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Nishimori transition across the error 
threshold for constant-depth  
quantum circuits

Edward H. Chen    1,2  , Guo-Yi Zhu    3  , Ruben Verresen    4  , Alireza Seif    5, 
Elisa Bäumer    6, David Layden    1,5, Nathanan Tantivasadakarn    4,7, 
Guanyu Zhu5, Sarah Sheldon    5, Ashvin Vishwanath4, Simon Trebst    3 & 
Abhinav Kandala    5

Quantum computing involves the preparation of entangled states across 
many qubits. This requires efficient preparation protocols that are stable 
to noise and gate imperfections. Here we demonstrate the generation of 
the simplest long-range order—Ising order—using a measurement-based 
protocol on 54 system qubits in the presence of coherent and incoherent 
errors. We implement a constant-depth preparation protocol that uses 
classical decoding of measurements to identify long-range order that 
is otherwise hidden by the randomness of quantum measurements. By 
experimentally tuning the error rates, we demonstrate the stability of this 
decoded long-range order in two spatial dimensions, up to a critical phase 
transition belonging to the unusual Nishimori universality class. Although 
in classical systems Nishimori physics requires fine-tuning multiple 
parameters, here it arises as a direct result of the Born rule for measurement 
probabilities. Our study demonstrates the emergent phenomena that can be 
explored on quantum processors beyond a hundred qubits.

Traditionally, measurements have been synonymous with extract-
ing information from physical systems. Yet, in the quantum realm, 
the extraordinary nature of measurements allows them to actively 
modify and steer quantum states, forging a new route to entangle-
ment generation. Among the more interesting entangled states 
are those with long-range correlations1–7; however, these cannot 
be prepared by any constant-depth unitary circuits, making them 
more sensitive to the finite coherence times of current quantum 
processors8–10. In contrast, recent theoretical studies have shown 
that the use of measurements, which are non-unitary operations, 
can be used to efficiently create quantum states with long-range 
order11–23 and critical quasi-long-range order18,21,24. In essence, 
measurement-based approaches trade off circuit depth for number 

of mid-circuit measurements and operations25 as compared with 
exclusively unitary approaches.

In this work, we study such measurement-induced long-range 
order and criticality. In particular, we consider the ‘hydrogen atom’ of 
long-range entangled states, the Greenberger–Horne–Zeilinger (GHZ) 
state |GHZ ⟩ ∝ |

00⋯00⟩ +

|

11⋯ 11⟩ , which can be thought of as one 
representative of a more general ‘Ising’ phase of matter. A necessary 
condition for realizing a GHZ state is a long-range Ising order that 
organizes the individual qubits into a macroscopic state. While recent 
experiments show the practicality of measurement-based protocols 
to create such Ising-like order in one-dimensional (1D) qubit geometries 
where stability is not guaranteed26, theoretical works suggest that this 
order should be robust against a range of imperfections when using a 
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where β = 2tanh

−1

tan(t

A

)  (ref. 18). Due to the degree-3 connectivity 
of the system qubits, we need to repeat the above coupling only three 
times before simultaneously measuring all the auxiliary qubits—result-
ing in a constant-depth circuit independent of the number of qubits.

The measurement outcomes of the auxiliary qubits in the X basis, 
denoted by sij = ±1 for each bond 〈ij〉, are then fed as syndromes to the 
decoder, operated on a classical computer. As shown in Fig. 1b, the 
decoder produces an estimate of the quantum sample based on its 
limited knowledge in the form of {s′} (refs. 21,27,30,31), where {s′} is a 
copy of {s} corrupted by a finite probability ps of noise that can come 
from either the quantum device or the classical communication chan-
nel with probability distribution: P(s′) = p

s

δ

s

′

,¬s

+ (1 − p

s

)δ

s

′

,s

, where 
δ(⋅) is the Kronecker delta function. We employ a fast decoder21 that 
outputs a bit-string {σ′ = ±1} as a classical ground state for each {s′}. 
By denoting the bit-string of the system qubits measured in Z basis as 
{σ = ±1}, the element-wise product, {σσ′}, between the quantum sample 
and the classic replica serves as the decoded bit-string that 
lower-bounds the nonlinear correlations of the quantum samples32. 
This is equivalent to correcting the system qubits by one layer of X gates 
for those sites with σ′ = −1 in a feed-forward manner.

We performed experiments on ibm_sherbrooke, which is one of 
the IBM Quantum Eagle processors with 127 qubits; entangling gates 
generated by echoed cross-resonance (ECR) interactions33–36 had typi-
cal error rates of 0.0077 and square root of Pauli-X gates with error rates 
of 0.0002 (Extended Data Fig. 1). The typical device measurement error 
rates of 0.010 were sufficiently below the decoding threshold needed 
for the preparation of the long-range ordered state.

Results
Conceptual understanding of protocol
In previous theoretical work by some of the present authors18, it was 
shown that deviations from the Clifford limit by coherent errors 
induced by tA < π/4 are tolerable up to a finite threshold. Here, we 
expand this perspective by also treating incoherent errors (corrupt-
ing the syndromes) in an analytically exact manner and show that the 
presence of both types of error leads to a threshold line as shown in 
Fig. 1c, which in its entirety is captured by the Nishimori criticality. To 
see this, let us consider measuring the auxiliary qubits, which collapses 
the system’s wave function into an unnormalized wave function

two-dimensional (2D) protocol18,21,27. Here, we implement this 2D pro-
tocol on a superconducting qubit processor and, by tuning particular 
imperfections, we experimentally create a critical ensemble of these 
long-range ordered states in agreement with theoretical predictions 
for their stability.

The unavoidable randomness of quantum measurements gener-
ates a ‘glassy’ version of the sought-after long-range Ising order, for 
example, |00110⟩ + |

11001⟩, requiring some form of decoding to tame 
the structured randomness. This makes it crucial to record the meas-
urement outcomes and then use either post-selection, feed-forward 
or post-processing to recover the long-range order. In our setup, we 
implement post-processing to decode the hidden long-range order 
and determine the decoding threshold beyond which the order is 
unrecoverable21. This decoding threshold is where our quantum system 
exhibits a Nishimori transition, or criticality28,29, for both incoherent27 
and coherent errors18,21. We argue that the observed Nishimori critical-
ity is, in fact, unavoidable in our protocol and a natural consequence 
of Born’s rule—a striking distinction from materials studies in labs 
seeking to observe the Nishimori criticality only by fine-tuning disorder 
within the material against environmental temperatures.

Protocol and device operation
In our protocol, we divide the qubits on our heavy-hexagonal device 
into system qubits on the vertex ‘sites’, and auxiliary qubits on the 
‘bonds’ of a honeycomb lattice (Fig. 1a). We will refer to the Pauli matri-
ces on each qubit as X, Y, Z. To turn an initial product state of system 
qubits in +1X eigenstates into a GHZ-type state, we measure the ZZ 
parities on all nearest-neighbour system (site) qubits, using the auxil-
iary qubit in between. If the auxiliary outcome is +1, it means the two 
spins are perfectly anti-ferromagnetic in the −1 eigenstate of ZZ.  
A crucial element of our protocol is that we implement a coupling  
to the auxiliary qubit beyond a simple Clifford CNOT gate by an 
R

ZZ

(2t

A

) = e

−it

A

ZZ  rotation with a control parameter 2tA, for the A sub-
lattice (Fig. 1a). By varying tA away from π/4 (the Clifford limit) and 
controling the level of coherent errors, we can perform tunable weak 
measurements described by Kraus operators

K
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Fig. 1 | Circuit protocol, decoder and phase diagram under coherent and 
incoherent errors. a, The heavy-hexagonal lattice of 127 qubits. For the 125 active 
qubits, the inset shows the building block using constant-depth entangling circuits 
for the three nearest neighbours (grey circles) of each system qubit (black circles) 
in the presence of noise (blue lightning). The RZZ gates are executed in order from 
blue, red then grey bonds within three layers. The auxiliary outcomes, s, on the 
bonds of the lattice (grey) can be used to inform a decoder for the data outcomes, 
σ, on the vertices of the lattice (black). b, The quantum device outputs a data 
bit-string {σ} together with an auxiliary outcome {s}. In the presence of noise, the 
auxiliary outcomes become {s′} before being passed to a classical decoder to 
determine a classical replica of the bit-string {σ′}. Their element-wise product, 
{σσ

′

}, serves as the decoded bit-string. A measurement error (blue lightning) can 

corrupt the communication channel between the quantum replica and the 
classical replica. c, The trivial and long-range ordered phases sweep out distinct 
regions depending on the strength of coherent and incoherent noise. Within a 
finite threshold, a stable phase (grey), of which the GHZ state is a special case (red 
circle), exhibits long-range entanglement in the absence of other sources of noise 
(for example, without dephasing). Even in the presence of dephasing (not shown), 
classical long-range ordering remains. The boundary separating the trivial and 
long-range phases is described by the Nishimori criticality. Our experiments have 
incoherent error rates as low as ~0.05, which is indicated by the green star. d, A 
schematic phase diagram of the classical RBIM. The solid black line is the Nishimori 
line, which captures the entire phase diagram in c.
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where N(Nb) denotes the number of system (auxiliary) qubits. The 
probability of such a measurement outcome follows from Born’s rule

P(s

ij

) =∥ ψ(s

ij

)∥

2

∝ ∑

σ

e

−β∑

⟨ij⟩

s

ij

σ

i

σ

j

, (3)

which resembles the thermal partition function of the random bond 
Ising model (RBIM) where the measurement outcomes play the role of 
disorder. The measurement noises distort the observed measurement 
records, effectively increasing the disorder. Concretely, by equation (3) 
we analytically map our protocol onto a RBIM. The experimental sweep 
of tA tracks the Nishimori line along an effective disorder probability ̃

p 
deduced by (Supplementary Section IA)

1 − 2

̃

p = sin(2t

A

)(1 − 2p

s

) , (4)

as a joint action of both coherent and incoherent errors. Such errors 
drive the phase transition across the blue line in Fig. 1c, mapped out 
by equating ̃

p with the critical disorder probability 6.75% for RBIM on 
honeycomb lattice37 (for square lattice, it is replaced by 10.9% (ref. 27)). 
In particular, this implies that every point in the extended transition 
line shares the same Nishimori criticality, interpolating between the 
limit ps = 0 (ref. 18) and the limit tA = π/4 (ref. 27). This scenario for the 
quantum protocol is quite distinct from the classical RBIM, whose 
schematic phase diagram is shown in Fig. 1d, where the Nishimori line 
only occurs at the fine-tuned solid line—demonstrating an unprece-
dented robustness of Nishimori criticality in the quantum case.

GHZ fidelity in Clifford limit
For a baseline characterization of the measurement-based protocol, 
we estimated the fidelity of the prepared states in the Clifford limit 
(tA = π/4) relative to the GHZ state. Because the final state in this limit 
is a stabilizer state, it was sufficient for a desired accuracy to consider 
only a constant number of randomly sampled measurements of the 
system qubits38,39. For the specific case of the GHZ state, half the sam-
pled stabilizers contain only Pauli-Z operators, while the other half are 
combinations of Pauli-X and Pauli-Y operators (see equation (7) in 
Methods). To assess the relative performance of our protocol, we also 
implemented a standard unitary protocol for constructing GHZ states9. 
In Fig. 2, we see that the fidelities of the measurement-based protocol 
outperformed the unitary preparation. This can be rationalized by the 
latter experiencing more errors due to the long idle times of deep cir-
cuit with size-dependent depth between O(N) and O(log(N )).

For a system of ten qubits, the measurement-based protocol 
resulted in a GHZ fidelity above 50%, but with increasing system size 
the fidelity was found to decrease exponentially (Fig. 2b). We note, 
however, that this does not imply the absence of long-range order or 
entanglement for these larger systems. In fact, we expect exponentially 
decaying GHZ fidelities versus system sizes in the presence of noise for 
virtually all states in the same phase of matter. We emphasize that no 
form of error mitigation, for measurement or unitary gates, was used to 
estimate these fidelities. To explain the experimentally measured fideli-
ties, we compared our results against the predicted fidelities based 
on a noise model with ~5% incoherent auxiliary errors and ~3% data 
readout errors—values inferred in the next section. This places us in the 
long-range ordered phase in Fig. 1c (green star), which in the absence of 
any additional errors, has long-range GHZ-type entanglement, while its 
predicted GHZ fidelity shown in grey in Fig. 2 decays exponentially with 
the number of system qubits. We see that the experimentally obtained 
values are slightly suppressed with respect to the grey curve, which is 
probably due to dephasing. This raises the question whether we retain 
robust long-range order in the presence of such dephasing.

Noise analysis
We now determine where in the phase diagram our experimental 
protocol accessed the GHZ state relative to the criticality thresh-
old—implicitly bounding the amount of other sources of errors that 
were present in our experiments. To do so, we tune one type of coher-
ent error via equation (2) uniformly across the device. In this sweep, 
we monitored and fit the experimental observables18 associated  
with every bond to ⟨ZXZ ⟩ = −(1 − 2p

σ

)

2

(1 − 2p

s

) sin(2t

A

), and experi-
mental observable of every plaquette to ⟨W ⟩ = (1 − 2p

s

)

6

sin (2t

A

)

6, 
with two fit parameters ps and pσ, as shown in Fig. 3a (Supplementary 
Section IC). Here, pσ accounts for the readout error of system qubits 
while ps captures both readout error on the auxiliary qubits and some 
of the noise during the entangling process. For tA = π/4, the bond and 
plaquette observables should ideally approach unity (dashed lines) 
because they capture, partially, the quality of the constituent cluster 
states11,40—a precursor state for the GHZ state—with experimental 
data shown in Fig. 3b. For tA below π/4, the implemented circuits 
become non-Clifford and thus cannot, in general, be efficiently char-
acterized. Nonetheless our modelling of coherent and incoherent 
noise sources turns out to be sufficiently comprehensive to quanti-
tatively explain the observed experimental data, even for experi-
ments involving up to 125 qubits. This allows us to infer the amount 
of noise afflicting the auxiliary (ps) and system (pσ) qubits when 
sweeping tA. This led to an estimate for the amount of incoherent 
errors present in the experiment to be in the range of ps ≈ 4.2–5.6% 
and pσ ≈ 1.2–2.3% (Table 1)—values consistent with our expectation 
based on standard calibration benchmarks of the device (Supple-
mentary Section IC).
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Fig. 2 | Decoded fidelity estimation by randomly sampling GHZ stabilizers.  
a, Because our decoder was implemented as Pauli corrections on the  
system qubits, the characterization of random stabilizers, which is measured 
in bases rotated by single-qubit rotations (small grey boxes), needed to be 
done in conjunction with the implemented decoder (symbolized by the 
monitor). b, Estimated fidelities relative to GHZ states for measurement- 
based (filled blue circles) and unitary-based (red X marks) preparation of 
long-range Ising-ordered states on two dimensions. The error bars represent 
the standard deviation of the fidelities estimated from bootstrap resampling 
random sets of stabilizers. For 10, 28 and 54 qubits, we sampled up to 46 (105), 
111 (111) and 147 (148) stabilizers for measurement (unitary)-based estimation 
(Monte Carlo sampling discussed in Methods and Supplementary Section 
IIB). The error bars for the unitary results (red) are comparable to the fidelity 
itself, thereby extending far below what is visible on a logarithmic plot; for 
exact values, see data. The theoretically predicted fidelities for measurement-
based protocol (dashed grey line) were based on an inferred noise model 
with auxiliary and site readout errors with a range of parameters giving rise 
to a 25th–75th percentile confidence interval in shaded grey (Supplementary 
Section IIB). The inset shows the ratio of the experimentally evaluated 
measurement- to unitary-based fidelities increasing for system size up to  
54 sites.
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Nishimori transition for tunable coherent errors
Having established the incoherent noise level of our device, we can 
now proceed to validate the existence of a stable, long-range, 
Ising-ordered phase when experimentally sweeping the level of coher-
ent errors in our protocol. To reveal the hidden order, we applied a 
decoder21,27,41 to process every classical snapshot for the auxiliary qubits 
in the X basis and the system qubits in the Z basis. The basic idea is to 
perform a correction based solely on the auxiliary readout18. This cor-
rection factor approximates the ground state configuration of the 
RBIM as a classical estimate30, {σ′}, of the bit-string from the quantum 
device (Fig. 1b).

The distribution of the decoded bit-strings in the computational 
basis is shown, for tA = π/4, in Fig. 4a, where we sum over the decoded 
Z expectation values of the individual qubit to obtain a total decoded 
‘magnetization’ M = ∑

N

j=1

σ

′

Z

j

. Any bias of this distribution (for exam-
ple, towards positive values) may be explained by an Ising asymmetric 
error originating from physical mechanisms such as amplitude damp-
ing or relaxation. Such errors would reduce the amount of classical 
correlations, and the small value 〈M〉 ≈ 0.02(2)N (for N = 54) suggests 
that the global Ising symmetry is largely preserved. Moreover, the 
decoded, bimodal experimental distribution (Fig. 4a) agrees well with 
the theoretical prediction (solid lines), lending confidence to the 
two-parameter noise model we used.

To more rigorously characterize the long-range order, we exam-
ined, for tA ≤ π/4, the decoded system qubit bit-strings and the average 
two-point classical correlations

f ∶=

1

N

(⟨M

2

⟩ − ⟨M ⟩

2

) , (5)

which is a sum of the correlations ⟨σ′σ′Z
i

Z

j

⟩ for all the system qubits 
that compose the quantum state. The decoded experimental data is 
shown in Fig. 4b, where the solid line shows the theoretical benchmark 
with the noise parameters inferred from Fig. 3a. We observe a hallmark 
of the long-range ordered phase in the linearly scaling  f  for increasing 
system sizes; such divergent tendency for f is expected throughout 
the ensemble of long-range ordered states, or phase, even away from 
tA = π/4 up to a finite threshold, t c

A

. In fact, we have confirmed that, in 
our two-parameter theory model, f indeed grows unbounded above 
t

c

A

≈ 0.20π ∼ 0.21π . In contrast, for small tA far below the threshold,  
f is apparently bounded and does not grow with increasing size. This 
scaling behaviour for our 2D protocol should be contrasted to results 
in 1D geometries (Supplementary Section IE), where we found f to stop 
growing for larger system sizes in line with theoretical expectations 
that f is bounded by a finite correlation length in the presence of infin-
itesimal weak errors.

To determine the threshold, or critical point, a practical way is to 
use the normalized variance of M2/N

g ∶=

1

N

3

(⟨M

4

⟩ − ⟨M

2

⟩

2

) , (6)

which quantifies the amount of fluctuations in the squared magnetiza-
tion (Supplementary Section IE). In the presence of 5% incoherent 
auxiliary errors, the peak location is expected to converge to a critical 

value of tc
A

≈ 0.205π , by translating the Nishimori critical point 
̃

p

c

≈ 6.75% (refs. 18,37) with equation (4), which is in very close agree-
ment with the experimental data where the peak locations approach 
this predicted critical point (Fig. 4c).

Moreover, at this transition, we also observe that f exhibits steep 
increases as one would expect for a critical system. The three experi-
mental values for f for increasing system sizes agree well with noisy 
classic simulations exhibiting a ∝ L

1.9

y

 scaling behaviour of the peak 
height (Fig. 4b, inset), where Ly = 2, 3 and 4 is the number of columns 
of qubits (N = 10, 28 and 54) in a brickwall lattice; this experimentally 
observed scaling is in close agreement with the scaling exponent cal-
culated value of 1.8(1) for the RBIM at the Nishimori point37. While the 
criticality is exposed in the decoded correlations only, the observable 
〈ZXZ〉 of Fig. 3a is another, direct probe of Nishimori physics; it corre-
sponds to the internal energy of the classical RBIM along the Nishimori 
line, which we experimentally confirm to be free of any singularity at 
the phase transition and in agreement with theoretical predictions.

Decoding transition by tuning incoherent errors
As we have shown, the long-range ordered phase created by our 2D 
protocol is unveiled only after using a decoder, whose performance 
critically depends on the quality of the auxiliary measurements. While 
the auxiliary error is lower-bounded by the quantum device, we can 
inject additional errors, in post-processing without any additional 
experiments, before applying the decoder (Fig. 1b). Using the proce-
dure outlined in Supplementary Section IIC, we charted out a broader 
phase diagram at various rates of incoherent errors. By again monitor-
ing the degree of fluctuations, g, now as a function of an increasing 
level of incoherent errors and system size (Fig. 5), we observe that the 
Nishimori critical point tc

A

 shifts towards π/4 and vanishes completely 
at ps ≈ 6.75% (ref. 37), the decoding threshold (Supplementary Section 
IA). The origin of this limit can be readily understood as being equiva-
lent to the decoding transition of a repetition code on a honeycomb 
lattice with bit-flip errors27. Our experiments thus not only demonstrate 
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Fig. 3 | Experimentally measured local observables used to generate the 
state. a, For two observables, we plot the ideally expected outcomes (dashed 
lines), the unprocessed experimental data from 20,000 experimental samples 
(dots), and a one-parameter fit (solid line) for each observable from sweeping 
tA from 0 (trivial) to π/4 (long-range ordered). The average 3-qubit bond (red) 
observable reached as high as 0.8 across the 72 total bonds, while the average 
6-qubit plaquette (blue) observable reached 0.5 across the 18 plaquettes. The 
plotted error bars for the 3-qubit bond and 6-qubit plaquette are the standard 
deviations across the 72 and 18 samples, respectively. Although in a noiseless 
setting both were expected to reach unity, the measured values agree well with 
the fit by ps = 5.6%, and pσ = 2.3%, which are approximately consistent with the 
known errors on the device and a classical simulation with circuit-level noise 
(Supplementary Section IIB). The experimental data exhibit an absence of a 
singularity in these observables, consistent with expectations for both local 
shallow quantum circuit, and the internal energy of Nishimori line. b, In total,  
125 of the 127 qubits used on ibm_sherbrooke where each bond (〈ZXZ〉) and 
plaquette (〈W〉) observable values are shaded according to the measured value  
at tA = π/4. The numbers inside the plaquettes (b) show 〈W〉, with the standard 
error in parentheses.

Table 1 | Two-parameter noise model

System size (N) Ly ps (auxiliary) pσ (system)

10 2 0.042 0.012

28 3 0.051 0.018

54 4 0.056 0.023
Fits to experimental data give ps, which captures errors at the auxiliary qubits, and pσ, which 
captures errors at the system qubits.
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the stability of the long-range ordered phase separated from a trivial 
one via a Nishimori transition, but also quantify when it would fail for 
noisier devices42. It also distinguishes a 2D from 1D protocol where the 
peak quickly converges to tA = π/4 without a finite threshold (Extended 
Data Figs. 2–4). Thus we claim that our experimentally implemented 
2D protocol exhibits long-range order with intrinsic robustness.

Discussion
The Nishimori multicritical point arises from a delicate balance 
between disorder and temperature—a condition that is largely inacces-
sible in experiments on real, physical materials modelled by a RBIM43. 
This should be contrasted to our experiments using a shallow circuit 
protocol on a quantum system, where the Nishimori transition shows 
remarkable robustness even in a noisy device of significant size. We 
argue that this can in fact be traced back to Born’s rule, which natu-
rally enforces the delicate balance of Nishimori physics: the auxiliary 
qubits play the role of quenched disorder by being measured, whose 
probability is exactly the wave function squared amplitude of the 
system qubits.

Our systematic study and generation of long-range ordered 
states using measurements shows that such protocols can be robust 
against certain errors and even outperform unitary approaches on 
existing quantum hardware. Improvements in coherence and meas-
urement fidelity should further improve the performance of our 
measurement-based protocol. Our work emphasizes the importance 
of spatial geometry in measurement-based protocols; by tuning errors 
across an error threshold, we observed a stable phase that persists in 2D 
but is absent in 1D. While the experimentally accessible order param-
eters, f and g, were observed to be below the theoretically predicted 
noiseless values due to the presence of noise, we expect to still be able 
to determine the universal critical exponents using equivalently noisy 
but larger devices, up to system sizes of 180, where finite-sized effects 
play less of a role.

It would be interesting to similarly explore the (in)stability of 
measurement-induced long-range entanglement upon tuning coher-
ent and incoherent errors for other proposals in the literature11–24. This 
is especially timely since measurements have recently been used to 
deterministically create exotic long-range entanglement including 
topological order44–46 and related states with dynamic quantum circuits 
utilizing feed-forward operations47. In such general contexts, stability 
might require additional ingredients, such as using the time-domain27,48 
or higher—or even fractal—dimensions, opening up a rich territory for 
exploration.
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Methods
127 superconducting qubit device
We performed all experiments on ibm_sherbrooke, a 127-qubit Eagle 
r3 processor. The entangling gate has a native ZX interactions and is 
known as an ECR gate. Using Clifford randomized benchmarking49,50, 
we observed a median error of 0.0077, with a 50% confidence interval 
of 0.006–0.008. The two-qubit gate times across the device were 
uniformly set to 533.3 ns, similar to the method described in ref. 51. 
The median square root of the Pauli-X error rate was 0.0002 (0.0002–
0.0004). The readout error was 0.010 (0.007–0.021) with typical meas-
urement times of ~1,244.4 ns. The qubits under study had a median 
T1 ≈ 293 µs and T2 ≈ 173 µs. The distribution of these error rates is plot-
ted in Extended Data Fig. 1. Circuits were executed on the device at a 
clock rate of 1 kHz (ref. 36). For all data found in Figs. 3–5, experimental 
error bars were calculated from the standard error on 20,000 shots at 
the 1 kHz clock rate.

Decomposition of ZZ gates
For fidelity comparisons in Fig. 2, we compiled the ZZ(t = π/4) gate 
into a single ECR gate, which is the native basis gate on the device, and 
single-qubit rotations. For Fig. 1, the ZZ(t) gates were all decomposed 
into two ECR gates with a virtual-RZ(t) gate in between, resulting in a 
depth-6 unitary circuit followed by a layer of measurements. We note 
that further improvements could be accessed by shortening the ZZ(t) 
gate time with fractional ZX rotations52,53 that are accessible on the 
device. Hadamard gates, decomposed into two square root of Pauli-X 
gates and virtual-RZ(t) gates, were also used for the preparation and 
readout of qubits.

Quantum circuit transpilation
For both unitary and measurement-based experiments, dynamical 
decoupling (DD) was used in the same fashion. All single- and two-qubit 
gates were scheduled as late as possible after initialization in the ground 
state, and all idle periods after the first operations were replaced with 
a X+π − X−π sequence in which the total idling period was divided pro-
portionally according to a 1:2:1 ratio surrounding the X gates. Conse-
quently, the unitary-based protocols benefitted more from applying 
DD than for measurement-based circuits.

Furthermore, we identified at least 12 different ways to schedule 
entangling gates for the measurement-based circuits and found some 
schedules to significantly outperform others (Supplementary Section 
IID). This is consistent with our expectation that certain gates, when 
executed in parallel, can induce frequency collisions on the device that 
reduce the fidelity of the entangling gates.

Monte Carlo sampling of GHZ stabilizer observables
For size-N GHZ states generated at the fixed point of the Nishimori line, 
we randomly measured up to S different non-Z stabilizers (for example, 
weight-N observables containing only X and Y Paulis). We also included 
measurements of the system qubits in the all-Z basis, which allows us 
to reconstruct any of the 2N−1 possible Z-only stabilizers of the GHZ 
state. In practice, however, we perform a binomial resampling of Z-only 
and non-Z stabilizers with equal probability to emulate the proposed 
Monte Carlo sampling method for fidelity state estimation38,39.  
By sampling 2S′ random instances from 2N

ℱ =

1

2S

′

2S

′

∑

i=1

⟨𝒪𝒪

i

⟩ , (7)

an average fidelity was estimated. The exact samples given N sites,  
S samples and k resampling instances are, in N, S, k notation: (10, 30, 
500), (28, 75, 500) and (54, 100, 500). For each of the k resampling 
instance, a total of 2S′ observables were sampled but drawn randomly 
without replacement from the S non-Z stabilizers or from the 1,000 
Z-only stabilizers. Thus, S′ ≈ 3S/4 of the non-Z stabilizers were sampled 

without replacement from S, and another S′ ≈ 3S/4 Z-only stabilizers 
were sampled also without replacement from 1,000 unique Z-only 
stabilizers. Both sets S′ combined to give ~2S′ observables as part of 
this binomial resampling procedure.

In all expectation values above, we randomly applied X gates 
before readout of the system qubits and, after applying the correct-
ing spin flip to sites on which Z and Y Paulis were supported, calculated 
the expectation values of the random stabilizers. Although readout was 
‘twirled’, the model-free readout correction was not applied54.

Fits to noise model
Two most basic linear observables are analytically known in the noiseless 
limit: ⟨W ⟩ = sin (2t

A

)

6, ⟨ZXZ ⟩ = sin(2t

A

). Let us consider two phenomeno-
logical errors: readout errors on the the auxiliary qubit measured in  
X basis, with probability ps; and that on the system qubit measured in  
Z basis, with probability pσ. Note that they also include the consequence 
of some of the mid-circuit bit-flip or phase-flip errors that propagate to 
yield the same effect in the end, such as the bit-flip (phase-flip) for 
system (auxiliary) qubits at the moment after the RZZ gates. These two 
error rates turn the expectation values of the above observables into 
⟨W ⟩ = (1 − 2p

s

)

6

sin (2t

A

)

6, ⟨ZXZ ⟩ = (1 − 2p

s

)(1 − 2p

σ

)

2

sin(2t

A

). We can per-
form a linear fit to extract such phenomenological error rates per bond 
and plaquette, which are then averaged over the lattice for mean values 
and standard deviations. The averaged effective errors per qubit weakly 
grows with the total number of qubits in our three experimental imple-
mentations, as seen in Table. 1.

For the 1D protocol where we do not have the Wilson loop 〈W〉, we 
can use two Wilson lines of different lengths, for example, 〈ZXZ〉 and 
⟨ZX𝕀𝕀XZ ⟩, to extract the two parameters for auxiliary and system qubits, 
respectively.

From measurement disorder to uncorrelated disorder
The measurement-induced disorder obeys Born’s rule, which leads to 
a highly correlated arrangement. Nevertheless, equation (3) has emer-
gent gauge symmetry18, which allows us to reinterpret the disorder as 
gauge symmetrizing an independent and identically distributed (i.i.d.) 
random bond disorder. Namely, we first generate the i.i.d. disorder s 
with probability e−βs/(2 cosh( β)). Second, we perform a Z2 gauge trans-
formation, denoted by τj = ±1 as a set of random binary number on every 
site. It transforms sij → sijτiτj, σj → σjτj. Finally, we sum over all possible 
gauge transformations τj with equal probability. By noting that 
1

2

N

∑

τ

e

−β

∑

ij

s

ij

τ

i

τ

j

(2 cosh(β))

N

b

= P(s), we obtain

∑

s=±1

e

−β∑

ij

s

ij

(2 cosh( β))

N

b

⟨σ

i

σ

j

⟩

s

= ∑

s=±1

P(s)⟨σ

i

σ

j

⟩

2

s

, (8)

which relates the ferromagnetic correlation of the i.i.d. disorder model 
to the spin glass correlation of the gauge symmetric correlated disor-
der model.

Data availability
The data supporting the findings of this study can be found via figshare 
at https://doi.org/10.6084/m9.figshare.24293524 (ref. 55).

Code availability
Simulation and data analysis code may be made available upon reason-
able request.
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Extended Data Fig. 1 | Typical device error rates. Plotted in cumulative format, for Echoed Cross Resonance (ECR, blue), square-root of Pauli-X (SX, red), and measurement 
(Meas, black) gates. Dashed lines represent medians of distributions.
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Extended Data Fig. 2 | Absence of finite threshold in one-dimensional 
protocol. As discussed in the main text, the 2D protocol exhibited robustness 
over the 1D protocol (seen here); the key signature being based on the scaling 
of the average of two-point correlations, f, as a function of system size. For 
comparison with Fig. 4 in the main text. (a) f grows with increasing system size 

but converges to finite value that depends on tA. (b) The peak of g converges to  
tA = π/4 indicative of absence of finite threshold for coherent error. For both (a) 
and (b), the three system sizes were measured with 20,000 experimental samples 
giving rise to the small standard deviations (bars).
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Extended Data Fig. 3 | Magnetization of 1D experiments with and without 
decoding at different tA values. Plotting the same data set from Extended Data 
Fig. 2, we observe that the 1D behavior exhibited no growth in f with system size 
from 28 to 54 and had peak variances at the GHZ value of tA = π/4. (a) Two-point 
correlations in 1D experiments for sweeps of tA. The histograms at values of tA 
where variances were maximized for undecoded (b) and decoded (c). Although 

the bimodal distribution persisted up to a system size of 28, at 54 the distribution 
became uniform. And as expected, both the undecoded (d) and decoded (e) 
exhibited a binomial distribution in the trivial state (tA = 0). The error bars in 
(a) are standard deviations based on 20,000 experimental samples, while the 
histograms in the other subplots are based on the same data sets.
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Extended Data Fig. 4 | Magnetization of 2D experiments with and without 
decoding at different tA values. (a) Two-point correlations in 2D experiments for 
sweeps of tA. The histograms at values of tA where variances were maximized for 
undecoded (b) and decoded (c). In contrast to the 1D cases (Extended Data Fig. 3), 
the bimodal distribution persisted up to a system size of 54. And similarly to the  

1D case, both the undecoded (d) and decoded (e) exhibited a binomial 
distribution in the trivial state (tA = 0). The error bars in (a) are standard deviations 
based on 20,000 experimental samples, while the histograms in the other 
subplots are based on the same data sets.

http://www.nature.com/naturephysics

	Nishimori transition across the error threshold for constant-depth quantum circuits

	Protocol and device operation

	Results

	Conceptual understanding of protocol

	GHZ fidelity in Clifford limit

	Noise analysis

	Nishimori transition for tunable coherent errors

	Decoding transition by tuning incoherent errors


	Discussion

	Online content

	Fig. 1 Circuit protocol, decoder and phase diagram under coherent and incoherent errors.
	Fig. 2 Decoded fidelity estimation by randomly sampling GHZ stabilizers.
	Fig. 3 Experimentally measured local observables used to generate the state.
	Fig. 4 Nishimori transition by tuning coherent errors.
	Fig. 5 Decoding transition out of the long-range ordered phase by increasing auxiliary errors before decoding.
	Extended Data Fig. 1 Typical device error rates.
	Extended Data Fig. 2 Absence of finite threshold in one-dimensional protocol.
	Extended Data Fig. 3 Magnetization of 1D experiments with and without decoding at different tA values.
	Extended Data Fig. 4 Magnetization of 2D experiments with and without decoding at different tA values.
	Table 1 Two-parameter noise model.


