
On the Stability and Generalization of Meta-Learning

Yunjuan Wang
Department of Computer Science

Johns Hopkins University
Baltimore, MD, 21218
ywang509@jhu.edu

Raman Arora
Department of Computer Science

Johns Hopkins University
Baltimore, MD, 21218
arora@cs.jhu.edu

Abstract

We focus on developing a theoretical understanding of meta-learning. Given
multiple tasks drawn i.i.d. from some (unknown) task distribution, the goal is to
find a good pre-trained model that can be adapted to a new, previously unseen,
task with little computational and statistical overhead. We introduce a novel
notion of stability for meta-learning algorithms, namely uniform meta-stability.
We instantiate two uniformly meta-stable learning algorithms based on regularized
empirical risk minimization and gradient descent and give explicit generalization
bounds for convex learning problems with smooth losses and for weakly convex
learning problems with non-smooth losses. Finally, we extend our results to
stochastic and adversarially robust variants of our meta-learning algorithm.

1 Introduction

Traditional machine learning algorithms excel at generalizing, but they often require extensive training
data and assume that both training and test data come from the same distribution or task. In real-world
scenarios, large sets of training data from a single task are often lacking. Instead, training data may
stem from diverse tasks with shared similarities, while test data come from entirely new tasks. The
challenge is to rapidly adapt to these unseen tasks without the need to train from scratch.

To address this challenge, meta-learning, also referred to as learning-to-learn, has emerged as
an effective approach. Meta-learning has gained significant attention recently [Hospedales et al.,
2021], with applications spanning across various domains including computer vision [Nichol et al.,
2018] and robotics [Al-Shedivat et al., 2017], ranging from few-shot classification [Snell et al.,
2017], hyperparameter optimization [Franceschi et al., 2018], to personalized recommendation
systems [Wang et al., 2022].

As the name suggests, meta-learning operates on two levels of abstraction to enhance learning over
time. On an intra-task level, the learner needs to find models that perform well on individual tasks.
On a meta-level, the learner needs to figure out useful meta-information, perhaps a prior over tasks,
that relates different tasks and allows transferring and adaptation of knowledge to new unseen tasks
efficiently (both in terms of statistical as well computational overhead). It is typical to represent
such meta-information in the form of a pre-trained model, which we can represent using certain
meta-parameters. Distinct from a standard setting, meta-learning involves training on a diverse set of
tasks. At test time, we evaluate the performance of the pre-trained model on new unseen tasks while
allowing it to adapt using a small sample on the test task.

An increasing body of empirical research is dedicated to advancing meta-learning algorithms, among
which model-agnostic meta-learning (MAML) [Finn et al., 2017] stands out as a prominent approach.
MAML is designed to find a good meta-parameter w which facilitates the learning of task-specific
parameters through a single step of gradient descent. In particular, given a set of m tasks denoted
as {Dj}mj=1, MAML estimates the meta-parameter as w = argminw

1
m

∑m
j=1 L(uj ,Dj), where

task-specific parameters are computed as uj = w − η∇L(w,Dj).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

However, a notable limitation of MAML is that it requires computing second-order derivatives,
which is computationally demanding for deep neural networks in practical applications. This
computational complexity also poses a challenge for a theoretical understanding of MAML, an
aspect that remains largely under-explored. To mitigate this challenge, several MAML variants have
been proposed, including first-order MAML [Finn et al., 2017], Reptile [Nichol et al., 2018], and
iMAML [Rajeswaran et al., 2019]. Owing to its success, MAML has been used for robust adversarial
meta-learning [Yin et al., 2018, Goldblum et al., 2020, Wang et al., 2021, Collins et al., 2020],
differential private meta-learning [Li et al., 2019], and personalized federated learning [Chen et al.,
2018, Fallah et al., 2020].

Another popular framework for meta-learning is based on a “proximal” update, wherein the
task-specific parameter are iteratively learned by minimizing the empirical loss and an ℓ2 regu-
larizer [Denevi et al., 2018, Zhou et al., 2019, Denevi et al., 2019a, 2020, Jiang et al., 2021].
Given a task D and a meta-parameter w, the task-specific parameter u are defined as u =

argminu L(u;D) + λ
2 ∥u − w∥2. This regularization strategy ensures that the task-specific parameter

remains close to the meta-parameter. A similar strategy has been explored in other contexts. For exam-
ple, Kuzborskij and Orabona [2017] study the problem of hypothesis transfer learning and show a fast
rate on the generalization error of a task-specific parameter u returned by regularized empirical risk
minimization conditioned on a good meta-parameter w. Yet, it remains unclear how to ensure finding
such a good meta-parameter, provably. Relatedly, Denevi et al. [2019b] study stochastic gradient de-
scent with biased regularization for linear model and incrementally update the bias (meta-parameter).
Concurrently, Zhou et al. [2019] proposed the Meta-Prox algorithm as a generic stochastic meta-
learning approach. Specifically, given a set of meta-training tasks D1, . . . ,Dm, the meta-parameter

w is estimated by solving minw

∑m
j=1 minu L(u,Dj) +

λ
2 ∥u − w∥2. Zhou et al. [2019] argue that

Meta-Prox is a generalization of MAML since the gradient descent update in MAML can be viewed
as taking the first-order Taylor expansion of the objective, [Zhou et al., 2019, Section 3.1].

In this work, we adopt the framework of Zhou et al. [2019] to study meta-learning from a theoretical
perspective. Given m tasks drawn i.i.d. from some (unknown) task distribution µ, our goal is to find
a good pre-trained model (the meta-parameter) which can be adapted to a new unseen task, drawn
i.i.d. from µ, at test time, using gradient descent. Our key contributions are as follows.

1. We introduce a novel notion of stability for meta-learning algorithms, namely
uniform meta-stability. For β̄ uniformly meta-stable algorithm, we bound the generaliza-

tion gap by O(β̄ log (mn/δ) +
√

log (1/δ)/(mn)).

2. We consider two variants of task-specific learning – based on regularized empirical risk minimiza-
tion (RERM) and gradient descent (GD) – within our meta-learning framework. We apply our
stability-based analysis to these variants to learning problems with convex, smooth losses and
weakly convex, non-smooth losses. Our results are summarized in Table 1.

Algorithm Loss Conditions Uniform meta-stability β̄

Algo. 1 with RERM convex, G-Lipschitz γ ≤ 1
λ

G2

λm + G2

λn

Algo. 1 with RERM convex, H-smooth, M -bounded γ ≤ 1
λ , λ ≥ H HM

λ(2n−1) +
HM

λ(m+1)

Algo. 1 with GD convex, G-Lipschitz, H-smooth η ≤ 2
H+2λ , γ ≤ 1

λT
G2

λm + G2

λn

Algo. 1 with GD ρ-weakly convex, G-Lipschitz η≤ 1
λ , γ≤ 1

λT , λ≥2ρ G2
√

η
λ+

G2

λm+G2

λn

Algo. 3 with GD ρ-weakly convex, G-Lipschitz η≤ 1
λ , γ≤ 1

λT , λ≥2ρ G2
√

η
λ+

G2

λm+G2

λn , w.h.p.

Table 1: Bounds on uniform meta-stability β̄ for different families of learning problems. Here, η is
the step-size for GD for task-specific learning, γ is the step-size for GD for meta-parameter learning,
m is the number of tasks during training, n is the number of training data for the task at test time.

3. We extend our results to stochastic and adversarially robust variants of our meta-learning algorithm.

1.1 Related Work

Algorithmic Stability Analysis. In many machine learning problems, standard learning theoretic
tools, such as uniform convergence, do not apply since the associated complexity measures are
unbounded or undefined (e.g., nearest neighbor classification), or yield guarantees that are not
meaningful. Stability-based analysis is an alternative approach for obtaining generalization bounds

2

in such settings, introduced by Bousquet and Elisseeff [2002] and further developed in a long line
of influential works [Elisseeff et al., 2005, Mukherjee et al., 2006, Shalev-Shwartz et al., 2010, Liu
et al., 2017]. More recently, there have been significant breakthroughs in this field, with the work
of Feldman and Vondrak [2018, 2019], Bousquet et al. [2020], Klochkov and Zhivotovskiy [2021],
thereby improving the high probability bounds for uniformly stable learning algorithms beyond those
established by Bousquet and Elisseeff [2002]. These results are complemented by Hardt et al. [2016],
who provide the generalization bounds via algorithmic stability analysis of stochastic gradient for
stochastic convex optimization with smooth loss functions. Subsequent work by Bassily et al. [2020]
improves upon these results by removing the smoothness assumption, while Zhou et al. [2022], Lei
[2023] advance the state-of-the-art by relaxing the convexity assumption.

Theoretical Guarantees for Meta-Learning. There has been significant progress in understanding
the theoretical aspects of meta-learning, both in terms of convergence guarantees [Fallah et al., 2019,
Ji et al., 2020, Mishchenko et al., 2023] and the generalization guarantees. The first generalization
analysis can be traced back to Baxter [2000], who assumed that all tasks are sampled i.i.d. from
the same task distribution. Subsequent works have enriched the guarantees through various learning
theoretic constructs, including VC theory [Ben-David and Schuller, 2003, Maurer, 2009, Maurer
et al., 2016], information-theoretic tools [Chen et al., 2021, Jose and Simeone, 2021, Jose et al.,
2021, Rezazadeh et al., 2021, Hellström and Durisi, 2022], PAC-Bayes framework [Pentina and
Lampert, 2014, Amit and Meir, 2018, Rothfuss et al., 2021, Farid and Majumdar, 2021, Liu et al.,
2021, Ding et al., 2021, Rezazadeh, 2022, Riou et al., 2023, Zakerinia et al., 2024], etc. Other works
that do not rely on the task distribution assumption instead choose to get a handle on the bound by
defining certain metrics to measure either the task similarity [Du et al., 2020, Tripuraneni et al., 2020,
Guan and Lu, 2021] or the divergence between the new tasks and the training sample for the training
tasks [Fallah et al., 2021]. Finally, several works focus on the online meta-learning setting, also
referred to as the lifelong learning [Pentina and Lampert, 2014, Balcan et al., 2019, Denevi et al.,
2019a,b, Meunier and Alquier, 2021].

A prominent line of work, starting with that of Maurer [2005], focuses on giving theoretical
guarantees for meta-learning via algorithmic stability analysis. More recently, Chen et al. [2020]
establish connections between single-task learning with support/query (episodic) meta-learning
algorithms, providing generalization gap of O(1/

√
m) (where m is the number of tasks) for smooth

functions that is independent of the sample size n – this was shown to be nearly optimal in Guan
et al. [2022]. Subsequently, Fallah et al. [2021] show a bound of O(1/mn) for strongly convex
functions and by leveraging a new notion of stability. Al-Shedivat et al. [2021] extend the result
of Maurer [2005] to practical meta-learning algorithms for Lipschitz and smooth losses. Farid and
Majumdar [2021] derive a PAC-Bayes bound to address the qualitatively different challenges of
generalization within the task compared to that at the meta-level. Other relevant work includes
analyzing the stability of bilevel optimization [Bao et al., 2021] and federated learning [Sun et al.,
2024] for smooth functions.

2 Problem Setup and Preliminaries

Notation. Throughout the paper, we denote scalars and vectors with lowercase italics and lowercase
bold Roman letters, respectively; e.g., u, u. We work in a Euclidean space and use ∥·∥ and ∥·∥2 to
denote the ℓ2 norm. We use [n] to represent the set {1, 2, . . . , n}, and define U[n] to be the uniform
distribution over [n]. Let ΠW be the Euclidean projection onto W . We adopt the standard O-notation

and use ≲ and O interchangeably. We use Õ to hide poly-logarithmic dependence on the parameters.

Let X ,Y denote the input and output spaces, respectively. Consider a supervised learning setting
where each data point is denoted by z = (x, y) drawn from some unknown distribution D over
Z = X × Y . We consider a hypothesis space H (maps from X → Y) parameterized by w ∈
W , where W ⊆ R

d is a closed set with radius D. Let ℓ : R
d × Z → R

+ denote the loss
function. We say that a loss function ℓ is M -bounded if ∀w ∈ W , ∀z ∈ D, ℓ(w, z) ≤ M ; ℓ
is µ-strongly convex if ∀w1,w2 ∈ W, ∀z ∈ D, ℓ(w1, z) ≥ ℓ(w2, z) + ⟨∇ℓ(w2, z),w1 − w2⟩ +
µ
2 ∥w1 − w2∥22; if µ = 0, we say ℓ(·, z) is convex. We say ℓ is G-Lipschitz continuous if ∀w1,w2 ∈
W, ∀z ∈ D, ∥ℓ(w1, z)− ℓ(w2, z)∥2 ≤ G ∥w1 − w2∥2; ℓ is H-smooth if , ∀w1,w2 ∈ W, ∀z ∈
D, ∥∇ℓ(w1, z)−∇ℓ(w2, z)∥2 ≤ H ∥w1 − w2∥2.

In a standard (single-task) learning setup, given a model w, the expected loss on task D and the
empirical loss on a training sample S drawn i.i.d. from D, are defined, respectively, as follows.

3

L(w,D) = Ez∼D [ℓ(w, z)]; L(w,S) = 1
n

∑
z∈S ℓ(w, z).

In a meta-learning framework, we consider distributions {Dj}mj=1 associated with m different tasks

that are drawn from some (unknown) task distribution µ. For each task j, we assume that the learner

has access to n training examples drawn i.i.d. from Dj , i.e., Sj =
{

zij
}n
i=1

∼ Dn
j . We denote the

cumulative training data as S = {Sj}mj=1, and refer to it as the meta-sample.

A meta-learning algorithm A takes the meta-sample S as input and outputs an algorithm A(S) :

(X × Y)n → H. The performance of the meta-algorithm A is measured in terms of its ability to
generalize w.r.t. loss ℓ(·) to a new (previously unseen) task from the task distribution µ; we also refer
to it as the transfer risk:

L(A(S), µ) = ED∼µES∼DnL(A(S)(S),D).
The goal of meta-learning is to learn a useful prior over tasks to help with rapid adaptation to new
tasks. Formally, we pose the problem as learning a meta-model, parameterized by what we will refer
to as meta-parameter w, that performs well on a variety of tasks. The hope is that the meta-parameter

w can be adapted easily to a new task D ∼ µ; in particular, that a task-specific model u can be quickly
learned from a task-specific training set S ∼ Dn of size n using the following proximal update:

u = argminu∈W L(u,S) + λ
2 ∥u − w∥2 ,

where λ > 0 is a regularization parameter.

Algorithm 1 Prox Meta-Learning Algorithm A
Input: Meta-sample S={Sj}mj=1, epochs T , K,

step sizes γ, η, regularization parameter λ
1: w1 = 0.
2: for t = 1, 2, . . . , T do
3: for j = 1, . . . ,m do
4: u(wt,Sj) = Atask(wt,Sj ,K, η, λ)

% Using Algorithm 2
5: end for
6: Calculate the gradient, ∀j∈ [m],

∇FSj(u(wt,Sj),wt)=−λ(u(wt,Sj)−wt).

7: Updatewt+1=wt− γ
m

∑m
j=1∇FSj

(u(wt,Sj),wt)
8: wt+1 = ΠW(wt+1)
9: end for

10: return @Atask(wT+1, · ,K, η, λ)

Algorithm 2 Task-specific Algorithm Atask

Input: Pretrained model w, training data S,
#epochs K, step size η, reg. parameter λ

1: Option 1 (RERM):

2: u(w,S)=argminu∈WL(u,S)+ λ
2 ∥u−w∥2.

3: Option 2 (GD): Set u(1)(w,S) = w
4: for t = 1, 2, . . . ,K − 1 do
5: u(k+1)(w,S)=u(k)(w,S)

−η(∇L(u(k)(w,S),S)
+λ(u(k)(w,S)−w))

6: u(k+1)(w,S) = ΠW(u(k+1)(w,S))
7: end for
8: return Option 1 (RERM): u(w,S)

Option 2 (GD): 1
K

∑K
k=1u(k)(w,S)

The meta-parameter w itself is learned on the given meta-sample S by minimizing a regularized
empirical loss averaged over tasks, where the regularization term penalizes the task-specific models
in proportion to the ℓ2 distance from the meta-parameter [Zhou et al., 2019]:

ŵ = argmin
w∈W

1

m

m∑

j=1

min
u∈W

FSj
(u,w) := argmin

w∈W

1

m

m∑

j=1

min
u∈W

[
L(u,Sj) +

λ

2
∥u − w∥2

]
. (1)

The formulation above involves a bi-level optimization problem. The upper-level optimization
involves finding the meta-parameter w which requires solving the lower-level optimization problem
of finding task-specific model parameters u. We consider both Gradient Descent (GD) as well
Regularized Empirical Risk Minimization (RERM) for task-specific learning (see Algorithm 2 for
more details); for meta-learning we employ a gradient descent method (see Algorithm 1).

We would like to bound the transfer risk in terms of the empirical multi-task risk:

L(A(S),S) = 1
m

∑m
j=1 L(A(S)(Sj),Sj).

To do so, we rely on the stability of the meta-learning algorithm.

Stability of Meta-Learning Algorithm. Given a meta-sample S = {Sj}mj=1, define S
(j) to be

the meta-sample obtained by replacing the training samples Sj for the j-th task, in S, by another

i.i.d. sample S ′
j ∼ Dn

j . We refer to S,S(j) as neighboring meta-samples. For a task-specific training

sample S =
{

zi
}n
i=1

, let S(i) denote the training data obtained by replacing the i-th example zi ∈ S
by another example z′ ∼ D drawn independently; we refer to S,S(i) as neighboring samples.

Theorem 2.1 (Maurer [2005]). Suppose the meta-algorithm A satisfies:

4

1. (Uniform Stability of Single-Task Learning) For any meta-sample S and any S,S(i),∣∣ℓ(A(S)(S), z)− ℓ(A(S)(S(i)), z)
∣∣ ≤ β.

2. (Uniform Stability of Meta-Learning) For any S,S(j) and any given training set S ∼ D,∣∣L(A(S)(S),S)− L(A(S(j))(S),S)
∣∣ ≤ β′.

Then, for M -bounded loss ℓ, with probability at least 1− δ, we have that

L(A(S), µ) ≲ L(A(S),S) + (mβ′ +M)
√
log (1/δ) /m+ β.

Theorem 2.1 follows using a simple extension of arguments in Bousquet and Elisseeff [2002]. By
utilizing sharper bounds tailored for uniformly stable algorithms [Bousquet et al., 2020], a tighter
bound can be achieved, as demonstrated in Theorem 2.2 below. A similar result was shown in Guan
et al. [2022] for episodic training algorithms (except there is no β).

Theorem 2.2. Suppose the meta-algorithm A satisfies the same conditions as shown in Theorem 2.1.
Then for M -bounded loss ℓ, with probability at least 1− δ, we have that

L(A(S), µ) ≲ L(A(S),S) + β′ log (m) log (1/δ) +M
√
log (1/δ) /m+ β.

3 Uniform Meta-Stability

Motivated by prior work (i.e., Theorem 2.1 and the definitions therein), we introduce a new notion
of stability which measures the sensitivity of the learning algorithm as we replace both a task in the
meta-sample as well as a single training example available for the task at test time.

Definition (Uniform Meta-Stability). We say that a meta-learning algorithm A is β̄-

uniformly meta-stable if for any neighbouring meta-samples S,S(j), and neighboring samples S,S(i),

for any task D ∼ µ and any z ∼ D, we have that∣∣∣ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)), z)
∣∣∣ ≤ β̄.

The definition above is rather natural. Intuitively, for a meta-learning algorithm to transfer well, we
require that the learning algorithms, i.e., A(S) and A(S′), returned on two neighboring meta-samples,
when trained on two neighboring samples return models that predict similarly. Our first result bounds
the generalization gap in terms of the uniform meta-stability parameter.

Theorem 3.1. Consider a meta-learning problem for some M -bounded loss function ℓ and task
distribution µ. Let S be a meta-sample consisting of training samples on m tasks each of size n, and
let S ∼ D be a sample of size n on a previously unseen task D ∼ µ. Then, for any β-uniformly
meta-stable learning algorithm A, we have that with probability 1− δ,

L(A(S), µ) ≲ L(A(S),S) + β̄ log (mn) log (1/δ) +M
√

log (1/δ) /(mn).

The result above is a direct analogue of Theorem 2.1 with stability parameters β, β′ both subsumed
into a single meta-stability parameter. We do obtain a faster rate of convergence – as we instantiate
concrete algorithms and specialize our results to specific problems in Section 4.1, we will see a
notable improvement in rates from 1/

√
m to 1/m, for n > m.

We conclude the section by presenting an alternate notion of algorithmic meta-stability and a basic
result that directly bounds the generalization gap for the meta-learning problem.

Definition (On-Average Meta-Stability). Let µ be an (unknown) underlying task distribution. We
say that a meta-learning algorithm A is β̄-on-average-replace-one-meta-stable if

E
S∼{Dn

j}m

j=1
,(S′

j ,z
′
j)∼Dn+1

j ,{Dj}m
j=1∼µm,j∼U[m],i∼U[n]

∣∣∣ℓ(A(S)(Sj), zij)−ℓ(A(S(j))(S(i)
j), zij)

∣∣∣ ≤ β̄.

Theorem 3.2. Let µ be an underlying task distribution. Given a meta-sample S, test task D ∼ µ, and
S ∼ Dn, for any β̄ -on-average-replace-one-meta-stable meta-learning algorithm A, we have that

E
S∼{Dn

j }m

j=1
,{Dj}m

j=1∼µm [L(A(S), µ)− L(A(S),S)] ≤ β̄.

4 Bounding Transfer Risk

In this section, we consider a concrete meta-learning algorithm given in Algorithm 1.

5

4.1 Convex and Smooth Losses

We begin with meta-learning problems with convex, Lipschitz (and potentially smooth) losses.

Lemma 4.1. Assume that the loss function ℓ is convex and G-Lipschitz loss. Let S, S(j) denote

neighboring meta-samples and S, S(i) the neighboring samples on a test task. Then, the following
holds for Algorithm 1 with RERM for task-specific learning (i.e., Option 1 for Algorithm 2) ∀T ≥ 1,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ G

λm
+

2G

λn
.

Further, if ℓ is convex, M -bounded and H-smooth, then setting λ ≥ H , γ ≤ 1
λ , we have ∀T ≥ 1,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ 2

√
2HM

2λn−H
+

n

2λn−H

4
√
2HM

(m+ 1)
.

We can now use the result above with Theorem 3.1 to get the following bound on the transfer risk.

Theorem 4.2. The following holds for Algorithm 1 with step-size γ ≤ 1
λ on a given meta-sample S,

and RERM for task-specific learning (i.e., Option 1 for Algorithm 2), for all T ≥ 1:

1. For convex, M -bounded, and G-Lipschitz loss functions, with probability at least 1− δ

L(A(S), µ) ≲ L(A(S),S) +

(
G2

λn
+

G2

λm

)
log (mn) log (1/δ) +

M
√
log (1/δ)√
mn

.

2. For convex, M -bounded, and H-smooth loss functions (H ≤ λ), with probability at least 1− δ

L(A(S), µ)≲L(A(S),S)+

(
HM

(2n− 1)λ
+

HM

(m+ 1)λ

)
log (mn) log (1/δ)+

M
√
log (1/δ)√
mn

.

Next, we give analogous results for GD for task-specific learning (i.e., Option 2 for Algorithm 2),
albeit for smooth loss functions. Lemma 4.3 bounds the output sensitivity of the meta-learning
algorithm. We use it with Theorem 3.1 to give the generalization guarantee in Theorem 4.4.

Lemma 4.3. Assume that the loss function is convex, G-Lipschitz and H-smooth. Let S, S(j)

denote neighboring meta-samples and S, S(i) the neighboring samples on a test task. Then the
following holds for Algorithm 1 with GD for task-specific learning (i.e., Option 2 for Algorithm 2)
with η ≤ 2

H+2λ , for all T ≥ 1 as long as we set γ ≤ 1
λT ,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ 4eG

λm
+

2G

λn
.

Theorem 4.4. Assume that the loss function is convex, M -bounded, G-Lipschitz and H-smooth.
Suppose we run Algorithm 1 for T iterations with γ ≤ 1

λT on a given meta-sample S, and GD for

task-specific learning (Option 2, Algorithm 2) with η ≤ 2
H+2λ . Then, with probability at least 1− δ,

L(A(S), µ) ≲ L(A(S),S)+

(
G2

λm
+
G2

λn

)
log (mn) log (1/δ)+

M
√

log (1/δ)√
mn

.

The results above show that meta-stable learning algorithms do not overfit. The bound on the

generalization gap of Õ(1
m + 1

n + 1√
mn

) is tighter than what we would obtain using prior work.

Indeed, we show that Theorem 2.2 yields a rate of Õ(1
m + 1

n + 1√
m
) (see Theorems C.2 and C.3

in Appendix), which is worse for all m ≤ n2. Notably, the bounds on the generalization gap
are independent of the number of iterations of the meta learning Algorithm 1 and the number of
iterations of GD for Algorithm 2. This holds since the objective we are minimizing is strongly convex
(given the strongly convex regularizer), which ensures that the output sensitivity (in Lemmas 4.3
and 4.1 are independent of T and K. In itself, this should not be surprising since we only bound the
generalization error in terms of the empirical error – the latter may not be small unless the algorithms
have converged. To get a better handle on the generalization error we focus on excess (transfer) risk
bounds in Section 4.3. But first we give a similar development for another important problem class.

6

4.2 Weakly Convex and Non-smooth Losses

Here, we focus on a more practical setting of learning problems with loss functions that are weakly
convex and non-smooth. The notion of weak convexity is often used in non-convex optimization
literature in a variety of problems including robust phase retrieval [Davis et al., 2020] and dictionary
learning [Davis and Drusvyatskiy, 2019]; see Drusvyatskiy [2017] for an extended discussion.

Definition. A function f(w) is ρ-weakly convex w.r.t. ∥·∥ if f(w) + ρ
2 ∥w∥2 is convex in w.

The class of weakly convex functions is contained within the larger class of non-smooth functions
and semi-smooth functions [Mifflin, 1977]. It includes convex functions and smooth functions with
Lipschitz continuous gradient as special cases; ρ < 0 implies that the function is strongly convex.
An important example from a practical perspective is that of training over-parameterized two-layer
neural networks with smooth activation functions using a smooth loss [Richards and Rabbat, 2021].
We first bound the sensitivity of Algorithm 1 for weakly convex and non-smooth losses.

Lemma 4.5. Assume that the loss function is ρ-weakly convex and G-Lipschitz. Let S, S(j) denote

neighboring meta-samples and S, S(i) the neighboring samples on a test task. Then the following
holds for Algorithm 1 with λ ≥ 2ρ, and GD for task-specific learning (i.e., Option 2 for Algorithm 2)
with η ≤ 1

λ , for all T ≥ 1 as long as we set γ ≤ 1
λT ,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn
.

Using the result above in conjunction with Thm 3.1 gives the following bound on the transfer risk.

Theorem 4.6. Assume that the loss function is ρ-weakly convex, M -bounded, and G-Lipschitz.
Suppose we run Algorithm 1 for T iterations with γ ≤ 1

λT , λ ≥ 2ρ on a meta-sample S, and GD for

task-specific learning (Option 2, Algorithm 2) with η ≤ 1
λ , Then, with probability at least 1− δ,

L(A(S), µ) ≲ L(A(S),S) +

(
G2

√
η

λ
+

G2

λm
+

G2

λn

)
log (mn) log (1/δ)+

M
√

log (1/δ)√
mn

.

Proof of Theorem 4.6 follows from Lemma 4.5 and Theorem 3.1. A few remarks are in order.

For learning rate γ ≤ 1
λT , Theorem 4.6 gives a rate of Õ(

√
η+ 1

m + 1
n + 1√

mn
) on the generalization

gap. This naturally suggests setting η = 1
λK , where K ≥ min {m,n} is the number of iterations of

GD in task-specific learning. Then, similar to the discussion in Section 4.1, Theorem 4.6 gives a
tighter bound, when n > m, than those derived using prior work (Theorem 2.2); we refer the reader
to Theorem D.4 in the appendix for further details.

Our proof technique shares similarities with Bassily et al. [2020]. However, our result is not a
straightforward application of theirs as we deal with a bi-level optimization problem and focus on
weakly convex functions. It is worth noting that our results for weakly convex non-smooth losses
require regularization parameter λ ≥ 2ρ, which can be chosen in practice using cross-validation.

The work most related to ours is that of Guan et al. [2022]. However, our results are fundamentally
different from theirs in several aspects. Firstly, the algorithms we study are different. Guan et al.
[2022] focus on support/query (S/Q) training strategies (aka episodic training) where each task Sj

is split into two non-overlapping parts – the support set Str
j for training the task-specific parameter

and the query set Sts
j for measuring the algorithm’s performance [Vinyals et al., 2016]. The meta-

parameter is learned by minimizing the loss computed over the query set. Such S/Q training
strategy is popular for modern gradient-based meta-learning algorithm such as MAML for few-shot
learning [Finn et al., 2017], where the optimization objective can be written as minw

1
m

∑m
j=1 L(w−

∇L(w,Str
j),Sts

j). One notable limitation is that Guan et al. [2022] assume that the loss function

on the task level, e.g., R(w,Sj) = L(w−∇L(w,Str
j),Sts

j), is convex or (Hölder) smooth. Such an
assumption is highly impractical, as demonstrated by [Mishchenko et al., 2023, Theorem 1, Theorem
2], which provides several counterexamples where L is convex and smooth but R is neither convex
nor smooth. In contrast, we directly deal with L being weakly convex and nonsmooth. Our approach
requires a more involved proof that deals with stability of bi-level optimization. This is in stark
contrast with Guan et al. [2022] who directly reduce the meta-learning problem to a single-task
learning problem without considering the bi-level structure of the problem.

The work of Fallah et al. [2021] proposed a notion of stability similar to ours. The difference is that
they consider S/Q training and define the stability by changing a mini-batch of samples in Str

j as

7

well as a single sample in Sts
j . Moreover, their focus is primarily on strongly convex losses. They

discuss generalization to training tasks and unseen tasks separately, as they do not assume all tasks
are sampled from the same task distribution. Another related work of Guan and Lu [2021] present

a generalization bound of O(
√
C/mn) under a task relatedness assumption, where C captures the

logarithm of the covering number of hypothesis class that possibly depends on the dimension d. More
recently, Riou et al. [2023] provide generalization bounds with a fast rate of O(1

m + 1
n), albeit under

an additional extended Bernstein’s condition.

4.3 Excess Transfer Risk

In the previous sections, we focused on establishing that meta-stable rules do not overfit to the
meta-sample. In this Section, we focus on the question of whether meta-learning Algorithm 1 can
achieve a small generalization error, i.e., are they guaranteed to transfer well on unseen tasks? We
show that by focusing on the computational aspects, i.e., by bounding the optimization error in terms
of the number of iterations. Furthermore, we give bounds on excess risk, wherein the benchmark is
the performance of the best possible in-class predictor.

Let u∗ = argminu∈W L(u,D), u∗j = argminu∈W L(u,Sj), ∀j ∈ [m] be the optimal task-specific

hypotheses for the unseen task and the given training tasks, respectively. Given a meta-algorithm A,
the excess transfer risk can be decomposed as follows:

L(A(S)(S),D)−L(u∗,D)
︸ ︷︷ ︸

Excess Transfer Risk Erisk(A)

=L(A(S)(S),D)−
1

m

m∑

j=1

L(A(S)(Sj),Sj)

︸ ︷︷ ︸

Generalization Gap Egen(A)

+
1

m

m∑

j=1

[
L(A(S)(Sj),Sj)−L(u

∗
j ,Sj)

]

︸ ︷︷ ︸

Optimization and Approximation Error Eopt+app(A)

+
1

m

m∑

j=1

[
L(u∗

j ,Sj)−L(u∗,Sj)
]

︸ ︷︷ ︸
≤0

+
1

m

m∑

j=1

[L(u∗,Sj)−L(u∗,D)]

︸ ︷︷ ︸
E∀j∈[m],Sj∼Dn

j
,Dj∼µ,D∼µ=0

.

To control excess risk, we need to bound Egen(A) and Eopt+app(A) simultaneously. The bounds on
the first term are presented in the previous section. Here, we focus on analyzing the second term.

Theorem 4.7. Assume that the loss ℓ is convex and G-Lipschitz. Define u∗j =argminu L(u,Sj), ∀j ∈
[m]. Suppose we run Algorithm 1 for T iterations with step-size γ = 1

λT , and using GD for task-
specific learning (i.e., Option 2 for Algorithm 2), to find an algorithm A(S) = Atask(wT+1, ·) which
is then run on Sj for K iterations with step-size η ≤ 1

2λ . Then, we have that

L(A(S)(Sj),Sj)−inf
u
L(u,Sj)≲

D2

ηK
+G2η+GDηλ+λ ∥wT+1−ŵ∥2+λσ2

where ŵ is defined in Equation (1). Here σ2 := 1
m

∑m
j=1

∥∥ŵ−u∗j
∥∥2 is the approximation error, and

∥wT+1 − ŵ∥2 ≲ 1
T (D

2 + D2

ληK + η(G+2λD)2

λ) is the optimization error.

Finally, to bound the excess transfer risk for convex and non-smooth losses, we use Theorem 4.6 with
Theorem 4.7 to get that in expectation over the sampling of data (meta-sample S and sample S)

E[Erisk(A)]≤E[Egen(A)]+E[Eopt+app(A)]≲G
2

√
η

λ
+

G2

λm
+
G2

λn
+

D2

ηK
+G

2
η+GDηλ+

λD2

T
+η(G+2λD)2+λσ

2
.

By properly choosing step size η = O
(

1
λK2/3

)
, we obtain that the expected excess transfer risk

decays at a rate of O(1
λK1/3 +

1
λm + 1

λn +
λ
T +λσ2). Similarly, for convex, Lipschitz and smooth

losses, applying Theorem 4.4 with Theorem 4.7 and selecting η = O(1
λ
√
K
) results in an expected

excess transfer risk of O(1
λ
√
K
+ 1

λm + 1
λn + λ

T +λσ2). Therefore, as K,T,m, n tend to infinity, the

excess risk converges to σ2. As σ represents the average distance between the optimal task-specific
parameters uj’s and the optimal estimated meta-parameter ŵ, the excess risk is small when σ is small.
It is also typical to set the regularization parameter λ inversely proportional to the sample size n (e.g.,
λ = O(1/

√
n)).

Denevi et al. [2019a] study the same algorithm as ours except in the online setting. However, the
function classes they consider are limited to compositions of linear hypothesis classes with convex
and closed losses. In contrast, our work considers a broader range of functions, encompassing not
only convex, Lipschitz, and smooth functions but also weakly-convex and non-smooth functions. The

8

bound on expected excess risk shown in Denevi et al. [2019a] takes the form O(Varm√
n

+ 1√
m
), where

Varm captures the relatedness among the tasks sampled from the task environment. Unfortunately,

this bound relies on a specific choice of λ = O
(

1
Varm

√
log(n)

n

)
, which depends on Varm – a

quantity that is often not known a priori in practice. To compare with our work, set K = n, T = m,
η = O(1/

√
n), and λ = O(1/

√
n).Then, applying Theorem 4.4 with Theorem 4.7, we obtain that

E[Erisk(A)]≲
√
n

m + max(1,σ2)√
n

. Considering both Varm and σ as constants, the bound on expected

excess risk based on our analysis is tighter than that of Denevi et al. [2019a] when n ≲ m, a common
setting studied in meta-learning framework.

We also conduct a simple experiment to empirically verify the tightness of our generalization bounds,
which we defer to Appendix A due to space limitations.

5 Implications of the Generalization Bounds

Next, we present stochastic and adversarially robust variants of the meta-learning Algorithm 1.

5.1 Proximal Meta-Learning with Stochastic Optimization

We adapt Algorithm 1 to utilize sampling-with-replacement where at each iteration we process the
training set of a single task; see Algorithm 3 for more details. We show that with high probability the
sensitivity of this stochastic meta-learning algorithm is bounded.

Lemma 5.1. Assume that the loss function is ρ-weakly convex and G-Lipschitz. Let S, S(j) denote

neighboring meta-samples and S , S(i) the neighboring samples on a test task. Then, with probability
at least 1−exp

(
−T 2e2/m2

)
, the following holds for Algorithm 3 with λ ≥ 2ρ, and GD for task-

specific learning (i.e., Option 2 for Algorithm 2) with η ≤ 1
λ , for all T ≥ 1 as long as we set γ ≤ 1

λT ,

sup
S,S,i∈[n],j∈[m]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn
.

5.2 Robust Adversarial Proximal Meta-Learning

Algorithm 3 Stochastic Prox Meta-Learning

Input: Meta-sample S={Sj}mj=1, epochs T,K, step

size γ, η, regularization parameter λ.
1: w1 = 0.
2: for t = 1, 2, . . . , T do
3: Sample jt ∼ U[m].
4: u(wt,Sjt) = Atask(wt,Sjt ,K, η, λ).

% Using Algorithm 2
5: Calculate the gradient

∇FSjt
(u(wt,Sjt),wt)=−λ(u(wt,Sjt)−wt).

6: Update wt+1=wt−γ∇FSjt
(u(wt,Sjt),wt).

7: wt+1 = ΠW(wt+1).
8: end for
9: return @Atask(wT+1, ·,K, η, λ)

We consider inference-time adversarial at-
tacks with a general threat model B : X →
2X . Specifically, given an input example
x ∈ X ,B(x) ⊆ R

d represents the set of all
possible perturbations of x that an adversary
can choose from. This includes the typical
examples such as the Lp threat models that
are often considered in practice, or a discrete
set of designed transformations.

Given a model parameter w, let ℓ̃(w, z) =
maxz̃∈B(z) ℓ(w, z̃) denote the adversarial loss.
We adapt the standard meta-learning frame-
work simply by considering the robust vari-

ant, ℓ̃, of the standard loss ℓ. We denote
the robust transfer risk and empirical ro-
bust multi-task risk as Lrob(A(S), µ) and
Lrob(A(S),S). Now, given meta-sample S, the goal is to learn a robust prior (e.g., a pre-trained
model) for rapid adaptation to and robust generalization on new tasks. We adopt the framework
presented in Section 2 except we use robust loss for task-specific training; indeed, using GD (Option
2) on robust loss in Algorithm 2 yields adversarial training. We use Algorithm 1 for meta-learning.
We now relate a loss function with its adversarially robust counterpart.

Proposition 5.2. Given a loss function ℓ(·, z) and its adversarial counterpart ℓ̃(·, z), the following

holds: (1) If ℓ is G-Lipschitz (in its first argument), then ℓ̃ is G-Lipschitz. (2) ℓ̃ is not H-smooth even

if ℓ is H-smooth. (3) If ℓ is H-smooth in w, then ℓ̃ is H-weakly convex in w.

Using the result above with Theorem 3.1 yields the following bound on robust (transfer) risk.

9

Corollary 5.3. Assume that the loss ℓ is M -bounded and H-smooth. Suppose we run Algorithm 1
for T iterations with γ ≤ 1

λT , η ≤ 1
λ , λ > 2H , and wherein task-specific learning Algorithm 2 (GD)

is invoked with robust loss ℓ̃, we have that with probability at least 1− δ,

Lrob(A(S), µ)≲Lrob(A(S),S)+

(
G2

√
η

λ
+

G2

λm
+
G2

λn

)
log (mn) log (1/δ)+

M
√

log (1/δ)√
mn

.

Note that prior work on robust adversarial meta-learning [Yin et al., 2018, Goldblum et al., 2020,
Wang et al., 2021] focuses on empirical study of the problem; we present first theoretical guarantees.

6 Conclusion

In this paper, we introduce a novel notion of stability for meta-learning algorithms, namely uniform
meta-stability, and offer a tighter bound on the generalization gap for the meta-learning problem
compared to existing literature. We instantiate uniformly meta-stable learning algorithms and give
generalization guarantees for both convex, smooth losses as well as weakly convex and non-smooth
losses. Several avenues for further exciting research remain. For instance, it remains to be seen
if our bounds are tight. Can we show lower bounds on the generalization error for meta-learning?
Additionally, understanding how meta-learning relates to federated learning may offer insights on
how to extend the theory to broader applications and inform the design of new algorithms. Finally,
motivated by data privacy considerations, it would be interesting to extend our setup to privacy-
preserving meta-learning, similar in spirit to the recent work of Zhou and Bassily [2022].

Acknowledgments and Disclosure of Funding

This research was supported, in part, by the DARPA GARD award HR00112020004, NSF CAREER
award IIS-1943251, funding from the Institute for Assured Autonomy (IAA) at JHU, and the
Spring’22 workshop on “Learning and Games” at the Simons Institute for the Theory of Computing.
YW acknowledges the support of Amazon Fellowship.

References

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Maruan Al-Shedivat, Liam Li, Eric Xing, and Ameet Talwalkar. On data efficiency of meta-learning.
In International Conference on Artificial Intelligence and Statistics, pages 1369–1377. PMLR,
2021.

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In
International Conference on Machine Learning, pages 205–214. PMLR, 2018.

Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-based
meta-learning. In International Conference on Machine Learning, pages 424–433. PMLR, 2019.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. Advances in neural information processing
systems, 34:4529–4541, 2021.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:
4381–4391, 2020.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task learning. In
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th
Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings,
pages 567–580. Springer, 2003.

10

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable
algorithms. In Conference on Learning Theory, pages 610–626. PMLR, 2020.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning with fast
convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Jiaxin Chen, Xiao-Ming Wu, Yanke Li, Qimai Li, Li-Ming Zhan, and Fu-lai Chung. A closer look
at the training strategy for modern meta-learning. Advances in Neural Information Processing
Systems, 33:396–406, 2020.

Qi Chen, Changjian Shui, and Mario Marchand. Generalization bounds for meta-learning: An
information-theoretic analysis. Advances in Neural Information Processing Systems, 34:25878–
25890, 2021.

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning.
Advances in Neural Information Processing Systems, 33:18860–18871, 2020.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for nons-
mooth, nonconvex problems. SIAM Journal on Optimization, 29(3):1908–1930, 2019.

Damek Davis, Dmitriy Drusvyatskiy, and Courtney Paquette. The nonsmooth landscape of phase
retrieval. IMA Journal of Numerical Analysis, 40(4):2652–2695, 2020.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around
a common mean. Advances in neural information processing systems, 31, 2018.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn stochas-
tic gradient descent with biased regularization. In International Conference on Machine Learning,
pages 1566–1575. PMLR, 2019a.

Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-within-online
meta-learning. Advances in Neural Information Processing Systems, 32, 2019b.

Giulia Denevi, Massimiliano Pontil, and Carlo Ciliberto. The advantage of conditional meta-learning
for biased regularization and fine tuning. Advances in Neural Information Processing Systems, 33:
964–974, 2020.

Nan Ding, Xi Chen, Tomer Levinboim, Sebastian Goodman, and Radu Soricut. Bridging the gap
between practice and pac-bayes theory in few-shot meta-learning. Advances in Neural Information
Processing Systems, 34:29506–29516, 2021.

Dmitriy Drusvyatskiy. The proximal point method revisited. arXiv preprint arXiv:1712.06038, 2017.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of
randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. arxiv preprint: 1908.10400, 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Generalization of model-agnostic meta-
learning algorithms: Recurring and unseen tasks. Advances in Neural Information Processing
Systems, 34:5469–5480, 2021.

11

Alec Farid and Anirudha Majumdar. Generalization bounds for meta-learning via pac-bayes and
uniform stability. Advances in neural information processing systems, 34:2173–2186, 2021.

Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. Advances
in Neural Information Processing Systems, 31, 2018.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable
algorithms with nearly optimal rate. In Conference on Learning Theory, pages 1270–1279. PMLR,
2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pages 1568–1577. PMLR, 2018.

Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust few-shot learning: A
meta-learning approach. Advances in Neural Information Processing Systems, 33:17886–17895,
2020.

Jiechao Guan and Zhiwu Lu. Task relatedness-based generalization bounds for meta learning. In
International Conference on Learning Representations, 2021.

Jiechao Guan, Yong Liu, and Zhiwu Lu. Fine-grained analysis of stability and generalization for
modern meta learning algorithms. Advances in Neural Information Processing Systems, 35:
18487–18500, 2022.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pages 1225–1234. PMLR,
2016.

Fredrik Hellström and Giuseppe Durisi. Evaluated cmi bounds for meta learning: Tightness and
expressiveness. Advances in Neural Information Processing Systems, 35:20648–20660, 2022.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. Advances in Neural Information Processing
Systems, 33:11490–11500, 2020.

Weisen Jiang, James Kwok, and Yu Zhang. Effective meta-regularization by kernelized proximal
regularization. Advances in Neural Information Processing Systems, 34:26212–26222, 2021.

Sharu Theresa Jose and Osvaldo Simeone. Information-theoretic generalization bounds for meta-
learning and applications. Entropy, 23(1):126, 2021.

Sharu Theresa Jose, Osvaldo Simeone, and Giuseppe Durisi. Transfer meta-learning: Information-
theoretic bounds and information meta-risk minimization. IEEE Transactions on Information
Theory, 68(1):474–501, 2021.

Yegor Klochkov and Nikita Zhivotovskiy. Stability and deviation optimal risk bounds with conver-
gence rate o(1/n). Advances in Neural Information Processing Systems, 34:5065–5076, 2021.

Ilja Kuzborskij and Francesco Orabona. Fast rates by transferring from auxiliary hypotheses. Machine
Learning, 106:171–195, 2017.

Yunwen Lei. Stability and generalization of stochastic optimization with nonconvex and nonsmooth
problems. In The Thirty Sixth Annual Conference on Learning Theory, pages 191–227. PMLR,
2023.

Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. Differentially private meta-
learning. arXiv preprint arXiv:1909.05830, 2019.

12

Tianyu Liu, Jie Lu, Zheng Yan, and Guangquan Zhang. Pac-bayes bounds for meta-learning with
data-dependent prior. arXiv preprint arXiv:2102.03748, 2021.

Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis
complexity. In International Conference on Machine Learning, pages 2159–2167. PMLR, 2017.

Andreas Maurer. Algorithmic stability and meta-learning. Journal of Machine Learning Research, 6
(6), 2005.

Andreas Maurer. Transfer bounds for linear feature learning. Machine learning, 75(3):327–350,
2009.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. Journal of Machine Learning Research, 17(81):1–32, 2016.

Dimitri Meunier and Pierre Alquier. Meta-strategy for learning tuning parameters with guarantees.
Entropy, 23(10):1257, 2021.

Robert Mifflin. Semismooth and semiconvex functions in constrained optimization. SIAM Journal
on Control and Optimization, 15(6):959–972, 1977.

Konstantin Mishchenko, Slavomir Hanzely, and Peter Richtárik. Convergence of first-order algorithms
for meta-learning with moreau envelopes. arXiv preprint arXiv:2301.06806, 2023.

Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. Learning theory: stability
is sufficient for generalization and necessary and sufficient for consistency of empirical risk
minimization. Advances in Computational Mathematics, 25:161–193, 2006.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In Interna-
tional Conference on Machine Learning, pages 991–999. PMLR, 2014.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Yao-Feng Ren and Han-Ying Liang. On the best constant in marcinkiewicz–zygmund inequality.
Statistics & probability letters, 53(3):227–233, 2001.

Arezou Rezazadeh. A unified view on pac-bayes bounds for meta-learning. In International
Conference on Machine Learning, pages 18576–18595. PMLR, 2022.

Arezou Rezazadeh, Sharu Theresa Jose, Giuseppe Durisi, and Osvaldo Simeone. Conditional mutual
information-based generalization bound for meta learning. In 2021 IEEE International Symposium
on Information Theory (ISIT), pages 1176–1181. IEEE, 2021.

Dominic Richards and Mike Rabbat. Learning with gradient descent and weakly convex losses. In
International Conference on Artificial Intelligence and Statistics, pages 1990–1998. PMLR, 2021.

Charles Riou, Pierre Alquier, and Badr-Eddine Chérief-Abdellatif. Bayes meets bernstein at the meta
level: an analysis of fast rates in meta-learning with pac-bayes. arXiv preprint arXiv:2302.11709,
2023.

Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. Pacoh: Bayes-optimal
meta-learning with pac-guarantees. In International Conference on Machine Learning, pages
9116–9126. PMLR, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

13

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30, 2017.

Zhenyu Sun, Xiaochun Niu, and Ermin Wei. Understanding generalization of federated learning
via stability: Heterogeneity matters. In International Conference on Artificial Intelligence and
Statistics, pages 676–684. PMLR, 2024.

Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance
of task diversity. Advances in neural information processing systems, 33:7852–7862, 2020.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Chunyang Wang, Yanmin Zhu, Haobing Liu, Tianzi Zang, Jiadi Yu, and Feilong Tang. Deep
meta-learning in recommendation systems: A survey. arXiv preprint arXiv:2206.04415, 2022.

Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, and Meng Wang.
On fast adversarial robustness adaptation in model-agnostic meta-learning. arXiv preprint
arXiv:2102.10454, 2021.

Jiancong Xiao, Yanbo Fan, Ruoyu Sun, Jue Wang, and Zhi-Quan Luo. Stability analysis and
generalization bounds of adversarial training. Advances in Neural Information Processing Systems,
35:15446–15459, 2022.

Yue Xing, Qifan Song, and Guang Cheng. On the algorithmic stability of adversarial training.
Advances in neural information processing systems, 34:26523–26535, 2021.

Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning. arXiv
preprint arXiv:1806.03316, 2018.

Hossein Zakerinia, Amin Behjati, and Christoph H Lampert. More flexible pac-bayesian meta-
learning by learning learning algorithms. arXiv preprint arXiv:2402.04054, 2024.

Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, and Jiashi Feng. Efficient meta learning via
minibatch proximal update. Advances in Neural Information Processing Systems, 32, 2019.

Xinyu Zhou and Raef Bassily. Task-level differentially private meta learning. Advances in Neural
Information Processing Systems, 35:20947–20959, 2022.

Yi Zhou, Yingbin Liang, and Huishuai Zhang. Understanding generalization error of sgd in nonconvex
optimization. Machine Learning, pages 1–31, 2022.

14

Theorem B.3. Let Z = (z1, . . . , zn) be a vector of independent random variables each taking values
in Z . Let Z = (Z1, . . . ,Zm) be a vector of independent random vectors each taking values in Zn.
Let gj,i : (Zn)m×Zn → R be some functions such that the following holds for any i ∈ [n], j ∈ [m]:

(1). |E[gj,i(Z,Z)|Zj , zi]| ≤ M a.s.,

(2). E
[
gj,i(Z,Z)|Z[m]\{j}, z[n]\{i}

]
= 0 a.s.,

(3). gj,i has a bounded difference β̄ w.r.t. all variables except the (j, i)-th variable.

Then we have
∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gj,i(Z,Z)

∥∥∥∥∥∥
≲ mnβ̄ log (mn) +M

√
mn.

Proof of Theorem B.3. The proof is an extension of [Bousquet et al., 2020, Theorem 4].

Without loss of generality, we suppose that n = 2k,m = 2r. Otherwise, we can add extra functions
that equal to zero. Consider a sequence of partitions C0, . . . , Ck with C0 = {{i} : i ∈ [n]}, Ck =
{[n]}, and to get Cl from Cl+1 we split each subset into Cl+1 into two equal parts. We have

C0 =
{
{1} , . . . ,

{
2k
}}

, C1 =
{
{1, 2} , {3, 4} , . . . ,

{
2k − 1, 2k

}}
, Ck =

{{
1, . . . , 2k

}}
.

By construction, we have |Cl| = 2k−l and |C| = 2l for each C ∈ Cl. For each i ∈ [n] and

l = 0, . . . , k, denote by Cl(i) ∈ Cl the only set from Cl that contains i. In particular, C0(i) = {i}
and Ck(i) = [n].

Similarly, we consider a sequence of partitions E0, . . . , Er with E0 = {{j} : j ∈ [m]}, Er = {[m]},
and to get Eq from Eq+1 we split each subset in Eq+1 into two equal parts. We have

E0 = {{1} , . . . , {2r}} , E1 = {{1, 2} , {3, 4} , . . . , {2r − 1, 2r}} , Er = {{1, . . . , 2r}} .

By construction, we have |Eq| = 2r−q and |E| = 2q for each E ∈ Eq. For each j ∈ [m] and

q = 0, . . . , r, denote by Eq(j) ∈ Eq the only set from Eq that contains j. In particular, E0(j) = {j}
and Er(j) = [m].

For each i ∈ [n], j ∈ [m] and every l = 0, . . . , k, q = 0, . . . , r, consider the random variables

gq,lj,i = gq,lj,i (Zj ,Z[m]\Eq(j), zi, z[n]\Cl(i)),

i.e., conditioned on Zj , zi and all the vectors that are not in the same set as Zj in the partition Eq
and all the variables that are not in the same set as zi in the partition Cl. In particular, g0,0j,i = gj,i,

gr,kj,i = E[gj,i|Zj , zi]. We can write a telescopic sum as follows:

gj,i − E[gj,i|Zj , zi] =
r−1∑

q=0

gq,0j,i − gq+1,0
j,i +

k−1∑

l=0

gr,lj,i − gr,l+1
j,i ,

and the total sum of interest satisfies by the triangle inequality

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gj,i

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

E [gj,i|Zj , zi]

∥∥∥∥∥∥
+

r−1∑

q=0

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gq,0j,i − gq+1,0
j,i

∥∥∥∥∥∥
+

k−1∑

l=0

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gr,lj,i − gr,l+1
j,i

∥∥∥∥∥∥
.

Since |E[gj,i|Zj , zi]| ≤ M and E (E [gj,i|Zj , zi]) = 0, by applying McDiarmid inequality in
Lemma B.1, we have

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

E [gj,i|Zj , zi]

∥∥∥∥∥∥
≤ 4

√
2mnM. (2)

16

We observe that

gq+1,l+1
j,i (Zj ,Z[m]\Eq+1(j), zi, z[n]\Cl+1(i))

= E

[
gq+1,l
j,i (Zj ,Z[m]\Eq+1(j), zi, z[n]\Cl(i))|zi, z[n]\Cl+1(i)

]

(The expectation is take w.r.t. the variable zs, s ∈ Cl+1(i)\Cl(i))

= E

[
gq,l+1
j,i (Zj ,Z[m]\Eq(j), zi, z[n]\Cl+1(i))|Zj ,Z[m]\Eq+1(j)

]

(The expectation is take w.r.t. the variable Zs, s ∈ Eq+1(j)\Eq(j))

As function gq,lj,i preserves the bounded differences property, if we apply McDiarmid’s inequality
conditioned on Zj ,Z[m]\Eq+1(j), zi, z[n]\Cl+1(i), we obtain a uniform bound

∥∥∥gq,0j,i − gq+1,0
j,i

∥∥∥
(
Zj ,Z[m]\Eq+1(j), zi, z[n]\C0(i)

)
≤ 2

√
2q+1β̄

∥∥∥gr,lj,i − gr,l+1
j,i

∥∥∥
(
Zj ,Z[m]\Er(j), zi, z[n]\Cl+1(i)

)
≤ 2

√
2l+1β̄

as there are 2l indices in Cl+1(i)\Cl(i) and 2q indices in Eq+1(j)\Eq(j).

Now we focus on
∑

j∈Eq

∑
i∈C0 g

q,0
j,i −gq+1,0

j,i for Eq ∈ Eq and
∑

j∈Er

∑
i∈Cl g

r,l
j,i−gr,l+1

j,i for Cl ∈
Cl, respectively. Since gq,0j,i − gq+1,0

j,i for j ∈ Eq, i ∈ C0 depends on Zj ,Z[m]\Eq(j), zi, z[n]\C0(i), the
terms are independent and zero mean conditioned on Z[m]\Eq(j). Applying Theorem B.2, we have

∥∥∥∥∥∥

∑

j∈Eq

∑

i∈C0

gq,0j,i − gq+1,0
j,i

∥∥∥∥∥∥

2

(Z[m]\Eq)

≤ 36 · 2q 1

2q

∑

j∈Eq

∑

i∈C0

∥∥∥gq,0j,i − gq+1,0
j,i

∥∥∥
2

(Z[m]\Eq)

Integrating with respect to (Z[m]\Eq) and using

∥∥∥gq,0j,i − gq+1,0
j,i

∥∥∥ ≤ 2
√
2q+1β̄, we have

∥∥∥∥∥∥

∑

j∈Eq

∑

i∈C0

gq,0j,i − gq+1,0
j,i

∥∥∥∥∥∥
≤ 6

√
2q × 2

√
2q+1β̄ = 12

√
2 · 2qβ̄.

Applying triangle inequality over all sets C0 ∈ C0, Eq ∈ Eq gives us that
∥∥∥∥∥∥

∑

j∈[m]

∑

i∈[n]

gq,0j,i − gq+1,0
j,i

∥∥∥∥∥∥
≤

∑

Eq∈Eq,C0∈C0

∥∥∥∥∥∥

∑

j∈Eq,i∈C0

gq,0j,i − gq+1,0
j,i

∥∥∥∥∥∥

≤ 2r+k−q × 12
√
2 · 2qβ̄

= 12
√
2 · 2r+kβ̄.

Similarly, gr,lj,i − gr,l+1
j,i for j ∈ Er, i ∈ Cl depends on zi, z[n]\Cl+1(i), the terms are independent and

zero mean conditioned on z[n]\Cl+1(i). Applying Theorem B.2, we have

∥∥∥∥∥∥

∑

j∈Er

∑

i∈Cl

gr,lj,i − gr,l+1
j,i

∥∥∥∥∥∥

2

(z[n]\Cl)

≤ 36 · 2l+r 1

2l+r

∑

j∈Er

∑

i∈Cl

∥∥∥gr,lj,i − gr,l+1
j,i

∥∥∥
2

(z[n]\Cl)

Integrating with respect to (z[n]\Cl) and using

∥∥∥gr,lj,i − gr,l+1
j,i

∥∥∥ ≤ 2
√
2l+1β̄, we have

∥∥∥∥∥∥

∑

j∈Er

∑

i∈Cl

gr,lj,i − gr,l+1
j,i

∥∥∥∥∥∥
≤ 6

√
2l+r × 2

√
2l+1β̄ = 12

√
2 · 2l+0.5rβ̄.

17

Applying triangle inequality over all sets Cl ∈ Cl, Er ∈ Er gives us that
∥∥∥∥∥∥

∑

j∈[m]

∑

i∈[n]

gr,lj,i − gr,l+1
j,i

∥∥∥∥∥∥
≤

∑

Er∈Er,Cl∈Cl

∥∥∥∥∥∥

∑

j∈Er,i∈Cl

gr,lj,i − gr,l+1
j,i

∥∥∥∥∥∥

≤ 2k−l × 12
√
2 · 2l+0.5rβ̄

≤ 12
√
2 · 2r+kβ̄.

Recall that 2k < 2n, 2r < 2m due to the possible extension of the sample. Therefore we have

r−1∑

q=0

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gq,0j,i − gq+1,0
j,i

∥∥∥∥∥∥
+

k−1∑

l=0

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gr,lj,i − gr,l+1
j,i

∥∥∥∥∥∥
≤48

√
2mnβ̄(⌈log (m)⌉+⌈log (n)⌉)

≲mnβ̄ log (mn)

Combined with Equation (2) get the required bound.

We now restate and prove Theorem 3.1.

Theorem 3.1. Consider a meta-learning problem for some M -bounded loss function ℓ and task
distribution µ. Let S be a meta-sample consisting of training samples on m tasks each of size n, and
let S ∼ D be a sample of size n on a previously unseen task D ∼ µ. Then, for any β-uniformly
meta-stable learning algorithm A, we have that with probability 1− δ,

L(A(S), µ) ≲ L(A(S),S) + β̄ log (mn) log (1/δ) +M
√

log (1/δ) /(mn).

Proof of Theorem 3.1. In order to make use of Theorem B.3, we consider the following functions:

gj,i = gj,i(Z,Z) = E(S′
j ,z

′
j)∼Dn+1

j ,Dj∼µE(S,z)∼Dn+1,D∼µℓ(A(S(j))(S), z)− ℓ(A(S(j))(S(i)
j), zij)

By the definition of uniform meta stability, we can write the following decomposition:

|mn (L(A(S), µ)− L(A(S),S))|

=

∣∣∣∣∣∣

m∑

j=1

n∑

i=1

E(S,z)∼Dn+1,D∼µℓ(A(S)(S), z)− ℓ(A(S)(Sj), zij)

∣∣∣∣∣∣

=

∣∣∣∣∣

m∑

j=1

n∑

i=1

E(S,z)∼Dn+1,
D∼µ

E(S′
j ,z

′
j)∼Dn+1

j ,

Dj∼µ

(
ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)

j), zij)

+ ℓ(A(S(j))(S(i)
j), zij)− ℓ(A(S)(Sj), zij)

)∣∣∣∣∣

≤

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

E(S,z)∼Dn+1,
D∼µ

E(S′
j ,z

′
j)∼Dn+1

j ,

Dj∼µ

(
ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)

j), zij

)
∥∥∥∥∥∥
+mnβ̄

=

∥∥∥∥∥∥

m∑

j=1

n∑

i=1

gj,i

∥∥∥∥∥∥
+mnβ̄

Moreover, we have E [gj,i|S1, . . . ,Sj−1,Sj+1, . . . ,Sm, z1, . . . , zi−1, zi+1, . . . , zn] = 0 and |gj,i| ≤
2M a.s. for i ∈ [n], j ∈ [m]. Applying Theorem B.3 as well as [Bousquet and Elisseeff, 2002,
Lemma 1] achieves the results.

Theorem 3.2 can be directly proved by the definition of uniform meta-stability.

18

Theorem 3.2. Let µ be an underlying task distribution. Given a meta-sample S, test task D ∼ µ, and
S ∼ Dn, for any β̄ -on-average-replace-one-meta-stable meta-learning algorithm A, we have that

E
S∼{Dn

j }m

j=1
,{Dj}m

j=1∼µm [L(A(S), µ)− L(A(S),S)] ≤ β̄.

Proof of Theorem 3.2. Since S and z′ are both drawn i.i.d. from D, and S and S ′
j are both drawn

i.i.d. from µ, we have

E
S∼{Dn

j}m

j=1
,{Dj}m

j=1∼µmES∼Dn,D∼µL(A(S)(S),D)

= E
S∼{Dn

j}m

j=1
,(S′

j)∼Dn
j ,{Dj}m

j=1∼µm,j∼U[m]L(A(S(j))(Sj),Dj)

= E
S∼{Dn

j}m

j=1
,(S′

j ,z
′
j)∼Dn+1

j ,{Dj}m
j=1∼µm,j∼U[m],i∼U[n]ℓ(A(S(j))(S(i)

j), zij)

as well as

E
S∼{Dn

j}m

j=1
,{Dj}m

j=1∼µm


 1

m

m∑

j=1

L(A(S)(Sj),Sj)




= E
S∼{Dn

j}m

j=1
,{Dj}m

j=1∼µm,j∼U[m] [L(A(S)(Sj),Sj)]

= E
S∼{Dn

j}m

j=1
,(S′

j ,z
′
j)∼Dn+1

j ,{Dj}m
j=1∼µm,j∼U[m],i∼U[n]ES∼Dnℓ(A(S)(Sj), zij)

As a result, we have

E
S∼{Dn

j }m

j=1
,{Dj}m

j=1∼µm [L(A(S), µ)− L(A(S),S)]

= E
S∼{Dn

j}m

j=1
,(S′

j ,z
′
j)∼Dn+1

j ,{Dj}m
j=1∼µm,j∼U[m],i∼U[n]

∣∣∣ℓ(A(S(j))(S(i)
j), zij)−ℓ(A(S)(Sj), zij)

∣∣∣

≤ β̄ (By definition of β̄ -on-average-replace-one-meta-stable)

C Missing Proofs of Section 4.1

Lemma C.1 (Shalev-Shwartz and Ben-David [2014]). Given S and S(i), for a fixed w, define u(w,S)
and u(w,S(i)) is achieved via Algo. 1 with Option 1 RERM. Then if ℓ is convex, G-Lipschitz, we

have supS,i∈[n]

∥∥u(w,S)− u(w,S(i))
∥∥ ≤ 4G

λn . If ℓ is convex and H-smooth (H ≤ λn
2), we have∥∥u(w,S)− u(w,S(i))

∥∥ ≤
√
8H
λn (

√
ℓ(w, zi) +

√
ℓ(w, z′)).

Lemma 4.1. Assume that the loss function ℓ is convex and G-Lipschitz loss. Let S, S(j) denote

neighboring meta-samples and S, S(i) the neighboring samples on a test task. Then, the following
holds for Algorithm 1 with RERM for task-specific learning (i.e., Option 1 for Algorithm 2) ∀T ≥ 1,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ G

λm
+

2G

λn
.

Further, if ℓ is convex, M -bounded and H-smooth, then setting λ ≥ H , γ ≤ 1
λ , we have ∀T ≥ 1,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ 2

√
2HM

2λn−H
+

n

2λn−H

4
√
2HM

(m+ 1)
.

Proof of Lemma 4.1. We slightly abuse the notation, at iteration t, define wt = A(S), w′
t = A(S(j)).

Given wT+1, define u(wT+1,S) = A(S)(S), u(w′
T+1,S(i)) = A(S(j))(S(i)).

We first consider the setting where the loss ℓ is convex, G-Lipschitz. Recall that FS(u,w) =

L(u,S) + λ
2 ∥u − w∥2. If ℓ is convex, then FS(u,w) is λ-strongly-convex w.r.t u. Define u(w,S) =

argminu∈W FS(u,w), u(w′,S) = argminu∈W FS(u,w′). We have the following:

FS(u(w
′,S),w)− FS(u(w,S),w) ≥ λ ∥u(w,S)− u(w′,S)∥2

FS(u(w,S),w′)− FS(u(w
′,S),w′) ≥ λ ∥u(w,S)− u(w′,S)∥2

19

Sum the above gives us that

2λ ∥u(w,S)− u(w′,S)∥2

≤ FS(u(w
′,S),w)− FS(u(w,S),w) + FS(u(w,S),w′)− FS(u(w

′,S),w′)

=
λ

2

(
∥u(w′,S)− w∥2 − ∥u(w,S)− w∥2 + ∥u(w,S)− w′∥2 − ∥u(w′,S)− w′∥2

)

= λ ⟨u(w,S)− u(w′,S),w − w′⟩
≤ λ ∥u(w,S)− u(w′,S)∥ ∥w − w′∥

This gives us that

∥u(w,S)− u(w′,S)∥ ≤ 1

2
∥w − w′∥ . (3)

Similarly, define u(w′,S ′) = argminu∈W FS′(u,w′), we have

FS(u(w
′,S ′),w)− FS(u(w,S),w) ≥ λ ∥u(w,S)− u(w′,S ′)∥2

FS′(u(w,S),w′)− FS′(u(w′,S ′),w′) ≥ λ ∥u(w,S)− u(w′,S ′)∥2

Sum the above gives us that

2λ ∥u(w,S)− u(w′,S ′)∥2

≤ FS(u(w
′,S ′),w)− FS(u(w,S),w) + FS′(u(w,S),w′)− FS′(u(w′,S ′),w′)

= L(u(w′,S ′),S)− L(u(w,S),S) + L(u(w,S),S ′)− L(u(w′,S ′),S ′)

+
λ

2

(
∥u(w′,S ′)− w∥2 − ∥u(w,S)− w∥2 + ∥u(w,S)− w′∥2 − ∥u(w′,S ′)− w′∥2

)

≤ 2G ∥u(w,S)− u(w′,S ′)∥+ λ ⟨u(w,S)− u(w′,S ′),w − w′⟩ (ℓ is G-Lipschitz)

≤ 2G ∥u(w,S)− u(w′,S ′)∥+ λ ∥u(w,S)− u(w′,S ′)∥ ∥w − w′∥
This gives us that

∥u(w,S)− u(w′,S ′)∥ ≤ 1

2
∥w − w′∥+ G

λ
(4)

Finally, at iteration t, we have

∥∥wt+1 − w′
t+1

∥∥ ≤

∥∥∥∥∥∥
wt − γλ


wt −

1

m

m∑

j=1

u(wt,Sj)


− w′

t + γλ


w′

t −
1

m

m∑

j=1

u(w′
t,S ′

j)



∥∥∥∥∥∥

(Projection is non-expansive)

=

∥∥∥∥∥∥
(1− γλ)(wt − w′

t) + γλ
1

m

m∑

j=1

(
u(wt,Sj)− u(w′

t,S ′
j)
)
∥∥∥∥∥∥

≤ (1− γλ) ∥wt − w′
t∥+ γλ

(
m− 1

m

1

2
∥wt − w′

t∥+
1

m

(
1

2
∥wt − w′

t∥+
G

λ

))

(Equation (3), (4))

= (1− γλ

2
) ∥wt − w′

t∥+
γG

m

Choose γ ≤ 1
λ , ∀t. Rearrange gives us that

∥∥wt+1 − w′
t+1

∥∥
(1− γλ/2)

t+1 ≤ ∥wt − w′
t∥

(1− γλ/2)
t +

γG

m

1

(1− γλ/2)
t+1

Note that at initialization when t = 1 we have ∥w1 − w′
1∥ = 0. Telescoping from t = 1 to T + 1

∥∥wT+1 − w′
T+1

∥∥

(1− γλ/2)
T

≤ γG

m

T−1∑

t=1

1

(1− γλ/2)
t+1

20

Calculate gives us that

∥∥wT+1 − w′
T+1

∥∥ ≤ 2G

λm

Similarly, define u(wT+1,S) = argminu∈W FS(u,w′
T+1),

u(w′
T+1,S(i)) = argminu∈W FS(i)(u,w′

T), we have

FS(u(w
′
T+1,S(i)),wT+1)− FS(u(wT+1,S),wT+1) ≥ λ

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥
2

FS(i)(u(wT+1,S),w′
T+1)− FS(i)(u(w′

T+1,S(i)),w′
T+1) ≥ λ

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥
2

Sum the above gives us that

2λ
∥∥∥u(wT+1,S)− u(w′

T+1,S(i))
∥∥∥
2

≤ FS(u(w
′
T+1,S(i)),wT+1)− FS(u(wT+1,S),wT+1)

+ FS(i)(u(wT+1,S),w′
T+1)− FS(i)(u(w′

T+1,S(i)),w′
T+1)

= L(u(w′
T+1,S(i)),S)− L(u(wT+1,S),S) + L(u(wT+1,S),S(i))− L(u(w′

T+1,S(i)),S(i))

+
λ

2

(∥∥∥u(w′
T+1,S(i))−wT+1

∥∥∥
2

−∥u(wT+1,S)−wT+1∥2

+
∥∥u(wT+1,S)−w′

T+1

∥∥2−
∥∥∥u(w′

T+1,S(i))−w′
T+1

∥∥∥
2
)

≤ 2G

n

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥+ λ
〈

u(wT+1,S(i))− u(w′
T+1,S(i)),wT+1 − w′

T+1

〉

(ℓ is G-Lipschitz)

≤ 2G

n

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥+ λ
∥∥∥u(wT+1,S)− u(w′

T+1,S(i))
∥∥∥
∥∥wT+1 − w′

T+1

∥∥

This gives us that

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥ ≤ 1

2

∥∥wT+1 − w′
T+1

∥∥+ 2G

λn
≤ G

λm
+

2G

λn
(5)

We now consider the surrogate loss ℓ is convex, non-negative and H-smooth. Note that such loss is
also self-bounded. From a similar argument, we have

∥u(w,S)− u(w′,S)∥ ≤ 1

2
∥w − w′∥ .

Moreover,

2λ ∥u(w,S)− u(w′,S ′)∥2

≤ FS(u(w
′,S ′),w)− FS(u(w,S),w) + FS′(u(w,S),w′)− FS′(u(w′,S ′),w′)

= L(u(w′,S ′),S)− L(u(w,S),S) + L(u(w,S),S ′)− L(u(w′,S ′),S ′)

+
λ

2

(
∥u(w′,S ′)− w∥2 − ∥u(w,S)− w∥2 + ∥u(w,S)− w′∥2 − ∥u(w′,S ′)− w′∥2

)

≤ (∥∇L(u(w,S),S)∥+∥∇L(u(w′,S ′),S ′)∥)∥u(w′,S ′)−u(w,S)∥+H ∥u(w′,S ′)− u(w,S)∥2
(ℓ is H-smooth)

+ λ ⟨u(w,S)− u(w′,S ′),w − w′⟩

≤
(√

2HL(u(w,S),S) +
√
2HL(u(w′,S ′),S ′)

)
∥u(w′,S ′)− u(w,S)∥

+H ∥u(w′,S ′)− u(w,S)∥2 + λ ∥u(w,S)− u(w′,S)∥ ∥w − w′∥ (ℓ is H-smooth)

21

which is equivalent as

∥u(w,S)− u(w′,S ′)∥ ≤
√
2HL(u(w,S),S) +

√
2HL(u(w′,S ′),S ′) + λ ∥w − w′∥
2λ−H

(λ ≥ H)

≤
√
2H

λ

(√
L(u(w,S),S) +

√
L(u(w′,S ′),S ′)

)
+ ∥w − w′∥ (6)

Finally, at iteration t, we have
∥∥wt+1 − w′

t+1

∥∥

≤

∥∥∥∥∥∥
wt − γλ


wt −

1

m

m∑

j=1

u(wt,Sj)


− w′

t + γλ


w′

t −
1

m

m∑

j=1

u(w′
t,S ′

j)



∥∥∥∥∥∥

(Projection is non-expansive)

=

∥∥∥∥∥∥
(1− γλ)(wt − w′

t) + γλ
1

m

m∑

j=1

(
u(wt,Sj)− u(w′

t,S ′
j)
)
∥∥∥∥∥∥

≤ (1− γλ) ∥wt − w′
t∥+ γλ

(
m− 1

m

1

2
∥wt − w′

t∥

+
1

m

(√
2H

λ

(√
L(u(wt,Sj),Sj) +

√
L(u(w′

t,S ′
j),S ′

j)

)
+ ∥wt − w′

t∥
))

(Equation (3), (6))

=

(
1− m+ 1

2m
γλ

)
∥wt − w′

t∥+
γ
√
2H

m

(√
L(u(wt,Sj),Sj) +

√
L(u(w′

t,S ′
j),S ′

j)

)

Telescope gives us that

∥∥wT+1 − w′
T+1

∥∥≤ γ
√
2Hλ

m

T∑

t=1

(
1−m+ 1

2m
γλ

)T−t(√
L(u(wt,Sj),Sj)+

√
L(u(w′

t,S ′
j),S ′

j)

)

≤ 4
√
2HM

λ(m+ 1)
, (7)

where the last line holds if we consider M -bounded loss. Otherwise, we have

∥∥wT+1 − w′
T+1

∥∥≤ 2
√
2H

λ(m+ 1)

(√
max
t∈[T]

L(u(wt,Sj),Sj) +
√

max
t∈[T]

L(u(w′
t,S ′

j),S ′
j)

)
. (8)

Therefore, we have

2λ
∥∥∥u(w,S)− u(w′,S(i))

∥∥∥
2

≤ FS(u(w
′,S(i)),w)− FS(u(w,S),w) + FS(i)(u(w,S),w′)− FS(i)(u(w′,S(i)),w′)

= L(u(w′,S(i)),S)− L(u(w,S),S) + L(u(w,S),S(i))− L(u(w′,S(i)),S(i))

+
λ

2

(∥∥∥u(w′,S(i))− w

∥∥∥
2

− ∥u(w,S)− w∥2 + ∥u(w,S)− w′∥2 −
∥∥∥u(w′,S(i))− w′

∥∥∥
2
)

≤ 1

n

(
ℓ(u(w′,S(i)), zi)− ℓ(u(w′,S(i)), z′) + ℓ(u(w′,S), z′)− ℓ(u(w′,S), zi)

)

+ λ
〈

u(w,S)− u(w′,S(i)),w − w′
〉

≤ 1

n

(√
2Hℓ(u(w,S), zi) +

√
2Hℓ(u(w′,S(i)), z′)

)∥∥∥u(w′,S(i))− u(w,S)
∥∥∥

+
H

n

∥∥∥u(w′,S(i))− u(w,S)
∥∥∥
2

+ λ ∥u(w,S)− u(w′,S)∥ ∥w − w′∥ (ℓ is H-smooth)

22

Rearrange gives us,
∥∥∥u(w,S)− u(w′,S(i))

∥∥∥ ≤ 1

2λn−H

(√
2Hℓ(u(w,S), zi) +

√
2Hℓ(u(w′,S(i)), z′)

)

+
λn

2λn−H
∥w − w′∥ (9)

Plug in wT+1 and w′
T+1 gives us that

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥ ≤ 2
√
2HM

2λn−H
+

n

2λn−H

4
√
2HM

(m+ 1)

If we apply Lemma 4.1 and Lemma C.1 with Theorem 2.2, we have the following theorem.

Theorem C.2. The following holds for Algorithm 1 with step-size γ ≤ 1
λ on a given meta-sample S,

and RERM for task-specific learning (i.e., Option 1 for Algorithm 2), for all T ≥ 1:

1. For convex, M -bounded, and G-Lipschitz loss functions, with probability at least 1− δ

L(A(S), µ) ≲ L(A(S),S) +
G2

λm
log (m) log (1/δ) +

M√
m

√
log (1/δ) +

G2

λn
.

2. For convex, M -bounded, and H-smooth loss functions (H ≤ λ), with probability at least 1− δ

L(A(S), µ) ≲ L(A(S),S) +
HM

(m+ 1)λ
log (m) log (1/δ) +

M√
m

√
log (1/δ) +

HM

λn
.

Proof of Theorem C.2. We slightly abuse the notation, at iteration t, define wt = A(S), w′
t =

A(S(j)), u(wT+1,S) = A(S)(S), u(w′
T+1,S(i)) = A(S(j))(S(i)). Apply Lemma 4.1 gives us that∣∣∣L(A(S)(S),S)− L(A(S(j))(S),S)

∣∣∣ =
∣∣L(u(wT+1,S),S)− L(u(w′

T+1,S),S)
∣∣

≤ G
∥∥u(wT+1,S)− u(w′

T+1,S)
∥∥ (G-Lipschitz)

≤ G

2

∥∥wT+1 − w′
T+1

∥∥ (Equation (3))

≤ G2

λm
Apply Lemma C.1 gives us that∣∣∣ℓ(A(S)(S), z)− ℓ(A(S)(S(i)), z)

∣∣∣ =
∣∣∣ℓ(u(wT+1,S), z)− ℓ(u(wT+1,S(i)), z)

∣∣∣

≤ G
∥∥∥u(wT+1,S)− u(wT+1,S(i))

∥∥∥

≤ 4G2

λn

Apply Theorem 2.2 with β′ = G2

λm , β = 4G2

λn achieves the results.

Similarly, if the loss is M -bounded, convex, non-negative and H-smooth, we have∣∣∣L(A(S)(S),S)− L(A(S(j))(S),S)
∣∣∣

=
∣∣L(u(wT+1,S),S)− L(u(w′

T+1,S),S)
∣∣

≤
√
2HL(u(wT+1,S),S)

∥∥u(wT+1,S)− u(w′
T+1,S)

∥∥+ H

2

∥∥u(wT+1,S)− u(w′
T+1,S)

∥∥2

(ℓ is H-smooth)

≤
√
2HM

1

2

∥∥wT+1 − w′
T+1

∥∥+ H

8

∥∥wT+1 − w′
T+1

∥∥2 (Equation (7))

≤ 4HM

(m+ 1)λ
+

4H2M

(m+ 1)2λ2

≤ 8HM

(m+ 1)λ
(λ ≥ H)

23

Apply Lemma C.1 gives us that
∣∣∣ℓ(A(S)(S), z)− ℓ(A(S)(S(i)), z)

∣∣∣

=
∣∣∣ℓ(u(wT+1,S), z)− ℓ(u(wT+1,S(i)), z)

∣∣∣

≤
√
2Hℓ(u(wT+1,S), z)

∥∥∥u(wT+1,S)− u(wT+1,S(i))
∥∥∥+ H

2

∥∥∥u(wT+1,S)− u(wT+1,S(i))
∥∥∥
2

≤ 8HM

λn
+

16H2M

λ2n2

≤ 24HM

λn
(λ ≥ H)

Apply Theorem 2.2 with β′ = 8HM
(m+1)λ , β = 24HM

λn achieves the results.

Theorem 4.2. The following holds for Algorithm 1 with step-size γ ≤ 1
λ on a given meta-sample S,

and RERM for task-specific learning (i.e., Option 1 for Algorithm 2), for all T ≥ 1:

1. For convex, M -bounded, and G-Lipschitz loss functions, with probability at least 1− δ

L(A(S), µ) ≲ L(A(S),S) +

(
G2

λn
+

G2

λm

)
log (mn) log (1/δ) +

M
√
log (1/δ)√
mn

.

2. For convex, M -bounded, and H-smooth loss functions (H ≤ λ), with probability at least 1− δ

L(A(S), µ)≲L(A(S),S)+

(
HM

(2n− 1)λ
+

HM

(m+ 1)λ

)
log (mn) log (1/δ)+

M
√
log (1/δ)√
mn

.

Proof of Theorem 4.2. We slightly abuse the notation, at iteration t, define wt = A(S), w′
t =

A(S(j)), u(wT+1,S) = A(S)(S), u(w′
T+1,S(i)) = A(S(j))(S(i)). For ℓ to be convex and G-

Lipschitz, applying Lemma 4.1 gives us that
∣∣∣ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)), z)

∣∣∣ =
∣∣∣ℓ(u(wT+1,S), z)− ℓ(u(w′

T+1,S(i)), z)
∣∣∣

≤ G
∥∥∥u(wT+1,S)− u(w′

T+1,S(i))
∥∥∥

≤ G2

λm
+

2G2

λn
.

Further apply Theorem 3.1 gives us the result. For ℓ to be convex, M -bounded and H-smooth, we
have
∣∣∣ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)), z)

∣∣∣

=
∣∣∣ℓ(u(wT+1,S), z)− ℓ(u(w′

T+1,S(i)), z)
∣∣∣

≤
√

2Hℓ(u(wT+1,S), z)
∥∥∥u(wT+1,S)− u(w′

T+1,S(i))
∥∥∥+ H

2

∥∥∥u(wT+1,S)− u(w′
T+1,S(i))

∥∥∥
2

≤
√
2HM

(
2
√
2HM

2λn−H
+

n

2λn−H

4
√
2HM

(m+ 1)

)
+

H

2

(
2
√
2HM

2λn−H
+

n

2λn−H

4
√
2HM

(m+ 1)

)2

≤ 4HM

(2n− 1)λ
+

8HM

(m+ 1)λ
+

8H2M

(2n− 1)2λ2
+

16H2M

(m+ 1)2λ2

≤ 12HM

(2n− 1)λ
+

24HM

(m+ 1)λ
(H ≤ λ)

Apply Theorem 3.1 gives the results.

24

Lemma 4.3. Assume that the loss function is convex, G-Lipschitz and H-smooth. Let S, S(j)

denote neighboring meta-samples and S, S(i) the neighboring samples on a test task. Then the
following holds for Algorithm 1 with GD for task-specific learning (i.e., Option 2 for Algorithm 2)
with η ≤ 2

H+2λ , for all T ≥ 1 as long as we set γ ≤ 1
λT ,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ 4eG

λm
+

2G

λn
.

Proof of Lemma 4.3. We slightly abuse the notation, at iteration t, define wt = A(S), w′
t = A(S(j)),

u(wT+1,S) = A(S)(S), u(w′
T+1,S(i)) = A(S(j))(S(i)). Recall that FS(u,w) = L(u,S) +

λ
2 ∥u − w∥2. If ℓ is convex, then FS(u,w) is λ-strongly-convex w.r.t u. If ℓ is H-smooth, then

⟨∇L(u,S)−∇L(v,S), u − v⟩ ≥ 1

H
∥∇L(u,S)−∇L(v,S)∥2

Given S , S ′, for any w,w′, we have
∥∥∥u(k+1)(w,S)− u(k+1)(w′,S ′)

∥∥∥

≤
∥∥∥∥∥u(k)(w,S)− u(k)(w′,S ′)− η

(
∇L(u(k)(w,S),S) + λ

(
u(k)(w,S)− w

)

(Projection is non-expansive)

−∇L(u(k)(w′,S ′),S ′)− λ
(

u(k)(w′,S ′)− w′
))∥∥∥∥∥

≤ (1− ηλ)
∥∥∥u(k)(w,S)− u(k)(w′,S ′)

∥∥∥+ ηλ ∥w − w′∥+ 2ηG

Given S , for any w,w′, we have
∥∥∥u(k+1)(w,S)− u(k+1)(w′,S)

∥∥∥

≤
∥∥∥∥∥u(k)(w,S)− u(k)(w′,S) (Projection is non-expansive)

− η
(
∇L(u(k)(w,S),S)+λ

(
u(k)(w,S)− w

)
−∇L(u(k)(w′,S),S)−λ

(
u(k)(w′,S)−w′

))∥∥∥∥∥

=

∥∥∥∥∥u(k)(w,S)− u(k)(w′,S) + λη(w − w′)

− η
(
∇L(u(k)(w,S),S)−∇L(u(k)(w′,S),S)+λ

(
u(k)(w,S)−u(k)(w′,S)

))∥∥∥∥∥

≤ λη ∥w − w′∥+
(∥∥∥∥u(k)(w,S)− u(k)(w′,S)

− η
(
∇L(u(k)(w,S),S)−∇L(u(k)(w′,S),S)+λ

(
u(k)(w,S)−u(k)(w′,S)

))∥∥∥∥
2
)1/2

≤ λη ∥w − w′∥+
(
(1− λη)2

∥∥∥u(k)(w,S)− u(k)(w′,S)
∥∥∥
2

+

(
η2 − 2η(1− ηλ)

H

)∥∥∥∇L(u(k)(w,S),S)−∇L(u(k)(w′,S),S)
∥∥∥
2
)1/2

(L is H-smooth, η ≤ 2
H+2λ)

25

≤ (1− λη)
∥∥∥u(k)(w,S)− u(k)(w′,S)

∥∥∥+ λη ∥w − w′∥ (10)

Combine the above two cases gives us that

1

m

m∑

j=1

∥∥∥u(k+1)(w,Sj)− u(k+1)(w′,S ′
j)
∥∥∥

≤ 1

m

m∑

j ̸=i

∥∥∥u(k)(w,Sj)− u(k)(w,S ′
j)
∥∥∥+ 1

m

∥∥∥u(k)(w,Si)− u(k)(w′,S ′
i)
∥∥∥

≤ (1− λη)
1

m

m∑

j=1

∥∥∥u(k)(w,Sj)− u(k)(w′,S ′
j)
∥∥∥+ λη ∥w − w′∥+ 2ηG

m

Given wt,w′
t, when k = 1, u(1)(wt,S ′

j) = wt, u(1)(w′
t,Sj) = u(1)(w′

t,S ′
j) = w′

t. Telescoping gives
us that

1

m

m∑

j=1

∥∥∥u(k)(wt,Sj)− u(k)(w′
t,S ′

j)
∥∥∥ ≤

(
1 + (1− λη)k−1

)
∥wt − w′

t∥+
2G

λm

≤ 2 ∥wt − w′
t∥+

2G

λm
(11)

Finally, at iteration t, we have
∥∥wt+1 − w′

t+1

∥∥

≤

∥∥∥∥∥∥
wt−γλ


wt−

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)


−w′

t+γλ


w′

t−
1

m

m∑

j=1

1

K

K∑

k=1

u(k)(w′
t,S ′

j)



∥∥∥∥∥∥

(Projection is non-expansive)

=

∥∥∥∥∥∥
(1− γλ)(wt − w′

t) + γλ
1

m

m∑

j=1

1

K

K∑

k=1

(
u(k)(wt,Sj)− u(k)(w′

t,S ′
j)
)
∥∥∥∥∥∥

≤ (1− γλ) ∥wt − w′
t∥+ γλ

(
2 ∥wt − w′

t∥+
2G

λm

)
(Equation (11))

= (1 + γλ) ∥wt − w′
t∥+

2γG

m

Note that w1 = w′
1 = 0. Choosing γ ≤ 1

λT and telescoping gives us that

∥∥wT+1 − w′
T+1

∥∥ ≤
(
1 +

1

T

)
∥wt − w′

t∥+
2G

mλT
≤ 2eG

λm
(12)

where the inequality holds because (1 + 1
T)

T ≤ e. Similarly, we have
∥∥∥u(k+1)(w,S)− u(k+1)(w′,S(i))

∥∥∥

≤
∥∥∥∥∥u(k)(w,S)− u(k)(w′,S(i))− η

(
∇L(u(k)(w,S),S) + λ

(
u(k)(w,S)− w

)

(Projection is non-expansive)

−∇L(u(k)(w′,S(i)),S(i))− λ
(

u(k)(w′,S(i))− w′
))∥∥∥∥∥

≤ ηλ ∥w − w′∥+
∥∥∥∥∥(1− ηλ)

(
u(k)(w,S)− u(k)(w′,S(i))

)

+ η
(
∇L(u(k)(w,S),S)−∇L(u(k)(w′,S(i)),S)

)

26

+ η
(
∇L(u(k)(w′,S(i)),S)−∇L(u(k)(w′,S(i)),S(i))

)∥∥∥∥∥

≤ ηλ ∥w − w′∥+ 2Gη

n
+

(∥∥∥∥∥(1− ηλ)
(

u(k)(w,S)− u(k)(w′,S(i))
)

+ η
(
∇L(u(k)(w,S),S)−∇L(u(k)(w′,S(i)),S)

)∥∥∥∥∥

2)1/2

≤ ηλ ∥w − w′∥+ 2Gη

n
+

(
(1− λη)2

∥∥∥u(k)(w,S)− u(k)(w′,S(i))
∥∥∥
2

+

(
η2 − 2η(1− ηλ)

H

)∥∥∥∇L(u(k)(w,S),S)−∇L(u(k)(w′,S),S(i))
∥∥∥
2
)1/2

(L is H-smooth, η ≤ 2
H+2λ)

≤ (1− λη)
∥∥∥u(k)(w,S)− u(k)(w′,S(i))

∥∥∥+ ηλ ∥w − w′∥+ 2Gη

n
(13)

Therefore we have ∀k ∈ [K − 1],

∥∥∥u(k+1)(wT+1,S)− u(k+1)(w′
T+1,S(i))

∥∥∥ ≤
(
1 + (1− λη)k−1

) ∥∥wT+1 − w′
T+1

∥∥+ 2G

λn
.

As u(1)(wT+1,S) = wT+1, u(1)(w′
T+1,S) = w′

T+1, plug in Equation (12), we have

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(w′
T+1,S(i))

∥∥∥∥∥

≤ min

(
2, 1 +

1

ληK

)∥∥wT+1 − w′
T+1

∥∥+ 2G

λn

≤ min

(
2, 1 +

1

ληK

)
2eG

λm
+

2G

λn

≤ 4eG

λm
+

2G

λn

The following theorem can be derived via Theorem 2.2 and Lemma 4.3.

Theorem C.3. Consider a meta-learning problem with convex, M -bounded, G-Lipschitz and H-
smooth loss function. Then, after T iterations of Algorithm 1 with γ ≤ 1

λT on a given meta-sample

S, and GD for task-specific learning (i.e., Option 2 for Algorithm 2) with η ≤ 2
H+2λ , we have with

probability at least 1− δ,

L(A(S), µ) ≲ L(A(S),S) +
G2

λm
log (m) log (1/δ) +

M√
m

√
log (1/δ) +

G2

λn
.

Proof of Theorem C.3. We slightly abuse the notation, at iteration t, define wt = A(S), w′
t =

A(S(j)), u(K)(wT+1,S) = A(S)(S), u(K)(w′
T+1,S(i)) = A(S(j))(S(i)). If the loss is M -bounded,

27

convex and G-Lipschitz, apply Equation (10) gives us
∣∣∣L(A(S)(S),S)− L(A(S(j))(S),S)

∣∣∣

=
∣∣∣L(u(K)(wT+1,S),S)− L(u(K)(w′

T+1,S),S)
∣∣∣

≤ G
∥∥∥u(K)(wT+1,S)− u(K)(w′

T+1,S)
∥∥∥ (G-Lipschitz)

≤ G
(
(1− λη)

∥∥∥u(K)(wT+1,S)− u(K)(w′
T+1,S)

∥∥∥+ λη
∥∥wT+1 − w′

T+1

∥∥
)

(Equation (10))

≤ G
∥∥wT+1 − w′

T+1

∥∥

≤ 2eG2

λm
(Equation (12))

Given S,S(i). For any w, by Equation (13), for all k ∈ [K − 1], we have

∥∥∥u(k+1)(w,S)− u(k+1)(w,S(i))
∥∥∥ ≤ 2Gη

n
+ (1− λη)

∥∥∥u(k)(w,S)−u(k)(w,S(i))
∥∥∥ ≤ 2G

λn
(Telescope)

Therefore, we have
∣∣∣ℓ(A(S)(S), z)− ℓ(A(S)(S(i)), z)

∣∣∣

=

∣∣∣∣∣ℓ
(

1

K

K∑

k=1

u(k)(wT+1,S), z

)
− ℓ

(
1

K

K∑

k=1

u(k)(wT+1,S(i)), z

)∣∣∣∣∣

≤ G

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(wT+1,S(i))

∥∥∥∥∥

≤ 2G2

λn

Apply Theorem 2.2 with β′ = 2eG2

λm , with β = 2G2

λn gives us the result.

Theorem 4.4. Assume that the loss function is convex, M -bounded, G-Lipschitz and H-smooth.
Suppose we run Algorithm 1 for T iterations with γ ≤ 1

λT on a given meta-sample S, and GD for

task-specific learning (Option 2, Algorithm 2) with η ≤ 2
H+2λ . Then, with probability at least 1− δ,

L(A(S), µ) ≲ L(A(S),S)+

(
G2

λm
+
G2

λn

)
log (mn) log (1/δ)+

M
√

log (1/δ)√
mn

.

Proof of Theorem 4.4. We denote wt = A(S), w′
t = A(S(j)), u(wT+1,S) = A(S)(S),

u(wT+1,S(i)) = A(S)(S(i)). For ℓ to be convex and G-Lipschitz, applying Lemma 4.3 gives
us that

∣∣∣ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)), z)
∣∣∣

=

∣∣∣∣∣ℓ
(

1

K

K∑

k=1

u(k)(wT+1,S), z

)
− ℓ

(
1

K

K∑

k=1

u(w′
T+1,S(i)), z

)∣∣∣∣∣

≤ G

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S), z)− 1

K

K∑

k=1

u(k)(w′
T+1,S(i))

∥∥∥∥∥

≤ min

(
2, 1 +

1

ληK

)
2eG2

λm
+

2G2

λn
.

Further apply Theorem 3.1 gives us the result.

28

D Missing Proofs of Section 4.2

We start with a proposition that provide some equivalent characterizations of weak convexity.

Proposition D.1 (Proposition 2.1 in Davis and Grimmer [2019]). Suppose f : Rd → R ∪ {∞} is a
closed function and ρ > 0, then the following are equivalent:

1. For any w1 ∈ R
d, f(·) + ρ

2 ∥· − w1∥ is convex.

2. For any w1,w2 ∈ R
d with g(w1) ∈ ∂f(w1), we have

f(w2) ≥ f(w1) + ⟨g(w1),w2 − w1⟩ −
ρ

2
∥w2 − w1∥2 .

3. For any w1,w2 ∈ R
d and λ > 0,

f(λw1 + (1− λ)w2) ≤ λf(w1) + (1− λ)f(w2) +
ρλ(1− λ)

2
∥w1 − w2∥2 .

Lemma D.2. [Bassily et al. [2020]] Given S and S(i), for a fixed w, consider u(w,S) and u(w,S(i))
are achieved via Algo. 1 with gradient descent for K iterations. Then if ℓ is convex and G-Lipschitz,

we have supi∈[n]

∥∥∥ 1
K

∑K
k=1 u(k)(w,S)− 1

K

∑K
k=1 u(k)(w,S(i))

∥∥∥ ≤ 4GKη
n + 4Gη

√
K.

Below we provide our key Lemma D.3 for the stability analysis.

Lemma D.3. Consider a meta-learning problem with ρ-weakly convex and G-Lipschitz loss function.

Let S, S(j) denote neighboring meta-samples and S, S(i) the neighboring samples on a test task.
Then, after T iterations of Algorithm 1 with γ ≤ 1

λT , λ ≥ 2ρ, and GD for task-specific learning (i.e.,

Option 2 for Algorithm 2) with η ≤ 1
λ ,

sup
S,j∈[m]

∥∥wT+1 − w′
T+1

∥∥ ≤ 2eG

√
η

λ
+

2eG

λm
.

Proof of Lemma D.3. If ℓ is ρ-weakly convex, then from Proposition D.1 we have that

⟨∇ℓ(u)−∇ℓ(v), u − v⟩ ≥ −ρ ∥u − v∥2 , ∀u, v ∈ R
d

Given S and S ′, for any w and w′, we have

∀k ∈ [K − 1],
∥∥∥u(k+1)(w,S)− u(k+1)(w′,S ′)

∥∥∥

≤
∥∥∥∥∥u(k)(w,S)− u(k)(w′,S ′)− η

(
∇L(u(k)(w,S),S) + λ

(
u(k)(w,S)− w

)

(Projection is non-expansive)

−∇L(u(k)(w′,S ′),S)− λ
(

u(k)(w′,S ′)− w′
))∥∥∥∥∥

= (1− ηλ)
∥∥∥u(k)(w,S)− u(k)(w′,S ′)

∥∥∥+ ηλ ∥w − w′∥+ 2ηG

≤
(
1 + (1− ηλ)k

)
∥w − w′∥+ 2G

λ
(Telescope, u(1)(w,S) = w, u(1)(w′,S) = w′.)

And therefore∥∥∥∥∥
1

K

K∑

k=1

u(k)(w,S)− 1

K

K∑

k=1

u(k)(w′,S ′)

∥∥∥∥∥ ≤ min

(
2, 1 +

1

ληK

)
∥w − w′∥+ 2G

λ

We now focus on the situation where we give S and S ′ with a fix w. For simplicity, we define

δk =
∥∥u(k)(wt,S)− u(k)(w′

t,S)
∥∥. Note that δ1 = ∥wt − w′

t∥. We have

δk+1 =
∥∥∥u(k+1)(wt,S)− u(k+1)(w′

t,S)
∥∥∥

29

≤
∥∥∥∥∥u(k)(wt,S)−u(k)(w′

t,S)−η

(
∇L(u(k)(wt,S),S)+λ

(
u(k)(wt,S)−wt

)

(Projection is non-expansive)

−∇L(u(k)(w′
t,S),S)− λ

(
u(k)(w′

t,S)− w′
t

))∥∥∥∥∥

≤ λη ∥wt − w′
t∥+

∥∥∥∥∥(1− ηλ)
(

u(k)(wt,S)−u(k)(w′
t,S)

)

− η
(
∇L(u(k)(wt,S),S)−∇L(u(k)(w′

t,S),S)
)∥∥∥∥∥

= λη ∥wt − w′
t∥+∆k

where we define

∆k=

∥∥∥∥∥(1−ηλ)
(
u(k)(wt,S)−u(k)(w′

t,S)
)
−η
(
∇L(u(k)(wt,S),S)−∇L(u(k)(w′

t,S),S)
)∥∥∥∥∥.

We have that

∆2
k = (1− ηλ)2δ2k + 4η2G2

− 2η(1− ηλ)
〈
u(k)(wt,S)−u(k)(w′

t,S),∇L(u(k)(wt,S),S)−∇L(u(k)(w′
t,S),S)

〉

≤ (1− ηλ)2δ2k + 4η2G2 + 2η(1− ηλ)ρδ2k (ℓ is ρ-weakly convex)

≤ (1− ηλ)δ2k + 4η2G2 (η ≤ 1
λ , λ ≥ 2ρ)

Therefore, we have

δ2k+1 + λ2η2 ∥wt−w′
t∥

2−2ληδk+1 ∥wt − w′
t∥ ≤ ∆2

k ≤ (1− ηλ)δ2k+4η2G2 (14)

Rearrange it gives us that

δ2k+1

(1− ηλ)
k+1

+
λ2η2 ∥wt − w′

t∥
2

(1− ηλ)
k+1

− 2λη ∥wt − w′
t∥ δk+1

(1− ηλ)
k+1

≤ δ2k

(1− ηλ)
k
+

4η2G2

(1− ηλ)
k+1

Telescoping from k = 1 to K gives us that

δ2K+1

(1− ηλ)
K+1

+

K∑

k=1

λ2η2 ∥wt − w′
t∥

2

(1− ηλ)
k+1

≤
K∑

k=1

2λη ∥wt − w′
t∥ δk+1

(1− ηλ)
k+1

+

K∑

k=1

4η2G2

(1− ηλ)
k+1

Thus

δ2K+1 + λ2η2 ∥wt − w′
t∥

2
K∑

k=1

(1− ηλ)
K−k − 2λη ∥wt − w′

t∥ δK+1

≤ 4ηG2

λ
+ 2λη ∥wt − w′

t∥
K−1∑

k=1

δk+1(1− ηλ)K−k

≤ 4ηG2

λ
+ 2λη(1− ηλ) ∥wt − w′

t∥
K∑

k=1

δk(1− ηλ)K−k (15)

Now we start proving the following bound by induction:

δK ≤ 2 ∥wt − w′
t∥+ 2G

√
η

λ
.

30

This claim holds when k = 1. For the inductive step, we assume it holds for some k ∈ [K] and
prove the result for k + 1. We consider the following two cases. If δk+1 ≤ maxs∈[k] δk, induction
automatically holds. Otherwise, δk+1 > maxs∈[k] δs. Applying Equation (15) gives us that

δ2k+1 + λ2η2 ∥wt − w′
t∥

2
k∑

j=1

(1− ηλ)
k−j − 2λη ∥wt − w′

t∥ δk+1

≤ 4ηG2

λ
+ 2λη(1− ηλ) ∥wt − w′

t∥
k∑

j=1

δk(1− ηλ)k−j

≤ 4ηG2

λ
+ 2λη(1− ηλ) ∥wt − w′

t∥ δk+1

k∑

j=1

(1− ηλ)k−j

which is equivalent to

δ2k+1 + λ2η2 ∥wt − w′
t∥

2
k∑

j=1

(1− ηλ)
k−j

≤ 4ηG2

λ
+ 2λη ∥wt − w′

t∥ δk+1


1 + (1− ηλ)

k∑

j=1

(1− ηλ)k−j




Rearrange gives us that


δk+1 − λη ∥wt − w′

t∥


1 + (1− ηλ)

k∑

j=1

(1− ηλ)k−j






2

≤


λη ∥wt − w′

t∥


1 + (1− ηλ)

k∑

j=1

(1− ηλ)k−j






2

+
4ηG2

λ

− λη ∥wt − w′
t∥

2 (
1− (1− ηλ)k+1

)

Therefore, we have

∀k ∈ [K − 1]
∥∥∥u(k+1)(wt,S)− u(k+1)(w′

t,S)
∥∥∥

≤ 2G

√
η

λ
+ 2


λη ∥wt − w′

t∥


1 + (1− ηλ)

k∑

j=1

(1− ηλ)k−j






≤ 2 ∥wt − w′
t∥+ 2G

√
η

λ

And therefore
∥∥∥∥∥
1

K

K∑

k=1

u(k)(wt,S)−
1

K

K∑

k=1

u(k)(w′
t,S)

∥∥∥∥∥ ≤ 2 ∥wt − w′
t∥+ 2G

√
η

λ
(16)

As a result,
∥∥wt+1 − w′

t+1

∥∥

≤

∥∥∥∥∥∥
wt−γλ


wt−

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)


−w′

t+γλ


w′

t−
1

m

m∑

j=1

1

K

K∑

k=1

u(k)(w′
t,S ′

j)



∥∥∥∥∥∥

(Projection is non-expansive)

= (1− γλ) ∥wt − w′
t∥+ γλ

∥∥∥∥∥∥
1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)−
1

m

m∑

j=1

1

K

K∑

k=1

u(k)(w′
t,S ′

j)

∥∥∥∥∥∥

31

≤ (1− γλ) ∥wt − w′
t∥+

m− 1

m
γλ

(
2 ∥wt − w′

t∥+ 2G

√
η

λ

)
+

γλ

m

(
2 ∥wt − w′

t∥+
2G

λ

)

≤ (1 + γλ) ∥wt − w′
t∥+ 2Gγ

√
ηλ+

2Gγ

m
Telescoping gives us that

∥∥wT+1 − w′
T+1

∥∥ ≤ (1 + γλ)T
(
2G

√
η

λ
+

2G

λm

)

Choosing γ ≤ 1
λT gives us that

∥∥wT+1 − w′
T+1

∥∥ ≤ (1 +
1

T
)T
(
2G

√
η

λ
+

2G

λm

)
≤ 2eG

√
η

λ
+

2eG

λm

We remark that if we consider convex and non-smooth loss function by setting ρ = 0, then follow a
similar argument, Equation (14) can be replaced by

δ2k+1 + λ2η2 ∥wt−w′
t∥

2−2ληδk+1 ∥wt − w′
t∥ ≤ ∆2

k ≤ (1− ηλ)2δ2k+4η2G2

And therefore Equation (16) can be replaced by∥∥∥u(k+1)(wt,S)− u(k+1)(w′
t,S)

∥∥∥

≤ 2G

√
η

λ
+ 2


λη ∥wt − w′

t∥


1 + (1− ηλ)2

k∑

j=1

(1− ηλ)2k−2j






≤ 2

2− ηλ
∥wt − w′

t∥+ 2G

√
η

λ

≤ 2 ∥wt − w′
t∥+ 2G

√
η

λ
(ηλ ≤ 1)

and the rest follows.

Theorem D.4. Consider a meta-learning problem with ρ-weakly convex, M -bounded, G-Lipschitz
loss function. Then, after T iterations of Algorithm 1 with γ ≤ 1

λT , λ ≥ 2ρ, and GD for task-specific

learning (i.e., Option 2 for Algorithm 2) with η ≤ 1
λ , we have with probability at least 1− δ,

L(A(S), µ)≲L(A(S),S)+

(
G2

√
η

λ
+

G2

λm

)
log (m) log (1/δ)+

M√
m

√
log (1/δ)+

G2

λn
+G2η

√
K.

By setting η = 1
λK , we have

L(A(S), µ)≲L(A(S),S)+

(
G2

λ
√
K

+
G2

λm

)
log (m) log (1/δ)+

M√
m

√
log (1/δ)+

G2

λn
+

G2

λ
√
K

.

Proof of Theorem D.4. If the loss is M -bounded and G-Lipschitz, apply Lemma D.3 gives us∣∣∣L(A(S)(S),S)− L(A(S(j))(S),S)
∣∣∣

=

∣∣∣∣∣L
(

1

K

K∑

k=1

u(k)(wT+1,S),S
)

− L

(
1

K

K∑

k=1

u(k)(w′
T+1,S),S

)∣∣∣∣∣

≤ G

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(w′
T+1,S)

∥∥∥∥∥ (G-Lipschitz)

≤ 2G
∥∥wT+1 − w′

T+1

∥∥+ 2G2

√
η

λ
(Equation (16))

≤
(
4eG2 + 2G2

)√η

λ
+

4eG2

λm
(Lemma D.3)

≤
(
4eG2 + 2G2

) 1

λ
√
K

+
4eG2

λm
(Set η ≤ 1

λK)

32

On the other hand, applying Lemma D.2 gives us that
∣∣∣ℓ(A(S)(S), z)− ℓ(A(S)(S(i)), z)

∣∣∣ =
∣∣∣ℓ(u(K+1)(wT+1,S), z)− ℓ(u(K+1)(wT+1,S(i)), z)

∣∣∣

≤ G
∥∥∥u(K+1)(wT ,S)− u(K+1)(wT ,S(i))

∥∥∥

≤ 4G2Kη

n
+ 4G2η

√
K

≤ 4G2

λn
+

4G2

λ
√
K

(Set η ≤ 1
λK)

Plug back into Theorem 2.2 gives the result.

Lemma 4.5. Assume that the loss function is ρ-weakly convex and G-Lipschitz. Let S, S(j) denote

neighboring meta-samples and S, S(i) the neighboring samples on a test task. Then the following
holds for Algorithm 1 with λ ≥ 2ρ, and GD for task-specific learning (i.e., Option 2 for Algorithm 2)
with η ≤ 1

λ , for all T ≥ 1 as long as we set γ ≤ 1
λT ,

sup
S,S,j∈[m],i∈[n]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn
.

Proof of Lemma 4.5. We slightly abuse the notation, at outer iteration t, define wt =
A(S), w′

t = A(S(j)). Given wt, at inner iteration k, define u(k)(wt,S) =
A(S)(S), u(k)(w′

t,S(i)) = A(S(j))(S(i)). We now provide the upper bound on∥∥∥ 1
K

∑K
k=1 u(k)(wT+1,S)− 1

K

∑K
k=1 u(k)(w′

T+1,S(i))
∥∥∥. Recall that if ℓ is ρ-weakly convex, then

we have

⟨∇ℓ(u)−∇ℓ(v), u − v⟩ ≥ −ρ ∥u − v∥2

We apply a similar procedure as Lemma D.3. For simplicity, we define δk =∥∥u(k)(wt,S)− u(k)(w′
t,S(i))

∥∥. Note that δ1 = ∥wt − w′
t∥. We have

δk+1 =
∥∥∥u(k+1)(wt,S)− u(k+1)(w′

t,S(i))
∥∥∥

=

∥∥∥∥∥u(k)(wt,S)− u(k)(w′
t,S(i))− η

(
∇L(u(k)(wt,S),S) + λ

(
u(k)(wt,S)− wt

)

−∇L(u(k)(w′
t,S(i)),S(i))− λ

(
u(k)(w′

t,S(i))− w′
t

))∥∥∥∥∥

≤ λη ∥wt − w′
t∥+

∥∥∥∥∥(1− ηλ)
(

u(k)(wt,S)−u(k)(w′
t,S(i))

)

− η
(
∇L(u(k)(wt,S),S)−∇L(u(k)(w′

t,S(i)),S(i))
)∥∥∥∥∥

= λη ∥wt − w′
t∥+∆k

where we define

∆k=

∥∥∥∥∥(1−ηλ)
(
u(k)(wt,S)−u(k)(w′

t,S(i))
)

−η
(
∇L(u(k)(wt,S),S)−∇L(u(k)(w′

t,S(i)),S(i))
)∥∥∥∥∥.

We have that

∆2
k = (1− ηλ)2δ2k + 4η2G2

− 2η(1− ηλ)
〈
u(k)(wT+1,S)−u(k)(w′

T+1,S(i)),∇L(u(k)(wT+1,S),S)−∇L(u(k)(w′
T+1,S(i)),S(i))

〉

33

= (1− ηλ)2δ2k + 4η2G2

− 2η(1− ηλ)
〈
u(k)(wT+1,S)−u(k)(w′

T+1,S(i)),∇L(u(k)(wT+1,S),S)−∇L(u(k)(w′
T+1,S(i)),S)

〉

− 2η(1− ηλ)

n

〈
u(k)(wT+1,S)−u(k)(w′

T+1,S(i)),∇ℓ(u(k)(w′
T+1,S(i)), zi)−∇ℓ(u(k)(w′

T+1,S(i)), z′)
〉

≤ (1− ηλ)2δ2k + 4η2G2 + 2η(1− ηλ)ρδ2k +
4Gη(1− ηλ)

n
δk

≤ (1− ηλ)δ2k + 4η2G2 +
4Gη(1− ηλ)

n
δk (η ≤ 1

λ , λ ≥ 2ρ)

Therefore, we have

δ2k+1 + λ2η2 ∥wt−w′
t∥

2−2ληδk+1 ∥wt − w′
t∥ ≤ ∆2

k ≤ (1− ηλ)δ2k+4η2G2+
4Gη(1−ηλ)

n
δk

Rearrange it gives us that

δ2k+1

(1− ηλ)
k+1

+
λ2η2 ∥wt − w′

t∥
2

(1− ηλ)
k+1

− 2λη ∥wt − w′
t∥ δk+1

(1− ηλ)
k+1

≤ δ2k

(1− ηλ)
k
+

4η2G2

(1− ηλ)
k+1

+
4Gη(1− ηλ)δk

n (1− ηλ)
k+1

Telescoping from k = 1 to K gives us that

δ2K+1

(1− ηλ)
K+1

+

K∑

k=1

λ2η2 ∥wt − w′
t∥

2

(1− ηλ)
k+1

≤
K∑

k=1

2λη ∥wt − w′
t∥ δk+1

(1− ηλ)
k+1

+

K∑

k=1

4η2G2

(1− ηλ)
k+1

+

K∑

k=1

4Gη(1− ηλ)δk

n (1− ηλ)
k+1

Thus

δ2K+1 + λ2η2 ∥wt − w′
t∥

2
K∑

k=1

(1− ηλ)
K−k − 2λη ∥wt − w′

t∥ δK+1

≤ 4ηG2

λ
+ 2λη ∥wt − w′

t∥
K−1∑

k=1

δk+1(1− ηλ)K−k +
4Gη(1− ηλ)

n

K∑

k=1

δk(1− ηλ)K−k

≤ 4ηG2

λ
+

(
2λη(1− ηλ) ∥wt − w′

t∥+
4Gη(1− ηλ)

n

) K∑

k=1

δk(1− ηλ)K−k (17)

Now we start proving the following bound by induction:

δK ≤ 2G

√
η

λ
+ 4 ∥wt − w′

t∥+
8G(1− ηλ)

λn
(18)

This claim holds when k = 1. For the inductive step, we assume it holds for some k ∈ [K] and
prove the result for k + 1. We consider the following two cases. If δk+1 ≤ maxs∈[k] δk, induction
automatically holds. Otherwise, δk+1 > maxs∈[k] δs. Applying Equation (17) gives us that

δ2k+1 + λ2η2 ∥wt − w′
t∥

2
k∑

j=1

(1− ηλ)
k−j − 2λη ∥wt − w′

t∥ δk+1

≤ 4ηG2

λ
+

(
2λη(1− ηλ) ∥wt − w′

t∥+
4Gη(1− ηλ)

n

)
δk+1

k∑

j=1

(1− ηλ)k−j

34

which is equivalent to


δk+1−


2λη∥wt−w′

t∥+2λη(1−λη)∥wt−w′
t∥

k∑

j=1

(1−ηλ)k−j+
4Gη(1−ηλ)

n

k∑

j=1

(1−λη)k−j





2

≤ 4ηG2

λ
+


2λη∥wt−w′

t∥+2λη(1−λη)∥wt−w′
t∥

k∑

j=1

(1−ηλ)k−j+
4Gη(1−ηλ)

n

k∑

j=1

(1−λη)k−j



2

Therefore, we have

δk+1≤2G

√
η

λ
+2

(
2λη ∥wt−w′

t∥+2λη(1−λη) ∥wt−w′
t∥

k∑

j=1

(1− ηλ)k−j

+
4Gη(1−ηλ)

n

k∑

j=1

(1−λη)k−j

)

≤2G

√
η

λ
+ 4 ∥wt − w′

t∥+
8G(1− ηλ)

λn

Plug in Lemma D.3 gives us that

δk+1 ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn

Therefore we have
∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(w′
T+1,S(i))

∥∥∥∥∥ ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn

Moreover, setting η = 1
λK gives us that

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(w′
T+1,S(i))

∥∥∥∥∥ ≤ 8eG+ 2G

λ
√
K

+
8eG

λm
+

8G

λn

Theorem 4.6. Assume that the loss function is ρ-weakly convex, M -bounded, and G-Lipschitz.
Suppose we run Algorithm 1 for T iterations with γ ≤ 1

λT , λ ≥ 2ρ on a meta-sample S, and GD for

task-specific learning (Option 2, Algorithm 2) with η ≤ 1
λ , Then, with probability at least 1− δ,

L(A(S), µ) ≲ L(A(S),S) +

(
G2

√
η

λ
+

G2

λm
+

G2

λn

)
log (mn) log (1/δ)+

M
√

log (1/δ)√
mn

.

Proof of Theorem 4.6. For ℓ to be G-Lipschitz, applying Lemma 4.1 gives us that
∣∣∣ℓ(A(S)(S), z)− ℓ(A(S(j))(S(i)), z)

∣∣∣

=

∣∣∣∣∣ℓ
(

1

K

K∑

k=1

u(k)(wT+1,S), z

)
− ℓ

(
1

K

K∑

k=1

u(k)(w′
T+1,S(i)), z

)∣∣∣∣∣

≤ G

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(w′
T+1,S(i))

∥∥∥∥∥

≤ (8eG2 + 2G2)

√
η

λ
+

8eG2

λm
+

8G2

λn
.

Plug it back into Theorem 3.1 gives the result.

35

Theorem D.5 (Restatement of Theorem 4.7). Assume the loss ℓ is convex and G-Lipschitz. Define
u∗j =argminu L(u,Sj), ∀j ∈ [m]. Suppose we run Algorithm 1 with GD for task-specific learning

with γ = 1
λT to find an algorithm A(S) = Atask(wT+1, ·) which is then run on Sj for K iterations

with step-size η ≤ 1
λ . Then, we have that

L(A(S)(Sj),Sj)−inf
u
L(u,Sj)≤

D2

2η(1−ηλ)K
+

G2η

2(1−ηλ)
+
GDηλ

1−ηλ
+
λ ∥wT+1 − ŵ∥2+λσ2

(1−ηλ)(2−ηλ)

where σ2 := 1
K

∑K
j=1

∥∥ŵ−u∗j
∥∥2, with ŵ as defined in Equation (1). ∥wT+1 − ŵ∥2 ≤

1
T

(
8D2 + 4D2

ηλK + η(G+2λD)2

λ

)
+ 2D2

ηλK + η(G+2λD)2

2λ .

Proof of Theorem D.5. Recall the definition ŵ=argminw∈W
1
m

∑m
j=1minu

[
L(u;Sj)+

λ
2 ∥u − w∥2

]
,

u∗(w,S) = argminu∈W

[
L(u;S) + λ

2 ∥u − w∥2
]
, u∗j = argminu∈W L(u,Sj), ∀j ∈ [m]. We

slightly abuse the notation by defining u(k)(wt,Sj) = A(S)(Sj) at inner iteration k for given
wt. Then we have

∥∥∥u(k+1)(wt,Sj)− u∗j

∥∥∥
2

=
∥∥∥ΠW

(
u(k)(wt,Sj)− η

(
∇L(u(k)(wt,Sj),Sj) + λ(u(k)(wt,Sj)− wt)

))
− u∗j

∥∥∥
2

≤
∥∥∥(1− ηλ)

(
u(k)(wt,Sj)− u∗j

)
+ ηλ

(
wt − u∗

j

)
− η∇L(u(k)(wt,Sj),Sj)

∥∥∥
2

≤ (1− ηλ)2
∥∥∥u(k)(wt,Sj)− u∗j

∥∥∥
2

+ η2
∥∥∥∇L(u(k)(wt,Sj),Sj)

∥∥∥
2

+ η2λ2
∥∥wt − u∗

j

∥∥2

+ 2ηλ(1− ηλ)
∥∥∥u(k)(wt,Sj)− u∗j

∥∥∥
∥∥wt − u∗

j

∥∥+ η2λG
∥∥wt − u∗j

∥∥

− 2η(1− ηλ)
〈
∇L(u(k)(wt,Sj),Sj), u(k)(wt,Sj)− u∗j

〉

=
(
(1− ηλ)

∥∥∥u(k)(wt,Sj)− u∗j

∥∥∥+ ηλ
∥∥wt − u∗j

∥∥
)2

+ η2
∥∥∥∇L(u(k)(wt,Sj),Sj)

∥∥∥
2

+ η2λG
∥∥wt − u∗

j

∥∥− 2η(1− ηλ)
〈
∇L(u(k)(wt,Sj),Sj), u(k)(wt,Sj)− u∗j

〉

≤
∥∥∥u(k)(wt,Sj)− u∗j

∥∥∥
2

+
ηλ

2− ηλ

∥∥wt − u∗
j

∥∥2 + η2G2 + η2λG
∥∥wt − u∗j

∥∥

((a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 with p = (2−ηλ)ηλ
(1−ηλ)2)

− 2η(1− ηλ)
〈
∇L(u(k)(wt,Sj),Sj), u(k)(wt,Sj)− u∗j

〉

Rearrange it and telescope it gives us that

L

(
1

K

K∑

k=1

u(k)(wt,Sj),Sj

)
− L(u∗j ,Sj)

≤ 1

K

K∑

k=1

L(u(k)(wt,Sj),Sj)−L(u∗j ,Sj) (Jensen’s inequality)

≤ 1

K

K∑

k=1

〈
∇L(u(k)(wt,Sj),Sj), u(k)(wt,Sj)− u∗

j

〉
(Convexity)

≤
∥∥u∗j
∥∥2 + η2G2K + η2λG

∑K
j=1

∥∥wt − u∗
j

∥∥+ ηλ
2−ηλ

∑K
j=1

∥∥wt−u∗j
∥∥2

2η(1−ηλ)K

≤ D2

2η(1− ηλ)K
+

G2η

2(1− ηλ)
+

2GDηλ

1− ηλ
+

λ ∥wt−ŵ∥2 + λσ2

(1− ηλ)(2− ηλ)
(σ2 = 1

K

∑K
k=1

∥∥u∗j − ŵ
∥∥2)

36

Follow from [Zhou et al., 2019, Theorem 1], we now control ∥wt+1 − ŵ∥2. Define u∗(wt,Sj) =

argminu FSj (u,wt) = argminu L(u,Sj) +
λ
2 ∥u − wt∥2. We start with the following:

∥wt+1 − ŵ∥2 =

∥∥∥∥∥∥
ΠW


wt − γλ


wt −

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)




− ŵ

∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥
wt − ŵ − γλ


wt −

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)



∥∥∥∥∥∥

2

≤ ∥wt − ŵ∥2 − 2γλ

〈
wt − ŵ,wt −

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)

〉

+ γ2λ2

∥∥∥∥∥∥
wt −

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)

∥∥∥∥∥∥

2

(19)

We now bound the latter two terms separately as follows:
∥∥∥∥∥∥

wt −
1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
wt −

1

m

m∑

j=1

1

K

K∑

k=1

u∗(wt,Sj) +
1

m

m∑

j=1

1

K

K∑

k=1

(
u∗(wt,Sj)− u(k)(wt,Sj)

)
∥∥∥∥∥∥

2

≤ 2

∥∥∥∥∥∥
wt −

1

m

m∑

j=1

1

K

K∑

k=1

u∗(wt,Sj)

∥∥∥∥∥∥

2

+
2

m

m∑

j=1

1

K

K∑

k=1

∥∥∥
(

u(k)(wt,Sj)− u∗(wt,Sj)
)∥∥∥

2

≤ 8D2 +
2

m

m∑

j=1

1

K

K∑

k=1

∥∥∥
(

u(k)(wt,Sj)− u∗(wt,Sj)
)∥∥∥

2

as well as〈
wt − ŵ,wt −

1

m

m∑

j=1

1

K

K∑

k=1

u(k)(wt,Sj)

〉

=
1

m

m∑

j=1

1

K

K∑

k=1

⟨wt − ŵ,wt − u∗(wt,Sj)⟩

− 1

m

m∑

j=1

1

K

K∑

k=1

〈
wt − ŵ, u(k)(wt,Sj)− u∗(wt,Sj)

〉

≥ 1

m

m∑

j=1

1

K

K∑

k=1

〈
wt − ŵ,

1

λ
∇FSj (u

(k),wt)

〉
− 1

2
∥wt − ŵ∥2

− 1

2m

m∑

j=1

1

K

K∑

k=1

∥∥∥u(k)(wt,Sj)− u∗(wt,Sj)
∥∥∥
2

≥ ∥wt − ŵ∥2 − 1

2
∥wt − ŵ∥2 − 1

2m

m∑

j=1

1

K

K∑

k=1

∥∥∥u(k)(wt,Sj)− u∗(wt,Sj)
∥∥∥
2

(1
m

∑m
j=1 FSj

(u,w) is λ-strongly convex w.r.t. w)

=
1

2
∥wt − ŵ∥2 − 1

2m

m∑

j=1

1

K

K∑

k=1

∥∥∥u(k)(wt,Sj)− u∗(wt,Sj)
∥∥∥
2

37

where the common term
∥∥u(k)(wt,Sj)− u∗(wt,Sj)

∥∥2 can be controlled as follows:
∥∥∥u(k+1)(wt,Sj)− u∗(wt,Sj)

∥∥∥
2

≤
∥∥∥u(k)(wt,Sj)− η∇FSj

(u(k)(wt,Sj),wt)− u∗(wt,Sj)
∥∥∥
2

≤
∥∥∥u(k+1)(wt,Sj)− u∗(wt,Sj)

∥∥∥
2

− 2η
〈
∇FSj

(u(k)(wt,Sj),wt), u(k+1)(wt,Sj)− u∗(wt,Sj)
〉

+ η2
∥∥∥∇FSj

(u(k)(wt,Sj),wt)
∥∥∥
2

≤ (1−2ηλ)
∥∥∥u(k+1)(wt,Sj)−u∗(wt,Sj)

∥∥∥
2

+η2
∥∥∥∇L(u(k)(wt,Sj),Sj) + λ(u(k)(wt,Sj)−wt)

∥∥∥
2

(FSj
(u,w) is λ-strongly convex w.r.t. u)

≤ (1−2ηλ)
∥∥∥u(k+1)(wt,Sj)−u∗(wt,Sj)

∥∥∥
2

+ η2(G+ 2λD)2

≤ 4(1− 2ηλ)kD2 +
η(G+ 2λD)2

2λ
(Telescoping)

Plug back into Equation (19) gives us that

∥wt+1 − ŵ∥2

≤ ∥wt − ŵ∥2 − 2γλ


1

2
∥wt − ŵ∥2 − 1

2m

m∑

j=1

1

K

K∑

k=1

∥∥∥u(k)(wt,Sj)− u∗(wt,Sj)
∥∥∥
2




+ γ2λ2


8D2 +

2

m

m∑

j=1

1

K

K∑

k=1

∥∥∥
(

u(k)(wt,Sj)− u∗(wt,Sj)
)∥∥∥

2




≤ (1− γλ) ∥wt − ŵ∥2 + γλ

(
1

K

K∑

k=1

4(1− 2ηλ)kD2 +
η(G+ 2λD)2

2λ

)

+ γ2λ2

(
8D2 +

1

K

K∑

k=1

8(1− 2ηλ)kD2 +
η(G+ 2λD)2

λ

)

≤ (1− γλ) ∥wt−ŵ∥2+γλ

(
2D2

ηλK
+
η(G+ 2λD)2

2λ

)
+γ2λ2

(
8D2+

4D2

ηλK
+
η(G+2λD)2

λ

)

Choosing γ = 1
λT gives us that

∥wt+1 − ŵ∥2

≤ (1− 1

T
) ∥wt − ŵ∥2 + 1

T

(
2D2

ηλK
+

η(G+ 2λD)2

2λ

)
+

1

T 2

(
8D2 +

4D2

ηλK
+

η(G+ 2λD)2

λ

)

≤

(
8D2 + 4D2

ηλK + η(G+2λD)2

λ

)

T
+

2D2

ηλK
+

η(G+ 2λD)2

2λ
(Telescope)

E Missing Proofs in Section 5

Theorem E.1 (Bennett’s inequality). Let x1, . . . , xn be independent r.v. with finite variance.
Further assume |xi − Exi| ≤ a a.s. for all i. Define Sn =

∑n
i=1 [xi − E[xi]] and σ2 =∑n

i=1 E (xi − E[xi])
2
. Then for any t ≥ 0,

P (Sn > t) ≤ exp

(
−σ2

a2
h

(
at

σ2

))
,

where h(u) = (1 + u) log (1 + u)− u.

38

Lemma 5.1. Assume that the loss function is ρ-weakly convex and G-Lipschitz. Let S, S(j) denote

neighboring meta-samples and S , S(i) the neighboring samples on a test task. Then, with probability
at least 1−exp

(
−T 2e2/m2

)
, the following holds for Algorithm 3 with λ ≥ 2ρ, and GD for task-

specific learning (i.e., Option 2 for Algorithm 2) with η ≤ 1
λ , for all T ≥ 1 as long as we set γ ≤ 1

λT ,

sup
S,S,i∈[n],j∈[m]

∥∥∥A(S)(S)−A(S(j))(S(i))
∥∥∥ ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn
.

Proof of Lemma 5.1. We slightly abuse the notation, at outer iteration t, define wt = A(S),
w′

t = A(S(j)). Given wt, at inner iteration k, define u(k)(wt,S) = A(S)(S), u(k)(w′
t,S(i)) =

A(S(j))(S(i)). From a similar argument as Lemma D.3, ∀k ∈ [K − 1], we have

∥∥∥u(k+1)(wt,S)− u(k+1)(w′
t,S ′)

∥∥∥ ≤ 2 ∥wt − w′
t∥+

2G

λ
∥∥∥u(k+1)(wt,S)− u(k+1)(w′

t,S)
∥∥∥ ≤ 2 ∥wt − w′

t∥+ 2G

√
η

λ
.

Let us define rt = 1(Sjt ̸= Sjt). Note that at every step t, EA(rt) = 1
m . Moreover, note that

{rt : t ∈ [T]} is an independent sequence of Bernoulli random variables. As a result,
∥∥wt+1 − w′

t+1

∥∥

≤
∥∥∥∥∥wt − γλ

(
wt −

1

K

K∑

k=1

u(k)(wt,Sjt)

)
− w′

t + γλ

(
w′

t −
1

K

K∑

k=1

u(k)(w′
t,S ′

jt)

)∥∥∥∥∥
(Projection is non-expansive)

= (1− γλ) ∥wt − w′
t∥+ γλ

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wt,Sjt)−
1

K

K∑

k=1

u(k)(w′
t,S ′

jt)

∥∥∥∥∥

≤ (1−γλ) ∥wt−w′
t∥+γλ(1− rt)

(
2 ∥wt−w′

t∥+2G

√
η

λ

)
+γλrt

(
∥wt−w′

t∥+
2G

λ

)

≤ (1 + (1− rt)γλ) ∥wt − w′
t∥+ 2Gγ

√
ηλ+ 2Gγrt

≤ (1 + γλ) ∥wt − w′
t∥+ 2Gγ

√
ηλ+ 2Gγrt

Telescoping gives us that

∥∥wT+1 − w′
T+1

∥∥ ≤ 2G

√
η

λ
(1 + γλ)T + 2Gγ

T∑

t=1

(1 + γλ)
t−1

rt

Further taking expectation w.r.t the randomness of the algorithm and gives us that

EA
∥∥wT+1 − w′

T+1

∥∥ ≤ (1 + γλ)T
(
2G

√
η

λ
+

2G

λm

)

Choosing γ ≤ 1
λT gives us that

EA
∥∥wT+1 − w′

T+1

∥∥ ≤ (1 +
1

T
)T
(
2G

√
η

λ
+

2G

λm

)
≤ 2eG

√
η

λ
+

2eG

λm

Plug this back into Equation (18) gives us that

EA
∥∥∥u(K+1)(wT+1,S)−u(K+1)(w′

T+1,S(i))
∥∥∥ ≤ 2G

√
η

λ
+ 4EA ∥wt − w′

t∥+
8G(1− ηλ)

λn

≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn

39

Setting γ ≤ 1
λT . We note that for each rt has variance smaller than 1

m . Define random variable

xt := (1 + 1
T)

t−1rt. We have

|xt − E[xt]| = (1 +
1

T
)t−1 (rt − E[rt]) ≤ e |xt − E[xt]| ≤ (1 +

1

T
)t−1

(
1− 1

m

)
≤ e

T∑

t=1

E (xi − E[xt])
2 ≤

T∑

t=1

(1 +
1

T
)2t−2 1

m

(
1− 1

m

)
<

Te2

m

Hence by Bennett’s inequality Theorem E.1, we have

P

[
T∑

t=1

(1 +
1

T
)t−1rt ≥

1

m

T∑

t=1

(1 +
1

T
)t−1

]
≤ exp

(
−T 2e2

m2

)
.

Therefore, with probability at least 1− exp
(
−T 2e2/m2

)
, we have

∥∥wT+1 − w′
T+1

∥∥ ≤ 2G

√
η

λ
(1 +

1

T
)T +

2G

λmT

T∑

t=1

(
1 +

1

T

)t−1

≤ 2eG

√
η

λ
+

2eG

λm

and therefore with probability at least 1− exp
(
−T 2e2/m2

)
, we have

∀k ∈ [K − 1],
∥∥∥u(K+1)(wT+1,S)−u(K+1)(w′

T+1,S(i))
∥∥∥ ≤ 2G

√
η

λ
+ 4 ∥wt − w′

t∥+
8G(1− ηλ)

λn

≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn

By triangle inequality, we have with probability at least 1− exp
(
−T 2e2/m2

)
,

∥∥∥∥∥
1

K

K∑

k=1

u(k)(wT+1,S)−
1

K

K∑

k=1

u(k)(w′
T+1,S(i))

∥∥∥∥∥ ≤ (8eG+ 2G)

√
η

λ
+

8eG

λm
+

8G

λn

Proposition 5.2. Given a loss function ℓ(·, z) and its adversarial counterpart ℓ̃(·, z), the following

holds: (1) If ℓ is G-Lipschitz (in its first argument), then ℓ̃ is G-Lipschitz. (2) ℓ̃ is not H-smooth even

if ℓ is H-smooth. (3) If ℓ is H-smooth in w, then ℓ̃ is H-weakly convex in w.

Proof of Proposition 5.2. Given w1,w2, define

z̃1 ∈ argmax
z̃∈B(z)

ℓ(w1, z̃)

z̃2 ∈ argmax
z̃∈B(z)

ℓ(w2, z̃).

For the first item, it holds as∥∥∥ℓ̃(w1, z)− ℓ̃(w2, z)
∥∥∥ = ∥ℓ(w1, z̃1)− ℓ(w2, z̃2)∥
= max {|ℓ(w1, z̃1)− ℓ(w2, z̃1)| , |ℓ(w1, z̃2)− ℓ(w2, z̃2)|}
≤ G ∥w1 − w2∥ .

For the second item, the non-smoothness of the adversarial loss has been verified in Xing et al. [2021],
Xiao et al. [2022]. For the third item, ℓ(w, z) is H-smooth implies that ℓ(w, z) is H-weakly convex,

and further derive that ℓ̃(w, z) is H-weakly convex because

ℓ̃(w2, z) = ℓ(w2, z̃2)

≥ ℓ(w2, z̃1) (By definition of z̃1, z̃2)

≥ ℓ(w1, z̃1) + ⟨g(w1, z̃1),w2 − w1⟩ −
ρ

2
∥w2 − w1∥2

(g(w1, z̃1) ∈ ∂ℓ(w2, z̃1), apply Proposition D.1)

= ℓ̃(w1, z) + ⟨g̃(w1, z),w2 − w1⟩ −
ρ

2
∥w2 − w1∥2 (Redefine g̃(w1, z) ∈ ∂ℓ̃(w1, z))

40

NeurIPS Paper Checklist

A. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We further expand on the claims made in abstract and introduction in Section 3
and 4. The detailed proofs are provided in the Appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

B. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We list the required assumptions in the statement of each theorems. Several
limitations are described together with future work in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

C. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

41

Answer: [Yes]

Justification: All the proofs are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

D. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section A in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

E. Open access to data and code

42

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please see Section A in the Appendix. The code is provided in the supplemen-
tary file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

F. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section A in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

G. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Section A in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

43

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

H. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section A in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

I. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The theoretical nature of the results means there are minimal ethical concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

J. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 5.2 and 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

44

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

L. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

45

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

M. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

O. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

46

	Introduction
	Related Work

	Problem Setup and Preliminaries
	Uniform Meta-Stability
	Bounding Transfer Risk
	Convex and Smooth Losses
	Weakly Convex and Non-smooth Losses
	Excess Transfer Risk

	Implications of the Generalization Bounds
	Proximal Meta-Learning with Stochastic Optimization
	Robust Adversarial Proximal Meta-Learning

	Conclusion
	Experiments
	Missing Proofs of Section 3
	Missing Proofs of Section 4.1
	Missing Proofs of Section 4.2
	Missing Proofs in Section 5

