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Running title: Towards rational control of seed oil composition
Advances Box

e The network of possible pathways to produce seed oils continues to grow with the identification
of triacylglycerol remodeling in Physaria fenderi

e Seed oil fatty acid composition is highly influenced by diacylglycerol acyltransferase selectivity for
acyl-CoA and diacylglycerol molecular species, and the availability of sn-1,2 or sn-2,3 enantiomers
of diacylglycerol

e Lipid metabolism may be organized into different metabolons within the endoplasmic reticulum
that separate membrane lipid and oil biosynthesis, and control oil production from different pools
of diacylglycerol

Abstract:

Plant lipids represent a fascinating field of scientific study, in part due to a stark dichotomy in the limited
fatty acid (FA) composition of cellular membrane lipids versus the huge diversity of FAs that can
accumulate in triacylglycerols (TAGs), the main component of seed storage oils. With few exceptions, the
strict chemical, structural, and biophysical roles imposed on membrane lipids since the dawn of life has
constrained their FA composition to predominantly lengths of 16-18 carbons and containing 0-3
methylene-interrupted carbon-carbon double bonds in cis-configuration. However, over 450 “unusual” FA
structures can be found in seed oils of different plants (Ohlrogge et al., 2018), and we are just beginning
to understand the metabolic mechanisms required to produce and maintain this dichotomy. Here we
review the current state of plant lipid research, specifically addressing the knowledge gaps in membrane
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and storage lipid synthesis from three angles: pathway fluxes including newly discovered TAG remodeling,
key acyltransferase substrate selectivities, and the possible roles of “metabolons”.

For many plants, including a large majority of oilseed crops, the storage triacylglycerol (TAG) fatty acid (FA)
composition mirrors that of membrane lipids containing common FAs (Fig. 1 A-D). In most of these oils,
each specific FA constitutes no more than ~30-35% of the total. Most well-known seed oils, such as corn,
soybean, peanut, and canola, fall into this category, and provide a major proportion of global human and
animal caloric intake. Decades of biochemical and genetic studies indicate that the assembly of different
plant oils occurs through multiple different metabolic pathways and enzyme classes that can overlap with
essential membrane lipid synthesis (Ohlrogge and Browse, 1995; Gunstone et al., 2007; Bates and Browse,
2012; Bates et al., 2013; Li-Beisson et al., 2013; Napier et al., 2014; Chen et al., 2015; Lee et al., 2015;
Bates, 2016; Zhu et al., 2016; Aznar-Moreno and Durrett, 2017; Bates, 2022; Busta et al., 2022). However,
many of the ‘cartographic’ details of the metabolic network structure and nuances of pathway regulation
necessary to produce specific molecular species of both membrane and storage lipids remain to be
determined.

This foundational knowledge void is amplified even further when considering the second category of plant
oils, that contain ‘unusual FAs’ (Fig. 1 E-F) (Ohlrogge et al., 2018). Some of these are ‘industrial oils’ and
serve as lucrative feedstocks for production of biofuels and dozens of other chemical compounds such as
foams, plastics, adhesives, nylons, and coatings (Gunstone et al., 2007; Carlsson et al., 2011; Chen, 2017).
This bifurcation primarily derives from fundamental differences in seed oil FA composition. While
membrane lipid FA composition in these species is typically very similar to that of all plants, oils with high
chemical utility typically contain common FAs and one or more unusual FAs (Ohlrogge et al., 2018). These
include acyl groups with novel chain lengths and desaturation states, ranging in length from ~C8-C24 and
including methylene-interrupted and conjugated arrangements of zero to six C-C cis- and trans-double
bonds, and C-C triple bonds. This diversity is also apparent in the array of characterized side-chain
functionalities including hydroxy, epoxy, furan, and carbocyclic groups. And unlike the relatively balanced
FA composition found in common oilseeds, some unusual FAs (such as ricinoleic acid in castor bean and
a-eleostearic acid in tung tree, Fig. 1F, |) can constitute up to ~70-90% of TAG FA.

A thorough catalog of known or suspected enzyme activities that contribute to the various branches of
plant lipid metabolism has been previously described and encompasses hundreds of genes (Li-Beisson et
al., 2013; McGlew et al., 2015). However, putting this suite of gene products into a coherent biochemical
context that explains the enzymology and subcellular compartmentalization of common and unusual FA
biosynthesis and their utilization in both membrane and storage lipid production remains a challenging
goal.

Here we review the current state of plant lipid research, specifically addressing the knowledge gaps in
membrane and storage lipid synthesis from three angles: pathway fluxes including newly discovered TAG
remodeling, key acyltransferase substrate selectivities, and the possible roles of “metabolons”.

Ever-expanding “pathways” of triacylglycerol synthesis
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A metabolic pathway may be thought of as a series of consecutive enzymatic reactions that lead to the
synthesis or degradation of a particular metabolite. However, within lipid metabolism de novo FA
synthesis, FA elongation to 220 carbons, FA desaturation, or other modifications (e.g. hydroxylation,
epoxidation, etc.) all occur within different substrate pools, and in different cellular locations, with multiple
different possible pathways of acyl flux to assemble a given lipid class thus representing a network of
possible pathways (Fig. 2). Additionally, the acyltransferases and lipases involved in lipid assembly and
turnover can have selectivity for different molecular species of the substrate lipid class. Therefore, the FA
composition of seed oils is dependent on both the capacity to produce different FAs, and the path of
substrate flux through the lipid metabolic network for different FA modification and lipid assembly
reactions.

Production of FA substrates for TAG biosynthesis

De novo FA synthesis (FAS) in the plastid builds FAs on acyl carrier proteins (ACP) up to 18 carbons.
Desaturation of 18:0-ACP produces oleic acid (18:1), the major product of FAS in most plant tissues (Li-
Beisson et al., 2013; Bates, 2022) (Fig. 2). In some plant seeds (e.g. coconut, California bay, Cuphea spp.)
(Ohlrogge et al., 2018), de novo FAS also produces significant amounts of saturated FAs less than 16
carbons that accumulate exclusively in TAG. Acyl-ACP thioesterases (FAT) hydrolyze FAs from ACP (Kalinger
and Rowland, 2023), thus determining the FA length and initiating free FA export from the plastid (Koo et
al., 2004; Li et al., 2015; Tian et al., 2019). Exported free FAs are activated to acyl-CoA by long chain acyl-
CoA synthetase (LACS9) on the outer chloroplast envelope (Schnurr et al., 2002). Acyl-CoA may be further
elongated to 220 carbons through the endoplasmic reticulum (ER)-localized FA elongation complex
(Haslam and Kunst, 2013), or the FAs may be further desaturated within the membrane lipid pool. The ER
localized Fatty Acid Desaturases (FAD) FAD2 and FAD3 primarily act on phosphatidylcholine (PC) to
desaturate 18:1 to linoleic acid (18:2) and linolenic acid (18:3), respectively (Fig. 1). Membrane lipid-based
FA desaturation also occurs on galactolipids in the plastid by FAD6/7/8 (Shanklin et al., 2009; Li-Beisson et
al., 2013). While ER localized production of polyunsaturated FAs (PUFA) on PC is the major source for ER
TAG biosynthesis, PUFAs released from galactolipids can be incorporated into TAG under some
circumstances such as abiotic stress or metabolic adaptations to mutations (Neumann et al.; Moellering
et al., 2010; Aulakh and Durrett, 2019; Bhattacharya, 2022). In some species, PC is also the substrate for
other FA modifications by FAD2 enzyme variants (Shanklin et al., 2009) that produce a diverse range of
structures, including but not limited to hydroxyl, epoxy, or cyclopropyl functional groups, or uncommon
double bond locations in seed oil FAs (Ohlrogge et al., 2018) (Fig. 1).

Acyl editing to generate diverse acyl substrate pools for TAG biosynthesis

Acyl editing is a cycle of PC de-acylation and lyso-PC re-acylation that exchanges FAs between PC and the
acyl-CoA pool (Fig. 2). In vivo isotopic tracing of lipid metabolism indicated that 18:1 exported from the
plastid is incorporated into glycerolipids predominantly through sn-2 PC acyl editing in leaf and seed
tissues in species such as Arabidopsis thaliana, Brassica napus, Camelina sativa, Glycine max, Nicotiana
tabacum, Physaria fendleri, and Pisum sativum (Williams et al., 2000; Bates et al., 2007; Bates et al., 2009;
Bates et al., 2012; Wang et al., 2012; Yang et al., 2017; Karki et al., 2019; Zhou et al., 2020; Bhandari and
Bates, 2021). PC de-acylation may proceed by either phospholipase A, (PLA;, as in the Lands cycle (Lands,
1965)) or the reverse action of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT). Free FAs
produced by Lands Cycle PLA, activity are activated to acyl-CoA for further use likely by ER localized LACS
(Shockey and Browse, 2011). The lyso-PC re-acylation proceeds through the LPCAT forward reaction. Plant
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LPCATs can have different acyl specificities in their forward and reverse reactions (Lager et al., 2013; Pan
et al., 2015; Jasieniecka-Gazarkiewicz et al., 2016), when combined with acyl modification on PC, leads to
diverse acyl-CoA and PC molecular species pools. The Arabidopsis Ipcat1/Ipcat2 mutant shifts the flux of
nascent FA to de novo glycerolipid synthesis rather than acyl editing (Stahl et al., 2008; Bates et al., 2012;
Wang et al., 2012; Karki et al., 2019) and reduces accumulation of PUFAs in TAG (Bates et al., 2012; Wang
et al., 2012), demonstrating the important contribution of acyl editing to the final TAG FA composition.
Interestingly, both lipid composition analysis and isotopic tracing in the lpcat1/Ipcat2 mutant background
suggested some acyl flux through PC for transfer of PUFAs to other lipids still occurs (Bates et al., 2012;
Wang et al.,, 2012; Karki et al., 2019), possibly through de novo PC synthesis and various PC
turnover/exchange mechanisms including phosphatidylcholine:diacylglycerol cholinephosphotransferase
(PDCT) or phospholipase D (Lee et al., 2011; Bates et al., 2012; Yang et al., 2017). An alternative non-
LPCAT based acyl editing mechanism may also contribute to acyl flux through PC in the Ipcat1/Ipcat2
mutant. Lyso-PC produced by PLA; action may be converted back to PC by a lyso-PC:lyso-PC transacylase
(LPCT) which co-produces glycerophosphocholine. Glycerophosphocholine acyltransferase (GPCAT) can
regenerate lyso-PC to maintain the LPCT reaction (Lager et al., 2015). As of yet, the molecular identity of
only the GPCAT, but not LPCT, has been identified (Glgb et al.,, 2016). Still unknown is the relative
contribution of forward/reverse LPCAT, PLA,, LPCT, and GPCAT activities to overall acyl flux through PC and
their contribution to seed TAG FA composition in wild-type and engineered plants that accumulate novel
FA compositions (Bates, 2016; Correa et al., 2020).

Production of de novo sn-1,2-diacylglycerol for TAG biosynthesis

Two major pathways have been identified that produce the sn-1,2-diacylglycerol (sn-1,2-DAG) substrate
for TAG biosynthesis. First, de novo glycerolipid assembly (also known as the Kennedy pathway (Weiss et
al., 1960)) involves the consecutive reactions of acyl-CoA dependent glycerol-3-phosphate acyltransferase
(GPAT) and lysophosphatidic acid acyltransferase (LPAT) to produce lysophosphatidic acid (LPA, 1-acyl-sn-
glycerol 3-phosphate) and phosphatidic acid (PA, 1,2-diacyl-sn-glycerol-3-phosphate), respectively.
Subsequent PA dephosphorylation by PA phosphatase/hydrolase produces de novo sn-1,2-DAG (Fig. 2,
DAG(1)). Thus, GPAT and LPAT acyl selectivities control de novo DAG composition. In Arabidopsis there are
10 GPATs (Yang et al., 2012), but only GPAT9 has a confirmed role in ER-localized membrane lipid and TAG
production (Shockey et al., 2016; Singer et al., 2016). Similarly, there are five LPATs in Arabidopsis. LPAT2
is the major isoform involved in ER TAG and membrane lipid production in most plants studied to date
(Kim et al., 2005; Maisonneuve et al., 2010; Barroga and Nakamura, 2022), but RcLPAT3B and BnLPAT5
may also contribute to seed TAG accumulation in Ricinus communis and B. napus, respectively (Kim et al.,
2020; Zhang et al., 2022).

In general, LPATs have more rigid acyl selectivities than GPATs, which contributes to the strict limitation of
saturated FAs at the sn-2 position of ER membrane lipids and TAG from most species (Ohlrogge and
Browse, 1995; Brown et al., 2002). Both in vitro and in vivo analyses have shown that some GPAT and LPAT
enzymes can have enhanced selectivity for unusual FAs specific to that species, leading to production of
TAG with diverse and/or unusual FA compositions. For example, the GPAT and LPAT activities from R.
communis or Cuphea lanceolata seed tissue possess selectivity for ricinoleoyl- or decanoyl-CoAs,
respectively (Bafor et al., 1990; Bafor et al., 1991). Likewise, co-expression of the R. communis, Cuphea
viscosissima, or Vernicia fordii GPAT and/or LPAT with the respective FA hydroxylase, thioesterase, or
desaturase that produces the species-specific unusual FAs led to enhanced accumulation of ricinoleate,
decanoate, or a-eleostearate, respectively, (Fig. 1 E, F, I) in TAG of transgenic plants (Kim et al., 2015; Lunn
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et al., 2019; Shockey et al., 2019). These results indicate that GPAT/LPAT acyl selectivity can co-evolve with
unusual FA biosynthesis to produce TAG molecular species enriched in unusual FAs. However, GPAT acyl
selectivity does not always coincide with TAG sn-1 FA composition. For example, Crambe abyssinica
accumulates TAG with ~60% erucic acid (22:1, Fig. 1K) which is localized to the sn-1 and sn-3 positions.
However, GPAT assays with developing seed extracts indicated 22:1-CoA was only about 3% as effective as
18:1-CoA (Guan et al., 2014), making it unclear how the sn-1 position of C. abyssinica TAG is composed
almost entirely of 22:1. Multiple possibilities may account for the apparent discrepancy between GPAT
selectivity and TAG composition. First, the molecular species specificity of LPAT and/or DGAT may be high
enough for 22:1-containing substrates to specifically produce these TAG molecular species from diverse
LPA and DAG substrate pools, respectively. Alternatively, TAG remodeling may change the sn-1 FA
composition after initial TAG biosynthesis (discussed more below) (Bhandari and Bates, 2021; Parchuri et
al., 2024). Thus, de novo DAG and subsequent TAG biosynthesis with molecular species selective acyl
transferases can produce unique TAG composition. Examples of species where biochemical evidence
suggests TAG synthesis from de novo DAG(1) (Fig. 2) is the major pathway for TAG accumulation include R.
communis, Cuphea lanceolata, Persea americana, Coriandrum sativum, and Theobroma cacao (Griffiths et
al., 1988; Bafor et al., 1990; Bafor et al., 1991; Griffiths and Harwood, 1991; Cahoon and Ohlrogge, 1994).

Production of PC-derived sn-1,2-diacylglycerol for TAG biosynthesis

In many different oilseed species including Arabidopsis, B. napus, C. sativa, Carthamus tinctorius, Linum
usitatissimum, G. max, and P. fendleri in vivo isotopic tracing has indicated that DAG derived from PC (Fig.
2, DAG(2)), rather than de novo DAG, can contribute to or be the predominant source of sn-1,2-DAG
utilized for TAG biosynthesis (Slack et al., 1978; Griffiths et al., 1988; Bates et al., 2009; Bates and Browse,
2011; Guan et al., 2014; Yang et al., 2017; Bhandari and Bates, 2021; Pollard and Shachar-Hill, 2022).
Because PCis the site for acyl editing and FA modification, the molecular species of PC-derived DAG(2) can
be distinct from de novo DAG(1). There are multiple mechanisms to produce PC-derived DAG(2) including
PC synthesis from de novo DAG(1) and CDP-choline via cholinephosphotranserase (CPT; also known as
aminoalcoholphosphotransferase, AAPT) and subsequent PC turnover by the reverse action of CPT,
phospholipase C (PLC) hydrolysis, or phospholipase D (PLD) hydrolysis and subsequent dephosphorylation
by PA phosphatase (Bates, 2016; Ali et al., 2022; Bates, 2022). Gene knockdown, knockout, and
overexpression studies support the roles for nonspecific phospholipase C 6 (AtNPC6), AtPLDZ, and GmPLDa
in PC-derived DAG production in Arabidopsis and G. max, respectively (Lee et al., 2011; Yang et al., 2017;
Cai et al., 2020). The changes in TAG amounts and/or FA composition (or measured lipid flux) for each was
consistent with at least a partial role in PC-derived DAG production, however it is unclear if these PC
turnover enzymes are selective for specific PC molecular species that ultimately affect the TAG FA
composition.

A major alternative to de novo PC synthesis and turnover is phosphocholine exchange between PC and
DAG producing new molecules of DAG and PC, a reaction catalyzed by phosphatidylcholine:diacylglycerol
cholinephosphotransferase (PDCT) (Lu et al., 2009). PDCT activity can incorporate DAG into PC for further
acyl modification (e.g. desaturation), and concomitant conversion of modified PC molecular species back
into DAG for TAG biosynthesis. Reduced PUFA content of the Arabidopsis, B. napus, G. max, and Thlaspi
arvense PDCT mutants is consistent with this role (Lu et al., 2009; Bai et al., 2020; Jarvis et al., 2021; Li et
al., 2023). Additionally, in vitro assays of C. sativa PDCT demonstrated strong activity with DAG and PC
substrates containing 18:1, 18:2, 18:3, or 22:1 FAs indicating a possible role of equilibrating molecular
species of DAG and PC (Demski et al., 2021). However, PDCT can also be highly selective for or against
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unusual FA-containing DAG molecular species. R. communis predominantly accumulates TAG containing
three ricinoleates; in vitro assays indicated RcPDCT was selective for DAG containing one ricinoleate and
against DAG containing two ricinoletates. However, PDCT from C. sativa (that does not naturally produce
ricinoleic acid) would not use DAG containing ricinoleate (Lager et al., 2020; Demski et al., 2022). This
result is similar to in vivo isotopic tracing of transgenic ricinoleate producing Arabidopsis, where the flux
of ricinoleate-containing DAG into PC was inhibited (Bates and Browse, 2011), which in turn limited
ricinoleate-containing de novo DAG flux into PC then TAG. However, RcPDCT expression in the same
transgenic Arabidopsis background enhanced the accumulation of ricinoleate in TAG (Hu et al., 2012), and
similar overexpression studies with PDCT genes from various plants have correlated PDCT activity with
enrichment of PC modified FAs in TAG (Wickramarathna et al., 2015; Yu et al., 2019; Wang et al., 2021).
Thus, the PDCT DAG molecular species selectivity can influence multiple outcomes, including limiting the
flux of some molecular species into PC or enhancing the flux of select DAG molecular species into PC. Both
actions would enrich the DAG pool in certain DAG molecular species for TAG biosynthesis. Once in PC, the
FAs can either be further modified, shuttled into the acyl-CoA pool through acyl editing, or directly utilized
for TAG biosynthesis by phospholipid:diacylglycerol acyltransferase (PDAT). Collectively, these findings
suggest that PDCT primarily serves to edit the DAG molecular species pool utilized for TAG biosynthesis.

Diverse molecular species produced by TAG biosynthetic enzymes

The final step to synthesize TAG from DAG is catalyzed by an acyl-CoA:diacylglycerol acyltransferase
(DGAT), or by direct FA transfer from PC by PDAT. Plant DGATs and PDATs have been extensively studied
and recently expertly reviewed in detail (Xu et al., 2018; Chen et al., 2022; Sah et al., 2024). Here we focus
on the key aspects pertaining to their control of TAG molecular species compositions. Plants contain three
unrelated DGAT enzymes. In many cases, the ER-localized DGAT1 and/or DGAT2 are the major seed oil
producing acyltransferases, and the acyl-CoA selectivity of the dominant DGATs typically is consistent with
the FA composition of the seed oil, as demonstrated by either in vitro assays or transgenic expression
experiments (Xu et al., 2018; Correa et al., 2020; Chen et al., 2022). However, even within a species,
different isoforms of DGAT1 and/or DGAT2 can have different acyl-CoA selectivities (Demski et al., 2019;
Chen et al., 2022; Parchuri et al., 2024). The role of the soluble DGAT3 in lipid metabolism is less clear. The
relatively scant experimental evidence suggests localization to the chloroplast (Aymé et al., 2018; Carro et
al., 2022) and a role in lipid homeostasis in Arabidopsis vegetative tissues (Hernandez et al., 2012), but
results suggest a contribution of DGAT3 to C. sativa seed oil accumulation (Lee et al., 2022). DGAT1 and
DGAT?2 typically have distinct expression patterns, do not interact or co-localize in the ER, and can utilize
metabolically distinct pools of DAG (Fig. 2 DAG(1-4)) (Shockey et al., 2006; Bourgis et al., 2011; Troncoso-
Ponce et al., 2011; Horn et al., 2016; Regmi et al., 2020). Recently, assays of DGAT1 and DGAT2 from C.
sativa, Crambe hispanica, and P. fendleri indicate that DGAT1 and DGAT2 can have very distinct and
complementary DAG molecular species selectivities which contribute to the final oil composition (Jeppson
et al., 2019; Lager et al., 2020; Parchuri et al., 2024). Figure 2 indicates where evidence suggests species-
specific utilization of select DAG pools by DGAT1 or DGAT2 including: the use of de novo DAG(1) by
RcDGAT2 in R. communis endosperm (Bafor et al., 1991; Burgal et al., 2008; Troncoso-Ponce et al., 2011);
the use of PC-derived DAG(2) by AtDGAT1 or PfeDGAT1 (Regmi et al., 2020; Parchuri et al., 2024); or the
use of sn-2,3-DAG(4) produced through TAG remodeling by PfeDGAT2 (Parchuri et al., 2024). Interestingly,
when expressed transgenically, the DGAT may not utilize the same DAG pool that is exploited in the host
species. For example, RcDGAT2 expressed in the Arabidopsis dgat1-1 mutant did not utilize de novo DAG(1)
or the initially produced PC-derived DAG(2), but utilized a more slowly turned over PC-derived DAG(3) pool
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that was also utilized by AtPDAT1 (Regmi et al., 2020). Therefore, the control of DAG pool utilization may
not reside with the DGAT itself, but how that specific DGAT incorporates into the host plant lipid metabolic
network.

In addition to DGATs, PDATs also contribute to seed oil accumulation and FA composition. Arabidopsis
contains two PDAT genes (Dahlqvist et al., 2000; Stahl et al., 2004). Many plants contain one or more
homeologs of AtPDAT1 and/or AtPDAT2, and some plants have additional PDAT isoforms (Sah et al., 2024).
In vitro, PDATSs can utilize both PC and phosphatidylethanolamine (PE) as an acyl donor, but in vivo results
indicate that PDATs predominantly enhance the transfer of PC-modified FAs from sn-2 PC to TAG. The lyso-
PC coproduct is converted back to PC by LPCAT, thus acyl editing and PDAT can work together to channel
18:1 into PC for desaturation (or other modification) and subsequent transfer into TAG. Various TAG FA
composition engineering studies support this role for PDAT1 (van Erp et al., 2011; Xu et al., 2012; Pan et
al., 2013; Marmon et al., 2017; Lunn et al., 2020; Park and Kim, 2024). PDAT1s can also have high selectivity
for the acyl donor and DAG molecular species (Lager et al., 2020) ultimately affecting the TAG acyl
composition.

In plants, PDAT1 appears to be secondary to DGAT1 or DGAT?2 for seed oil synthesis. The Arabidopsis pdat1
mutant has no seed oil phenotype, however AtPDAT1 enzymatic activity provides ~80% of wild-type TAG
biosynthetic capacity in the dgatl-1 mutant background (Zhang et al., 2009). Interestingly, in vivo flux
analysis in dgat1-1 mutant demonstrated AtPDAT1 utilizes a metabolically distinct pool of PC-derived DAG
(Fig. 2, DAG(3)) from that of AtDGAT1 (Regmi et al., 2020), indicating AtPDAT1 does not just replace
AtDGAT1 in TAG biosynthesis. Instead lipid metabolism adapts to the loss of AtDGAT1 to utilize AtPDAT1,
including altered acyl flux through chloroplast lipids (Aulakh and Durrett, 2019). Additionally, in C. sativa
mRNA knockdowns or gene mutations of PDAT1 altered the oil content, although to a lesser extent than
the corresponding DGAT1 mRNA knockdowns or mutants, which also suggests PDAT1 as accessory to
DGATs for seed oil biosynthesis (Aznar-Moreno and Durrett, 2017; Marmon et al., 2017). Genome-wide
analysis of the PDAT family in four Gossypium species indicated none of the PDAT genes correlated with
guantitative trait loci for oil content, despite expression in developing seeds, further suggesting a
secondary role to DGATs for oil quantity and composition (Zang et al., 2019). The endogenous role of PDAT2
has been less studied, and AtPDAT2 cannot complement for the loss of AtDGAT1 and AtPDATI1 in
Arabidopsis (Zhang et al., 2009). However, overexpression of various plant PDATZ2s in yeast or plant tissue
can increase TAG production and alter the FA content, indicating they are functional TAG synthesizing
enzymes (Pan et al., 2013; Yuan et al., 2017; Parchuri et al., 2022). PDATs have also been highly associated
with changes in membrane and TAG content during plant stresses in various tissues (Sah et al., 2024;
Shomo et al., 2024). Considering that PDAT activity directly connects the PC and TAG pools it is tempting
to speculate that the role of PDATs during seed oil filling may be related to membrane editing during high
rates of FA synthesis and FA modification. The contribution to TAG biosynthesis may be a byproduct of
maintaining membrane lipid homeostasis, especially when unusual FAs may disrupt the membrane
structure/function. A major unknown in most plant seeds is the relative contribution of DGAT1, DGAT2,
DGAT3, PDAT1, or PDAT2 to the final oil amount and molecular species composition.

Initial TAG biosynthesis in not a metabolic end point in seed oil accumulation

Seed oil is predominantly a storage product until germination where it is broken down to provide carbon
and energy for seedling establishment. During seed maturation in many species ~10% of TAG is broken
down due to expression of the SDP1 TAG lipase in preparation for germination (Eastmond, 2006; Kelly et
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al., 2013; Kim et al., 2014; Kanai et al., 2019; Azeez et al., 2022; Aznar-Moreno et al., 2022). Yet, during the
oil accumulation phase of seed development TAG production has been historically considered a metabolic
end point. However, recently the remodeling of TAG molecular species was discovered through in vivo
metabolic tracing of P. fendleri developing seeds (Bhandari and Bates, 2021). TAG remodeling is defined as
a cycle of partial TAG degradation (through lipase removal of the sn-1 or sn-3 FA producing sn-1,2-DAG or
sn-2,3-DAG), and subsequent TAG resynthesis with different acyl-CoA species producing new molecular
species of TAG. P. fendleri accumulates high levels of lesquerolic acid, a 20-carbon hydroxylated FA (HFA),
(Fig. 1)), at the sn-1 and sn-3 positions of TAG, but not in membrane lipids (Hayes and Kleiman, 1996; Chen
et al., 2011; Bhandari and Bates, 2021). TAG synthesis starts with PC-derived sn-1,2-DAG (not containing
HFA) and an sn-3 HFA is added by PfeDGAT1 that is selective for the sn-1,2-DAG enantiomer structure and
molecular species not containing HFA. The initially produced TAG containing a single HFA is then
remodeled to contain a second HFA by a TAG lipase (PfeTAGL1) that interacts with PfeDGAT1 and removes
the sn-1 common FA. PfeDGAT2 is selective for HFA-containing sn-2,3-DAG enantiomer and lesqueroyl-
CoA, and produces the final TAG species containing HFA at both sn-1 and sn-3 (Bhandari and Bates, 2021;
Parchuri et al., 2024). Consequently, TAG remodeling in P. fenderli utilizes two DGATs with differential
selectivity for the sn-1,2 or sn-2,3 enantiomers of DAG. Thus, P. fendleri changes the TAG FA composition
after initial synthesis and may be a way to utilize PC-derived DAG but also incorporate FAs into TAG that
are incompatible with membrane lipid intermediates.

It is likely that TAG remodeling also occurs in other plants. Homologs of PfeTAGL1 are found throughout
the plant kingdom but their role in metabolism has yet to be characterized, although the Arabidopsis
homolog (At1g23330) was identified associated with lipid droplets by proteomics (Kretzschmar et al.,
2020). De novo DAG produced from PA or PC-derived DAG are both sn-1,2 DAG enantiomers due to their
original synthesis from glycerol-3-phosphate. However, TAG lipases can remove FAs from either the sn-1
or sn-3 position producing both the sn-1,2 or sn-2,3 enantiomers of DAG. The utilization of these TAG-
derived DAGs to produce different molecular species of TAG constitutes TAG remodeling but requires an
acyltransferase that can utilize the sn-2,3-DAG. The DAG enantiomer selectivity of DGATs has not been
assayed in species other than P. fendleri (Parchuri et al.,, 2024), however if additional plant DGATs
demonstrate selectivity for specific DAG enantiomers it may suggest that TAG remodeling occurs in other
species and may help explain the differential roles of DGAT1, DGAT2, or DGAT3 in plant TAG metabolism.
Additionally, TAG remodeling may help to explain discrepancies between seed TAG FA composition and
observed acyltransferase selectivities. For example, erucic acid (22:1) is highly enriched in the sn-1 position
of Crambe abyssinica TAG, but the microsomal GPAT does not efficiently utilize 22:1-CoA (Guan et al.,
2014). TAG remodeling could be a mechanism to incorporate 22:1 into sn-1 TAG. It is also possible that
TAG remodeling may be induced by stress conditions during seed development and could help explain the
effect of cold on increasing PUFA content in Helianthus annuus seeds (Garces et al., 1994; Sarmiento et
al., 1998).

The control of lipid metabolic flux may be dependent on cellular organization of lipid metabolism

How acyl flux through the complex lipid metabolic network for TAG assembly (Fig. 2) is controlled to
produce specific TAG molecular species, while maintaining distinct acyl compositions within membrane
lipids, is still an unsolved metabolic mystery. Additionally, one of the major unknowns regarding the
cellular control of metabolism (including but not limited to lipid biosynthesis) is the “blueprint” used for
subcellular and suborganellar compartmentalization of reactions. The ER membrane contains at least 16
morphologically (and likely physiologically) distinct domains (Staehelin, 1997; Levine and Rabouille, 2005).
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Some of these domains likely serve as specialized sites for either membrane or TAG biosynthesis
(Fernandez and Staehelin, 1987; Vogel and Browse, 1996). ‘Metabolons’ provide the conditions necessary
for tightly regulated, highly coordinated transfer of intermediates directly from one enzyme to the next
(Dastmalchi and Facchini, 2016; Bassard and Halkier, 2018; Coleman, 2019). Metabolons contain all the
necessary enzymes, scaffolding proteins, and other cofactors required for efficient metabolite production;
unique ER lipid composition and interaction with cellular scaffolding may also contribute to protein
associations within the metabolon. Sequestration of substrates in metabolons serves to increase their local
concentrations, thus enhancing reaction rates. Substrate channeling helps to prevent the release and
potential degradation of pathway intermediates. Metabolon protein complexes can be homomeric or
heteromeric and exist in either permanent or transient states. Various properties of permanent and
transient complexes differ, especially including the binding affinities between the different protein
subunits and may affect metabolon function (Dahmani et al.,, 2023). Because metabolons can be
dissociable, determining what is a metabolon for substrate channeling vs just interacting proteins can be
difficult.

Plant terpenoid biosynthesis is strongly suspected to be regulated, at least in part, by metabolon
formation. Terpenoids are a large category of lipophilic chemicals that serve important general roles as
electron carriers, hormones, and pigments, while specialized terpenoids are used by certain plant families
to mediate both helpful and harmful biotic interactions. Even when ignoring the biochemistry necessary
to create the fully elaborated profile of dozens or hundreds of specific terpenoids found in each species or
tissue, the biosynthesis of the foundational terpenoid building blocks is itself very complex. Two primary
biosynthetic pathways operate in parallel for the early biosynthetic reactions. These pathways occupy at
least three subcellular compartments and draw upon the same isopentenyl diphosphate and dimethylallyl
diphosphate precursors. Efficient channeling of metabolites through these pathways strongly suggests that
plant cells can contain and channel certain plant terpenoid intermediates through the appropriate
branches of the respective biosynthetic networks, as expertly reviewed recently (Gutensohn et al., 2022).
Additionally, different transgenic engineering approaches have been used to enhance terpenoid
accumulation via metabolic channeling using non-traditional approaches such as protein fusions between
successive enzymes and the use of different types of protein scaffolds (Brodelius et al., 2002; Dueber et
al., 2009; Han et al., 2016; Sadre et al., 2019; Gutensohn et al., 2022).

Within plant membrane lipid and TAG synthesis, multiple studies have provided enticing suggestions for
existence of lipid biosynthetic metabolons. All the enzymes and cofactors necessary for FA synthesis are
integrated within spinach chloroplasts, leading to highly efficient channeling of carbon into FAs and other
complex lipids, even when chloroplasts were disrupted and even though the chloroplastic FA synthase
complex is made up of several soluble enzymes that could reasonably be expected to leak from lysed
organelles in vitro (Roughan and Ohlrogge, 1996). Other findings demonstrated that ER membrane lipid
metabolic domains themselves might be further separated into additional categories, as evidenced by
non-overlapping targeting of two different DGAT enzymes from tung tree (Vernicia fordii) (Shockey et al.,
2006). Combined with the contrasting expression profiles and transgenic product profiles produced by the
two tung enzymes, it seems likely that they co-localize with different protein partners and serve
substantially different roles in vivo. The strongest evidence for possible metabolons in lipid metabolism
comes from the in vivo metabolic tracing discussed above, where plants can control the flux of Kennedy
pathway produced de novo DAG into PC rather than directly into TAG and eventually utilize PC-derived
DAG for TAG synthesis (Bates et al., 2009; Bates and Browse, 2011; Yang et al., 2017; Regmi et al., 2020;
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Bhandari and Bates, 2021), despite all known enzymes involved in de novo DAG, PC, PC-derived DAG, and
TAG synthesis localizing to the ER membrane. What is lacking is evidence of the organization of metabolon
protein components that may control this metabolism, but supportive results are starting to accumulate
(Xu et al., 2023).

Our focus lies mostly with plant lipids, yet recent work in Saccharomyces cerevisiae (Greenwood et al.,
2023) is especially relevant to plant TAG production. Extensive interactions between all three Kennedy
pathway acyltransferases (GPAT, LPAT, and DGAT) was reported. Additionally, a ‘supercomplex’ containing
the A9 FA desaturase Olel and the latter two Kennedy pathway enzymes LPAT (Slc1) and DGAT (Dgal) was
described. Dubbed as a ‘desaturasome’ (Greenwood et al., 2023), this complex likely helps to channel
unsaturated FAs into phospholipids during rapid cell division, thereby helping to maintain proper
membrane fluidity, and may also help to initiate lipid droplet formation by supplying unsaturated FAs for
DAG and TAG (Zoni et al., 2021).

Yeast two-hybrid (Y2H) was used to demonstrate the interaction of Arabidopsis DGAT1 with PDCT and
LPCAT2, suggesting possible delivery of PC-derived DAG and acyl-CoA for TAG synthesis. Notably, the yeast
two-hybrid system used in this study (and others like it) utilizes a split-ubiquitin approach that allows for
assessment of soluble proteins, membrane-bound proteins, or combinations thereof (Gidda et al., 2011).
Additionally, both Y2H and biomolecular fluorescence complementation (BiFC) demonstrated the
interaction of AtDGAT1 and AtPDAT1 (Lee and Seo, 2019; Regmi et al., 2020), consistent with accumulation
of heart-healthy oleic acid in TAG in transgenic systems expressing avocado PaDGAT1 and PaPDAT1 (Behera
et al., 2022). However, in vivo metabolic tracing in developing seeds of Arabidopsis wild-type and dgat1-1
mutant (where AtPDAT1 synthesizes TAG) suggested the use of different PC-derived DAG pools for TAG
biosynthesis by AtDGAT1 and AtPDAT1. Thus, more information is needed to understand how potential
metabolon components control substrate flux into specific TAG molecular species. Flax (Linum
usitatissimum) seed oil contains very high levels of the omega-3 FA a-linolenic acid (18:3, Fig. 1D). The
efficient accumulation of 18:3 may be explained in part by substrate channeling/TAG metabolon
formation. Y2H and BiFC approaches demonstrated physical interactions between flax DGATs and other
lipid biosynthetic enzymes, including LULPCAT2 and LUPDCT (Xu et al., 2019). Notably, in contrast to the
Arabidopsis results cited above, these authors did not observe interactions between LUDGAT1 and
LuPDAT1, further indicating that more information is needed to understand the coordinated TAG
biosynthesis between DGAT and PDAT in different species. Caution must be used in interpreting Y2H and
BiFC data, because positive interactions in these systems do not necessarily imply substrate channeling or
metabolon formation, but are nonetheless compelling evidence that points in those directions.

Another example of potential metabolons in plant lipid metabolism is the growing evidence for lineage
specific coordination of proteins to produce specific TAG molecular species (Busta et al., 2022). For
example, Castor (Ricinus communis) accumulates ~90% of the HFA ricinoleic acid (Fig. 11) in its seed oils,
but little to no ricinoleic acid in membrane lipids. This dichotomy suggests evolutionary optimization of
HFA biosynthesis, acyltransferase substrate selectivity, and substrate channeling, that could be
accomplished by metabolon formation. While the primary castor oleate hydroxylase enzyme is capable of
modest ricinoleate production in transgenic systems, these lines often suffered from oil yield penalties,
poor germination, and other problems. Stacking of multiple castor acyltransferases and TAG metabolic
genes into the hydroxylase Arabidopsis lines progressively overcame these physiological defects while also
resulting in large increases in the total amounts of ricinoleate produced in seed oils (Lu et al., 2006; Burgal
et al., 2008; van Erp et al., 2011; Lunn et al., 2019; Shockey et al., 2019). The enhanced efficiency seen in
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these lines suggests formation of protein:protein complexes among the castor enzymes, creating more
efficient HFA flux into TAG. Similarly, in vivo metabolic tracing, protein:protein interactions, and transgenic
expression support a potential metabolon for the accumulation of the HFA lesquerolic acid (Fig. 1J)
through TAG remodeling in P. fenderli (Bhandari and Bates, 2021; Parchuri et al., 2024). Thus, metabolons
may be one mechanism to separate unusual FA metabolism for TAG biosynthesis from common FA
metabolism required for membrane function.

While all these studies suggest some of the contextual possibilities for intersection of metabolon
formation and lipid biosynthesis, our research has raised another question (additionally, see Outstanding
Questions). Aside from the possible protein composition of lipid metabolons, how might metabolons play
arolein the spatial segregation of the various routes of TAG biosynthesis? Could the sorting of key enzymes
into distinct metabolons control the diversity of metabolic pathways used to produce TAG from de novo
DAG, PC-derived DAG, or through TAG remodeling? One possibility is that lipid metabolism is organized
into metabolons that separate de novo membrane lipid biosynthesis, from that of TAG biosynthesis, such
that intermediates like PC act as effective “DAG transport molecules” that shuttle between ER domains
(Shockey et al., 2016; Regmi et al., 2020; Bates, 2022). Further characterization of the protein components
of different lipid biosynthetic metabolons and how each effects substrate flux will be essential for
understanding the potential roles of metabolons in lipid metabolism.

Concluding Remarks

As our knowledge of plant TAG biosynthesis increases, so does our appreciation of the complexity of the
pathways and mechanisms required to produce different TAG molecular species. The advent of rapid and
inexpensive genome and transcriptome sequencing has allowed us to quickly identify homologs of many
TAG biosynthesis-related enzymes that are expressed in oil accumulating tissues. However, as we
presented here the same types of TAG biosynthetic enzymes may be utilized within different metabolic
pathways and have different selectivities for substrate molecular species or even stereochemical
structures. Therefore, to thoroughly comprehend oil biosynthesis in any plant species will require
understanding the biochemical activities of the enzymes involved and how they cooperate to control the
overall carbon flux through lipid metabolism (see Outstanding Questions). Additionally, despite the
deceptive simplicity of drawing “metabolic pathways”, it is important to remember that metabolism occurs
within the multi-compartmental and three-dimensional confines of a dynamic living cell. Therefore,
additional insights to the cellular organization of lipid metabolism will be essential to understand how the
overlapping pathways of membrane lipid and storage oil biosynthesis are organized and controlled. Finally,
as the recent discovery of TAG remodeling demonstrates (Bhandari and Bates, 2021; Parchuri et al., 2024),
there are likely additional unanticipated metabolic pathways (or network branches) involved in TAG
accumulation, a least in some plant species. Understanding the species-specific differences and
organization of TAG metabolism will be key for rational engineering of designer oils for the benefit of
humankind.

Outstanding Questions box

e What controls acyl flux through different branches of the lipid metabolic network?
e Does TAG remodeling occur in species that do not accumulate hydroxylated fatty acids?
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e Do DGATs from species other than P. fendleri have selectivity for sn-1,2- or sn-2,3-DAG
enantiomers? If so, what role does DAG enantiomer selectivity or lack thereof have within lipid
metabolism?

e What is the relative contribution of different acyltransferase isoforms to TAG biosynthesis in
different species?

e Do the protein:protein interactions identified within plant TAG synthesis actually function to
channel substrates into TAG as a functional metabolon?

e Could the sorting of key enzymes into distinct metabolons control the diversity of metabolic
pathways used to produce TAG from de novo DAG, PC-derived DAG, or through TAG remodeling?

e What controls the localization of different enzymes and/or distinct metabolite pools to distinct
metabolons to produce different TAG molecular species?

e (Can engineering artificial metabolons allow us to more efficiently tailor seed oil fatty acid
composition without disturbing essential membrane lipid compositions?

e Considering the huge diversity of fatty acid structures in nature, are there additional
uncharacterized metabolic pathways of TAG assembly that are key to controlling seed oil fatty acid
compositions?
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484 Figure 1. Examples of common and unusual fatty acids.

485  The fatty acid common names, and where appropriate common abbreviations, are in the figure. The IUPAC
486 names are: A, hexadecanoic acid; B, (Z)-octadec-9-enoic acid; C, (9Z,12Z)-octadeca-9,12-dienoic acid; D,
487 (92,127,157)-octadeca-9,12,15-trienoic acid; E, decanolic acid; F, (9Z,11E,13E)-octadeca-9,11,13-trienoic
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acid; G, 8-(2-octylcyclopropen-1-yl)octanoic acid; H, (Z)-11-[(2S,3R)-3-pentyloxiran-2-ylJundec-9-enoic
acid; 1, (Z,12R)-12-hydroxyoctadec-9-enoic acid; J, (Z,14R)-14-hydroxyicos-11-enoic acid; K, (Z)-docos-13-
enoic acid.
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Figure 2. Expanding diversity of metabolic reactions controlling TAG molecular species accumulation.

Solid black lines involve glycerol backbone flux. Dashed arrows are acyl transfers, blue are glycerolipid
assembly, red are fatty acid removal from glycerolipids. Substrates are in bold, where appropriate
numbered substrates represent different metabolic pools as identified from isotopic tracing studies.
Enzymes next to arrows are in italics, where appropriate specific genes isoforms are indicated. For TAG
synthesizing enzymes that utilize different DAG pools, examples of species genes are indicated where
results suggest which DAG pool each utilizes in that species. Enzymes in boxes represent reactions at the
interphase of two cellular compartments. Cellular locations or description of a multi-step metabolic
activity is Times New Roman font in italics, abbreviations: Perox., peroxisome; B-ox., beta-oxidation; FA
Mod., fatty acid modification; F. A. S., fatty acid synthesis. Substrate abbreviations in bold: DAG,
diacylglycerol; G3P, glycerol-3-phosphate; LPA, lyso-phosphatidic acid; LPC, lysophosphatidylcholine; PA,
phosphatidic acid; PC, phosphatidylcholine; TAG, triacylglycerol. Enzyme abbreviations in italics: CPT, CDP-
choline:DAG cholinephosphotransferase; DGAT, acyl-CoA:DAG acyltransferase; FAD, fatty acid desaturase;
FAT, fatty acid thioesterase; FAX, fatty acid exporter; GPAT9, acyl-CoA:G3P acyltransferase 9; LACS, long
chain acyl-CoA synthetase; LPAT2, acyl-CoA:LPA acyltransferase 2; LPCAT, acyl-CoA:LPC acyltransferase;
NPC6, non-specific phospholipase C 6; PAP, PA phosphatase; PDCT, PC:DAG cholinephosphotransferase;
PDAT, phospholipid:DAG acyltransferase; PLA, phospholipase A; PLD, phospholipase D. Lowercase r before
enzyme indicates reverse reaction.
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