the
melting temperature begins to approach the disassembly temperature of our DNA origami subunits. For all of our
experiments we choose to use a concentration of 20 mM MgCly; where we saw a melting temperature of about 36 °C.

A 30 32 34 36 38 40 42 44 B 50 100 150 200 300 400 500 600
MgCl, » T[C] » NaCl [mM]
20mM O O O O X X X X 44°C | X X X X X X
X unassembled
24mM | O O O O O X X X 38°C | X X X X X O
O assembled
X X X X o

X 31°C | X

O X X
/

X
X
\"‘

300 nm

FIG. S1. Assembly conditions for tubule assembly. (A) Phase diagram for assembly with MgCly concentration and
temperature. The gradient over the assembly symbols represents a decrease in assembly quality at lower temperatures. (B)
Phase diagram for assembly with NaCl concentration and temperature. Selected images show representative assemblies at a
few points in the diagrams. All TEM images have been bandpass filtered.
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S2. GENERATING COLORING PATTERNS FOR TUBULES

To know what interactions to program between our monomer species, we first need to generate coloring patterns.
A coloring pattern is the assignment of color to each triangle on the plane such that it can be wrapped into a tubule.
This restriction means that the coloring needs to have translational symmetry and can have at most 2-fold symmetry
since tubules have a well-defined axis (these criteria correspond to either ‘o’ or ‘2222’ symmetry groups on the plane).
To minimize the number of colors needed to create a tubule, we only use patterns with 2-fold symmetry in this work.
Our previous study [32] used a brute-force computational search over all possible interactions between subunits to
generate allowed patterns, but this strategy becomes intractable for more than ten colors.

Here we generate coloring patterns by prescribing a desired unit cell for the tiling and then using symmetry to color
in the pattern. In Fig. S2, we outline the basic procedure. First, we choose a primitive cell for the coloring, which is a
parallelogram that can tile the plane by translation and is defined by two primitive vectors for its side length. Next,
we assign a color to an arbitrary triangle that lies within the parallelogram. Since we require that our parallelogram
has both translational symmetry and 2-fold rotational symmetry, some triangles within the parallelogram are required
to have the same color to preserve symmetry. After assigning a color, we color in any symmetric triangles in the
pattern. We continue this method of coloring until all the triangles in the parallelogram have been assigned a color.
A benefit of this type of pattern generation is that it is simple to create a multi-color assembly that targets a specific
tubule state. Since the primitive vectors of the unit cell define the periodicity of the coloring, they also inform one
of the tubule states that will be geometrically commensurate with that coloring. A more detailed description of this
scheme can be found in ref. [36].

S3. DESIGN OF INTERACTION SEQUENCES

To have all of the required interactions for our multi-component assemblies, we need to have a library of unique
interactions that have low crosstalk. We use an algorithm described by Nadrian Seeman [37] to construct our library.
A sketch of the algorithm is as follows. First, we choose a set of bases (letters) that we will use to construct our
sequences, such as AGT for three letters. Using these letters, we create a list of all their permutations of up to some
length N. We call this set our dictionary. After populating the dictionary with all permutations, we remove all entries
that contain the same letter at least three times in a row, such as AAA. This dictionary is then used to generate a
new sequence (word) of some target length M, where M is greater than N. To create a word, (i) we pick an entry
at random from our dictionary and set it to be the start of the word, (ii) we remove the entry from the dictionary as
well as its complement, if it is there, (iii) we pick a new entry from our dictionary that starts with the last N-1 letters
of our current word and add the last letter of our picked entry to the word, (iv) we remove the picked entry and its
complement from the dictionary, (v) we repeat steps (iii) and (iv) until the word reaches the target length M, and
(vi) we repeat steps (i-v) until the dictionary is depleted to the point that new M-letter words cannot be formed.

Using a four-letter alphabet (ACGT) with five-letter dictionary entries, we generated a list of 187 six-letter words.
From this list, we choose 72 words such that they, and their compliments, had the lowest off-target interactions.
These sequences are listed in Table S1 along with their calculated binding free energy to their complements at 1 M
NaCl [66].

define periodic parallelogram (i) translational sym. (i) 2-fold symmetry (iii) add next color (iv) final coloring

\VARV/ Z’: . , .

.
.
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\
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FIG. S2. Generation of colorings. Outline for coloring generation scheme. First, choose a parallelogram that will tile the
plane, defined by primitive vectors (m1,n1) and (ma,n2). To color in the parallelogram, and subsequently the plane, we use
the following steps: (i) assign a color to an arbitrary triangle in the parallelogram and color any other triangles that can be
reached by any of the primitive vectors, (ii) color any triangles that can be reached by a colored triangle from a 2-fold rotation
about the center of the parallelogram, (iii) repeat the previous steps for an uncolored triangle with a new color until (iv) all
triangles in the parallelogram have a color assigned.



S4. LIBRARY OF SIDE INTERACTIONS

Given a list of sequences with minimal crosstalk, we also need to generate a library of interactions for each side of each
subunit species. For any multi-component design, there can be both self-complementary and non-self-complementary
interactions. For each triangular subunit, we want six strands on each of its three sides. Given this design criteria,
we create a list of multiple self-complementary and non-self-complementary sequences for each side. These strands
are listed in Table S2 along with the sum of their binding free energies. The set of strands for each side was chosen
so that they would have similar total binding free energies to each other. Due to the limited size of our interaction
sequence library, some sets of six strands share the same sequence. In these cases, the locations of the sequences were

chosen to minimize off-target binding. Estimates of binding energies are shown in Fig. S3.
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FIG. S3. Side-side interaction energy. (A) Free energy of binding between different sets of interactions is shown in Table S2.
Each set of three rows and columns (denoted by the bracket) corresponds to the side 1, 2, 3 sequences in that order. (B) To
highlight the weaker binding energy of the off-target interactions, we set all intended binding interaction energies to 0 kcal/mol
and rescaled the colorbar.

S5. ANALYSIS OF TUBULE DISTRIBUTIONS

After assembly experiments, we observe the assembled structures with TEM. We find many tubules that are
deposited upon the mesh that present a variety of tubule types. Since our tubules are made of a discrete number of
subunits, we know each tubule, or section of a tubule, can be identified with a unique (m,n) pair, where m and n
describe the shortest path around the circumference of the tubule while moving allong the m and n lattice directions,
as shown in Fig. 1B of the main text. As described in the work of Hayakawa et al. [20], each type of tubule can
be identified with a specific circumference and maximum seam angle. By measuring each of these quantities for all
tubules we image, we can create a distribution of the tubule states that are accessible to the system.

We illustrate this analysis by looking at the data set for the 4-color isotropic case from Fig. 2E in the main text.
In Fig. S4A, we show a TEM image of a tubule and the measured seam angle and width in the image. Measuring
many tubules allows us to build up a distribution of seam angles and circumferences, Fig. S4B. We assume that the
measured width is half the circumference since tubules become flattened during grid prep [20]. Since the tubule does
not lie perfectly flat, may crack slightly when deposited on the TEM grid, or have a varying amount of stain, there is
some spread in the values away from those expected for discrete tubules. For the case of a multi-component assembly,
only some of the states are expected to be allowed, as shown by the red squares. The data cluster about these
points, but the spread is comparable to the separation between possible tubule types. Since the AuNP labeling and
tomography experiments show high fidelity of interaction specificity, we cluster these points to their nearest allowed
state to construct an (m,n) distribution for the assembly, Fig. S4C. The nearest state is the one that minimizes the
sum in quadrature of the differences between the experimental and the expected values for discrete, flattened tubules
of the seam angle and circumference.

To increase our confidence in the distributions we measure, we perform an additional analysis in which we identify
the n number directly from TEM images. In Fig. S4D, we show that the seams of triangles in both layers of the
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FIG. S4. TEM tubule analysis (A-C) Width and seam angle analysis. (A) For any tubule, one can measure the seam angle,
Oscam, and the width on the TEM gird. This image is from the 4-color experiment shown in Fig. 2 for the (10,0) monomer in
the main text. Scale bar is 200 nm. (B) Plot of the seam angle versus the diameter of the tubule. We take the diameter to be
twice the measured width. Open square denote all discrete tubule states, filled squares are the states allowed by the coloring of
triangles. (C) By clustering points to the nearest allowed state from the seam angle versus width data, we construct the (m,n)
distribution for the assembly. (D-F) Width and n analysis. (D) By looking at the lattice seams of the tubule one can directly
infer the n state of the tubule. The solid line shown seams for one layer of the tubule and the dashed line is the seam on the
other layer. In this image we see that there are exactly two rows of triangles that span the dashed line, so we know this is an
n = 2 tubule. (E) Histograms of the diameters of tubules for each corresponding n number measured in TEM. Dashed vertical
lines are the diameter for tubules with m numbers 6 to 14 with the corresponding n number and allowed by the coloring. Note
that the histograms show peaks only at the allowed m numbers. (F) By clustering points in each histogram to their nearest
allowed m number we construct the (m,n) distribution. Images have been bandpass filtered.

tubule can be seen. By matching up where the seams for two layers meet, we can directly infer the n number for
each tubule. This procedure is a more reliable method of determining the n number than using the seam angle since
those data show a broad spread compared to the separation between discrete tubule states. After determining n, we
construct histograms of the measured circumferences for each set of unique n numbers, as shown in Fig. S4E. Looking
at the circumferences, we see distinct peaks that match up well with the states that are allowed from the coloring.
Again we can cluster these points to the nearest allowed tubule state and construct an (m,n) distribution (Fig. S4F).
This method provides a quantitatively similar distribution to the one described above. For all distributions shown in
the main text, we use this second method.

We also note that for lower complexity assemblies, tubules have a tendency to change their type along their length,
see Fig. S13. When we encounter such tubules we consider each section that has a continuous type as an individual
occurrence of closure. In the instance shown in Fig. S13 we would count four separate instances in our data.



S6. ESTIMATING ASSEMBLY YIELD

While we do not see unintended side products of assembly, there are assembled tubules, monomers, and small
clusters in solution. In Fig. S16 and S17, we show overview images of TEM grids for tubule assemblies. From these
types of images, we can try to estimate the yield of assembly, i.e. the fraction of monomers that fruitfully enter into
tubules. To estimate this we measure the areal density of both tubules and small clusters in the TEM images.

To get the areal density of monomers and small clusters, pfee, we measure the density of origami on sections of
the images that are free of tubules. First, we manually count the number of monomers in a large field of view. We
then bandpass filter and threshold the same region of monomers to measure the area fraction that they take up in
the image. The image processing smears out the monomers and overestimates their area. The manual count is then
used to calibrate this over-estimation. We then use this calibration to get the areal density of monomers in several
fields of view.

To get the areal density of monomers in tubules, pyubule, We measure the area of tubules in a field of view. To do
this we approximate each tubule as a rectangle and manually place rectangles over all of the tubules in an image.
Since tubules have two layers we multiply the area of all these rectangles by two. The areal density is the ratio of the
scaled tubule area to the area of the field of view.

To get the final estimate for the assembly yield we compare the fraction of monomers in tubules to all monomers
in a field of view, ptubule/(Ptubule + Pfrec). For the 1-color assembly shown in Fig. S16 we find that around 75% of
monomers are in tubules. For the 9-color assembly shown in Fig. S17 we find that around 60% of monomers are in
tubules.

S7. HELFRICH MODEL OF THERMAL FLUCTUATIONS
A. Predicting tubule-type distributions

To understand which neighboring tubule states are within the reach of thermal fluctuations, we consider how
fluctuations of curvature for a growing sheet relate to the mechanical properties of the sheet. We use a Helfrich model
for the elastic energy of the sheet [22, 41], which goes as E = %BA(AHL)Z, where A is the area of the assembly, B is
the bending rigidity, and Ak is the fluctuation of the curvature in the circumference direction.

We assume that the growth of assemblies in our system roughly follows the path shown in Fig. S5. Subunits form
a circular patch, which adopts some amount of curvature that is related to the binding angles programmed into the
subunits; this curvature is also subject to thermal fluctuations. If the binding energies for each side of the triangular
subunits are similar, we assume that the patch will then grow isotropically until it is large enough to close upon itself.
After closure, the assembly is classified as a tubule and can continue growth by extending. From prior work [20, 22, 32],
we assume that the assembly of the is slow and monomers attach to and detach from the growing assemblies, so that
it can be modeled as quasi-equilibrium. Thus, the curvature and subunits can anneal. In contrast, the tubule type is
frozen in when the sheet closes on itself, because at this point disassembly involves breaking multiple bonds and thus
a large activation barrier. Hence, the curvature and subunits are quenched after closure. This assumption means that
the dispersity of states in the assembly can be directly tied back to the fluctuations of the pre-closure sheet.

From this simple picture of growth, we can estimate the fluctuations of our assembled states by finding the energies
of assemblies at the closure point and then infer their distribution assuming that the probabilities follow a Boltzmann
distribution. First, we need an estimate for the area of sheets at closure. At the closure point, the diameter of the
patch matches the circumference of the tubule it has closed into, 2rpatch = 2R, where 7paten is the radius of the
assembled sheet and R is the radius of curvature of the tubule. Using this relation we get that the assembly has
an area of A = 72R2. Second, we need to express the fluctuation of curvatures in terms of the fluctuations of the
circumference of the tubule, C'. This is given by:
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Combining these two expressions we find that the Helfrich energy for a sheet at the closure point is
o _ L sp (AC 2 ®)
H = 271' C .

Assuming that the circumferences of the tubules follow the Boltzmann distribution, P = exp(—FEn/kgT)/Z, where Z
is the partition function, then the standard deviation of the circumference goes as AC « C/v/B.



We extend this Helfrich model to the (m,n) space of tubule types by considering a simple elastic model for the
energy of our assembly. Since the triangular monomers have a preferred binding angle on each side, any deviation
from this angle will result in an elastic energy cost. For an assembly with N components, the elastic energy can be
estimated as

1 2
_E:ZNB}E:(@—QW), (4)
i€1,2,3

where 6y ; is the preferred binding angle and 6; is the actual binding angle for side i. We can estimate the size of an
assembly at closure as we did above, finding N = (47/+/3)(C/lo)?, where Iy is the edge length of a subunit. As a
note, we can estimate the difference in binding angles for different size tubules and find that Af oc AC/C?. Putting
this result into Eqn. 3 gives the same scaling as in Eqn. 2. Since both NV and 6y ; depend upon m and n, this model
gives a state-dependent probability P(m,n) that we also assume follows a Boltzmann distribution.

B. Scaling law for isotropic colorings

Making some simplifying assumptions about this model lets us infer a scaling law for how the increase in selectivity
of tubule states depends on the number of colors and properties of the tubule for isotropic colorings. We note that the
addition of complexity through coloring does not change the elastic energy of any of the assembly states. Instead, the
change in the allowed states causes the remaining states to have increased probability through rescaling the partition
function. Essentially, the probability that would have gone into assembly states that become disallowed is funneled
into neighboring allowed states. However, since the breadth of the distribution only depends on the mechanics of the
assembly, e.g. the bending rigidity, this results in an increase in the probability of making the target state.

To calculate the increase in probability we calculate the cumulative probability of states within an area that depends
on the area of the unit cell of the coloring. In Fig. S6A, we show an (m,n) distribution of tubule states generated by
Eqn. 3 overlayed on the vertices of the triangular lattice of monomers. The distribution of states has two well-defined
axes, one shorter than the other, and the distribution of these states is fairly Gaussian, owing to the §2 dependence of
the elastic energy. To account for the coloring patterns of states, we note that for isotropic patterns, similar vertices
in the coloring are separated by a distance of v/ Ncolors- When this coloring pattern is imposed on the tubule some
states become inaccessible and their probabilities are funneled into neighboring available states (Fig. S6B). To get
an estimate for the increase in selectivity, we integrate the tubule state probability distribution within a circle of
radius v/ Ncolors, whose origin is the center of the distribution of assembly states. To make this calculation simpler,
we assume that the tubule distribution is radially symmetric such that the selectivity takes the form
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FIG. S5. Sketch of early assembly growth. At early times, the assembly will grow as a circular patch a radius of curvature
imposed by the subunit binding angles and subject to thermal fluctuations. Once the sheet is large enough, it can close on
itself, at this point the curvature can no longer fluctuate. After closure, the assembly is now a tubule and can continue to
elongate. The orange color represents the boundary of the sheet.



where the standard deviation of the Gaussian is taken to be C/ Vv B. Evaluating this integral gives an approximate
equation for the selectivity of

P o exp(—Neolors B/C?). (6)

The important takeaway from this result is that the selectivity depends upon NeojorsB/ C?, which we use to rescale
our experimental data in Fig. 3 in the main text. Though we make approximations to make this calculation straight-
forward, numerical studies of Eqn. 3 find the same scaling for the selectivity [32].
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FIG. S6. Scaling for selectivity with Ngoiors. (A) Tubule distribution generated from Eqn. 3 targeting a (10,0) state with a
bending modulus of 8 kg7'. (B) By using isotropic colorings we remove possible states from around the target state in an area.
The distance between states scales with v/Ncolors. Since some states can no longer close into the tubules due to the coloring
pattern, probability from these states gets funneled into neighboring available states. (C) With linear colorings the separation
between states grows as Neolors- White circles on the plane denote similar vertices based on an unspecified coloring.

C. Scaling law for linear colorings

Using the same type of argument outlined above, we can make an estimate for the scaling law for the selectivity of
the width- and pitch-control experiments outlined in Fig. 4 in the main text. As shown in Fig. S6C, the linear colorings
have states that are funneled to a seam of allowed points. To get an estimate of the scaling for how these colorings
change selectivity, we need only integrate over one dimension of the Gaussian distribution. Since the separation
between the seams grows as Ncolors, We have that

00 Neolors
P / ) / exp(—(2? +%)/(C?/B))dady, (7)

—Neolors

where x and y correspond to a change in basis with x pointed along the seam of similar states and y perpendicular
to it. This integration results in

P  erf(Neolors VB/C). (8)

This equation reveals that the scaling for the selectivity has changed to depend upon Neolors VB /C', which we use to
rescale the data in Fig. 4E.

D. Comparison with experiment

To compare this model with experiment, we look at distributions of tubules generated by Eqn. 4 and see how the
distributions change when different tubule colorings are used to restrict states. For the isotropic colorings, we use the
results from Videbek et al. [32]. For the pitch- and width-controlled cases, we generate distributions for a variety of
bending rigidities and preferred tubule geometries using Eqn. 4, and restrict their distributions using linear colorings.
Scaling this data with Neolors VB /C collapses the data and shows that the pitch- and width-controlled cases split into
two curves, as seen in Fig. S7. These two curves arise due to the slight asymmetry of the tubule distribution in the
(m,n) space (Fig. S6A). The dashed lines in Fig. S7 show the same curves as shown in Fig. 4E in the the main text.
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FIG. S7. Numerical simulations for pitch and width controlled tubules. Selectivity versus the rescaled linear number of
colors for pitch- and width-controlled tubules based on the Helfrich model. Open symbols are width-controlled and full symbols
are pitch-controlled. A variety of bending rigidities and tubule circumferences are shown. The dark lines show approximations
to the curves and are used in Fig. 4E in the main text.

S8. LENGTH-CONTROLLED TUBULE GEL

Since the length-controlled tubules are finite assemblies, it is possible to observe their evolution toward equilibrium
with gel electrophoresis. We prepare assemblies at different points in time and run them in a 0.5% agarose gel to
separate different-sized assemblies. Figure S8A shows a representative gel of this type of kinetics experiment. At
early times, we see that the assemblies are mostly monomers with some signal coming from larger assemblies, though
it is possible that some of this occurs from assembly at low temperatures in the pocket of the gel. At later times, we
see the emergence of distinct bands. We infer the geometries of the tubules in these bands by comparing them to the
(m,n) distribution of a 2-color pitch-controlled tubule experiment (Fig. S8B). In the tubule distribution, the smallest
structure is a (6,0) tubule, the most probable state is (7,0), and there is a tail at larger m. We see a similar structure
for the bands in the gel scan and conclude that larger diameter length-controlled tubules travel slower in the gel.
We note that we did not characterize the (m,n) distribution from TEM images of length-controlled tubules since the
length-controlled tubules often break during deposition on the grid, making the interpretation of widths unreliable
for these small structures.

To make sure that our assembly gel is reliable we perform a careful analysis on the intensity of the gel lanes. For
each lane, we first correct for the background intensity of the gel by using an empty lane (not shown in the figure).
We then normalize each lane by the sum of its intensity, including any signal that comes from the pocket of the
gel (Fig. S8C). Looking closely at this signal we see that even though there is a noticeable increase in the assembly
peak intensity, there is a small decrease in intensity of the broad peak on the right. This means that the noticeable
increase to the peak in the assembly bands is due to a small decrease across the broad distribution of monomers and
small oligomers. To confirm this we measure the integrated intensity of the oligomer and assembly bands in the gel
(Fig. S8D). Over time the oligomer intensity drops while the assembly intensity increases. The small drop in total
intensity of these two regions of the gel is due to some structures remaining in the pocket of the gel.

S9. KINETICS OF TUBULE GROWTH

To see how changing the number of components in an assembly changes the growth rate, we perform kinetics
experiments that quantify the length of tubules over time. Since our assemblies grow to several microns in length, it
is simple to observe them with epi-fluorescence microscopy. After staining the assemblies with an intercalating dye
(YOYO-1), we take images of the tubules at different points in time. Figure S9A shows exemplary images for a 7-color
experiment over ten days, with larger structures appearing at later times. To quantify the change in the lengths, we
binarize the images, fit the particles to ellipses, and take the fitted major lengths as the lengths of the tubules. By
performing this analysis for a set of thirty images, we generate a distribution of lengths for different points in time
(Fig. S9B). For each time point, we extract the mean length, Lo, of the distribution. Simple models for the growth
of one-dimensional filaments suggest that the relevant parameters for rescaling the assembly time scale are the initial
monomer concentration, ¢, and the number of colors, N¢giors, since these directly impact the rate of monomer addition
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FIG. S8. Kinetics of length controlled tubules (A) Scan from a gel electrophoresis experiment of the 3-color length
controlled tubules of the (6,0) monomer for different assembly times. On the right is a plot of the fluorescence intensity for
the 98 hr assembly. M denotes the monomer band. (B) Tubule distribution for a 2-color pitch-controlled assembly using the
(6,0) monomer. (C) Background corrected and normalized fluorescence intensities for the gel lanes shown in (A). (D) Plot of
the fractional integrated intensity for the oligomers (red) and assembled length-controlled tubules (blue) (signal to the right
and left of the dotted line in (C), respectively), plotted against the assembly time. The black points are the sum of these two
signals. The roughly ten percent decrease in signal comes from the structures that are trapped in the pocket of the gel.

for a growing assembly [67]. In Fig. S9C, we plot Lo versus a rescaled time, ct/Ncolors, and find that our data collapse
to a single curve for a range of Ncojors and initial concentrations.

A. Analysis of fluorescence images for kinetics

Due to the way that we binarize our images, there is a lower bound for the size of objects that we can detect. This
lower bound directly manifests in the distributions that we measure. Since we want to measure the average length,
Ly, of the tubule distribution, we need to incorporate this lower bound into extracting the correct average length. We
implement this correction by integrating over an exponential distribution from this lower bound, L., instead of 0,

(L2 [ (®/Lo)exp(~1/Lo)dl  2I2 4 2LyL, + L2
(L) [Z(/Lo)exp(~l/Lo)dl —  (Le+Lo) '

9)

where L. is the cutoff length scale. By measuring the experimental value of (L?)/(L) and using Eq. 9, we can solve
for Ly of the tubule lengths distribution. For all measured distributions, we use a consistent cut-off of L. = 500 nm.

S10. TRADE-OFFS IN SELECTIVITY

As described in the main text, we introduced a strategy for targeting either the pitch or the width of a tubule to
get a more favorable scaling for the complexity by limiting a single dimension of the thermal fluctuations. This allows
one to prescribe a specific assembly property with significantly fewer colors than when selecting for a single assembly
state. Of course, this comes with the trade-off that the unconstrained dimension gains no benefit in selectivity
with increasing complexity. We illustrate this in Fig. S10 by plotting the selectivity of assemblies using either the
singly- or doubly-selective strategies. Based on our experimental data, Fig. 3 and 4 of the main text, and numerical
calculations, Fig. S7, the distributions of tubules match our Helfrich model. Using this model we plot the theoretical
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FIG. S9. Kinetics of multi-color tubule growth (A) Fluorescent microscopy images of a 7-color tubule assembly at different
points of time. (B) Length distributions of tubules at different points in time. (C) Average length of tubules, Lo, plotted
against a rescaled time, ct/Ngolors-

width-selectivity for assemblies with either the singly- or doubly-selective strategies against both the assembly size and
the number of colors, Fig. SI0A. For another way to view this trade-off, we also plot separately the doubly-selective
prediction, Fig. S10B, and singly-selective prediction, Fig. S10C, along with our experimental data. For the singly-
selective plots, we show both the pitch- and the width-selectivity. These color maps emphasize the improvement of
selectivity for larger self-limiting sizes,

S11. EXTENDING COMPLEX ASSEMBLY TO OTHER TOPOLOGIES

Here we present a direction for how to expand the results we have shown for tubules to other self-closing structures.
For the case of tubules, we showed that there is a large degeneracy of states that are isometric to one another,
which requires only slight changes in the binding angles. Analogous situations arise in assembling other self-closing
topologies, which we illustrate for both an icosahedral capsid and a triply-periodic Schwarz P-surface in Fig. S11.
These assemblies can most naturally form defects at symmetry points within the structure (e.g. n-fold rotation axes).
While leveraging symmetry is essential for the economy of design, it is also a pathway to off-target states. When trying
to assemble structures with a minimal number of components, binding angle fluctuations can cause the formation of
shells or cages of different symmetries. While the examples shown in Fig. S11 are of a small size, they represent a large
class of structures. As shown in the Caspar-Klug construction for capsids [16] and an analogous one for triply-periodic
polyhedra [43]. Larger triangulations with these symmetries can be designed, associated with the so-called T-number,
for example by simple subtriangulation of the simplest forms we show. In Fig. S11 we show examples of adding
complexity to these types of assemblies by using colorings to reduce the symmetry of the objects. This reduction in
symmetry removes off-target states from the energy landscape. How the selectivity of these types of geometries scales
with size, bending rigidity, and complexity is an open question that will be the focus of a future study.

The nature of the isometric off-target states for shells and triply-periodic polyhedral is subtly different than for
tubules. Whereas the symmetry of the tubule is preserved for all states, off-target states for capsids and triply-periodic
surfaces naturally involve a change in symmetry as the unintended states correspond to the insertion or removal of
a triangle at symmetry points of the structure. Due to this change, it is unclear how the density of these off-target
states changes as we move to larger structures and in particular, how close these off-target states are in terms of their
elastic energy. For reasons illustrated above, for tubules, the energy gap (per particle) between a target state and
its nearest off-target competitor decreases with size. Removal/addition of finite angular wedges around symmetric
vertices required by misassembly of capsids and P-surfaces may lead to substantially larger gaps in energy between
target and nearest off-target states and therefore warrant further investigation. In any case, the use of increased



11

B , Doubly-selective

10 1.0
08 >
100 @ 06 =
. . 101 ‘2 10° 2
A t ST 102 © 04 3
arget size (width)y go—0 o2 @
~ } 00 O
10 f - 0.0
) 10° 4 : {
- 10° 10 102
Ncolors
> singly-selective C Pitch-selectivity Width-selectivity
£ - 102
= (width)
S o5l -
S 05 / 3
? 5
(2] 1
Q
o]
=]
=
- o 00 S
0.0 L— / 1 T
singly-selective s
(pitch) doubly-selective %
(width) o)
o]
OO0 O 3
=
=}
10° 10° 102 10° 10' 102
Ncolors Ncolors

FIG. S10. Selectivity in tubules for different strategies. (A) Surface plot of selectivity of the tubule width plotted against
the target tubule size and the number of colors. The orange surface corresponds to the scheme of targeting a single tubule
state with an isotropic coloring pattern (called doubly-selective), as shown in the main text Fig. 2 and 3. For the width-control
scheme (singly-selective), as shown in the main text Fig. 4, the light blue surface shows the selectivity of the tubule width while
the dark blue shows the corresponding pitch selectivity. (B) Shows a color map of the doubly-selective strategy. Circle points
show the experimental data shown from Fig. 3 and share the same colorbar as the theoretical points. (C) shows the pitch-
(left) and width-selectivity (right) for both the pitch-control (top) and width-control (bottom) schemes. This demonstrates the
trade-off that though the scaling of selectivity with the self-limited length is better while constraining just a single dimension
of the assembly, one loses any improvement of selectivity in the other dimension of the assembly.

complexity can still be used to remove these types of structures if they are accessible.
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FIG. S11. Extension of complex assembly to other geometries. (A) Economical and complex tilings for icosahedral
capsid assembly are shown. Due to the lack of interaction specificity of the economical assembly, the subunits that make it up
could assemble into other closed structures. By increasing complexity, and thereby removing symmetries of the target structure,
the target icosahedral capsid can be formed, but the off-target states cannot be accessed. (B) Economical and complex tilings
for the assembly of a triangulated Schwarz P-surface (a triply periodic structure with cubic crystal symmetry). The unfolded
tilings we show are for the primitive cell of this structure, which we call an ‘octahedral cage’. These open octahedral cages can
bind together to form a cubic lattice, as shown a the top left. Due to the symmetry of the interactions between the hexagonal
facets, tetrahedral or icosahedral cages could assemble as well, inhibiting the formation of the higher-order P-surface. Note that
the opening of each cage has different numbers of subunits around them. By increasing the complexity, right, we can remove
odd-fold openings, as seen for the off-target structures.
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TABLE S1: Interaction sequence library. A list of 72 unique se-
quences generated using the algorithm described in Suppl. Sec. S3, along
with the complementary sequence and an estimate of their binding free

energy.

Sequence Compliment AG [kcal/mol] Sequence Compliment AG [kcal/mol]
ACTAGC GCTAGT -6.09 AGTTCC GGAACT -6.13
AGTTAC GTAACT -5.01 CGATTA TAATCG -4.42
TAGTCT AGACTA -4.53 ATTCTG CAGAAT -5.01
CGATGG CCATCG -6.61 ATTCAG CTGAAT -5.01
CCATTC GAATGG -5.61 CTTGAG CTCAAG -5.28
CTTGGT ACCAAG -5.92 GTAGAT ATCTAC -4.42
ATGCAC GTGCAT -6.73 GGATAA TTATCC -4.12
TCGACA TGTCGA -5.67 TCATCC GGATGA -5.43
TTGGAT ATCCAA -4.9 GGTATT AATACC -4.68
TCAGAC GTCTGA -5.43 GGTAAT ATTACC -4.68
GTCTAG CTAGAC -4.88 ACTGAG CTCAGT -5.85
TACCTT AAGGTA -4.79 AGAGAT ATCTCT -5.08
AGTCAG CTGACT -5.85 AGATAG CTATCT -4.42
CTCGAA TTCGAG -5.54 TTCCTG CAGGAA -5.36
TCCTTC GAAGGA -5.38 TTCCAT ATGGAA -4.9
GATCTT AAGATC -4.7 GATATG CATATC -4.09
CTGATC GATCAG -5.35 TTAACC GGTTAA -4.52
TCCACA TGTGGA -5.49 AACATT AATGTT -4.81
CAATAG CTATTG -4.16 TTGGCA TGCCAA -5.99
TGATTG CAATCA -4.57 GACCTC GAGGTC -6.33
CTAGGA TCCTAG -4.77 CCTATG CATAGG -5
CACATC GATGTG -5.66 CTTAGG CCTAAG -4.95
ACGAAG CTTCGT -6.29 TAACAG CTGTTA -4.24
ACCTGA TCAGGT -5.93 TCTTCT AGAAGA -4.59
ATGACA TGTCAT -5.14 GTACAT ATGTAC -4.73
TACAGG CCTGTA -5.08 ATAAGT ACTTAT -4.22
AACCTA TAGGTT -4.76 TTCAAT ATTGAA -4.06
GAGACA TGTCTC -5.29 CTTACT AGTAAG -4.49
GACAGA TCTGTC -5.29 AGTATC GATACT -4.75
CGTCCA TGGACG -6.69 GTATGT ACATAC -4.73
GCATCT AGATGC -6.09 ACAATT AATTGT -4.81
TATTCC GGAATA -4.26 ACTAAC GTTAGT -5.01
AGATTC GAATCT -5.03 CTTGTA TACAAG -4.24
TTCTCA TGAGAA -4.34 CTACAC GTGTAG -5.33
CTGTGA TCACAG -5.41 AAGTAG CTACTT -4.68
TCGTAC GTACGA -5.59 AACTAT ATAGTT -4.22
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Name

TABLE S2: Side interactions for multicomponent assemblies. A
list of the set of six interaction sequences that make up a side interaction
of a monomer and an estimate of their summed binding free energy. The
first six sets of sequences are self-complimentary, e.g. Position 1 binds
to Position 6, Position 2 binds to Position 5, and Position 3 binds to
Position 4. For the rest of the sets, X is complimentary to X*.

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

AG [kcal/mol]

14

sA side 1
sA side 2
sA side 3
sB side 1
sB side 2
sB side 3
A side 1
A side 2
A side 3
A* side 1
A* side 2
A* side 3
B side 1
B side 2
B side 3
B* side 1
B* side 2
B* side 3
C side 1
C side 2
C side 3
C* side 1
C* side 2
C* side 3
D side 1
D side 2
D side 3
D* side 1
D* side 2
D* side 3
E side 1
E side 2
E side 3
E* side 1
E* side 2
E* side 3
F side 1
F side 2
F side 3
F* side 1
F* side 2
F* side 3
G side 1
G side 2
G side 3
G* side 1
G* side 2
G* side 3
H side 1
H side 2
H side 3
H* side 1
H* side 2
H* side 3
I side 1

I side 2

I side 3

ACTAGC AGTTAC TAGTCT AGACTA GTAACT GCTAGT
TTCAAT CCATTC CTTGGT ACCAAG GAATGG ATTGAA
TTAACC TCGACA TTGGAT ATCCAA TGTCGA GGTTAA
TCAGAC GTCTAG TACCTT AAGGTA CTAGAC GTCTGA
ATAAGT CTCGAA TCCTTC GAAGGA TTCGAG ACTTAT
GATCTT CTGATC TCCACA TGTGGA GATCAG AAGATC
CAATAG TGATTG CTAGGA CACATC ACGAAG ACCTGA
ATGACA TACAGG AACCTA GAGACA GACAGA ACTAAC
GTACAT AGTCAG CGATGG CTTACT AGTATC GTATGT
TCAGGT CTTCGT GATGTG TCCTAG CAATCA CTATTG
GTTAGT TCTGTC TGTCTC TAGGTT CCTGTA TGTCAT
ACATAC GATACT AGTAAG CCATCG CTGACT ATGTAC
GCATCT TATTCC AGATTC TTCTCA CTGTGA TCGTAC
AGATAG TTCCTG TTCCAT GATATG ATGCAC AACATT
ACAATT CGTCCA CTTGTA CTACAC GACAGA AACTAT
GTACGA TCACAG TGAGAA GAATCT GGAATA AGATGC
AATGTT GTGCAT CATATC ATGGAA CAGGAA CTATCT
ATAGTT TCTGTC GTGTAG TACAAG TGGACG AATTGT
AGTTCC CGATTA ATTCTG ATTCAG CTTGAG GTAGAT
GGATAA TCATCC GGTATT GGTAAT ACTGAG AGAGAT
TTGGCA GACCTC CCTATG CTTAGG TAACAG TCTTCT
ATCTAC CTCAAG CTGAAT CAGAAT TAATCG GGAACT
ATCTCT CTCAGT ATTACC AATACC GGATGA TTATCC
AGAAGA CTGTTA CCTAAG CATAGG GAGGTC TGCCAA
CACATC CAATAG ACGAAG TGATTG ACCTGA CTAGGA
GAGACA ATGACA GACAGA TACAGG ACTAAC AACCTA
CTTACT GTACAT AGTATC AGTCAG GTATGT CGATGG
TCCTAG TCAGGT CAATCA CTTCGT CTATTG GATGTG
TAGGTT GTTAGT CCTGTA TCTGTC TGTCAT TGTCTC
CCATCG ACATAC CTGACT GATACT ATGTAC AGTAAG
TTCTCA GCATCT CTGTGA TATTCC TCGTAC AGATTC
GATATG AGATAG ATGCAC TTCCTG AACATT TTCCAT
CTACAC ACAATT GACAGA CGTCCA AACTAT CTTGTA
GAATCT GTACGA GGAATA TCACAG AGATGC TGAGAA
ATGGAA AATGTT CAGGAA GTGCAT CTATCT CATATC
TACAAG ATAGTT TGGACG TCTGTC AATTGT GTGTAG
ATTCAG AGTTCC CTTGAG CGATTA GTAGAT ATTCTG
GGTAAT GGATAA ACTGAG TCATCC AGAGAT GGTATT
CTTAGG TTGGCA TAACAG GACCTC TCTTCT CCTATG
CAGAAT ATCTAC TAATCG CTCAAG GGAACT CTGAAT
AATACC ATCTCT GGATGA CTCAGT TTATCC ATTACC
CATAGG AGAAGA GAGGTC CTGTTA TGCCAA CCTAAG
ACGAAG CTAGGA ACCTGA CAATAG CACATC TGATTG
GACAGA AACCTA ACTAAC ATGACA GAGACA TACAGG
AGTATC CGATGG GTATGT GTACAT CTTACT AGTCAG
CAATCA GATGTG CTATTG TCAGGT TCCTAG CTTCGT
CCTGTA TGTCTC TGTCAT GTTAGT TAGGTT TCTGTC
CTGACT AGTAAG ATGTAC ACATAC CCATCG GATACT
CTGTGA AGATTC TCGTAC GCATCT TTCTCA TATTCC
ATGCAC TTCCAT AACATT AGATAG GATATG TTCCTG
GACAGA CTTGTA AACTAT ACAATT CTACAC CGTCCA
GGAATA TGAGAA AGATGC GTACGA GAATCT TCACAG
CAGGAA CATATC CTATCT AATGTT ATGGAA GTGCAT
TGGACG GTGTAG AATTGT ATAGTT TACAAG TCTGTC
CTTGAG ATTCTG GTAGAT AGTTCC ATTCAG CGATTA
ACTGAG GGTATT AGAGAT GGATAA GGTAAT TCATCC
TAACAG CCTATG TCTTCT TTGGCA CTTAGG GACCTC

-30.57
-31.42
-30.23
-30.17
-30.14
-31.27
-31.38
-30.57
-31.16
-31.38
-30.57
-31.16
-30.72
-30.31
-30.58
-30.72
-30.31
-30.58
-30.27
-29.84
-31.1

-30.27
-29.84
-31.1

-31.38
-30.57
-31.16
-31.38
-30.57
-31.16
-30.72
-30.31
-30.58
-30.72
-30.31
-30.58
-30.27
-29.84
-31.1

-30.27
-29.84
-31.1

-31.38
-30.57
-31.16
-31.38
-30.57
-31.16
-30.72
-30.31
-30.58
-30.72
-30.31
-30.58
-29.84
-31.1

-31.42
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Name Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 AG [kcal/mol]
T* side 1 TAATCG CTGAAT GGAACT ATCTAC CAGAAT CTCAAG -29.84
T* side 2 GGATGA ATTACC TTATCC ATCTCT AATACC CTCAGT -31.1
I* side 3 GAGGTC CCTAAG TGCCAA AGAAGA CATAGG CTGTTA -31.42
TABLE S3: Subunit interactions for isotropic colorings. This
table enumerates the different side interactions from Table S2 used to
generate the colorings used in Fig. 2 and 3 in the main text for the (6,0)
tubule.
Number of Subunit ID Side 1 Side 2 Side Number of Subunit ID Side 1 Side 2 Side 3
subunits strands strands strands subunits strands strands strands
N=1 1 sA sA sA N=14 1 A A A
N=2 1 sA A A 2 B B A*
2 A A* sA 3 C A* B
N=4 1 sA A A 4 B* C C
2 sB B A* 5 C* D D
3 A A* sA 6 A* B* E
4 A* B* sB 7 D E C*
N=7 1 A A sA 8 D* C* D*
2 A* B A 9 E D* sA
3 B A* A* 10 F F E*
4 C B* B 11 E* G F
5 B* C B* 12 F* E* F*
6 C* sA C 13 G * sB
7 sA C* C* 14 G* G* B*
TABLE S4: Subunit interactions for isotropic colorings. This
table enumerates the different side interactions from Table S2 used to
generate the colorings used in Fig. 2 and 3 in the main text for the (10,0)
tubule.
Number of Subunit ID Side 1 Side 2 Side Number of Subunit ID Side 1 Side 2 Side 3
subunits strands strands strands subunits strands strands strands
N=1 1 sA sA sA N=16 1 A A A
N=3 1 sA A A 2 B B A*
2 A A* sA 3 B* C B
3 A* sA A* 4 C D C
N=4 1 A A A 5 A* B* D
2 A* B B 6 D E B*
3 B A* B* 7 E C* Cc*
4 B* B* A* 8 F F D*
N=9 1 sA A A 9 D* G E
2 B A* B 10 E* D* F
3 C B A* 11 F* E* G
4 B* sA C 12 G H E*
5 A D B* 13 G* G* F*
6 C* C sA 14 H F* G*
7 A* B* D 15 C* A* H
8 D C* C* 16 H* H* H*
9 D* D* D*



TABLE S5: Subunit interactions for linear tubule colorings. This
table enumerates the different side interactions from Table S2 used to
generate the colorings used in Fig. 4 and 5 in the main text. For the
pitch- and width-controlled tilings, we use the “Linear tiling monomers”
shown in the table below. These monomers have a repetitive nature to
their interactions and the linear coloring can be terminated at any num-
ber of colors in the tiling. If the number of colors is even, we replace the
final monomer with the “Even periodic” monomer, where X* matches
the interaction of the replaced monomer, i.e. if we made an 8-color lin-
ear tiling then we would use the “Linear tiling monomers” 1 to 7 and an
“Even periodic” monomer with X* being D*, following the subunit ID
8 pattern. If the number of colors is odd, we replace the final monomer
with the “Odd periodic” interactions, swapping X* to the interaction of
the replaced monomer. Different permutations of the side interactions
can orient the linear colorings along different lattice directions. Pitch-
controlled tubules have side identifications as shown in the table, while
width-controlled tubules swap the Side 2 and Side 3 interactions. Sim-
ilarly, to make length-controlled tubules we can take a linear tiling and
make the final monomer a “Capping monomer”, that has no interaction
on its side 3.

Linear tiling Capping Monomers

monomers

Subunit ID Side 1 Side 2 Side 3 Subunit ID Side 1 Side 2 Side 3
strands strands strands strands strands strands

1 sA sA A 1-cap sA sA Passive

2 A A A*

3 A* A* B 3-cap A* A* Passive

4 B B B*

5 B* B* C

6 C C C*

7 C* C* D 7-cap C* C* Passive

8 D D D*

9 D* D* E

10 E E E*

11 E* E* F

12 F F *

13 F* F* G

14 G G G*

15 G* G* H

16 H H H*

17 H* H* I

18 I I I* 19-cap I* T* Passive

Even periodic sB sB X*

0Odd periodic X* X* sA
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FIG. S12. Folding screens for DNA origami monomers. Here are images of gels for the initial folding screens as well as
a lane, taken from a different gel, of the optimal folding condition we used for both the (A) (6,0) monomer and the (B) (10,0)
monomer. Labels above gel lanes denote folding temperatures with steps of 1 °C/hr or MgCl, concentration where MX means
X mM MgCl,. Scaffold DNA has been run in lanes labeled by S.
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FIG. S13. Common defect mode in low complexity tubule assembly. Here is an example of a single-component tubule
grown near the melting transition. The arrows point towards locations along the tubule where there is a defect between two
different closure types. The slower growth occurs, i.e. at higher temperatures, the propensity to form defects decreases. This
image has been bandpass filtered

FIG. S14. Examples of different assembly states with the (6,0) monomer. All images are labeled with their (m,n)
type and the scale bars are 100 nm.
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200 nm

FIG. S15. Examples of different assembly states with the (10,0) monomer. All images are labeled with their (m,n)
type and share the same scale bar, 200 nm.
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FIG. S16. Overview of 1l-color assemblies with the (6,0) monomer. The TEM images primarily show tubules and
unbound monomers/small oligomers. While there are a few small clusters of tubules, we hypothesize that those clusters form
during grid preparation. Noteably we do not see any large, random aggregates. All images share the same scale bar.
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FIG. S17. Overview of 9-color assemblies with the (10,0) monomer. The TEM images primarily show tubules and
unbound monomers/small oligomers. While there are a few small clusters of tubules, we hypothesize that those clusters form
during grid preparation. Noteably we do not see any large, random aggregates. There is a large fraction of monomers and
small clusters in this 9-color assembly compared to the 1-color assembly shown in Fig. S16.
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(6,0) monomer assembly Az =48 M (Deypectea = 95 NM) Az =57 nM (Deypecteq = 111 NM)

A

R

tomogram reconstruction

transmission image 100 nm transmission image tomogram reconstruction 100 nm

(10,0) monomer assembly Az =31 nM (Deypected = 199 NM) Az =26 M (Deypectea = 145 NM)

transmission image tomogram reconstruction 100% transmission image tomogram reconstruction 100 nm
FIG. S18. Tomogram reconstructions of tubules. Here we show the top and bottom layers of tomographic reconstructions
for tubules from (A) the (6,0) monomer and (B) the (10,0) monomer. From these reconstructions we find that the difference
in height between the top and bottom layers is on the order of the size of a monomer, implying the tubules are flattened on
the TEM grid. Transmission images have been bandpass filtered. The height of the tomograms, Az, as well as the expected
diameter for the unflattened tubule, Dexpected, are given above each image.

unclosed sheet 100 nm

FIG. S19. Scroll defects in overly complex assembly. In the 14-color assembly with the (6,0) monomer we occasionally
see scroll defects, where the sheet grows wider than the preferred tubule circumference. Arrows point towards regions where
we can see two “walls” of the tubule, where the TEM looks brighter. Images have been bandpass filtered.
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A Width-control 4-color, m+n=12
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FIG. S20. Gallery of width and pitch controlled tubules (A) Tubules with m 4+ n = 12 from a 4-color width-controlled
experiment. Tubules have nearly constant width, but varying pitch. (B) Tubules with n = 3 from a 3-color pitch-controlled
experiment. Tubules have constant pitch, but varying width. Both sets of experiments come from the distributions shown in
Fig. 4A in the main text. Images have been bandpass filtered.
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FIG. S21. Cryo-EM reconstruction of (6,0) monomer. (A) Views of the DNA origami monomer from the interior or
exterior with respect to the tubules that form. Cross-sectional slices of the middle of each side. (B) Plot of the FSC curves
used to estimate the resolution of the monomer reconstruction.
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FIG. S22. Cryo-EM reconstruction of (10,0) monomer. (A) Views of the DNA origami monomer from the interior or
exterior with respect to the tubules that form. Cross-sectional slices of the middle of each side. (B) Plot of the FSC curves
used to estimate the resolution of the monomer reconstruction.
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FIG. S23. caDNAno design of DNA origami monomer with helical numbering.



