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Quantum computing involves the preparation of entangled states across
many qubits. This requires efficient preparation protocols that are stable
tonoise and gate imperfections. Here we demonstrate the generation of
the simplest long-range order—Ising order—using a measurement-based
protocol on 54 system qubits in the presence of coherent and incoherent
errors. Weimplement a constant-depth preparation protocol that uses
classical decoding of measurements to identify long-range order that
isotherwise hidden by the randomness of quantum measurements. By
experimentally tuning the error rates, we demonstrate the stability of this
decoded long-range order in two spatial dimensions, up to a critical phase
transition belonging to the unusual Nishimori universality class. Although
in classical systems Nishimori physics requires fine-tuning multiple
parameters, hereit arises as a direct result of the Born rule for measurement
probabilities. Our study demonstrates the emergent phenomena that can be
explored on quantum processors beyond a hundred qubits.

Traditionally, measurements have been synonymous with extract-
ing information from physical systems. Yet, in the quantum realm,
the extraordinary nature of measurements allows them to actively
modify and steer quantum states, forging a new route to entangle-
ment generation. Among the more interesting entangled states
are those with long-range correlations||; however, these cannot
be prepared by any constant-depth unitary circuits, making them
more sensitive to the finite coherence times of current quantum
processors| ]| In contrast, recent theoretical studies have shown
that the use of measurements, which are non-unitary operations,
can be used to efficiently create quantum states with long-range
order]J] and critical quasi-long-range order]|j}l|} In essence,
measurement-based approaches trade off circuit depth for number

of mid-circuit measurements and operationsl as compared with
exclusively unitary approaches.

In this work, we study such measurement-induced long-range
order and criticality. In particular, we consider the ‘hydrogen atom’ of
long-range entangled states, the Greenberger-Horne-Zeilinger (GHZ)
state | GHZ ) « |00 --- 00) + |11 --- 11y, which can be thought of as one
representative of a more general ‘Ising’ phase of matter. A necessary
condition for realizing a GHZ state is a long-range Ising order that
organizes theindividual qubits into amacroscopic state. While recent
experiments show the practicality of measurement-based protocols
tocreatesuchlIsing-like order in one-dimensional (1ID) qubit geometries
where stability is not guaranteedl, theoretical works suggest that this
order should be robust against a range of imperfections when using a
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Fig.1| Circuit protocol, decoder and phase diagram under coherent and
incoherenterrors. a, The heavy-hexagonal lattice of 127 qubits. For the 125 active
qubits, the inset shows the building block using constant-depth entangling circuits
for the three nearest neighbours (grey circles) of each system qubit (black circles)
inthe presence of noise (blue lightning). The R, gates are executed in order from
blue, red then grey bonds within three layers. The auxiliary outcomes, s, on the
bonds of the lattice (grey) can be used to inform a decoder for the data outcomes,
o,onthe vertices of the lattice (black). b, The quantum device outputs a data
bit-string {o} together with anauxiliary outcome {s}. In the presence of noise, the
auxiliary outcomes become {s’} before being passed to a classical decoder to
determine a classical replica of the bit-string {o’}. Their element-wise product,
{oa’}, serves as the decoded bit-string. A measurement error (blue lightning) can
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corrupt the communication channel between the quantum replica and the
classical replica. ¢, The trivial and long-range ordered phases sweep out distinct
regions depending on the strength of coherent and incoherent noise. Within a
finite threshold, a stable phase (grey), of which the GHZ state is a special case (red
circle), exhibits long-range entanglementin the absence of other sources of noise
(for example, without dephasing). Evenin the presence of dephasing (not shown),
classical long-range ordering remains. The boundary separating the trivialand
long-range phases is described by the Nishimori criticality. Our experiments have
incoherent error rates as low as ~0.05, whichisindicated by the green star.d, A
schematic phase diagram of the classical RBIM. The solid black line is the Nishimori
line, which captures the entire phase diagramin c.

two-dimensional (2D) protocolJ{l]. Here, we implement this 2D pro-
tocolonasuperconducting qubit processor and, by tuning particular
imperfections, we experimentally create a critical ensemble of these
long-range ordered states in agreement with theoretical predictions
for their stability.

The unavoidable randomness of quantum measurements gener-
ates a ‘glassy’ version of the sought-after long-range Ising order, for
example, |00110) + [11001), requiring some form of decoding to tame
the structured randomness. This makes it crucial to record the meas-
urement outcomes and then use either post-selection, feed-forward
or post-processing to recover the long-range order. In our setup, we
implement post-processing to decode the hidden long-range order
and determine the decoding threshold beyond which the order is
unrecoverable]]. This decoding threshold is where our quantum system
exhibits aNishimoritransition, or criticalityJ}f], for bothincoherent]]
and coherent errorsfjf]. We argue that the observed Nishimori critical-
ity is, in fact, unavoidable in our protocol and a natural consequence
of Born’s rule—a striking distinction from materials studies in labs
seeking to observe the Nishimori criticality only by fine-tuning disorder
within the material against environmental temperatures.

Protocol and device operation

In our protocol, we divide the qubits on our heavy-hexagonal device
into system qubits on the vertex ‘sites’, and auxiliary qubits on the
‘bonds’ of ahoneycomb lattice (Fig. ). We will refer to the Pauli matri-
cesoneach qubitas X, Y, Z To turn aninitial product state of system
qubits in +1X eigenstates into a GHZ-type state, we measure the ZZ
parities on all nearest-neighbour system (site) qubits, using the auxil-
iary qubit in between. If the auxiliary outcome is +1, it means the two
spins are perfectly anti-ferromagnetic in the -1 eigenstate of ZZ.
A crucial element of our protocol is that we implement a coupling
to the auxiliary qubit beyond a simple Clifford CNOT gate by an
R;7(2t,) = e~iZZ rotation with a control parameter 2t,, for the A sub-
lattice (Fig. ). By varying t, away from /4 (the Clifford limit) and
controling the level of coherent errors, we can perform tunable weak
measurements described by Kraus operators

Ky(s) = e 5542 / \/2cosh(p),

()]

where f§ = 2tanh ™" tan(t,) (ref. .). Due to the degree-3 connectivity
of the system qubits, we need to repeat the above coupling only three
times before simultaneously measuring all the auxiliary qubits—result-
ingin a constant-depth circuit independent of the number of qubits.

The measurement outcomes of the auxiliary qubitsin the Xbasis,
denoted by s;= +1for eachbond (ij), are then fed as syndromes to the
decoder, operated on a classical computer. As shown in Fig. . the
decoder produces an estimate of the quantum sample based on its
limited knowledge in the form of {s'} (refs. ] LD, where {s'}isa
copy of {s} corrupted by a finite probability p, of noise that can come
fromeither the quantum device or the classical communication chan-
nel with probability distribution: P(s") = ps6,: s + (1 — ps)bs: s, Where
6(-) is the Kronecker delta function. We employ a fast decoderffl that
outputs a bit-string {o’ = +1} as a classical ground state for each {s'}.
By denoting the bit-string of the system qubits measured in Zbasis as
{o=11},theelement-wise product, {oo’}, between the quantum sample
and the classic replica serves as the decoded bit-string that
lower-bounds the nonlinear correlations of the quantum samplesl.
Thisisequivalent to correcting the system qubits by one layer of Xgates
for those sites with ¢’ = —1inafeed-forward manner.

We performed experiments on ibm_sherbrooke, which is one of
the IBM Quantum Eagle processors with 127 qubits; entangling gates
generated by echoed cross-resonance (ECR) interactionsf| ] had typi-
calerror rates of 0.0077 and square root of Pauli-X gates with error rates
0f0.0002 (Extended DataFig.1). The typical device measurement error
rates of 0.010 were sufficiently below the decoding threshold needed
for the preparation of the long-range ordered state.

Results

Conceptual understanding of protocol

In previous theoretical work by some of the present authorsl, it was
shown that deviations from the Clifford limit by coherent errors
induced by ¢, <T/4 are tolerable up to a finite threshold. Here, we
expand this perspective by also treating incoherent errors (corrupt-
ing the syndromes) in an analytically exact manner and show that the
presence of both types of error leads to a threshold line as shown in
Fig. ] whichinits entirety is captured by the Nishimori criticality. To
seethis, let us consider measuring the auxiliary qubits, which collapses
the system’s wave function into an unnormalized wave function
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where N(N,) denotes the number of system (auxiliary) qubits. The
probability of such ameasurement outcome follows from Born’s rule

P(sy) =l PspIP « . e PZw 99 3)
o

which resembles the thermal partition function of the random bond
Ising model (RBIM) where the measurement outcomes play the role of
disorder. The measurement noises distort the observed measurement
records, effectively increasing the disorder. Concretely, by equation ()
we analytically map our protocol onto aRBIM. The experimental sweep
of ¢, tracks the Nishimori line along an effective disorder probability p
deduced by (Supplementary Section IA)

1-2p = sin2t)1 - 2py), 4

as ajointaction of both coherent and incoherent errors. Such errors
drive the phase transition across the blue line in Fig. ]|, mapped out
by equating p with the critical disorder probability 6.75% for RBIM on
honeycomb Iatticel(for squarelattice, itisreplaced by 10.9% (ref. .)).
In particular, this implies that every point in the extended transition
line shares the same Nishimori criticality, interpolating between the
limit p, = 0 (ref. ) and the limit ¢, = /4 (ref. ). This scenario for the
quantum protocol is quite distinct from the classical RBIM, whose
schematic phase diagramis shownin Fig.., where the Nishimoriline
only occurs at the fine-tuned solid line—demonstrating an unprece-
dented robustness of Nishimori criticality in the quantum case.

GHZ fidelity in Clifford limit

For a baseline characterization of the measurement-based protocol,
we estimated the fidelity of the prepared states in the Clifford limit
(t,=m/4) relative to the GHZ state. Because the final state in this limit
isastabilizer state, it was sufficient for a desired accuracy to consider
only a constant number of randomly sampled measurements of the
system qubitsll. For the specific case of the GHZ state, half the sam-
pled stabilizers contain only Pauli-Zoperators, while the other halfare
combinations of Pauli-X and Pauli-Y operators (see equation () in
Methods). To assess the relative performance of our protocol, we also
implemented astandard unitary protocol for constructing GHZ states].
In Fig.l, we see that the fidelities of the measurement-based protocol
outperformed the unitary preparation. This can be rationalized by the
latter experiencing more errors due to the longidle times of deep cir-
cuit with size-dependent depth between O(N) and O(log(N )).

For a system of ten qubits, the measurement-based protocol
resulted in a GHZ fidelity above 50%, but with increasing system size
the fidelity was found to decrease exponentially (Fig. . We note,
however, that this does not imply the absence of long-range order or
entanglement for these larger systems. In fact, we expect exponentially
decaying GHZ fidelities versus systemsizes in the presence of noise for
virtually all states in the same phase of matter. We emphasize that no
formoferror mitigation, for measurement or unitary gates, was used to
estimate these fidelities. To explain the experimentally measured fideli-
ties, we compared our results against the predicted fidelities based
on a noise model with ~-5% incoherent auxiliary errors and ~3% data
readout errors—valuesinferredin the next section. This places usin the
long-range ordered phase in Fig. ] (green star), which in the absence of
any additional errors, haslong-range GHZ-type entanglement, while its
predicted GHZ fidelity shownin grey in Fig. ]| decays exponentially with
the number of system qubits. We see that the experimentally obtained
values are slightly suppressed with respect to the grey curve, which is
probably due to dephasing. This raises the question whether we retain
robust long-range order in the presence of such dephasing.
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Fig. 2| Decoded fidelity estimation by randomly sampling GHZ stabilizers.
a, Because our decoder was implemented as Pauli corrections on the

system qubits, the characterization of random stabilizers, which is measured
inbases rotated by single-qubit rotations (small grey boxes), needed to be
donein conjunction with the implemented decoder (symbolized by the
monitor). b, Estimated fidelities relative to GHZ states for measurement-
based (filled blue circles) and unitary-based (red X marks) preparation of
long-range Ising-ordered states on two dimensions. The error bars represent
the standard deviation of the fidelities estimated from bootstrap resampling
random sets of stabilizers. For 10, 28 and 54 qubits, we sampled up to 46 (105),
111 (111) and 147 (148) stabilizers for measurement (unitary)-based estimation
(Monte Carlo sampling discussed in Methods and Supplementary Section
1IB). The error bars for the unitary results (red) are comparable to the fidelity
itself, thereby extending far below what is visible on alogarithmic plot; for
exact values, see data. The theoretically predicted fidelities for measurement-
based protocol (dashed grey line) were based on an inferred noise model

with auxiliary and site readout errors with a range of parameters giving rise

to a25th-75th percentile confidence intervalin shaded grey (Supplementary
Section IIB). The inset shows the ratio of the experimentally evaluated
measurement- to unitary-based fidelities increasing for system size up to

54 sites.

Noise analysis

We now determine where in the phase diagram our experimental
protocol accessed the GHZ state relative to the criticality thresh-
old—implicitly bounding the amount of other sources of errors that
were present in our experiments. To do so, we tune one type of coher-
enterrorviaequation (I) uniformly across the device. In this sweep,
we monitored and fit the experimental observables]] associated
witheverybondto (ZXZ )= —(1— 2p0)2(1 —2p,)sin(2t,), and experi-
mental observable of every plaquetteto (W)= (1 - 2,05)6 sin (ZtA)ﬁ,
with two fit parameters p,and p,, as shownin Fig. . (Supplementary
SectionIC). Here, p,accounts for the readout error of system qubits
while p,captures bothreadout error on the auxiliary qubits and some
ofthe noise during the entangling process. For t, = /4, the bond and
plaquette observables should ideally approach unity (dashed lines)
because they capture, partially, the quality of the constituent cluster
statesf|]-a precursor state for the GHZ state—with experimental
data shown in Fig. ] For ¢, below 11/4, the implemented circuits
become non-Clifford and thus cannot, in general, be efficiently char-
acterized. Nonetheless our modelling of coherent and incoherent
noise sources turns out to be sufficiently comprehensive to quanti-
tatively explain the observed experimental data, even for experi-
ments involving up to 125 qubits. This allows us to infer the amount
of noise afflicting the auxiliary (p,) and system (p,) qubits when
sweeping ¢,. This led to an estimate for the amount of incoherent
errors present in the experiment to be in the range of p, = 4.2-5.6%
and p,=1.2-2.3% (Table l)—values consistent with our expectation
based on standard calibration benchmarks of the device (Supple-
mentary Section IC).
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Table 1| Two-parameter noise model

System size (N) L, p; (auxiliary) P, (system)
10 2 0.042 0.012
28 8 0.051 0.018
54 4 0.056 0.023

Fits to experimental data give p,, which captures errors at the auxiliary qubits, and p,, which
captures errors at the system qubits.

Nishimori transition for tunable coherent errors

Having established the incoherent noise level of our device, we can
now proceed to validate the existence of a stable, long-range,
Ising-ordered phase when experimentally sweeping the level of coher-
ent errors in our protocol. To reveal the hidden order, we applied a
decoderfillto process every classical snapshot for the auxiliary qubits
inthe Xbasis and the system qubits in the Zbasis. The basic idea is to
performacorrection based solely on the auxiliary readout]]. This cor-
rection factor approximates the ground state configuration of the
RBIM asaclassical estimatel, {0}, of the bit-string from the quantum
device (Fig.|Jp.

The distribution of the decoded bit-strings in the computational
basis is shown, for t, = /4, in Fig. . where we sum over the decoded
Zexpectation values of the individual qubit to obtain a total decoded
‘magnetization’ M = Zszl 0'Z ;. Anybias of this distribution (for exam-
ple, towards positive values) may be explained by an Ising asymmetric
error originating from physical mechanisms such as amplitude damp-
ing or relaxation. Such errors would reduce the amount of classical
correlations, and the small value (M) = 0.02(2)N (for N = 54) suggests
that the global Ising symmetry is largely preserved. Moreover, the
decoded, bimodal experimental distribution (Fig. JJ) agrees well with
the theoretical prediction (solid lines), lending confidence to the
two-parameter noise model we used.

To more rigorously characterize the long-range order, we exam-
ined, fort, < /4, the decoded system qubit bit-strings and the average
two-point classical correlations

fr= g (R —m)?), )

whichis a sum of the correlations (¢'0’Z,Z ;) for all the system qubits
that compose the quantum state. The decoded experimental data is
shown in Fig. ] where the solid line shows the theoretical benchmark
with the noise parametersinferred from Fig. [} We observe a hallmark
ofthelong-range ordered phaseinthelinearly scaling f forincreasing
system sizes; such divergent tendency for fis expected throughout
the ensemble of long-range ordered states, or phase, even away from
ty=T/4 up toafinite threshold, 1. In fact, we have confirmed that, in
our two-parameter theory model, findeed grows unbounded above
tg ~ 0.20m ~ 0.21m. In contrast, for small ¢, far below the threshold,
fis apparently bounded and does not grow with increasing size. This
scaling behaviour for our 2D protocol should be contrasted to results
in1D geometries (Supplementary Section IE), where we found fto stop
growing for larger system sizes in line with theoretical expectations
thatfisbounded by afinite correlation lengthin the presence of infin-
itesimal weak errors.

To determine the threshold, or critical point, a practical way is to
use the normalized variance of M/N

1

= (<M4> - (M2>2) , (6)

g

which quantifies the amount of fluctuationsin the squared magnetiza-
tion (Supplementary Section IE). In the presence of 5% incoherent
auxiliary errors, the peak locationisexpected to convergetoacritical
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Fig.3|Experimentally measured local observables used to generate the
state. a, For two observables, we plot the ideally expected outcomes (dashed
lines), the unprocessed experimental data from 20,000 experimental samples
(dots), and a one-parameter fit (solid line) for each observable from sweeping
t,from O (trivial) to /4 (long-range ordered). The average 3-qubit bond (red)
observable reached as high as 0.8 across the 72 total bonds, while the average
6-qubit plaquette (blue) observable reached 0.5 across the 18 plaquettes. The
plotted error bars for the 3-qubit bond and 6-qubit plaquette are the standard
deviations across the 72 and 18 samples, respectively. Although in a noiseless
setting both were expected to reach unity, the measured values agree well with
the fitby p,=5.6%, and p,=2.3%, which are approximately consistent with the
known errors on the device and a classical simulation with circuit-level noise
(Supplementary Section 1IB). The experimental data exhibit an absence of a
singularity in these observables, consistent with expectations for both local
shallow quantum circuit, and the internal energy of Nishimoriline. b, In total,
125 of the 127 qubits used on ibm_sherbrooke where each bond ((ZX2)) and
plaquette ((W)) observable values are shaded according to the measured value
att, =m/4. The numbers inside the plaquettes (b) show (W), with the standard
error in parentheses.

value of ¢ ~ 0.2051, by translating the Nishimori critical point
p. ~ 6.75% (refs. [ ) with equation (), whichisin very close agree-
ment with the experimental data where the peak locations approach
this predicted critical point (Fig. JJ).

Moreover, at this transition, we also observe that fexhibits steep
increases as one would expect for a critical system. The three experi-
mental values for ffor increasing system sizes agree well with noisy
classic simulations exhibiting a o« L}'g scaling behaviour of the peak
height (Fig. [} inset), where L, =2, 3 and 4 is the number of columns
of qubits (V=10, 28 and 54) in a brickwall lattice; this experimentally
observed scaling is in close agreement with the scaling exponent cal-
culated value of 1.8(1) for the RBIM at the Nishimori point]]. While the
criticality isexposed in the decoded correlations only, the observable
(ZXZ) of Fig. . is another, direct probe of Nishimori physics; it corre-
spondstotheinternal energy of the classical RBIM along the Nishimori
line, which we experimentally confirm to be free of any singularity at
the phase transition and in agreement with theoretical predictions.

Decoding transition by tuning incoherent errors

As we have shown, the long-range ordered phase created by our 2D
protocolis unveiled only after using a decoder, whose performance
critically depends on the quality of the auxiliary measurements. While
the auxiliary error is lower-bounded by the quantum device, we can
inject additional errors, in post-processing without any additional
experiments, before applying the decoder (Fig. ). Using the proce-
dureoutlinedin Supplementary Section IIC, we charted out abroader
phase diagram at various rates ofincoherenterrors. By again monitor-
ing the degree of fluctuations, g, now as a function of an increasing
level of incoherent errors and system size (Fig. I), we observe that the
Nishimoricritical point £; shifts towards /4 and vanishes completely
atp,=6.75% (ref. .), the decoding threshold (Supplementary Section
IA). The origin of this limit can be readily understood as being equiva-
lent to the decoding transition of a repetition code on a honeycomb
lattice with bit-flip errorsf]. Our experiments thus not only demonstrate
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Fig. 4 |Nishimori transition by tuning coherent errors. a, The distribution of
Matt,=m/4for systemsizes of 10 (black), 28 (red) and 54 (blue) system qubits using
21, 63 and 125 total qubits, respectively. The solid envelope lines are theoretical
estimates using a two-parameter noise model. b, The sum of two-point correlation
function fsignals the growth of long-range correlation when increasing ¢, and
systemsizes. Beyond a critical threshold for ¢, > ¢S ~ 0.20m ~ 0.2In (dark grey),
thestate exhibits long-range order (light grey). The estimated ¢ varied depending
onthe systemsize studied. The inset shows the size scaling of experimentally
measured f(X marks) at the peak location of g agreeing well with the theoretically
predicted noiseless values (square markers) scaling with o« L};". ¢, The peak

locations of g converge to the finite threshold that separates the long-range
ordered phase (light grey) from short-range correlated phases. The dark-grey
shadingillustrates the theoretically predicted critical point (¢,), according to the
previously inferred two noise parameters, that spans a finite width because of the
variation of noise probabilities. In the inset, the experimental (X marks) values
agree well with the theoretically predicted values scaling as o L};S. Forbothband
¢, theerror bars represent standard deviations from taking 20,000 experimental
samples. The noiseless envelopes for all solid curves can be found in
Supplementary Information.
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Fig. 5| Decoding transition out of the long-range ordered phase by increasing
auxiliary errors before decoding. a, For the largest system size (N =54),

we experimentally mapped the 2D phase diagram for various coherent (t,)
andincoherent (p,) errors where the colour is proportional to the amount of
variance in the magnetization squared, g. The analytically derived contour
(dashed grey) shows close agreement for incoherent, auxiliary errors starting
from approximately 0.05.b, For the lowest amount of injected coherent error
(t,=1/4,dashed grey line ina), the experimentally estimated variance g (circles)
is maximized at the theoretically expected (solid lines) decoder transition of
approximately 6.75% (vertical dashed grey) for all three system sizes (10: black,
28:red, 54:blue). The plotted error bars represent standard deviations for all
three system sizes, each taken with 20,000 experimental samples.

the stability of the long-range ordered phase separated from a trivial
one via a Nishimori transition, but also quantify when it would fail for
noisier devices. It also distinguishes a 2D from 1D protocol where the
peak quickly convergesto ¢, = i/4 without afinite threshold (Extended
Data Figs. 2-4). Thus we claim that our experimentally implemented
2D protocol exhibits long-range order with intrinsic robustness.

Discussion

The Nishimori multicritical point arises from a delicate balance
between disorder and temperature—a condition thatis largely inacces-
siblein experiments onreal, physical materials modelled by a RBIMI.
This should be contrasted to our experiments using a shallow circuit
protocolonaquantum system, where the Nishimori transition shows
remarkable robustness even in a noisy device of significant size. We
argue that this canin fact be traced back to Born’s rule, which natu-
rally enforces the delicate balance of Nishimori physics: the auxiliary
qubits play the role of quenched disorder by being measured, whose
probability is exactly the wave function squared amplitude of the
system qubits.

Our systematic study and generation of long-range ordered
states using measurements shows that such protocols can be robust
against certain errors and even outperform unitary approaches on
existing quantum hardware. Improvements in coherence and meas-
urement fidelity should further improve the performance of our
measurement-based protocol. Our work emphasizes the importance
of spatial geometry in measurement-based protocols; by tuning errors
acrossanerror threshold, we observed astable phase that persistsin2D
butis absentin 1D. While the experimentally accessible order param-
eters, fand g, were observed to be below the theoretically predicted
noiseless values due to the presence of noise, we expect tostill be able
to determine the universal critical exponents using equivalently noisy
butlarger devices, up to systemsizes of 180, where finite-sized effects
playlessofarole.

It would be interesting to similarly explore the (in)stability of
measurement-induced long-range entanglement upon tuning coher-
entand incoherent errors for other proposalsin the literature] JJ. This
is especially timely since measurements have recently been used to
deterministically create exotic long-range entanglement including
topological orderf ] and related states with dynamic quantum circuits
utilizing feed-forward operations]]. In such general contexts, stability
mightrequire additionalingredients, such as using the time-domainl'l
or higher—or even fractal-dimensions, openingup arich territory for
exploration.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-

ability are available at [
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Methods

127 superconducting qubit device

We performed all experiments on ibm_sherbrooke, a 127-qubit Eagle
3 processor. The entangling gate has a native ZX interactions and is
known as an ECR gate. Using Clifford randomized benchmarkingll,
we observed amedian error of 0.0077, with a50% confidence interval
0of 0.006-0.008. The two-qubit gate times across the device were
uniformly set to 533.3 ns, similar to the method described in ref. |}
The mediansquareroot of the Pauli-X error rate was 0.0002 (0.0002-
0.0004). Thereadouterror was 0.010 (0.007-0.021) with typical meas-
urement times of ~1,244.4 ns. The qubits under study had a median
T,=293 psand 72 =173 ps. The distribution of these error rates is plot-
ted in Extended Data Fig. 1. Circuits were executed on the device at a
clockrate of 1 kHz (ref. JJ. For all data found in Figs. JH), experimental
error bars were calculated from the standard error on 20,000 shots at
the1kHzclockrate.

Decomposition of ZZ gates

For fidelity comparisons in Fig. I we compiled the ZZ(¢ =1t/4) gate
intoasingle ECR gate, whichis the native basis gate on the device, and
single-qubit rotations. For Fig. ], the ZZ(t) gates were all decomposed
into two ECR gates with a virtual-R,(¢t) gate in between, resultingina
depth-6 unitary circuit followed by a layer of measurements. We note
that furtherimprovements could be accessed by shortening the ZZ(¢)
gate time with fractional ZX rotations|}|J] that are accessible on the
device. Hadamard gates, decomposed into two square root of Pauli-X
gates and virtual-R(t) gates, were also used for the preparation and
readout of qubits.

Quantum circuit transpilation

For both unitary and measurement-based experiments, dynamical
decoupling (DD) was used in the same fashion. All single- and two-qubit
gateswere scheduled aslate as possible afterinitializationin the ground
state, and allidle periods after the first operations were replaced with
aX..— X sequence in which the total idling period was divided pro-
portionally according to a 1:2:1 ratio surrounding the X gates. Conse-
quently, the unitary-based protocols benefitted more from applying
DD than for measurement-based circuits.

Furthermore, we identified at least 12 different ways to schedule
entangling gates for the measurement-based circuits and found some
schedulesto significantly outperform others (Supplementary Section
1ID). This is consistent with our expectation that certain gates, when
executedinparallel, caninduce frequency collisions onthe device that
reduce the fidelity of the entangling gates.

Monte Carlo sampling of GHZ stabilizer observables

For size-NGHZ states generated at the fixed point of the Nishimoriline,
we randomly measured up to S different non-Zstabilizers (for example,
weight-Nobservables containing only Xand Y Paulis). We also included
measurements of the system qubits in the all-Zbasis, which allows us
to reconstruct any of the 2V possible Z-only stabilizers of the GHZ
state. In practice, however, we perform a binomial resampling of Z-only
and non-Zstabilizers with equal probability to emulate the proposed
Monte Carlo sampling method for fidelity state estimation]}jj.
By sampling 28’ random instances from 2V

28!

1
F =55 ;wm ?)

an average fidelity was estimated. The exact samples given N sites,
S samples and k resampling instances are, in N, S, k notation: (10, 30,
500), (28, 75, 500) and (54, 100, 500). For each of the k resampling
instance, atotal of 25’ observables were sampled but drawnrandomly
without replacement from the S non-Z stabilizers or from the 1,000
Z-onlystabilizers. Thus, S’ ~ 35/4of the non-Z stabilizers were sampled

without replacement from S, and another S’ ~ 35/4 Z-only stabilizers
were sampled also without replacement from 1,000 unique Z-only
stabilizers. Both sets S’ combined to give ~25’ observables as part of
this binomial resampling procedure.

In all expectation values above, we randomly applied X gates
before readout of the system qubits and, after applying the correct-
ing spinflip to sites onwhich Zand Y Paulis were supported, calculated
the expectation values of the random stabilizers. Although readout was
‘twirled’, the model-free readout correction was not appliedl.

Fits to noise model
Twomost basic linear observables are analytically knownin the noiseless
limit: (W) = sin (2t)°, (ZXZ ) = sin(2¢,). Let us consider two phenomeno-
logical errors: readout errors on the the auxiliary qubit measured in
Xbasis, with probability p,; and that on the system qubit measured in
Zbasis, with probability p,. Note that they also include the consequence
of' some of the mid-circuit bit-flip or phase-flip errors that propagate to
yield the same effect in the end, such as the bit-flip (phase-flip) for
system (auxiliary) qubits at the moment after the R,, gates. These two
error rates turn the expectation values of the above observables into
(W) = (1—2p,)°sin(2t))°, (ZXZ ) = (1 - 2p,)(1 — 2p,)° sin(2t,). We can per-
formalinearfitto extract suchphenomenological error rates per bond
and plaquette, which are then averaged over the lattice for mean values
andstandard deviations. The averaged effective errors per qubit weakly
grows with the total number of qubitsin our three experimental imple-
mentations, asseenin Table. |

Forthe 1D protocol where we do not have the Wilson loop (W), we
can use two Wilson lines of different lengths, for example, (ZXZ) and
(ZX1XZ ), to extract the two parameters for auxiliary and system qubits,
respectively.

From measurement disorder to uncorrelated disorder

The measurement-induced disorder obeys Born’srule, which leads to
ahighly correlated arrangement. Nevertheless, equation (I) hasemer-
gent gauge symmetryl], which allows us toreinterpret the disorder as
gauge symmetrizing anindependent and identically distributed (i.i.d.)
random bond disorder. Namely, we first generate the i.i.d. disorder s
with probability e#¢/(2 cosh( §)). Second, we perform a Z, gauge trans-
formation, denoted by 7,=+1asaset of randombinary number onevery
site. It transforms s; > s;T,7;, 0, 0,7 Finally, we sum over all possible
gauge transformations 7; with equal probability. By noting that

1 T .
Z—NZTW = P(s),we obtain
B Si
e if
———— () = Y, PsXoig)),, 8)
s=+1 (2 cosh( 8)) s=%1

whichrelates the ferromagnetic correlation of thei.i.d. disorder model
to the spinglass correlation of the gauge symmetric correlated disor-
der model.

Data availability
The datasupporting the findings of this study can be found via figshare
at [, <. D

Code availability
Simulationand data analysis code may be made available upon reason-
ablerequest.
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Extended DataFig.1| Typical device error rates. Plotted in cumulative format, for Echoed Cross Resonance (ECR, blue), square-root of Pauli-X (SX, red), and measurement

(Meas, black) gates. Dashed lines represent medians of distributions.
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Extended Data Fig. 2| Absence of finite threshold in one-dimensional
protocol. As discussed in the main text, the 2D protocol exhibited robustness
over the 1D protocol (seen here); the key signature being based on the scaling
ofthe average of two-point correlations, f, as a function of system size. For
comparison with Fig. J|in the main text. (a) fgrows with increasing system size

but converges to finite value that depends on ¢,. (b) The peak of g converges to
t,=m/4indicative of absence of finite threshold for coherent error. For both (a)
and (b), the three system sizes were measured with 20,000 experimental samples
giving rise to the small standard deviations (bars).
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Extended Data Fig. 3| Magnetization of 1D experiments with and without
decoding at different ¢, values. Plotting the same data set from Extended Data
Fig.2, we observe that the 1D behavior exhibited no growth in fwith system size
from 28 to 54 and had peak variances at the GHZ value of ¢, = /4. (a) Two-point
correlationsin 1D experiments for sweeps of t,. The histograms at values of ¢,
where variances were maximized for undecoded (b) and decoded (c). Although
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the bimodal distribution persisted up to a system size of 28, at 54 the distribution
became uniform. And as expected, both the undecoded (d) and decoded (e)
exhibited abinomial distribution in the trivial state (¢,=0). The error barsin

(a) are standard deviations based on 20,000 experimental samples, while the
histograms in the other subplots are based on the same data sets.
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Extended DataFig. 4 | Magnetization of 2D experiments with and without

decoding at different ¢, values. (a) Two-point correlations in 2D experiments for
sweeps of t,. The histograms at values of ¢, where variances were maximized for
undecoded (b) and decoded (c). In contrast to the 1D cases (Extended DataFig. 3),
the bimodal distribution persisted up to a system size of 54. And similarly to the
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1D case, both the undecoded (d) and decoded (e) exhibited a binomial
distributionin the trivial state (¢,=0). The error barsin (a) are standard deviations
based on 20,000 experimental samples, while the histograms in the other
subplots are based on the same data sets.
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