This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

IC SEM Reverse Engineering Tutorial
using Artificial Intelligence

Olivia P. Dizon-Paradis*, Member, IEEE, David S. Koblah*, Member, IEEE, Ronald Wilson, Member, IEEE,
Domenic Forte, Senior Member, IEEE, Damon L. Woodard, Senior Member, IEEE
* These two authors contributed equally to this work

Abstract—In this tutorial, we will leverage artificial intelli-
gence (Al) techniques to facilitate the reverse engineering of
an integrated circuit based on scanning electron microspcopy,
contributing to hardware assurance. This work encompasses
various subjects, including image processing, computer vision,
and machine learning, providing a comprehensive learning expe-
rience in these specialized domains. We encourage you to actively
participate in this tutorial to execute your own project. The skills
and knowledge acquired in this activity can bolster your resume,
enhancing your prospects when seeking employment, pursuing
further education, or advancing in your current professional role.

Index Terms—artificial intelligence, integrated circuits, reverse
engineering, scanning electron microscopy, segmentation, tutorial

I. INTRODUCTION

Reverse engineering (RE) has emerged as a vital method for
understanding the intricate structural and functional capabili-
ties of integrated circuits (ICs). This process is of significant
interest to both malicious and legitimate stakeholders within
the electronics industry. The ultimate goal of RE is to create
a product that replicates the utility and functionality of the
original IC. Given the complexity of modern ICs, which are
designed to meet the computing needs of advanced systems,
the RE process requires as much useful information as pos-
sible. This necessitates extensive technological support, with
a particular emphasis on imaging methods. Scanning electron
microscopy (SEM) is one such method, offering macroscale
resolution values and a wide range of magnification. The
development of artificial intelligence (AI) over the past few
decades has further enhanced the RE process, making it more
automated and less tedious. Our work provides a blueprint
for academic, industrial, and government stakeholders to ef-
fectively combine artificial intelligence and scanning electron
microscopy for efficient IC reverse engineering.

While the relevance of reverse engineering to stakeholders
in the electronics industry has grown over the years, the com-
plexity of ICs has increased. Nonetheless, the resulting product
must maintain the functionality and robustness of the original
IC. To facilitate this, the process demands comprehensive in-
formation to replicate intellectual property with high-precision
accuracy. While the applications of RE vary, establishing a

This article and artifacts were produced by the Florida Institute for National
Security (FINS), by members of the Electrical and Computer Engineering
(ECE) Department at the University of Florida in Gainesville, FL, USA.

Manuscript received Aug 26, 2024; revised Dec 15, 2024.

functional system for IC analysis is crucial for any stakeholder
involved in the electronic design automation (EDA) process.
Within the realm of legacy electronic systems, RE addresses
the issue of unavailable blueprints for older systems. Despite
being used for decades, these systems may require updates or
replacements, which can be challenging due to the laborious
task of finding exact replicas or the compatibility issues that
may arise from using upgraded alternatives. Consequently,
obsolescence becomes an imminent threat for stakeholders.
Hardware security and assurance is another critical aspect of
managing legacy replacements and obsolescence, presenting
its own set of challenges. RE helps in identifying vulnera-
bilities that can be exploited by attackers. It is also essential
in distinguishing genuine hardware from counterfeit products,
which is crucial for securing the electronics supply chain.

By leveraging Al and SEM, stakeholders can navigate these
challenges more effectively, ensuring that the reverse engi-
neering process is both thorough and efficient. This approach
not only preserves the functionality of legacy systems but
also enhances the security and longevity of modern electronic
devices. In today’s semiconductor-focused market, having a
robust and diverse skill set is crucial. The framework presented
in this article is designed to bolster the reader’s skillset
by providing hands-on experience in the above-mentioned
fields within computer science and engineering. All coding
scripts referred to throughout this tutorial will be made
publicly available in open platforms for easy access, along
with accompanying video tutorials!. We hope that both sets
of information will facilitate development and collaboration
among all contributors to the electronics industry.

This tutorial article is organized as follows: Section II
provides a brief background on the topics merged into this
tutorial. Section III details the framework for IC SEM reverse
engineering using Al Section IV presents the results and
discussion. Section V suggests potential extensions. Finally,
Section VI concludes the tutorial with key takeaways and
provides guidance for future work.

II. BACKGROUND

The main purpose of IC reverse engineering is to compare
two designs and ensure that there is no infringement on
intellectual property. The RE process delves into the intricate
structure and function of these designs, revealing nanometer-
scale features that have evolved over decades of development.

Uhttps://github.com/olivia-dizon-paradis/ic_sem_re_tutorial

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/olivia-dizon-paradis/ic_sem_re_tutorial

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

While RE is the goal, it is important to emphasize the
additional concepts that facilitate the complete framework
presented in this tutorial.

A. Artificial Intelligence

Artificial Intelligence (Al), the overarching area depicted
in Figure 1, refers to the classification of systems designed
to replicate human intelligence and cognitive functions, in-
cluding problem-solving and learning [1]. Utilizing models
for tasks such as prediction, classification, and generation, Al
is often employed to enhance and address intricate problems
traditionally performed by humans, such as facial and speech
recognition, decision-making, and translation. Over the years,
the availability of large amounts of data and computational
resources has led to a rise in the use of Al in a variety of fields.
Although AI and machine learning (ML) are commonly used
interchangeably, it is important to understand their distinctions.
Therefore, we highlight these differences below, and introduce
other sub-fields relevant to this work.

1) Machine Learning: ML is a subset of Al that involves
algorithms that automatically learn patterns from data. There
are different types of machine learning, e.g., 1) supervised
learning learns directly from labeled examples, 2) unsuper-
vised learning learns in the absence of labeled examples, and
3) reinforcement learning learns by trial-and-error. There are
other types of ML such as semi-supervised learning, which
combines supervised and unsupervised learning, but for this
tutorial, we are mostly focused on supervised and unsupervised
learning. For more information, please refer to [1].

2) Image Processing and Computer Vision: Image pro-
cessing (ImP) and computer vision (CV) are closely-related
fields that both involve image data. There is significant overlap
between the two fields, but the differences, however subtle, still
hold. While ImP merely transforms an image from one type
into another, CV attempts to interpret or recognize patterns in
an image. In short, ImP is image in, image out, while CV is
image in, knowledge out. For instance, the task of blurring an
image is categorized under ImP, whereas image segmentation
is classified as a CV task, given that segmentation involves
the classification of foreground and background elements. As
CV entails the recognition and interpretation of patterns within

- ~
Al (gy

ML

-
ImP

&)

Fig. 1. Artificial Intelligence (AI) with related fields of machine learn-
ing (ML), computer vision (CV) and image processing (ImP)

visual data, it is widely regarded as a subset of Al, whereas
some aspects of ImP may be considered Al while others
may not be. Moreover, both CV and ImP may overlap with
machine learning in some instances. A thorough explanation
of image processing, computer vision, and their scope within
the broader context of artificial intelligence is detailed in [2].

B. Scanning Electron Microscopy

Although there are a variety of imaging modalities that
play a crucial role in uncovering the inner workings of these
designs, this work primarily focuses on Scanning Electron
Microscopy (SEM). The SEM process is initiated with the
emission of a beam of electrons from an electronic gun.
These electrons traverse electromagnetic fields and lenses that
focus the beam onto the sample. Upon impacting the sample,
both electrons and X-rays are emitted. Detectors then collect
the emitted X-rays and back-scattered electrons, converting
them into visible signals. These signals are transmitted to
a screen, resulting in the generation of the final detailed
image [3]. Although destructive, SEM is renowned for its
ability to generate high-resolution three-dimensional images
on a nanometer scale, rendering more fine details than X-
ray. Moreover, unlike light used in optical microscopy, the
beam of electronns in SEM can simultaneously focus on
features at different heights, facilitating a thorough assessment
of differences in distances between objects and providing a
significant advantage with its large depth of field.

The integration of Al has revolutionized IC reverse engi-
neering by automating key aspects. This includes the iden-
tification of desirable characteristics that would typically re-
quire manual efforts from a subject matter expert. Thus, the
intersection between Al and SEM-based IC RE enhances the
overall efficiency of the existing RE framework. This tutorial
is structured to provide a practical example application of the
key aspects of the typical SEM-based IC RE using Al. The
combined concepts segue into the comprehensive workflow
described in the next section.

III. METHODOLOGY & EXPERIMENTAL SET-UP

Given an input IC SEM image (e.g. 130 nm smart card
shown in Fig. 2a.), the reverse engineering process seeks to
output a binary image with the regions of interest (foreground)
distinctly segmented from the rest of the retrieved image
(background), similar to the ideal ground truth template (e.g.
Fig. 2b). The ground truth image was manually labeled by
a subject matter expert, demanding a considerable amount
of time, effort, and resources. On an industry scale where
multiple intricate ICs must be analyzed quickly in practice,
such manual segmentation is slow, expensive, and impractical
for humans. To address these challenges, the integration of Al
to help automate the segmentation process is described in this
tutorial.

A. Workflow and Setup

The IC SEM segmentation pipeline for this tutorial is shown
in Fig. 3. First, features are extracted from the input IC SEM

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

image using image processing (ImP) and computer vision
(CV). The core task, segmentation, is then executed using
machine learning (ML). The results are then fine-tuned in
the post-processing stage using ImP. Finally, the output is
evaluated to assess the method’s suitability for deployment. If
the result is unsatisfactory, the previous steps are re-assessed
and revisited as needed.

Here, we use the following Python packages for their
accessibility and ease of use: Numpy [5], Scikit-image [6], and
Scikit-learn [7]. The experiments were conducted on a 32.0
GB Intel(R) Xeon(R) W-1250P CPU with a 64-bit Windows
operating system. To ensure a controlled reproducible compu-

Original...Image

0
200
400
600
0 200 400 600
(@)

Ground.Truth...(GT)...Image

TR L L U Tl Wk
0 200 400 600

(b)

Fig. 2. Sample data from a 130 nm smart card. (a) Input uint8 grayscale
image, with values in range [0, 255]; (b) Ground truth boolean image, with
the doped silicon defined as foreground (marked in white, True, or 1) and
the undoped silicon defined as the background (marked in black, False, or 0).
Both images are 800x800 pixels.

START —» Image -
!

ImP . Feature Extraction -
!

ML Segmentation -
!

ImP Postprocessing -
!

Evaluation <
:

STOP «—Good Assess ——Bad—

Fig. 3. IC SEM RE framework. An input image is taken and features are
extracted using ImP and CV, segmented using ML, then post-processed using
ImP. The final result is then evaluated.

tational environment, the default Anaconda base environment
with Python version 3.10.13 was used.

B. Feature Extraction

Features extracted from the input image included pixel
intensity values, edges, and corners. Pixel intensity values,
which represent the color information at each pixel, provide
the fundamental data upon which other features are detected.
To reduce the effects of noise present in the raw image, Gaus-
sian blurring was used. Edges, or significant local changes in
intensity, often correspond to the boundaries of objects within
an image. Corners, defined by the intersection of two or more
edges, are particularly useful for identifying key points and
features that remain invariant under various transformations.
Although other image features exist, such as blobs and circles,
our focus is directed toward pixel intensity values, edges, and
corners because the overwhelming majority of our input image
data consists of straight lines and rectangles and very few, if
any, other shapes.

To mitigate overfitting, we employed an 80:20 train-test
split without shuffling to preserve the visual interpretability
of the training and testing data as distinct, non-overlapping
images. In other words, the top 80% of the sample image was
used as training data for model development and parameter
tuning, whereas the bottom 20% of the sample image was
used as testing data for performance evaluation. Although this
tutorial primarily concerns a single sample image to illustrate
the overall workflow, a larger dataset with multiple images
would ideally be used in practice. Implementation details are
shown in Alg. 1, and examples of the extracted features are
shown in Fig. 4.

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Gaussian...Blur

Training...Image...Slice

(a) (b)

Fig. 4. Image slice of the (a) original IC SEM sample with corresponding (b) Gaussian blur, (c) Farid edge, and (d) Harris corner features.

C. Segmentation

Here, three different ML techniques were explored: KMeans
clustering, Decision Tree classification, and Random Forest
classification. KMeans clustering is an unsupervised technique
that iteratively groups data based on inter-cluster variance [8].
As an unsupervised ML technique, it does not require ground
truth information for training. Decision Tree classification is
a supervised technique that operates by using hierarchical
decision rules (such as greater than or less than) to classify
data [9]. As a supervised ML technique, it requires some
ground truth information for training. Random Forest classifi-
cation, another supervised technique, is a meta-estimator that
uses an ensemble of decision trees to improve generalization
when classifying data [10]. This method leverages collective
wisdom, where each tree in the forest is trained on a random
subset of the data, and classifications are made by averaging
the results. An important parameter for the random forest
algorithm is the number of estimators, i.e. “trees in the forest.”
The final implementation details are shown in Alg. 2.

Algorithm 1 Feature Extraction and Train-Test Split

Require: original image img, ground truth image gt, test percent-
age p_test=0.20
Import necessary libraries:
from skimage import filters,
import numpy as np
from sklearn import model_selection
Get de-noised intensity features using Gaussian blur:
fl = filters.gaussian (img)
Get edge features using Farid filter:
f2 = filters.farid(img)
Get corner features using Harris corner detection:
£f3 = feature.corner_harris (img)
Stack features together and format:
feats = np.dstack((fl, f2, £3))
feats = feats.reshape (800800, -1)
Split the sample data into training and testing images:
n_test = int (p_testx800)
feats_train, feats_test, gt_train, gt_test =
model_selection.train_test_split (feats, gt,
test_size = p_test, shuffle=False)
return feats_train, feats_test, gt_train, gt_test,
n_test

feature

4
Farid...Edges Harris...Corners
0 25 50 75
(€) (d)
Algorithm 2 Segmentation
Require: training features feats_train, ground truth

gt_train, testing features feats_test, number of test
rows n_test
Import the necessary libraries, define, and train model:

Alg. 2.a. KMeans Clustering

from sklearn import cluster

model = cluster.KMeans (n_clusters=2)
model.fit (feats_train)

Alg. 2.b. Decision Tree Classification

from sklearn import tree

model = tree.DecisionTreeClassifier(
min_impurity_decrease=0.01)
model.fit (feats_train, gt_train)

Alg. 2.c. Random Forest Classification

from sklearn import ensemble

model = ensemble.RandomForestClassifier (
n_estimators=10, min_impurity_decrease=0.01)
model.fit (feats_train, gt_train)

Predict the segmented image from the testing data:

seg_img = model.predict (feats_test)

seg_img = seg_img.reshape(n_test, 800)

return seg_img

D. Post-processing

Segmentation results were refined using idempotent binary
morphological operations: opening and closing. Opening and
closing operations build off erosion and dilation operations,
which reduce and increase shape sizes, respectively. Opening,
or erosion then dilation, was used to remove background
noise and separate shapes that were barely connected. Closing,
or dilation then erosion, was used to remove foreground
noise and connect shapes that were barely disconnected. The
execution of morphological operations requires two inputs: the
primary image and a structuring element, which serves as a
probe for defining the neighborhood around each pixel. The
implementation is shown in Alg. 3.

E. Evaluation

The final postprocessed segmentation results were quanti-
tatively compared against the ground truth using the popular

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

..Overlay

Segmented...Image

0 Training...GT.Slice.

0 25 50 75 0 25 50 75

(a) (b)

Postprocessed. ..Image Training...Result...Overlay

25 50 75

(c) (d)

Fig. 5. Image plots of: (a) Ground truth slice overlay, (b) Segmented image, (c) Postprocessed image, and (d) Result overlay for a sample training image

Algorithm 3 Postprocessing

Require: Segmented image seg_img
Import necessary libraries:
from skimage.morphology import
binary_opening, binary_closing
Define the structuring element:
se = np.ones([3, 31)
Postprocess using binary opening and closing:
post_img = binary_opening(seg_img, se)
post_img = binary_closing (post_img, se)
return post_img

intersection-over-union (IOU) score:
_I8ng|
~SuUGY|

where S is the final postprocessed segmentation result, G is the
ground truth, and |[SNG| and | SUG]| are the area of intersection
and the area of union, respectively, of S and G. Due to how
the score is defined, the IOU score ranges between O and 1,
with 1 being the best and 0 being the worst. To assess the
stability and robustness of the implemented approaches, each
algorithm was trained 30 times with random initialization, and
the average IOU scores are reported.

For comparison, results were also obtained for threshold-
ing, a simple segmentation approach using image processing.
After a basic gridsearch testing threshold values [50,200]
in multiples of ten, the threshold value of 100 was found
to yield the highest IOU. To test the effectiveness of the
pre- and postprocessing pipelines, results were obtained for:
(Dthresholding with no processing and (2) thresholding plus
processing.

In addition to quantitative results, qualitative results are cru-
cial for visualizing and interpreting patterns, relationships, and
insights. This visualization process is essential for understand-
ing the underlying structures and behaviors that quantitative
metrics alone may not fully reveal. By carefully examining
intermediate images, such as those depicted in Fig. 5, we can
gain a deeper understanding of the model’s performance and
the specific features it has learned. Through expert observa-
tion, we can more effectively communicate the nuances and
complexities of the data, facilitating a more comprehensive
analysis and enhancing the overall robustness of our findings.

IOU(S, G) (1)

IV. RESULTS & DISCUSSION

The IOU scores of each method on the training and testing
data are summarized in Tab. 1. For the stochastic ML methods,
the mean IOU values are reported along with their corre-
sponding standard deviations. Overall, the training and testing
results were similar, suggesting that the models generalized
well to the unseen data. In this tutorial, the Decision Tree
classifier performed best. To gain deeper insight into the
decision-making process of the ML models, we conducted an
interpretation analysis.

A. KMeans Clustering

Although KMeans had the lowest average IOU scores, the
standard deviation of the scores was very large. A quick
analysis using numpy . histogram indicates the IOU scores
followed a bimodal distribution, with one peak around 0.023
and the other around 0.882. This observation is consistent
with expectation as KMeans is an unsupervised method
with an equal chance of clustering foreground as foreground
(which is correct) or background (inverted). After flipping
the outputs of the inverted models, an analysis of the cluster
center locations (found using sklearn.cluster.KMean’s
cluster_centers_ attribute) indicated that the normal-
ized foreground center for the Gaussian blur, edge, and
corner features, respectively, was located at [0.50146887
0.03532551 0.06544869], whereas the background center was
at [0.31454059 0.0279947 0.02885523]. This indicates that
the foreground pixels generally had lighter intensity, more
edges, and more corners than the background pixels, and that
the Gaussian blur features were more important factors for
the KMeans models. Although inverted model outputs could
be flipped in this two-class classification tutorial, it can be
difficult to address in multi-class problems.

TABLE I
AVERAGE TRAINING AND TESTING IOU SCORES FOR EACH METHOD
Method Training Testing
Thresholding ~ 0.540 0.579
Thresholding + Processing 0.870 0.864

0.395 £ 4.25E-1
0.881 + 2.22E-16
0.848 + 8.41E-2

0.401 + 4.28E-1
0.889 + 1.11E-16
0.856 4 8.46E-2

KMeans Clustering
Decision Tree Class.
Random Forest Class.

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

B. Decision Tree Classification

In this tutorial, Decision Tree classification yielded the
best IOU scores, with very little variation in performance,
indicating model stability and robustness. DT models can be
interpreted using sklearn.tree’s plot_tree function
(e.g. Fig. 6). The tree visualization helps in understanding
how the model splits the data at each node based on different
features to arrive at the final prediction. In this example, the
color of each node corresponds to the predicted class (i.e.
orange for background, blue for foreground). For internal
nodes (i.e. ones with child nodes), lighter colors indicate the
class estimated at this point whereas for external leaf nodes
(i.e. ones without children), darker colors indicate the final
class prediction. In each node, the ‘“samples” percentages
indicate the total percentage of the training inputs that reached
each node, and should sum to 100% among nodes at similar
levels (or roughly 100% due to rounding errors). The “value”
arrays indicate the normalized percentage of samples reaching
each node for each class and for each output, i.e. the [.59, .41]
value in the root node indicates that 59% of the training
samples that reached this node were background, whereas 41%
were foreground. Nodes are traversed to the left child node if
true, and right if false. For example, starting at the topmost root
node, if the faridedges < 0.04 statement is true, we navigate
to the left child node. If the following gaussianblur < 0.41
statement is false, we navigate to the right child node and
classify as foreground. For this particular tree, the if-else
hierarchy can be simplified to if gaussianblur < 0.41 classify
as background; else classify as foreground. Simplification may

not be possible fog, e Aietsnin d. PoFRek:.

farid...edges...<=..]0.04
samples...=...100.0%
value...=...[0.59,...0.41]
class...=...backgroynd

/ N\

gaussian...blur...<=..[0.4] gaussian...blur...<=..{0.41
74.2% 25.8%
[0.63,...0.37] [0.45,...0.55]
background foreground
11.6% 14.2%
[0.89,...011 || [0.1,...0.9]
background background || foreground

Fig. 6. Visualization of a Decision Tree’s predictive process

C. Random Forest Classification

Here, Random Forest (RF) classification also yielded high
IOU scores, but underperformed Decision Tree classification
and Thresholding+Processing. RF, although intended to boost
performance and increase robustness relative to individual
decision trees, likely underperformed in this tutorial because
there were few informative features available to sample
when looking for the best split at each node. In other

Feature...Importances...of...Forest

gaussian...bl 0.636
8
§ farid...edg 0.075
=~
harris...corne 0.288
00 02 04 06 08 1.0

Importances...[normalized]

Fig. 7. Visualization of a Random Forest’s relative feature importances

words, in scenarios where there are only a handful of
critical features, since RF randomly samples subsets of
features when building each tree, some trees in the forest
likely failed to effectively utilize these critical features,
resulting in performance degradation. RF’s relative feature
importances, shown in Fig. 7, can be extracted from
sklearn.ensemble.RandomForestClassifier’s
feature_importances_ attribute. Feature importances
results indicate that the gaussian blur features contributed
most significantly to the model’s decisions, consistent with
the KMeans clustering results. In addition, individual trees
from the RL model can be accessed by indexing into
sklearn.ensemble.RandomForestClassifier’s
estimators__ attribute and visualized using the plot_tree
function as discussed in the previous subsection.

D. Discussion

The combination of quantitative results, visualizations, and
model interpretation analyses provides a comprehensive under-
standing of the performance and behavior of the implemented
models. These insights are crucial for validating the model’s
effectiveness, gaining valuable insights, and for guiding future
improvements in the predictive algorithm.

Although Decision Tree Classification performed best on
the sample image used in this tutorial paper, results may
vary on different datasets with different technologies, imaging
conditions, and other factors. This methodology presented in
this paper is meant to illustrate the general framework, while
being extensible to other workflows.

V. EXTENSIONS

To supplement the existing process, there are a number of
extensions available to the interested reader:

1) For feature extraction, we used blurring, edge detec-
tion, and corner detection. Readers are encouraged to
experiment with the parameters of these methods and
explore alternative approaches, such as rectangle detec-
tion, leveraging the diverse array of filters and features
available in the Scikit-image (skimage) library. For a
comprehensive exploration of features and their efficacy,
employing feature selection methodologies such as Lin-
ear Discriminant Analysis (LDA) could prove beneficial.

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

In instances where the selected features exhibit widely
varying ranges, feature normalization techniques, such
as standard scalar, becomes pertinent.

2) For segmentation, we used KMeans clustering, Deci-
sion Tree classification, and Random Forest classifica-
tion. Similar to the feature extraction stage, parameter
adjustment is encouraged (e.g. with grid search) or
the exploration of alternative classifiers such as nearest
neighbors, support vector machines, and naive Bayes.
Ensemble methods, including AdaBoost and gradient
boosting, present additional avenues for consideration. It
is essential to note that the interpretability and explain-
ability methods may vary across different algorithms,
necessitating a thoughtful exploration of approaches
tailored to the chosen methods.

3) For postprocessing, we used binary opening and clos-
ing. Users have the flexibility to fine-tune parameters
related to the structuring element, including its shape
and size. Additionally, alternative morphological opera-
tions, such as hole filling, can be explored for potential
enhancement.

4) For evaluation, we rely on a simple train/test split.
However, an alternative and more comprehensive ap-
proach involves implementing k-fold cross-validation.
This technique ensures a thorough assessment of the
model’s performance by partitioning the dataset into
multiple folds, iteratively using different subsets for
training and testing.

We highly encourage experimentation, urging the interested
reader to observe the effects firsthand and consider exploring
methods beyond those explicitly listed in this article. For
additional inspiration and guidance, the following resources
are recommended: Scikit-image (skimage) [6] and Scikit-learn
(sklearn) [7]. These resources offer comprehensive insights
and further methods to enhance the interested reader’s explo-
ration and understanding of the implemented techniques.

VI. CONCLUSION & FUTURE WORK

Scanning electron microscopy is useful for IC reverse
engineering (RE) due to its ability to produce high-resolution
images. The addition of artificial intelligence (AI) to the
RE process automates crucial aspects, reducing the tedious
manual efforts of subject matter experts. Al-enhanced reverse
engineering enables quick and accurate recognition of trained
patterns, making the overall process more efficient.

The authors hope this tutorial serves as a valuable resource
for both teaching and learning the fundamentals of hardware
assurance and artificial intelligence. The tutorial is intended
to enhance the professional profile of the interested reader,
as a valuable resume-building asset. Whether one is seeking
employment, pursuing further education, or aiming to advance
in one’s current role, the skills acquired through this endeavor
are poised to contribute to one’s prospects.

Looking ahead, the authors are eager to share more knowl-
edge through additional tutorials focused on the intersection
between hardware security and Al. Future works cover a
broad spectrum, including but not limited to generative Al

for hardware security, Al-driven secure hardware design, and
anti-RE hardware obfuscation.

ACKNOWLEDGMENTS

The authors would like to thank the following entities and
individuals. The National Science Foundation (NSF) for fund-
ing this work, through Award # 2131480 SaTC: TTP: Medium:
I-C-U: AI-Enabled Recovery and Assurance of Semiconductor
IP from SEM Images. The U.S. Department of Defense (DoD)
for funding the graduate students working on this tutorial.
Mengdi Zhu, Daniel E. Capecci, Gijung Lee for their thorough
review of the materials. Pallabi Ghosh, Rabin Acharya, and
Alyssa Caples for their involvement on the project.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[2] R. Gonzalez and R. Woods, Digital Image Processing, 4th edition.
Pearson, 2017.

[3] A. Mohammed and A. Abdullah, “Scanning electron microscopy (SEM):
A review,” in Proceedings of the 2018 International Conference on
Hydraulics and Pneumatics—HERVEX, Bdile Govora, Romania, vol.
2018, pp. 7-9, 2018.

[4] “Anaconda — The World’s Most Popular Data Science Plat-
form,” Anaconda. Accessed: Oct. 27, 2023. [Online]. Available:
https://www.anaconda.com/

[S] “NumPy.” Accessed: Oct. 27, 2023. [Online]. Available:
https://numpy.org/.

[6] S. Van Der Walt et al., “scikit-image: image processing in Python,” PeerJ,
vol. 2, p. €453, Jun. 2014, doi: 10.7717/peerj.453.

[7] “scikit-learn: machine learning in Python — scikit-learn 1.3.2 docu-
mentation.” Accessed: Oct. 27, 2023. [Online]. Available: https://scikit-
learn.org/stable/

[8] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering
algorithm,” Journal of the royal statistical society. series ¢ (applied
statistics), vol. 28, no. 1, pp. 100-08, 1979, doi: 10.2307/2346830.

[9] W.-Y. Loh, “Classification and regression trees,” WIREs Data Min-
ing and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011, doi:
10.1002/widm.8.

[10] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, Oct. 2001, doi: 10.1023/A:1010933404324.

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2025.3543464

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

VII. BIOGRAPHY SECTION

Olivia P. Dizon-Paradis, Ph.D. is a member of the
Florida Institute for National Security (FINS). She
is a member of IEEE, Eta Kappa Nu (HKN), and
Tau Beta Pi (TBP). Her research interests include
applied Al reinforcement learning, computer vision,
and reverse engineering.

David S. Koblah, Ph.D. is a member of the Florida
Institute for National Security (FINS). He is an IEEE
Graduate Student Member. He is a member of IEEE
and Eta Kappa Nu (HKN). His research interests
include machine learning and Al for PCB reverse
engineering and Security-Aware EDA.

Ronald Wilson, Ph.D. is Co-Director of the Applied
Al Group (AAIG), and Research Assistant Professor
in ECE Department at the University of Florida.
He is also a FINS member. His research interests
include Al for vision-assisted hardware assurance on
ICs, computational behavioral analytics for identity
sciences, computer vision, and NLP.

Domenic Forte, Ph.D. is Associate Director of the
Florida Institute for National Security (FINS), and
Professor and Steven A. Yatauro Faculty Fellow in
the ECE Department at the University of Florida. He
is an Senior Member of both the IEEE and ACM.
His research interests include multiple aspects of
hardware security.

Damon L. Woodard, Ph.D. is Director of the
Florida Institute for National Security (FINS), Di-
rector of the Applied Artificial Intelligence Group
(AAIG), and Professor in the ECE Department at
the University of Florida. He is an Senior Member
of both the IEEE and ACM. His research interests
include multiple aspects of Al

© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background
	Artificial Intelligence
	Machine Learning
	Image Processing and Computer Vision

	Scanning Electron Microscopy

	Methodology & Experimental Set-Up
	Workflow and Setup
	Feature Extraction
	Segmentation
	Post-processing
	Evaluation

	Results & Discussion
	KMeans Clustering
	Decision Tree Classification
	Random Forest Classification
	Discussion

	Extensions
	Conclusion & Future Work
	References
	Biography Section
	Biographies
	Olivia P. Dizon-Paradis, Ph.D.
	David S. Koblah, Ph.D.
	Ronald Wilson, Ph.D.
	Domenic Forte, Ph.D.
	Damon L. Woodard, Ph.D.

