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P-DED Plasma DED MPC Model Predictive Control
WAAM Wire arc DED ILC Iterative Learning Control

W-LDED Wire-laser DED FEA Finite element analysis
TS Travel speed CFD Computational fluid dynamics

WFS Wire feed speed ML Machine learning

Utilizing metal powder feedstock increases contamination risks within the process and may 
pose potential safety concerns, which can be avoided when wire is employed [39]. Furthermore, 
for microgravity applications, the use of wire feedstock instead of powder is preferred due to its 
ease of handling [40–42]. Considering these aspects, wire-laser directed energy deposition (W-
LDED) emerged as a promising method for manufacturing due to its notable advantages, including 
high material deposition efÏciency, minimized material waste, and a cleaner process environment 
[43–45]. Table 2 summarizes the fundamental differences between wire and powder feedstock.

Table 2. Advantages and disadvantages of using wire and powder as feedstock.
Wire Powder

Cost effectiveness ✓
Deposition rate ✓
Material efÏciency ✓
Material availability ✓
Build volume ✓
Dimensional resolution ✓
Multi-material deposition capability ✓
Health/Safety hazards ✓
Ease of handling/storing ✓
Contamination sensitivity ✓
Oxygen/moisture pickup sensitivity ✓

During the deposition process the wire is fed through a nozzle and exposed to the laser beam 
while the laser beam and wire deposition movements are controlled through advanced computer 
software. The laser beam’s energy melts the wire, fusing it to the substrate, thus creating a durable 
bond. The W-LDED process is affected by various processing parameters, including laser power, 
laser spot size, travel speed (TS), and wire feed speed (WFS) [24,46,47]. Despite these advantages, 
various process-related challenges can impact deposition quality and stability in manufacturing. 
These challenges include issues with parameter selection, exposure to multiple thermal cycles, and 
limitations in process control and repeatability [29,31,48–53].

Several review papers have been published covering various aspects of W-LDED within the 
broader discussion of DED processes. Li et al. [17] provided a comprehensive review of high 
deposition rate LDED technology, emphasizing its potential for rapid manufacturing of large-scale 
components and the need for further research on process optimization, microstructure evolution, 
and mechanical properties. Meanwhile, Ozel et al. [37] discussed the challenges of achieving 
reliable mechanical properties and desired microstructures in W-DED processes, with a particular 
focus on grain tailoring and modeling methods. Abuabiah et al. [46] published a review paper 
focused on advancements in W-LDED, specifically addressing monitoring and control aspects. 
While these articles touched on some aspects of W-LDED, the existence of a comprehensive review 
on process stability in the W-LDED process remains a gap within the literature.

This work presents a review of the state-of-the-art in W-LDED to gain an in-depth 
understanding of the process variables and the cause–effect relationship affecting process stability. 
Additionally, the modeling and monitoring methods utilized in W-LDED literature are explored to 
enhance the quality of fabricated parts, thereby reducing the necessity for repetitive trial-and-
error experiments, and minimizing material waste. The deposition parameters investigated in this 















































J. Manuf. Mater. Process. 2024, 8, 84 25 of 48

latter strategy, the last deposited layer was cooled before the deposition of the next layer and 
the laser power was kept constant. The power decay experiment eventually led to heat 
accumulation after consecutive layers and gas pores increased with no detected cracks or LOF. 
However, the authors applied a small power reduction of 50 W per layer which could have been 
attributed to the emergence of heat accumulation.

Compared to the power decay strategy, Wang et al. achieved lower porosity by reducing 
temperature and heat accumulation using the interlayer cooling strategy through consistent 
melting and solidification conditions. However, the amount of gas pores increased as the 
deposition of consecutive layers continued, and cracks were observed along the building direction, 
which indicates the change in heat transfer behavior when layers are being deposited on cooled 
layers [61,63].

Table 4 summarizes various W-LDED experiments, including the wire material and size 
utilized, substrate material, employed laser type, laser characteristic (continuous or pulsed), type 
of machine used, and the shielding gas employed.

Table 4. Summary of feedstock and substrate material, feeding type, laser type, laser classification, shielding 
gas, and the machine types used in W-LDED literature.

Wire 
Material

Diameter 
(mm)

Wire Feeding 
Type Laser Type

Laser 
Classification

Substrate 
Material

Shielding 
Gas

Machine Type
Ref.

AA4043 1.2
Lateral

Front feeding 30◦ Fiber laser 
Diode laser Continuous AA5083 Argon Custom Built [74]

AA4043 0.4 Coaxial
Fiber laser

Continuous Ti6Al4V Argon Custom Built [140]

AA4047 0.4
Lateral

Front feeding 30◦ Nd:YAG laser Pulsed AA5754 Argon Custom Built [67]

AA5A06 1.2

Lateral
Front, back 

feeding
45◦ Fiber laser Continuous AA4043 Argon

KUKA
6-axis Robot 
(Augsburg,
Germany)

[47]

AA5A06 1.2
Lateral 

45◦ Fiber laser
Continuous AA5052 Argon Custom Built [193]

AA5078 1 Coaxial Disc laser Continuous AA5078 Argon
KUKA
6-axis
Robot

[122]

AA5083 1 Coaxial Disc laser Continuous AlSi1MgMn - *
KUKA
6-axis
Robot

[110]

AA5087 1 Lateral
Front feeding 35◦ Fiber laser Continuous AA 5754 Argon

CNC-supported
XYZ-machining center 
(IXION
Corporation)

[62]

AA5087 1
Lateral

Front feeding 35◦ Fiber laser Continuous AA5754 Argon CNC Controlled 
Machine [83]

AA5356 1 Coaxial Fiber-guided disk 
laser Continuous AlSi1MgMn Nitrogen

CoaxPrinter
(Precitec GmbH &
Co. KG, Gaggenau, 

Germany)

[35]

AA5356 1.2 -
Fiber Laser

Continuous AA5052 -
KUKA

6-axis Robot [106]
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AA7075 1.2
Lateral

Front, back, side 
feeding 45◦ Disk laser Continuous A7075 Argon CNC Controlled 

Machine [63]

Table 4. Cont.

Wire 
Material

Diameter 
(mm)

Wire Feeding Type
Laser Type

Laser 
Classification

Substrate 
Material

Shielding Gas Machine Type
Ref.

AA7075 1.2 -
Disk laser

Continuous AA7075 Argon
CNC Controlled 

Machine [61]

AlSi10Mg 1.6

Vertical wire 
feeding,

Inclined laser 50◦ Fiber laser Continuous AA6061 Argon Custom Built [64]

Ti6Al4V 1.2
Lateral

Front feeding 55◦ Diode laser Continuous Ti6Al4V Argon KUKA
6-axis Robot [114]

Ti6Al4V 1.2 Coaxial
Disk laser

Continuous Ti6Al4V Argon
KUKA

6-axis Robot [84]

Ti6Al4V 1
Lateral

Front feeding 50◦ Fiber laser Continuous Ti6Al4V Argon Custom Built [131]

Ti6Al4V 1.2
Lateral 

30◦ Fiber laser
Continuous Ti6Al4V Argon

KUKA
6-axis Robot [197]

Ti6Al4V 1 Coaxial
Diode lasers

Continuous - Argon
Meltio M450 (Jaén, 
Spain) [184]

Ti6Al4V 1.2
Lateral

Front feeding 30◦ Fiber laser 
Diode laser Continuous AA5083 Argon Custom Built [74]

Ti6Al4V 1.2
Lateral

Front feeding 45◦ Customized 
Laser Continuous Ti6Al4V Argon CNC Controlled 

Machine [198]

Ti6Al4V 1.6
Lateral 

30◦ Fiber laser
Continuous Ti-6Al-4V Argon Custom Built [48]

Ti6Al4V 1.2
Lateral

Front, side, back 
feeding

Diode laser Continuous Ti6Al4V Argon CNC Controlled 
Machine [113]

NAB 1.14 Lateral Fiber laser Continuous NAB -

ABB
6-axis Robot

(ABB Robotics,
Västerås, Sweden)

[199]

AWS ER
100S-G 1.2

Lateral Front 
Feeding

Fiber laser
Continuous - Argon

KUKA
6-axis Robot [56]

Mild steel
Lincoln ER

100S-G
1.2

Lateral
Front feeding 40◦ Fiber laser Continuous - Argon KUKA

6-axis Robot [150]

H11 1.2
Lateral
46.5◦ Diode laser

Continuous
42CrMo4
alloy steel Argon

5-axis CNC machine
[141]

SS 301 0.5
Lateral

Front feeding 30◦ Nd:YAG laser Pulsed SS 316 Argon Custom Built [66]

SS 304 1.2
Lateral 

35◦ Fiber laser
Continuous SS 304 - - [93]

SS 304 0.5 Coaxial
Co2

Laser Continuous SS 304 - - [72]
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SS 304 0.1
Lateral 

20◦ Nd:YAG laser
Pulsed SS316 Argon Custom Built [65]

SS 308L 1.2
Lateral

Front feeding 45◦ Diode laser Continuous 590-MPaclass 
steel Argon Custom Built [108]

SS 308 1 Coaxial
Fiber laser

Pulsed SS 316 Argon
ABB

6-axis Robot [57]

Table 4. Cont.

Wire 
Material

Diameter 
(mm)

Wire Feeding Type
Laser Type

Laser 
Classification

Substrate 
Material

Shielding Gas Machine Type
Ref.

SS 308LSi 1.2
Lateral

Front feeding 42◦ Fiber laser continuous SS 304 Argon CNC Controlled 
Machine [112]

SS 309 1 Coaxial
Diode lasers

Contiguous SS304 Argon
Meltio M450

[59]

SS 309 0.9 Coaxial
Diode lasers

Continuous AISI 1018 Argon Meltio M450 [159]

SS 316L 0.8 Coaxial
Fiber laser

Continuous
C45 Carbon

Steel Argon
ABB

6-axis Robot [89]

SS 316LSi 1 Coaxial
Disk laser

Continuous SS 304 Argon
KUKA

6-axis robot [174]

SS 316LSi 1.2
Lateral Side 

feeding
Fiber laser

Continuous SS 304 Argon
KUKA

6-axis Robot [51]

SS 316L 0.8
Lateral

Front feeding
35–45◦ Fiber laser Continuous SS 316L Argon ABB

6-axis Robot [33]

SS 316 0.9 Coaxial
Diode laser

Continuous SS316 Argon
Meltio M450

[118]

SS 316 0.8
Lateral Front 

feeding
Fiber laser

Continuous SS 316 Argon
ABB

6-axis Robot [148]

SS 316 1 Coaxial
Disk laser

Continuous SS 304 Argon
KUKA

6-axis Robot
[125, 
126]

SS 316L 1 Coaxial
Disc laser

Continuous SS 304 -
KUKA

6-axis Robot [110]

SS 316 0.6 Coaxial
Fiber laser

Pulsed SS304 Argon Custom Built [81]

DSS 2209 1.2 -
Fiber laser

Continuous DSS 2205 -
ABB

6-axis Robot [34]

DSS 2209 1.2 Lateral
Fiber laser

continuous DSS 2205 Argon
ABB

6-axis Robot [190]

DSS 2209 1.2 -
Fiber laser

Continuous DSS 2205
Argon 

Nitrogen
ABB

6-axis Robot [101]

DSS 2209 1.2 Lateral
Fiber laser

Continuous DSS 2205 Argon
ABB

6-axis Robot [151]

DSS 2209 0.8 Coaxial
Fiber laser

Continuous SS Argon
KUKA

6-axis Robot [95]

INC 718 1 Coaxial
Diode laser

Continuous SS 304 Argon Custom Built [54]

INC 718 1
Lateral Front 

feeding
Diode laser

Continuous INC 718 Argon
5-axes CNC 

machine [130]
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INC 718 0.89 Coaxial
Fiber laser

Continuous INC 718 Argon
ABB

6-axis Robot [102]

INC 718 0.9 Coaxial
Diode lasers

Continuous INC 718 Argon
µPrinter (Additec, USA)

[73]

INC 718 0.9 -
Fiber laser

Continuous INC 718 Argon Custom Built [200]

INC 625 1.2
Lateral

Front feeding 42◦ Fiber laser Continuous SS 304 Argon CNC controlled
table [58]

* The “-” entries denote missing information that was not provided in the respective references.

8. Monitoring and Control
The W-LDED deposition process presents significant challenges due to its tendency to 

deviate from stable deposition (i.e., no dripping or stubbing) when encountering disturbances. 
Identifying the main cause of process failures can be challenging with numerous variables 
involved, particularly when failures result from multiple factors. Therefore, it is essential to 
implement real-time monitoring and control to maintain a stable process with a high deposition 
rate. Monitoring and controlling ensure deposition quality and efÏciency in W-LDED by detecting 
sources of disturbance. Therefore, the processing parameters can be optimized in order to 
achieve stable deposition while preventing material
waste [35,107,127,201,202].

The deposition is monitored to collect data on aspects such as bead geometry, bead height, 
melt pool temperature, and geometry to achieve process stability. Based on the analysis of this 
data, decisions are made to compensate for any deviations from the target set point. The controller 
thereafter adjusts the recognized problem accordingly by modifying related parameters to 
enhance the part’s final quality [34,46,203,204].

Different types of monitoring systems have been introduced in research, such as highspeed 
and infrared cameras, pyrometers, and thermocouples. Depending on their operating principles, 
these systems can be positioned in direct or indirect contact with the deposition area. Some of 
these monitoring systems, such as cameras and pyrometers, can be mounted off-axis or coaxially 
relative to the deposition head. By positioning the monitoring system coaxially, measurements can 
be acquired independent of the deposition direction. This setup allows for the monitoring of 
various parameters such as the temperature, size, and shape of the melt pool, as well as the width 
of the bead. On the other hand, an off-axis camera placement enables the capture of geometrical 
data on bead height, total height of the part, temperature, or the position of the head relative to 
the part. Implementing multiple monitoring modules at different angles helps mitigate the 
dependency of measurements on deposition direction [127,144,157,205–212]. Moreover, Iravani 
et al. [205] highlighted the complexity introduced by the requirement for camera calibration, 
which may vary with different deposition parameters or materials. To address this complexity, 
alternative temperature and height monitoring sensors have been suggested.

Figure 32a illustrates the schematics of a monitoring system. Figure 32b,c show the height 
and the width of the deposited bead captured by integrated cameras.
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inputs in response to disturbances in the process. Therefore, it is commonly used in W-LDED to 
maintain process stability. Various controllers such as PI (Proportional-Integral), PLC 
(Programmable Logic Controller), MPC (Model Predictive Control), and ILC (Iterative Learning 
Control) have been utilized in research to implement closed-loop control strategies in W-LDED 
processes [128,135,174,213,222,223].

The simultaneous adjustment of various process parameters is necessary to address all 
disturbances present in a complex process like W-LDED. It is important to recognize that due to 
the interdependence of the parameters, implementing multiple controllers to address individual 
issues may not yield effective control [224]. An investigation of the literature reveals that research 
on in-process multivariable control in W-LDED still requires further development.

The pioneering research by Heralic et al. introduces various control systems to the
W-LDED process. The authors characterize the process as repetitive, leading them to employ an 
ILC system to improve deposition accuracy. A 3D scanning system is utilized to monitor the process 
disturbances. The effectiveness of the ILC controller is demonstrated, resulting in defect-free 
surfaces through adjustments of the WFS or focal position of the laser head to correct inaccurate 
layer heights [97,111]. Previous research by the same authors investigated the effects of varying 
laser power and WFS. The geometry of the layers was observed using cameras for melt pool 
imaging and width calculation, while a laser line scanner tracked the height of the previous layers. 
It was found that the melt pool width can be controlled by a PI controller and by adjusting the 
WFS. Meanwhile, the layer height can be adjusted using a feed-forward compensator and changing 
the laser power [107,213].

To monitor and control the height of the deposited layer, Garmendia et al. utilized a laser 
scanner capable of distance calculation through laser triangulation. Employing this system in a 
closed-loop process, they corrected the layer height by adjusting the WFS [144].
Additionally, Hagqvist et al. investigated implementing the same setup for height measurement, 
where defects in layer height were compensated by adjusting the focal position of the beam. 
Both techniques effectively prevented defect formation (Figure 33) [97,144]. Similarly, Takushima 
et al. employed a laser line scanner to measure the height of the bead in real time, where the 
control system could adjust the WFS to maintain a desirable bead height [98].

 
Figure 33. Top track deposited without employing a controller. The bottom track deposited utilizing a 
controller for adjusting the position of the deposition head in the Z direction (reproduced with permission 
from [97]: copyright 2014, Elsevier Ltd.).

Becker et al. employed an OCT sensor in the deposition head and tracked the bead height 
using a closed-loop controller. A PI controller adjusted the WFS in response; therefore, the 
resulting part was closer to the desired geometry with a more uniform layer structure. The authors 
also emphasized the limited need for post processing due to the enhanced surface quality of the 
part [35].

Mbodj et al. designed a control system using an MPC controller capable of considering various 
material properties and process parameters. Using this system, the layer height was continuously 
monitored, and a constant height was maintained by controlling the temperature input [222].

Gibson et al. investigated three distinct control modes utilizing thermal cameras to monitor 
melt pool size by adjusting laser power and deposition rate. The first mode employed closed-loop 
control for melt pool size by modifying laser power, focusing on the real-time control of the 
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WFS Bead height
Camera, Laser 

line scanner
In-axis, Off-axis

Closed loop [98]

Laser power, WFS Melt pool temperature Pyrometer In-axis Closed loop [85]

Wire Preheating voltage and 
current Liquid bridge transfer

Camera, 
Measurement circuit

In-axis Off-axis
PLC [34]

9. Modeling and Predicting W-LDED Process
Process prediction models have been widely investigated in the literature to advance the 

complex multi-physics W-LDED process by enabling operators to simulate parameter adjustment 
and predict the resultant outputs. Prediction models expedite the development of W-LDED 
processes, promote a deeper understanding of the physics, and enhance process stability and 
productivity in applications. These models are typically validated against experimental data to 
demonstrate their accuracy and ultimately reduce time, costs, and waste associated with 
experimentation.

The literature discusses various techniques, including numerical, analytical, empirical, and 
machine learning (ML) approaches, to develop physics-based models of W-LDED. Numerical 
methods, including finite element analysis (FEA) and computational fluid dynamics (CFD), have 
been extensively employed to investigate the underlying physics of the process. By minimizing 
assumptions, numerical methods generate more realistic models, offering insight into the 
temperature distribution, bead and melt pool geometry as a function of time. However, the 
complexity of highly dynamic processes such as W-LDED poses challenges in modeling due to the 
substantial computational resources and time required [40,50,93,146,227–229].

Analytical models have also attracted attention for predicting the W-LDED process, aiming to 
lower the overall expenses. These models rely heavily on assumptions rather than numerical 
methods [125,193,230–232].

As a relatively new approach, ML is gaining popularity in W-LDED. This method optimizes the 
deposition process by predicting the influence of various processing parameters on deposition 
geometry and quality [173,180]. By adapting accurate databases, ML enhances process stability 
and accuracy, resulting in defect-free and efÏcient deposition. Empirical models, which rely on 
experimental data rather than theoretical principles, often serve as databases for training ML 
models to identify and learn patterns and relationships within the data. However, the limited 
availability of training data and its lack of connection to the physics of the process can make 
adapting ML with reasonable accuracy challenging. To date, research exploring this method in W-
LDED is limited, potentially due to the complexity mentioned earlier [233–238]. The available 
research on the mentioned modeling methods (i.e., numerical, analytical, and ML approaches) is 
described in the following sections.

9.1. Numerical Modeling
Nie et al. established an FEA-based thermal model for W-LDED to model the deposition 

process when preheated wire is employed. The model accurately predicted the temperature 
profile of the deposition area and melt pool temperature as illustrated in Figure 36. The model 
indicated periodic temperature changes during multilayer deposition and mapped the process 
stability window. The model was validated against data obtained from four thermocouples 
integrated into the build plate [214].
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Figure 38. Temperature field and deposition morphology at (a–d) 10% overlap ratio, (f–j) 20% overlap ratio, 
and (k–n) 30% overlap ratio as a function of time. (e,j,o) are the cross-sectional areas of 10%, 20%, and 30% 
overlap ratios, respectively. Temperatures are reported in k (reproduced with permission from [146]: 
copyright 2022, Journal of Physics).

9.2. Analytical Modeling
Huang et al. used an analytical model to predict the geometrical properties of deposited Al 

alloy based on process parameters such as laser power, TS, and WFS. It is claimed that the model 
can predict the geometry by knowing the processing parameters and vice-versa. Using the 
established model, the authors found that the highest deposition rate could be achieved with a 
lateral wire feeding angle of 45 degrees [47]. The authors established another analytical model to 
calculate the required temperature for preheating the wire based on the wire tip temperature to 
avoid the occurrence of dripping. The model revealed that maintaining a stable melting depends 
on regulating the wire tip temperature through the WFS and preheating current at specific laser 
power levels [193].

Zapata et al. developed an analytical model to investigate the effect of processing parameters 
on assigning the layer height in a multilayer deposition. It was observed that with the help of the 
model, layers without dripping and stubbing could be achieved [110].

Li et al. utilized analytical modeling to predict the geometry of the bead, melt pool, and its 
penetration into the substrate. The model demonstrated high accuracy, particularly when high 
laser power, high TS, and low WFS were employed [117]. The authors also developed a model 
capable of predicting the shape of deposited tracks on inclined surfaces, which can be a valuable 
tool for repair applications [129].

9.3. ML Modeling
An ML prediction method was introduced by Mbodj et al. to improve the deposition quality 

of single-layer geometry. The authors used a neural network model to study the impact of 
processing parameters on bead geometry. The model was validated with experimental data and 
indicated an acceptable error, suggesting the potential for highquality deposition [180].
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Yang et al. employed the random forest ML algorithm on a limited dataset to predict melt 
pool geometry based on assigned processing parameters, aiming for defect-free deposition. The 
results indicate the random forest model performs reasonably well in predicting melt pool 
dimensions, albeit within a constrained region of the stability window due to the limited availability 
of experimental data [228].

Liu et al. introduced an ML model for predicting and visualizing bead geometry. This tool 
facilitated the authors in filtering out process parameters leading to defective deposition, while 
also aiding in understanding the relationships between the resulting geometry and different 
process combinations to improve process quality [137,241].

Table 6 presents a summary of the W-LDED literature that utilized modeling and predictive 
approaches. The table showcases the modeling approach employed (i.e., numerical, analytical, or 
ML) and the software used (if applicable). Additionally, the table provides details on the process 
inputs and predicted outputs and the materials employed in the studies.

Table 6. Summary of modeling and predicting methods utilized in W-LDED.

Process Input Predicted Output Modelling Approach Material Ref.

Different deposition strategy Temperature field
Numerical FEA

Ti6Al4V [240]

Different ambient pressure Bead geometry
Numerical

CFD-ANSYS SS 316 [40]

Different beam shape and sizes Bead geometry, Melt 
pool temperature

Numerical
COMSOL SS 316 [87]

Increasing deposited layers
Melt pool temperature, 

Temperature profile
Numerical FEA

H13 [214]

Different parameter set
Bead geometry, Melt 

pool geometry
Numerical ANSYS

SS 304 [154]

Varying overlap ratio
Geometry of the multi-track 

deposition
Numerical Fluent

5A06 aluminum [146]

Different parameter set
Melt pool temperature, Melt pool 

geometry
Numerical FEA

AA5078 [122]

Different deposition strategy Temperature field
Numerical Flow 

3D 316L SS [118]

Different scanning strategies Temperature field
Numerical Flow 

3D INC 718 [73]

Different focal position Melt pool temperature
Numerical
COMSOL 304 SS [100]

Different parameter set Temperature field
Numerical FE-model

Al-mg [182]

Different parameter set Melt pool temperature Python Ti-6Al-4V [48]

Wire tip temperature Wire preheating temperature Analytical ER5A06 [193]

Different parameter set Bead geometry Analytical ER5A06 [47]

Different parameter set
Bead geometry, Melt 

pool geometry Analytical SS 316 [117]
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Different parameter set Bead geometry
ML

Neural networking INC 718 [180]

Different parameter set Bead geometry Empirical model INC 718 [233]

Different parameter set Melt pool geometry ML Ti6Al4V [228]

Different parameter set Bead geometry ML Ti6Al4V [137]

10. Conclusions
In conclusion, the study of W-LDED is critical in AM for providing powder-free deposition and 

high deposition rates. The comprehensive review of the state-of-the-art in W-LDED has outlined 
critical factors influencing process stability, ranging from energy input, laser characteristics, wire 
feeding techniques, bead, and deposition characteristics, to monitoring, control, and modeling 
techniques. Therefore, understanding the influence of these variables is necessary for achieving 
an efÏcient and high-quality deposition.

Various monitoring and control systems have been identified as integral components for 
ensuring stable and defect-free depositions. These systems enable real-time data analysis to detect 
emerging anomalies during the deposition process and apply necessary adjustments, thereby 
contributing to the continuous improvement of the process. Additionally, the implementation of 
prediction models, including numerical, analytical, empirical, and ML methods, offers promising 
paths for enhancing the predictive capabilities of the W-LDED process, leading to process 
optimization.

Despite recent advancements, significant gaps remain in the literature, particularly in 
optimizing laser selection for different materials considering their unique properties. Moreover, 
limited studies are available addressing the specific geometrical challenges associated
with fabricating complex geometries such as parts with inclined surfaces. Additionally, there has 
not been much research on multi-material deposition, highlighting a notable gap in the literature. 
Addressing the challenges inherent in the multi-material deposition process using W-LDED, such 
as ensuring proper material compatibility and deposition quality across different materials, 
represents a critical area for future research efforts.

While modeling techniques have advanced, there remains a gap in comprehensive models 
that account for complex phenomena such as material flow dynamics and phase transformations. 
Future efforts should focus on developing more accurate and predictive models to better 
simulate W-LDED processes and processing parameter optimization. Furthermore, there is a 
significant gap in integrating ML algorithms to enhance process control. Future research should 
explore the development of ML-based approaches for predicting optimal process parameters and 
adjusting process variables in real-time to improve deposition quality and efÏciency. Integrating 
multiple control modules to address interconnected process disturbances could enhance 
deposition quality and efÏciency, particularly in complex geometries and multi-material 
deposition scenarios. Therefore, there is a compelling need for comprehensive studies on 
multivariable control strategies tailored to the unique requirements of W-LDED processes.

Addressing these challenges presents an opportunity to uncover new paths for innovation 
and advancement in the field, thereby enhancing the capabilities and applications of
W-LDED in AM.
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