
1

Adaptive Top-K in SGD for
Communication-Efficient Distributed Learning in

Multi-Robot Collaboration
Mengzhe Ruan1,2 Guangfeng Yan1,2 Yuanzhang Xiao3 Linqi Song1,2 Weitao Xu1,2

1 City University of Hong Kong Shenzhen Research Institute
2 Department of Computer Science, City University of Hong Kong

3Hawaii Advanced Wireless Technologies Institute, University of Hawaii at Manoa

Abstract—Distributed stochastic gradient descent (D-SGD)
with gradient compression has become a popular communication-
efficient solution for accelerating optimization procedures in
distributed learning systems like multi-robot systems. One com-
monly used method for gradient compression is Top-K sparsifi-
cation, which sparsifies the gradients by a fixed degree during
model training. However, there has been a lack of an adaptive
approach with a systematic treatment and analysis to adjust the
sparsification degree to maximize the potential of the model’s per-
formance or training speed. This paper proposes a novel adaptive
Top-K in Stochastic Gradient Descent framework that enables
an adaptive degree of sparsification for each gradient descent
step to optimize the convergence performance by balancing the
trade-off between communication cost and convergence error
with respect to the norm of gradients and the communication
budget. Firstly, an upper bound of convergence error is derived
for the adaptive sparsification scheme and the loss function.
Secondly, we consider communication budget constraints and
propose an optimization formulation for minimizing the deep
model’s convergence error under such constraints. We obtain
an enhanced compression algorithm that significantly improves
model accuracy under given communication budget constraints.
Finally, we conduct numerical experiments on general image
classification tasks using the MNIST, CIFAR-10 datasets. For the
multi-robot collaboration tasks, we choose the object detection
task on the PASCAL VOC dataset. The results demonstrate
that the proposed adaptive Top-K algorithm in SGD achieves
a significantly better convergence rate compared to state-of-the-
art methods, even after considering error compensation.

Index Terms—Distributed Learning, Communication-
efficient, Gradient Sparsification, Error Compensation,
Multi-Robot Collaboration.

I. INTRODUCTION

AS the field of robotics grows, more and more robots
appear in human daily life nowadays. The multi-robot

systems are well-suited for training learning modes together
using the data collected by the robots. There is a rapid
emergence of distributed multi-robot collaborative learning
algorithms in which local training parameters aggregation
accomplishes global learning models [2] [3] [4]. Stochastic
gradient descent (SGD) is commonly employed in machine
learning for its efficient computational complexity and strong

This work was presented in part at 2023 IEEE Global Communications
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empirical results. Nevertheless, with the overwhelming amount
of data today, the vanilla SGD framework has become inade-
quate. To address this, distributed SGD [5] [6] relied on local
user data to construct distributed models and transmit local
gradients between distributed nodes and a parameter server
until all nodes converge to a global consensus on the learning
model have become the core of most distributed learning
algorithms.

However, the communication overhead of transmitting
gradients often becomes the performance bottleneck due to
the limited bandwidth in distributed SGD [7] [8]. Gradient
compression, which uses less information to represent the gra-
dients, is an effective and efficient method to solve this prob-
lem. The compression methods, however, inevitably introduce
compression noise which affects the convergence of the model.
Therefore, how to choose the compression methods and the
compression level efficiently to balance the trade-off between
communication cost and convergence performance remains an
open challenge. To address this issue, three primary commu-
nication reduction schemes have been proposed to boost the
efficiency of distributed SGD. Quantization [9] and sparsifi-
cation [10] both work by reducing communication overhead
through minimizing the uploaded model size. Quantization
encodes original gradient vectors into smaller bits, while
sparsification discards less informative components. Another
approach is to decrease the number of communication rounds
between distributed nodes and the server using periodic or less
frequent model updates [11] [12] [13] [14]. Some researchers
use the combination of these three techniques [15] [16]. This
work will mainly focus on the sparsification techniques.

The existing literature in this field has yet to thoroughly
explore two important aspects. Firstly, the adaptively adjust-
ment of compression levels especially for biased compressors
has not been extensively investigated. Most current approaches
employ a fixed compression level, such as fixed quantization
bits or sparse size, throughout the entire training process,
disregarding the fact that the information statistics of model
gradients change during training. Conversely, some studies
[17] [18] [19] have empirically demonstrated that dynamically
adjusting the compression level can lead to improved con-
vergence compared to fixed schemes but mainly for unbiased
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compressors like gradient quantization. Nevertheless, unbiased
methods need more computing resources than biased meth-
ods. Our work, however, provides a theoretical perspective
by offering a biased compression level adjustment rule for
the training process. Secondly, there is a lack of a system-
atic framework to characterize the trade-off between explicit
communication budget and learning performance under error
compensation [20]. Previous research has mainly relied on
experimental results, indicating that smaller communication
costs (larger compression levels) result in lower model ac-
curacy. An online learning method was proposed in [21] to
adaptively adjust the degree of gradient sparsity when the total
dataset is non-i.i.d in the federated learning network but lacks
a theoretical convergence analysis. In contrast, we consider
explicit communication budget constraints, which limit the
total number of bits available for transferring gradients during
the entire training process and provide the theoretical proof.
More importantly, we aim to characterize the trade-off rela-
tionship between this budget and the convergence rate with or
without the gradient error compensation. By addressing these
two aspects, our work contributes to a more comprehensive
understanding of adaptive sparsification level and provides
insights into the trade-off between communication budget and
learning performance for reality training.

In this paper, we propose a novel adaptive Top-K SGD
framework for efficient distributed learning in robotics net-
works, named AdapTop-K, that aims to improve the con-
vergence performance of Top-K while maintaining the same
communication cost in distributed learning with or without
error compensation. In the era of growing data volumes and
increasingly complex models, efficient distributed learning in
robotics networks has become an essential area of research.
The key improvement proposed in AdapTop-K is its ability to
maintain the same level of communication cost as conventional
methods while achieving superior convergence in distributed
learning scenarios, with or without error compensation. Under
the assumption of smoothness, strongly convex and Polyak-
Lojasiewicz condition, we derive an upper bound on the
gap between the loss function and the optimal loss to char-
acterize the convergence error caused by limited iteration
steps, sampling, and adaptive Top-K sparsification. Based
on the theoretical analysis, we design an adaptive Top-K
method by minimizing the convergence upper bound under the
desired total communication cost. The proposed AdapTop-K
algorithm adjusts the degree of sparsification by considering
the desired model performance, the number of rounds, and
the norm of gradients. We validate our theoretical analysis
through experiments on classic image classification tasks (e.g.
MNIST and CIFAR-10 datasets) and objection detection on the
PASCAL VOC dataset. Numerical results show that AdapTop-
K outperforms the baseline sparsification methods with or
without error compensation.

To summarize, our key contributions are as follows:
• Convergence analysis: The theoretical findings of

our research contribute to the understanding of the trade-off
between communication budget and convergence error. We
analyze the optimal convergence rate of the loss function by
deriving an upper bound under general Top-K sparsification to

gradients over different communication rounds with or without
error compensation. We derive the additional term (called the
adaptive term) in the convergence rate, which characterizes
the impact of the degree of adaptive sparsification in the
convergence rate.
• Adapitive Top-K algorithm: We solve the optimiza-

tion problem that minimizes the convergence gap from the
convergence rate with the adaptive term under the same
communication cost with or without error compensation. We
propose a novel adaptive Top-K algorithm to improve the
model performance by dynamically adjusting the degree of
sparsification in the training process. By quantifying the re-
lationship between communication budget and convergence
error, our study offers valuable insights and guidance for
designing efficient and effective compression strategies in
distributed learning systems.
• Numerical Experiments: To empirically validate our

theoretical analysis, we conducted a comprehensive set of
experiments on various machine learning tasks. In general, we
evaluated our proposed approach on common image classifica-
tion tasks using well-known datasets such as MNIST, CIFAR-
10. Additionally, we also implement our methods on object
detection using the PASCAL VOC dataset for distributed
multi-robot collaborative learning. Our experimental results
provide strong evidence of the effectiveness of our approach
in mitigating communication costs. We observed significant
improvements compared to state-of-the-art gradient compres-
sion methods. These improvements not only validate the
practicality of our theoretical analysis but also underscore the
potential of our approach in real-world scenarios. By achieving
substantial reductions in communication costs, our approach
contributes to the advancement of large-scale machine learning
tasks, enabling more efficient and scalable training processes.

II. RELATED WORK

In recent years, distributed learning has emerged as a
promising technique for training deep neural networks, as it
enables the use of large-scale datasets and exploiting the par-
allel computing power of multiple machines. This resurgence
of interest in leveraging gradient compression for training
deep neural networks highlights the importance of efficient
communication schemes in large-scale distributed learning
systems.

Fixed Gradient Compression. Several existing tradi-
tional studies primarily concentrate on fixed gradient com-
pression strategies, which include gradient quantization and
sparsification. In these approaches, the specific quantization
bits or sparsification levels utilized during the training process
are predetermined and remain unchanged throughout.

Gradient quantization compresses the gradient update by
reducing the number of bits used to represent each weight
update. For quantization, there are several variants including
variance-reduced quantization [22], quantization to a ternary
vector [23], and quantization of gradient difference [24].
Besides that, Sign SGD, as proposed in [25], adopts a quan-
tization method that utilizes a single bit to quantize each
dimension of the gradients. QSGD [9] and k-level quan-
tization [26] introduce stochastic quantization schemes that
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enable the quantization of elements into arbitrary bits. These
approaches offer flexibility in the choice of quantization levels,
allowing for a more fine-grained representation of gradients
during the training process.

The gradient sparsification techniques aim to reduce the
amount of data transmitted across the network by sending
only part of the global update. One common sparsification
approach called Rand-K [27] is to randomly filter out part of
the elements of gradients and amplify the remaining elements
to keep the sparsified gradient unbiased. Alternatively, the Top-
K sparsification approach [28] is a biased sparsifier that only
keeps the largest k elements of the gradient vector, and sets
the rest part to 0, where K is a predefined hyperparameter. In
contrast to the unbiased schemes, the biased methods cannot
keep the expectation stable. Intuitively, biased methods bring
in more compression noise to the optimization process. In Fed-
erated Learning (FL), TCS [29] aims to establish a correlation
between the sparse representations employed in consecutive
iterations. This correlation minimizes the encoding overhead
associated with transmitting non-zero positional information.
PowerSGD [30] adopts a low-rank linear transformation tech-
nique to introduce sparsity into the model, thereby reducing
the number of parameters involved. It improved scalability for
FL systems while maintaining satisfactory model performance.

In recent research, there has been a growing interest
in leveraging both sparsification and quantization techniques
[15] [16] to achieve enhanced communication efficiency.
Specifically, [15] proposes a method that combines aggressive
sparsification with quantization by tracking the difference
between the original and compressed gradients to maintain
the fidelity of the gradient updates. Similarly, in [16], the
importance of gradients is determined by their magnitude.
Gradients with magnitudes exceeding a certain threshold are
quantized to a fixed number of bits and transmitted, allowing
efficient communication while prioritizing significant updates.

Adaptive Gradient Compression. From reality training
and observation, adopting a fixed compression level through
the entire training duration becomes unwise. Recent research
has started to develop adaptive compression schemes that dy-
namically determine the compression level based on empirical
observations or engineering heuristics.

For instance, [18] and [19] determine the compression
level based on the size of the gradients. MQGrad [31] formu-
lates the quantization determination as an online learning prob-
lem, utilizing historical information from past optimization
iterations. AdaComp [32] implements a localized selection ap-
proach to gradient residues, automatically adjusting the com-
pression rate based on local training. MIPD [33] adaptively
compresses gradients by considering model interpretability
and the probability distribution of gradients.

In contrast to the heuristic compression schemes men-
tioned above, recent works [34], [35], [36] and [37] propose
adaptive compression techniques from a theoretical perspec-
tive.The [34] aim to find optimal rate adaption in FedAvg in-
stead of SGD and the [35] present one data-aware adaptive gra-
dient compression methods for Non-iid workers in federated
learning. The [36] adaptively adjusts the quantization points
to minimize the variance of vector quantization, while [37]

dynamically computes scaling factors for integer rounding
operators. The consideration of communication budget con-
straints in adaptive compression occurs in [17]. They unify
the dynamic adjust gradient compression methods but withour
considering the error compensation. It is crucial to develop
practical and effective adaptive compression techniques that
not only for pure SGD but also consider error compensation
because of a wide range of practical applications.

Error Compensation. To compensate for the compressed
gradient errors by adding a memory vector and to accelerate
the learning speed, various error compensation techniques have
been introduced in the literature. For example, ScaleCom [38]
explores the similarity of gradient distribution across clients
to provide scalable error compensation for Top-k compressors.
CSER [39] employs an error compensation method called
error reset to enhance the learning speed of compressors.
These techniques contribute to improving the efficiency and
performance of distributed learning systems by mitigating
compression errors and facilitating faster convergence.

To summarize, the existing works either rely on pre-
determined fixed compression levels or utilize engineering
heuristics to adjust the compression level. However, these
approaches sometimes yield contradictory conclusions. For
instance, MQGrad [31] and AdaQS [40] suggests using fewer
bits in early epochs increasing it in later epochs, whereas
Anders [18] suggests the opposite. Additionally, error compen-
sation techniques are employed to accelerate learning speeds
for different compressors but no research considers theoretical
analysis to add it. Some of the ideas presented in this work
were previously discussed in [1], which introduced the theo-
retical framework for adaptive Top-K without error compensa-
tion. This work extends that framework to provide theoretical
analysis for AdapTop-K in SGD with error compensation.
To the best of our knowledge, our proposed AdapTop-K in
SGD is the first to systematically consider the communication
budget in adaptively adjusting the compression level based
on the gradient norm, the number of training iterations, and
the available communication budget and provide convergence
analysis with or without error compensation.

III. SYSTEM MODEL

We consider a distributed learning system including a
central server and M edge devices (workers). All the workers
collaboratively aim to train a shared machine learning model
via gradient (or its variant) aggregation with the cooperation
of the central server.

A. Learning Model

The learning model is represented by the vector of its
parameters w ∈ Rd, where d is the model size. The datasets
are distributed over the M workers. We use Di to denote the
local dataset at worker i. The global loss function, denoted by
F : Rd → R, is defined as

F (w) =
1

M

M∑
i=1

f i(w),

with f i(w) = Eξi∼Di

[
li(w; ξi)

]
,

(1)
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where li(w; ξi) is the local loss function of the model param-
eters w at work i, given the mini-batch ξi randomly selected
from worker i’s local dataset Di.

The objective of the training is to find a model parameter
w to minimize the global loss function in Eq. (1) :

w∗ = arg min
w

F (w). (2)
The distributed SGD is the most popular method to solve

this problem, where each worker i computes its local stochastic
gradient f t

i,ξ(w) = ∇li(wt; ξ
i) given parameters wt at round

t. Then the workers send the local gradient f t
i,ξ(w) to the

central server. The server aggregates these gradients to update
the model. To reduce the communication cost, we compress
the local stochastic gradients before sending them to the
server:

wt+1 = wt −
ηt
M

M∑
i=1

Ci[f t
i,ξ(w)], (3)

where ηt is the learning rate at iteration t, and Ci[·] is the
compression operator. Without the gradient compressor, Eq.
(3) reduces to the vanilla distributed SGD with wt+1 =
wt − ηt

M

∑M
i=1 f

t
i,ξ(w). The same procedure is repeated until

the convergence criterion or the maximum number of commu-
nication rounds is reached.

A commonly-used compression operator is Top-K, where
each worker i keeps only k elements of the gradient gi

t with
the largest magnitudes and sets the other elements to zero
[28]. In this work, we speed up the convergence of Top-K
by adaptively choosing the sparsity of the gradient during the
convergence process. Specifically, given a total of T rounds of
gradient update, our goal is to find the optimal sparsity levels
k0, . . . , kT−1 in each round, so that the final model is as close
to the optimal model as possible. It is natural to measure the
gap from the optimal model by the difference between the
expectation of the final global loss F (wT ) and the optimal
loss F ∗ = F (w∗). Note that we need to take expectation of
the final loss F (wT ) due to the stochastic gradient descent.
Therefore, our design problem can be formulated as follows

min
k0,...,kT−1

E [F (wT )]− F ∗ (4)

s.t.
∑T−1

t=0 kt ≤ K,

kt ∈ {0, 1, . . . , d}, t = 0, . . . , T − 1,

where K is the total budget for the communication overhead
during the training. When comparing with other sparsification
methods, we can set the communication budget K accordingly.

B. Basic Assumptions on Learning Model

To promote the convergence analysis, we make several
basic assumptions on the stochastic gradient and loss functions
that are commonly used in the literature [17], [41], and [42].

Assumption 1: (Smoothness). Let ∇F (w) denote the
gradient of the loss function evaluated at parameter w ∈ Rd.
If x,y ∈ Rd, there exists a non-negative constant L satisfying:

F (x)− F (y)− ⟨∇F (y),x− y⟩ ≤ L

2
∥x− y∥2. (5)

Assumption 1 guarantees the Lipschitz continuity of the
gradient of the loss function, is crucial for the convergence

analysis of gradient descent methods. This assumption pro-
vides a necessary condition for controlling the rate of change
of the loss function with respect to the parameter vector.
With the Lipschitz continuity assumption, gradient descent
algorithms can ensure that the updates to the parameter vector
are small and controlled, allowing for a stepwise approach
towards the minimum loss. In the absence of this assumption,
the convergence of these algorithms could be jeopardized by
overshooting or oscillation, making it difficult to determine
a suitable step size for updating the parameters. Therefore,
the Lipschitz continuity assumption provides an important
condition for the efficient optimization of loss functions using
gradient descent methods.

Assumption 2: (Polyak-Lojasiewicz Condition). Let F ∗

denote the optimal loss function value to Eq. (2). There exists
a constant µ ≥ 0 such that the global loss function F (w)
satisfies the following Polyak-Lojasiewicz condition:

∥∇F (w)∥2 ≥ 2µ(F (w)− F ∗). (6)

Notice that Assumption 2 is more general than the general
assumption of strong convexity (as Assumption 5) [43]. The
inequality in Eq. (6) display the crucial property of having
gradients that grow at a rate that is at least quadratic when
they are not at the optimal function value. By satisfying these
assumptions, these loss functions are amenable to optimization
using gradient descent algorithms, which can converge to the
global minimum with provable guarantees.

Assumption 3: (Unbiasedness and Bounded Variance of
Stochastic Gradient). The local stochastic gradients ∇f t

i,ξ(w)
are assumed to be independent and unbiased estimates of the
mini-batch gradient ∇F (w) with bounded variance:

Eξ∼Di [∇f i
ξ(wt)] = ∇f i(wt),

Eξ∼Di [∥∇f i
ξ(wt)−∇f i(wt)∥2] ≤ σ2.

(7)

Assumption 4: (Upper Bound of Sample-wise Gradient).
At any communication round t on the worker i, the gradient
∇f t

i (w) for any training sample is upper bounded by a given
contant G as:

E[
∥∥∇f i(wt)

∥∥2] ≤ G2. (8)

Assumption 5: (Strongly Convex). Let ∇F (w) denote the
gradient of the loss function evaluated at parameter w ∈ Rd.
If x,y ∈ Rd, there exists a non-negative constant µ satisfying:

F (x)− F (y)− ⟨∇F (y),x− y⟩ ≥ µ

2
∥x− y∥2. (9)

Assumption 5 guarantees the µ-stronly convex of the
gradient of the loss function, is crucial for the convergence
analysis of gradient descent methods. This assumption pro-
vides a necessary condition for the gradient must grow faster
than a quadratic function as it moves away from the optimal
function value.

Notice that the following convergence analysis in Sec-
tions IV and V are both based on Assumptions (5) and (7),
the Assumption (6) only is used in Section IV, and the
Assumption (8) and (9) only is used in Section V, similarly
as in prior work [28].
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IV. ADAPTIVE TOP-K IN SGD WITHOUT ERROR
COMPENSATION

A. Convergence Rate

In this section, we present a convergence analysis for the
AdapTop-K in SGD by using the optimality gap. The standard
optimization iterations update is Eq. 3. Inspired by [44], we
rewrite the optimization process as:

wt+1 = wt − ηtC[∇Fξ(wt)], (10)

where C[·] represents the Top-K operator here. We regard
the stochastic gradient ∇Fξ(wt) and the compressed gradient
C[∇Fξ(wt)] as:

∇Fξ(wt) = ∇F (wt) + ct(wt),

C[∇Fξ(wt)] = ∇F (wt) + bt(wt) + ct(wt),
(11)

for every variable at =
∑M

i=1 a
i
t, where ct(wt) is the noise

term made by stochastic samples and bt(wt) is a biased term
made by the Top-K method.

By Assumption 3, the noise has zero mean and bounded
variance, namely

E[ct(wt)] = 0 and E[∥ct(wt)∥2] ≤ σ2. (12)

Lemma 1: (Bounded Variance of Stochastic Gradient with
Top-K sparsification). There exists an assumption for the Top-
K sparsification method in gradient update. The variance of
the bias bt(wt) is upper bounded with the mini-batch gradient
∇Fξ(wt) [28]:

||bt(w)||2 ≤ (1− k

d
)∥∇Fξ(wt)∥2. (13)

With Lemma 1, we prove an upper bound of the optimal-
ity gap under the adaptive sparsity levels of k0, . . . , kT−1.

Theorem 1: (Upper Bound for Convergence Error). For
the problem in Eq. 1 under Assumption 1, 2, and 3 with
initial parameter w0 and stable stepsize ηt = η ≤ 1

L , using
Top-K gradients with Lemma 1 for iterations, the optimality
gap of the adaptive Top-K method is upper bounded by:

E[F (wT )]− F ∗ ≤ (1− ηµ

d
k)T (E(F (w0)− F ∗)︸ ︷︷ ︸

M(k)

+
d

2kµ
(1− k

d
+ ηL)σ2[1− (1− ηµ

d
k)T ]︸ ︷︷ ︸

N(k)

−
T−1∑
t=0

[(
ηnt

2d
∥∇Fξ(wt)∥2)(1−

ηµ

d
k)T−1−t]︸ ︷︷ ︸

only this term is affected by nt

.

(14)
where k = K

T is the average sparsity level and nt = kt−k
is the deviation from the average sparsity level at round t.

Proof: See the appendix.
The upper bound in (14) has two parts. The first part is the

sum of the first two terms M(k)+N(k), which depends only
on the average sparsity level k. The second part is the third
term, which is the only term that depends on n0, . . . , nT−1.
When nt = 0 for all t, the upper bound reduces to M(k) +
N(k), namely the bound for the vanilla Top-K method.

B. The Proposed AdapTop-K Algorithm (without error com-
pensation)

We aim to minimize the upper bound of the optimality
gap in (14) by choosing n0, . . . , nT−1. Since only the third
term depends on the adjustments n0, . . . , nT−1, the optimiza-
tion problem can be formulated as

max
n0,...,nT−1

T−1∑
t=0

(ηnt

2d
∥∇Fξ(wt)∥2

)(
1− ηµ

d
k
)T−1−t

(15)

s.t.
T−1∑
t=0

nt ≤ 0,

nt ∈ {−k, . . . , d− k} , t = 0, . . . , T − 1,

where the first constraint comes from the constraint on the
communication overhead in (4) and the second constraint
comes from the fact that kt ∈ {0, . . . , d}.

Since the objective function is linear in nt, the optimal
solution should assign the largest possible values to the nt’s
with the largest coefficients( η

2d
∥∇Fξ(wt)∥2

)(
1− ηµ

d
k
)T−1−t

, (16)

subject to the upper bound d − k and the budget of total
communication overhead. However, the major challenge is that
the coefficients in (16) depend on the gradients ∇Fξ(wt),
which are stochastic due to the randomly selected mini-
batches and are dependent on our choice of sparsity levels
n0, . . . , nt−1 up to round t. Therefore, we cannot solve the
optimization problem (15) directly. Instead, we choose to
maximize an upper bound of the objective function, which
is obtained by bounding the norm of the stochastic gradients
∇Fξ(wt).

Lemma 2: (Upper Bound for Stochastic Gradient). Under
Assumptions 1–3, given the initial parameter w0 and constant
stepsize ηt = η ≤ 1

L , the stochastic gradient in Eq. (11) can
be upper bounded by

E[∥∇Fξ(wt)∥2] ≤
2d

kη
· F (w0)

t
+

dσ2

k
(ηL+ 1) ≜

α

t
+ β

(17)
where α ≜ 2d

kηF (w0) and β ≜ dσ2

k (ηL+ 1).
Based on Lemma 2, we obtain the following upper bound

of the objective function in (15)

η

2d

T−1∑
t=0

[(α
t
+ β

)(
1− ηµ

d
k
)T−1−t

]
· nt

≜
η

2d

T−1∑
t=0

(AtBt) · nt, (18)

where At ≜ α
t + β and Bt ≜ (1− ηµ

d k)T−1−t.
Finally, the optimization problem to solve is

max
n0,...,nT−1

η

2d

T−1∑
t=0

(AtBt) · nt (19)

s.t.
T−1∑
t=0

nt ≤ 0,

nt ∈ {−k, . . . , d− k} , t = 0, . . . , T − 1.

This article has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2024.3381373

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on June 06,2024 at 09:18:51 UTC from IEEE Xplore.  Restrictions apply. 



6

The objective function in (19) is linear in nt with coeffi-
cient AtBt. We can prove the following monotonicity results.

Lemma 3: The coefficient AtBt first decreases with t and
then increases with t. Specifically, we have

At+1Bt+1 < AtBt, for t < t̂ ≜

⌊
−α+

√
∆

2β

⌋
, and

At+1Bt+1 ≥ AtBt, for t ≥ t̂, (20)

where ∆ ≜ α2 − 4αβ
lnB , B ≜ 1 − ηµ

d k, and ⌊·⌋ is the floor
function.

Given the monotonicity result in Lemma 3, we design the
following adaptive sparsity levels{

nt = +γk ⇒ kt = (1 + γ)k, t ∈ [0, t̂
2 ) ∪ [ t̂+T

2 , T − 1]

nt = −γk ⇒ kt = (1− γ)k, t ∈ [ t̂2 ,
t̂+T
2 ),

(21)
where γ is the scaling factor (i.e., a hyperparameter). In the
above scheme, nt takes the negative value half the training
time and the positive value the other half, which satisfies the
communication budget constraint. To maximize the objective
function, we set nt to be positive when AtBt is larger.

We can prove that the above adaptive sparsity levels result
in a lower convergence error compared to the vanilla Top-K.

Corollary 1: (Convergence Error Bound using AdapTop-
K in distributed SGD). Under the adaptive sparsity levels in
Eq. (21), the optimality gap is upper bounded by

E[F (wT )]− F ∗ ≤M(k) +N(k)

+
ηγk

2d

 t̂+T−1
2∑

t= t̂
2

AtBt −
t̂
2∑

t=0

AtBt −
T−1∑

t= t̂+T−1
2

AtBt


︸ ︷︷ ︸

always less than 0 because of (9)

< M(k) +N(k)︸ ︷︷ ︸
upper bound for SGD with vanilla Top-K

.

(22)
The pseudo-code of distributed SGD with the proposed

AdapTop-K method is provided in Algorithm 1.

V. ADAPTIVE TOP-K IN SGD WITH ERROR
COMPENSATION

A. Convergence Rate

In this section, we present a convergence analysis for
the AdapTop-K with error compensation in SGD by using
the optimality gap. The standard SGD optimization iterations
update is Eq. 3. However, the SGD with error compensation
is different with standard version. We consider the following
optimization algorithm for parameter 0 < k ≤ d, using
a compression factor Ck : Rd → Rd which is a Top-K
compression operator. wt+1 = wt − C(gt)

gt = mt + η∇Fξ(wt)
mt+1 = gt − C(gt),

(23)

where the ∇Fξ(wt) is stochastic gradient of loss function, m
is the memory vector using in error compensation with m0 :=
0 and η denotes a sequence of stepsizes. Note that the gradients

Algorithm 1 AdapTop-K in Distributed SGD

Input: Maximum iterations number T , learning rate η, initial
point w0 ∈ Rd, fixed k value, adjusted scale factor γ,
hyper-parameters t̂

Output: wt

1: for t = 0, 1, ...T − 1 do
2: On each worker i = 1, ...,M :
3: Compute stochastic local gradient ∇f i

ξ(wt)

4: if t ∈ [ t̂2 ,
t̂+T
2 ) then

5: Set kt to k − γk
6: else
7: Set kt to k + γk
8: end if
9: Compress gradient ∇f i

ξ(wt) to Ckt
[∇f i

ξ(wt)]
10: Send Ckt [∇f i

ξ(wt)] to server
11: Receive wt+1 from server
12: On server:
13: Collect M compressed gradients Ckt

[∇f i
ξ(wt)] from

workers
14: Aggregation: Ckt

[∇Fξ(wt)] =
∑M

i=1 Ckt
[∇f i

ξ(wt)]
15: Update global parameters: wt+1 = wt −

η
M Ckt [∇Fξ(wt)]

16: Send wt+1 back to all workers
17: end for

get multiplied with the stepsize η at the timestep t when they
are put into memory, and not when they are retrieved from the
memory.

For the convergence analysis, we first need the perturbed
iterated analysis. Inspired by the perturbed iterate framework
in [28] and [45], we define a virtual sequence {w̃t}t≥0 in the
following way to analysis the convergence rate at first:

w̃0 = w0 , w̃t+1 = w̃t − η∇Fi(wt) , (24)

where the sequences {wt}t≥0, variable η are the same as
in (23). Notice that

w̃t−wt=
(
w0−

∑t−1
j=0 η∇fi(wj)

)
−
(
w0−

∑t−1
j=0 C(gj)

)
=mt .

(25)

Lemma 4: Let {wt}t≥0 and {w̃t}t≥0 be defines as in (23)
and (24) and let the loss function fi be L-smooth and f be
µ-strongly convex with E∥∇Fi(wt)∥2 ≤ G2. Then we have

E∥w̃t+1 −w∗∥2 ≤ (1− µη

2
)E∥w̃t −w∗∥2 + η2G2

− η(E[F (wt)]− F ∗) + η(µ+ 2L)E∥mt∥2.
(26)

We know that the compression ratio only affects the
memory vectors. From the above theorem, we separated the
terms influenced by the memory vector from the stable terms
in the convergence rate.

We state the precise convergence result for Top-K with
error compensation in Theorem 2 below.

Lemma 5: (Initial Upper Bound for Convergence Rates
of Top-K with error compensation). For the problem in Eq. 1
under Assumption 1, 4, 5 for t ∈ [0, T ] with initial parameter
w0 and stable stepsize ηt = η ≤ 1

L , using Top-K gradients
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E[F (wT )]− F ∗ ≤ (1− µη

2
)T (

1

η
− µ

2
)E∥w0 −w∗∥2 + ηG2 + (

1

η
− µ

2
)(

2

µη
− 1)[1− (1− ηµ

2
)T ]η2G2︸ ︷︷ ︸

P

+(µ+ 2L)(1− k

d
)E∥gT−1∥2 + (1− µη

2
)(µ+ 2L)(1− k

d
)
T−1∑
t=1

(1− µη

2
)T−tE∥gt−1∥2︸ ︷︷ ︸

Q(k)

−(µ+ 2L)
nT−1

d
E∥gT−1∥2 + (1− µη

2
)(
µ+ 2L

d
)
T−1∑
t=1

(1− µη

2
)T−tnt−1E∥gt−1∥2︸ ︷︷ ︸

only this term is affected by nt

. (29)

with error compensation satisfied Lemma 4, we can upper
bound the convergence error by:

E[F (wT )]−F ∗≤(1− µη

2
)T(

1

η
− µ

2
)E∥w0 −w∗∥2+ηG2

+(µ+ 2L)E∥mT ∥2 + (
1

η
− µ

2
)(

2

µη
− 1)[1− (1− ηµ

2
)T ]η2G2

+ (1− µη

2
)(µ+ 2L)

T−1∑
t=0

(1− µη

2
)T−tE∥mt∥2

(27)
From convergence rate equation (27), it becomes clear

that we should derive an upper bound on E∥mt∥2.
Lemma 6: (Bounded Variance of Stochastic Gradient

with Top-K sparsification with error compensation). There
exists an assumption for the Top-K sparsification method in
gradient update with error compensation. Because we import
the memory vector m, the biased term (gt−C(gt)) is assumed
to have a bounded variance with the mini-batch gradient
∇Fξ(wt) [28]:

||mt+1(w)||2 ≤ (1− k

d
)∥gt∥2 −

nt

d
∥gt∥2. (28)

We successfully separate the fixed k and dynamic nt

in the convergence error bound with error compensation to
find which part is influenced by the dynamic term nt. The
algorithm degrades to the vanilla Top-K method with error
compensation when nt = 0.

Theorem 2: (Upper Bound for Convergence Rates of Top-
K with error compensation). Based on the conditions proposed
in Lemma 5 and Lemma 6, the upper bound of the convergence
error using Top-K gradients with error compensation satisfies
the inequality (29):

Proof: See the appendix.
The upper bound in (29) has two parts. The first part is

the sum of the first two terms P and Q(k), which depends
only on the hyperparameters and the average sparsity level k.
The second part is the third term, which is the only term that
depends on n0, . . . , nT−1. When nt = 0 for all t, the upper
bound reduces to P+Q(k), namely the bound for the vanilla
Top-K method with error compensation.

B. The Proposed AdapTop-K Algorithm (with error compen-
sation)

Similarly, we aim to design the AdapTop-K algorithm
with error compensation to improve the convergence perfor-
mance under fixed communication cost. We aim to minimize

the upper bound of the optimality gap in (29) by choosing
n0, . . . , nT−1. Since only the third term depends on the
adjustments n0, . . . , nT−1, the optimization problem can be
formulated as

max
n0,...,nT−1

(µ+ 2L)
nT−1

d
E∥gT−1∥2

+(1−µη

2
)(
µ+ 2L

d
)

T−1∑
t=1

(1− µη

2
)T−tnt−1E∥gt−1∥2

s.t.
T∑

t=0

(k + nt) = K ⇔
T∑

t=0

nt = 0,

nt ∈ {−k, . . . , d− k} , t = 0, . . . , T − 1,
(30)

where the first constraint comes from the constraint on the
communication overhead in (4) and the second constraint
comes from the fact that kt ∈ {0, . . . , d}. The K is the total
communication budget. When considering the number of the
total communication cost by bits, the budget K is equal to
(k + nt)(32 + log2d) because the number of bits to represent
a float number is 32.

Since the objective function is linear in nt, the optimal
solution should assign the largest possible values to the nt’s
with the largest coefficients

(1− µη

2
)T−t−1E∥gt∥2, (31)

subject to the upper bound d − k and the budget of total
communication overhead. However, the major challenge is
that the coefficients in (31) depend on the gradients gt,
which are the combination of stochastic gradients using the
randomly selected mini-batches and the memory vector. Those
are dependent on our choice of sparsity levels n0, . . . , nt−1

up to round t. Therefore, we cannot solve the optimization
problem (30) directly. Instead, we choose to maximize an
upper bound of the objective function, which is obtained by
bounding the norm of the stochastic gradients gt.

Lemma 7: (Upper Bound for Stochastic Gradient with
error compensation). Under Assumptions 1–3, given the initial
parameter w0 and constant stepsize ηt = η ≤ 1

L , the stochastic
gradient in Eq. (23) can be upper bounded by

E[∥ĝt∥2] ≤
2d

kη
· F (w0)

t
+

dσ2

k
(ηL+ 1)

E[∥gt∥2] = η2E[∥ĝt∥2]

≤ 2dη

k
· F (w0)

t
+

dσ2η2

k
(ηL+ 1) ≜

α

t
+ β

(32)
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where α ≜ 2dη
k F (w0), β ≜ dσ2η2

k (ηL + 1) and ĝt = 1
ηgt.

The proof and more details are in the appendix.
Based on Lemma 7, we obtain the following upper bound

of the objective function in (30)

(1− µη

2
)(
µ+ 2L

d
)
T−1∑
t=0

[(α
t
+ β

)(
1− ηµ

2

)T−1−t
]
· nt

≜ (1− µη

2
)(
µ+ 2L

d
)
T−1∑
t=0

(AtBt) · nt, (33)

where At ≜ α
t + β and Bt ≜ (1− ηµ

2 )T−1−t.
Finally, the optimization problem to solve is

max
n0,...,nT−1

(1− µη

2
)(
µ+ 2L

d
)
T−1∑
t=0

(AtBt) · nt (34)

s.t.
T−1∑
t=0

nt ≤ 0,

nt ∈ {−k, . . . , d− k} , t = 0, . . . , T − 1.

The objective function in (34) is linear in nt with coeffi-
cient AtBt. We can prove the following monotonicity results.

Lemma 8: The coefficient AtBt first decreases with t and
then increases with t. Specifically, we have

At+1Bt+1 < AtBt, for t < t̂ ≜

⌊
−α+

√
∆

2β

⌋
, and

At+1Bt+1 ≥ AtBt, for t ≥ t̂, (35)

where ∆ ≜ α2 − 4αβ
lnB , B ≜ 1 − ηµ

2 , and ⌊·⌋ is the floor
function.

Given the monotonicity result in Lemma 8, we design the
following adaptive sparsity levels

{
nt = +γk ⇒ kt = (1 + γ)k, t ∈ [0, t̂

2 ) ∪ [ t̂+T
2 , T − 1]

nt = −γk ⇒ kt = (1− γ)k, t ∈ [ t̂2 ,
t̂+T
2 ),

(36)
where γ is the scaling factor (i.e., a hyperparameter). The
above scheme is similar with Eq. (21) and nt takes the negative
value half the training time and the positive value the other
half, which satisfies the communication budget constraint. To
maximize the objective function, we set nt to be positive when
AtBt is larger.

We can prove that the above adaptive sparsity levels result
in a lower convergence error compared to the vanilla Top-K
with error compensation.

Corollary 2: (Convergence Error Bound using AdapTop-
K in distributed SGD with error compensation). Under the
adaptive sparsity levels in Eq. (36), the D is (1− µη

2 )(µ+2L
d )

Algorithm 2 AdapTop-K with error compensation in Dis-
tributed SGD
Input: Maximum iterations number T , learning rate η, initial

point w0 ∈ Rd, fixed k value, adjusted scale factor γ,
hyper-parameters t̂, initial memory vector m0 = 0

Output: wt

1: for t = 0, 1, ...T − 1 do
2: On each worker i = 1, ...,M :
3: Compute stochastic local gradient gti
4: if t ∈ [ t̂2 ,

t̂+T
2 ) then

5: Set kt to k − γk
6: else
7: Set kt to k + γk
8: end if
9: gi,t ← mi,t + η∇f t

i,ξ(w)
10: Compress gradient gi,t to Ckt [gi,t]
11: Send Ckt [gi,t] to server
12: Update memory vector mi,t+1 ← mi,t+η∇f t

i,ξ(w)−
gi,t

13: Receive wt+1 from server
14: On server:
15: Collect M compressed gradients C[gi,t] from workers
16: Aggregation: Ckt [gt] =

∑M
i=1 Ckt [gi,t]

17: Update global parameters: wt+1 = wt+ − 1
M Ckt [gt]

18: Send wt+1 back to all workers
19: end for

and the optimality gap is upper bounded by:

E[F (wT )]− F ∗ ≤ P+Q(k)

+γkD

 t̂+T−1
2∑

t= t̂
2

AtBt −
t̂
2∑

t=0

AtBt −
T−1∑

t= t̂+T−1
2

AtBt


︸ ︷︷ ︸

always less than 0 because of (35)

< P+Q(k)︸ ︷︷ ︸
upper bound for SGD with vanilla Top-K

.

(37)
The pseudo-code of distributed SGD with the proposed

AdapTop-K method adding error compensation is provided in
Algorithm 2.

VI. EVALUATION

In this section, we conduct experiments on two different
tasks using several different kinds of datasets. In multi-robot
collaboration, the vision ability is useful and important. There-
fore, we choose the computer vision tasks in our evaluation to
validate the effectiveness of our proposed AdapTop-K method.
The first task is classic image classification based on widely
used datasets, including MNIST, CIFAR-10, and CIFAR-100.
The second task is object detection based on PASCAL VOC
datasets because object detection is one of the most important
tasks for robotics.

For classic image classification, we choose M = 8/16
workers and use canonical networks to evaluate the perfor-
mance using different algorithms: the fully-connected network
on the MNIST dataset, Resnet18 on the CIFAR-10 dataset
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Dataset MNIST CIFAR-10 CIFAR-100 PASCAL VOC 2007+2012
Networks fully-connected network ResNet18 ResNet34 SSD [46] (based on VGG16)

Model Size d = 785 d = 1× 107 d = 3× 107 d = 2× 108

Learning Rate 0.1 0.05 0.05 0.01
Batch Size 32 32 32 32

Workers 8 8 16 16
Iterations 3,000 7,000 7,000 24000

Compression Ratio 128/256/512 128/256/512 128/256/512 128/256/512
γ 0.5 0.5 0.5 0.5

TABLE I: Experimental Setting.
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(c) Compression level on MNIST Dataset

Fig. 1: Evaluation results of different methods on MNIST Dataset.
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(c) Compression level on CIFAR-10 Dataset

Fig. 2: Evaluation results of different methods on CIFAR-10.
and Resnet34 on the CIFAR-100 dataset. The above datasets
are the databases commonly used for training various image
processing systems. Other parameters information is shown
in Table I. We use test accuracy to measure the learning
performance. We compare our proposed AdapTop-K in SGD
with the vanilla Top-K with or without error compensation.

Fig. 1 shows the comparison results of the classific Top-
K algorithm and our proposed AdapTop-K on the MNIST
dataset. Fig. 1a and Fig. 1b show the test accuracy curves
and the training loss curves on the MNIST dataset. It shows
how the model performance changes with iterations for several
different values of the sparsification factor (128 or 256). The
accuracy of the original distributed SGD reaches 98.02%. In
Fig. 1a, the AdapTop-K achieves 97.03% accuracy which is
better than 96.64% from Top-K. In Fig. 1b, the AdapTop-K
achieves 96.21% accuracy which is higher than 95.41% from
Top-K. The curve corresponding to the AdapTop-K achieves
better performance than fixed Top-K compression when the
compression ratios ( dk ) are 128 and 256, respectively.

Similarly, Fig. 2 shows the comparison results of the fixed
Top-K and our proposed AdapTop-K on CIFAR-10 dataset.
Fig. 2a and Fig. 2b show the test accuracy curves and the
training loss curves. It shows how the model performance
changes with iterations for several different values of the
sparsification factor (128 or 256). The accuracy of the original
distributed SGD reaches 90.92%. In Fig. 2a, the AdapTop-

K achieves 82.11% accuracy which is better than 81.36%
from Top-K. In Fig. 2b, the AdapTop-K achieves 80.31%
accuracy which is higher than 79.30% from Top-K. The curve
corresponding to the AdapTop-K achieves better performance
than fixed Top-K compression when the compression ratios
( dk ) are 128 and 256, respectively. We keep the communication
cost of the AdapTop-K stable compared with the classic Top-
K in the total training process. It can be seen that our adaptive
sparsification strategy can effectively improve the convergence
rate and model performance with the pure Top-K algorithm.
Fig. 1c and Fig. 2c both show the gradient sparsification level
in the training process of AdapTop-K on different datasets.
We can see that AdapTop-K significantly increases the bits
assigned at the early stage and the late stage of training and
improves the gradient accuracy as the training goes on.

After that, we add the error compensation [20] (ab-
breviated as ec) in Fig. 3 and Fig. 4 in our experiments,
because it is a popular technique to improve the performance
of distributed SGD with gradient compression. It shows how
the model performance changes with iterations for several
different values of the sparsification factor (256 or 512) when
we add the error compensation. In these experiments, we use
the bigger compression ratios (e.g., 256 and 512) because error
compensation may reduce optimization errors in the training
process to improve the total performance. Fig. 3 and Fig. 4
show the comparison results of the classific Top-K algorithm
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=256)
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=512)

Fig. 3: Evaluation with error compensation on MNIST.
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=512)

Fig. 4: Evaluation with error compensation on CIFAR-10.

and our proposed AdapTop-K (all with error compensation)
on MNIST and CIFAR-10 datasets. In Fig. 3a, the AdapTop-K
achieves 97.50% accuracy which is higher than 96.71% from
Top-K. In Fig. 3b, the AdapTop-K achieves 97.10% accuracy
which is better than 96.24% from Top-K. In Fig. 4a, the
AdapTop-K achieves 89.18% accuracy which is better than
88.66% from Top-K. In Fig. 4b, the AdapTop-K achieves
88.68% accuracy which is higher than 87.64% from Top-K.
The curve corresponding to the AdapTop-K achieves better
performance than fixed Top-K compression when the com-
pression ratios ( dk ) are 256 and 512, respectively. The results
show that the AdapTop-K algorithm with error compensation
achieves better performance under stable communication cost.

In multi-robot collaborative object detection, we choose
M = 16 workers and use the SSD [46] framework of neural
networks to evaluate the performance on PASCAL VOC
datasets. For object detection task, the AP (Average precision)
is a popular metric in measuring the accuracy of object
detectors like SSD. Average precision computes the average
precision value for recall value over 0 to 1. We always use
mAP (mean average precision), which is averaged AP over
all categories, to evaluate the model performance. In Fig. 6,
we show the model performance for the concrete picture. At
first, Fig. 6a shows the initial picture, and Fig. 6b shows the
result after pre-processing. The other two pictures (Fig. 5c
and Fig. 5d) show the model performance difference in the
different training stages intuitively.

Fig. 6 shows the comparison results of the classific Top-
K algorithm and our proposed AdapTop-K using the SSD
algorithm. Fig. 6a show the mAP curves on PASCAL VOC
datasets. It shows how the model performance changes with
iterations when the sparsification factor is 256. The mAP of
the original distributed SGD reaches 0.715. In Fig. 1a, the
AdapTop-K achieves 0.583 which is better than 0.574 from

(a) Example Initial Picture (b) After Pre-Processing

(c) After 12000 iterations (d) After 24000 iterations
Fig. 5: Example Picture in Total Training Process

Top-K. In Fig. 1b, we add the error compensation and the
AdapTop-K achieves 0.702 which is higher than 0.699 from
Top-K. The curve corresponding to the AdapTop-K achieves
better performance than fixed Top-K compression when the
compression ratios ( dk ) is 256.
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(b) mAP with ec
Fig. 6: Evaluation for SSD when d

k=256.

Overall, the evaluation results demonstrate that the
AdapTop-K outperforms the baselines.

VII. CONCLUSION

This paper proposes AdapTop-K, a novel adaptive gra-
dient sparsification strategy in distributed SGD for multi-
robot collaborative learning. The proposed method adjusts the
sparsification levels adaptively by considering the gradient and
the current iteration step. The experimental results for image
classification show that AdapTop-K is superior to the state-
of-the-art gradient compression methods in reducing commu-
nication cost. Our proposed method can significantly improve
the communication efficiency in distributed robotics networks
with strict proof.

APPENDIX A
PROOF IN SECTION IV

A. Proof of Lemma 1

Inspired by [28] and [44], we can get:

∥bt(w)∥2 ≤ (1− k

d
)∥gt∥2.
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B. Proof for Lemma 2
Using Eq. 10 and Assumption 1, we get:

E[F (wt+1)] ≤ F (wt)− η⟨∇F (wt), C(∇Fξ(wt))⟩

+
η2L

2
E∥C(∇Fξ(wt))∥2

use E∥C(∇Fξ(wt))∥2 = E∥C(∇Fξ(wt))

− [C(∇Fξ(wt))− (∇Fξ(wt)−∇F (wt))]∥2

+ E∥E[C(∇Fξ(wt))− (∇Fξ(wt)−∇F (wt))]∥2

and Assumption 3, we get:
≤ F (wt)−η⟨∇F (wt),E[C(∇Fξ(wt))−(∇Fξ(wt)−∇F (wt))]⟩

+
η2L

2
(σ2+E∥C(∇Fξ(wt))−(∇Fξ(wt)−∇F (wt))∥2)

≤ F (wt)+
η

2

(
E∥C(∇Fξ(wt))−(∇Fξ(wt)−∇F (wt))∥2

)
+
η2L

2
σ2

− η ⟨∇F (wt),E[C(∇Fξ(wt))−(∇Fξ(wt)−∇F (wt))]⟩ (η ≤ 1

L
)

from E∥∇F (wt) + C(∇Fξ(wt))−∇Fξ(wt)∥2 = E∥∇F (wt)∥2

+E∥C(∇Fξ(wt))−∇Fξ(wt)∥2+2E⟨∇F (wt),C(∇Fξ(wt))−∇Fξ(wt))⟩

≤ F (wt)+
η

2
(E∥C(∇Fξ(wt))−∇Fξ(wt)∥2−E∥∇F (wt)∥2)+

η2L

2
σ2

(38)

from Eq. (13) E∥bt(w)∥2 ≤ E[(1− kt
d
)∥∇Fξ(wt)∥2]

≤ E[∥∇F (wt)∥2 + σ2 − kt
d
∥∇Fξ(wt)∥2]

≤ F (wt)−
ηkt
2d

E∥∇Fξ(wt)∥2 +
η

2
σ2 +

η2L

2
σ2

After the recursion:
t∑

i=0

E[∥∇Fξ(wi)∥2]

≤ 2d

kη
(F (w0)− E[F (wt+1)]) +

dσ2(ηL+ 1)(t+ 1)

k

E[∥∇Fξ(wt)∥2] ≤
2d

k
· F (w0)− E[F (wt+1)]

ηt
+

dσ2

k
(ηL+ 1)

≤ 2d

k
· F (w0)− E[F (wT )]

ηt
+

dσ2

k
(ηL+ 1)

when t ∈ [0, T − 1], E[F (wT )] ≤ E[F (wt+1)], then

We define E[∥∇Fξ(wt)∥2] ≜
1

t
α+ β

α =
2d

k
(F (w0)− E[F (wT )]), β =

dσ2

k
(ηL+ 1).

C. Proof for Theorem 1
Using Eq. (13), we assume that kt = k + nt, we have:

E∥bt(w)∥2 ≤ E[(1− kt
d
)∥∇Fξ(wt)∥2]

≤ E[(1− k

d
)∥∇F (wt)∥2 + (1− k

d
)σ2 − nt

d
∥∇Fξ(wt)∥2],

then put this equation back to our above derivation Eq. (38):

≤ F (wt)−
ηk

2d
∥∇F (wt)∥2+

η

2
(1− k

d
+ηL)σ2− ηnt

2d
∥∇Fξ(wt)∥2.

Therefore, we use Assumption 2 and get convergence rate as

E[F (wt+1)]− F ∗ ≤ (1− ηkµ

d
)(E(F (wt)− F ∗)

+
η

2
(1− k

d
+ ηL)σ2 − ηnt

2d
∥∇Fξ(wt)∥2.

After recursion and simplification, we get:

E[F (wT )]− F ∗ ≤ (1− ηµ

d
k)T [E[F (w0)]− F ∗]

+
d

2kµ
(1− k

d
+ ηL)σ2[1− (1− ηµ

d
k)T ]

−
T−1∑
t=0

[(
ηnt

2d
∥∇Fξ(wt)∥2)(1−

ηµ

d
k)T−1−t].

D. Proof for Corollary 1

According to Theorem 1, Eq. 20 and Eq. 21, we have:

T−1∑
t=0

AtBtnt=γk(

t̂+T−1
2∑

t= t̂
2

AtBt−
t̂
2∑

t=0

AtBt−
T−1∑

t= t̂+T−1
2

AtBt)<0

E[F (wT )]− F ∗ < M(k) +N(k)

APPENDIX B
PROOF IN SECTION V

A. Proof for Lemma 4

Using the update equation (24) we have

∥w̃t+1 −w⋆∥2 = ∥w̃t −w⋆∥2 + η2 ∥∇fit(wt)∥2

− 2η ⟨wt −w⋆,∇fit(wt)⟩+ 2η ⟨wt − w̃t,∇fit(wt)⟩ .
And by applying expectation

Eit ∥w̃t+1 −w⋆∥2 ≤ ∥w̃t −w⋆∥2 + η2tG
2

− 2ηt ⟨wt −w⋆,∇f(wt)⟩+ 2ηt ⟨wt − w̃t,∇f(wt)⟩ .

To upper bound the third term, we use the same estimates
as in [45, Appendix C.3], and the strong convexity Assump-
tion 5, hence

−⟨wt −w⋆,∇F (wt)⟩ ≤ − (F (wt)− F ⋆)− µ

2
∥wt −w⋆∥2

and with ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 we further have

−∥wt −w⋆∥2 ≤ ∥wt − w̃t∥2 −
1

2
∥w̃t −w⋆∥2 .

Putting these two estimates together, we can get upper bound
as follows:

Eit ∥w̃t+1 −w⋆∥2 ≤
(
1− ηtµ

2

)
∥w̃t −w⋆∥2 + η2tG

2

−2ηtet + ηtµ ∥wt − w̃t∥2 + 2ηt ⟨wt − w̃t,∇F (wt)⟩ ,
(39)

where et = E[F (wt)] − F ⋆. We now estimate the last term.
As each Fi is L-smooth satisfies Assumption 1. Together with
2 ⟨a, b⟩ ≤ γ ∥a∥2 + γ−1 ∥b∥2 we have

⟨wt−w̃t,∇F (wt)⟩≤
1

2

(
2L ∥wt − w̃t∥2 +

1

2L
∥∇F (wt)∥2

)
=L∥wt − w̃t∥2+

1

4L
∥∇F (wt)−∇F (w⋆)∥2

≤ L ∥wt − w̃t∥2 +
1

2
(F (wt)− F ⋆) .

Combining with (39) we have

Eit ∥w̃t+1 −w⋆∥2 ≤
(
1− ηtµ

2

)
∥w̃t −w⋆∥2 + η2tG

2

− ηtet + ηt(µ+ 2L) ∥wt − w̃t∥2 ,

and the claim follows with (26).
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B. Proof for Lemma 5

According to Lemma 4, we can rewrite it as:

E[F (wt)]−F ∗ ≤ (
1

η
− µ

2
)E∥w̃t −w∗∥2+ηG2

− E∥w̃t+1 −w∗∥2 + (µ+ 2L)E∥mt∥2

≤ (
1

η
− µ

2
)E∥w̃t −w∗∥2+ηG2 + (µ+ 2L)E∥mt∥2

We can also do recursion for Lemma 4 and get:

E∥w̃t −w∗∥2 ≤ (1− µη

2
)tE∥w̃0 −w∗∥2

+
t−1∑
i=0

(1− µη

2
)t−i(η2G2 + η(µ+ 2L)E∥mi∥2).

Combine the above two equations, we could get the Eq. (27):

E[F (wT )]−F ∗≤(1− µη

2
)T(

1

η
− µ

2
)E∥w0 −w∗∥2+ηG2

+(µ+ 2L)E∥mT ∥2 + (
1

η
− µ

2
)(

2

µη
− 1)[1− (1− ηµ

2
)T ]η2G2

+ (1− µη

2
)(µ+ 2L)

T−1∑
t=0

(1− µη

2
)T−tE∥mt∥2

C. Proof for Lemma 6

It’s similiar with the proof of Lemma 1, inspired by [28],
we can get:

||mt+1(w)||2 = ∥gt − C(gt)∥2

≤ (1− kt
d
)∥gt∥2

≤ (1− k

d
)∥gt∥2 −

nt

d
∥gt∥2.

D. Proof for Theorem 2

After get the Lemma 5 and Lemma 6, we just combine
them together to get the convergence rate. The exact form of
result is too complex, please see Eq. 29.

E. Proof for Lemma 7

Firstly, the sparsification operation (C(·)) has the property
as: { C(ĝt) =

1
ηCk(gt),

ĝt =
1
ηmt +∇Fi,ξ(wt) =

1
ηgt.

E[F (wt+1)] ≤ F (wt)− ⟨∇Fξ(wt), C(gt)⟩+
L

2
E∥C(gt)∥2

≤ F (wt)− η⟨∇Fξ(wt), C(ĝt)⟩+
η2L

2
E∥C(ĝt)∥2

use E∥C(ĝt)∥2≤σ2+E∥C(ĝt)−(ĝt−(
mt

η
+∇Fξ(wt)))∥2,

we get: ≤ F (wt)− η⟨∇Fξ(wt), C(ĝt)⟩

+
η2L

2
(σ2+E∥C(ĝt)− (ĝt−(

mt

η
+∇Fξ(wt)))∥2)

from E∥C(ĝt)−(ĝt−(
mt

η
+∇Fξ(wt)))∥2≤E∥C(ĝt)−ĝt∥2

−E∥mt

η
+∇Fξ(wt)∥+ 2E⟨∇Fξ(wt), ˆC(gt)⟩, we get:

≤F(wt)+
η

2
(E∥C(ĝt)−ĝt∥2−E∥

mt

η
+∇Fξ(wt)∥+

η2L

2
σ2(η ≤ 1

L
)

from Eq. (28) E∥C(ĝt)− ĝt∥2 ≤ (1− k

d
)∥ĝt∥2

≤ E∥mt

η
+∇Fξ(wt)∥+ σ2 − kt

d
E∥ĝt∥2

≤ F (wt)−
ηkt
2d

E∥ĝt∥2 +
η

2
σ2 +

η2L

2
σ2

After the recursion:
t∑

i=0

E[∥ĝi∥2]

≤ 2d

kη
(F (w0)− E[F (wt+1)]) +

dσ2(ηL+ 1)(t+ 1)

k

E[∥ĝt∥2] ≤
2d

k
· F (w0)− E[F (wt+1)]

ηt
+

dσ2

k
(ηL+ 1)

≤ 2d

k
· F (w0)− E[F (wT )]

ηt
+

dσ2

k
(ηL+ 1)

when t ∈ [0, T − 1], E[F (wT )] ≤ E[F (wt+1)], then

We define E[∥gt∥2] = η2E[∥ĝt∥2]

≤ 2dη

k
· F (w0)

t
+

dσ2η2

k
(ηL+ 1) ≜

α

t
+ β

α ≜
2dη

k
F (w0), β ≜

dσ2η2

k
(ηL+ 1)
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