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Abstract
DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and 
maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primar
ily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methy
lomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the 
population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. 
Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an 
additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing 
data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying 
methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also dis
cuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adap
tation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed 
technology and knowledge will greatly benefit future studies in population epigenomes.
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Introduction
DNA methylation, the addition of methyl groups onto a 
DNA molecule, was first discovered in the DNA of animals 
and plants in 1950 (Wyatt 1950), 3 yr before the double 
helix structure of DNA was determined. During the past 
70 yr, extensive studies on DNA methylation have revealed 
its important roles in various biological processes, 
including regulating gene expression, maintaining genome 
integrity, and conferring adaptation to the environment. 
Several DNA methyltransferases have been identified 
in Arabidopsis (Arabidopsis thaliana), including DNA 
METHYLTRANSFERASE 1 (MET1; Kankel et al. 2003), 
CHROMOMETHYLASE 3 (CMT3; Lindroth et al. 2001), 
CHROMOMETHYLASE 2 (CMT2; Zemach et al. 2013), and 
DOMAINS REARRANGED METHYLTRANSFERASE 1/2 
(DRM1/2; Cao et al. 2000). The knockout of all 5 methyltrans
ferase genes yielded methylation-free plants with serious de
velopmental defects (He et al. 2022).

The demethylation process, involving the removal of methyl 
groups from cytosines, is controlled by several DNA glycosy
lases, including DEMETER (DME; Choi et al. 2002), 
REPRESSOR OF SILENCING 1 (ROS1; Gong et al. 2002), and 
DEMETER-LIKE 2/3 (DML2/3; Penterman et al. 2007). The path
ways and mechanisms of the establishment, maintenance, and 
removal of DNA methylation involving these methyltrans
ferases and demethylases have been reviewed (Matzke and 
Mosher 2014; Matzke et al. 2015; Zhang et al. 2018a; 
Chakraborty et al. 2022; Leichter et al. 2022; To and Kakutani 
2022). At the population level, DNA methylation shows great 
diversity: differentially methylated cytosines (DMCs) and differ
entially methylated regions (DMRs) among the Arabidopsis 
1001 Epigenomes account for 78% of total methylated cyto
sines and 38% of the reference genome, respectively 
(Kawakatsu et al. 2016a). However, the genetic basis underlying 
this great variation is largely unknown. In this review, we focus 
on recent advances in methods for quantifying DNA 
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methylation, the plasticity of DNA methylation in Arabidopsis 
accession Col-0, and the genetic basis of variation in DNA 
methylation in natural populations.

Technology for genome-wide quantification of 
DNA methylation
Bisulfite-based next-generation sequencing
The first step in DNA methylation research is to detect and 
quantify methylation levels at either the individual locus or 
whole-genome scale. Dozens of approaches have been devel
oped to achieve this goal (Fraga and Esteller 2002; Harrison 
and Parle-McDermott 2011; Kurdyukov and Bullock 2016). 
Among these, bisulfite-based methods are the most widely 
used. Whole-genome bisulfite sequencing (WGBS) has become 
the gold standard for quantifying DNA methylation at 
single-base resolution. While bisulfite treatment of DNA turns 
the unmethylated cytosines into uracil, the methylated cyto
sines remain unchanged. Following PCR amplification, the un
methylated cytosines will appear as thymines upon sequencing. 
After aligning the WGBS data to a reference, the methylation 
level of each cytosine is determined based on the proportion 
of thymines at a given locus (Frommer et al. 1992). To accurate
ly quantify methylation levels, the coverage requirement of 
WGBS is usually higher than that of whole-genome sequencing 
(WGS) for single nucleotide polymorphism identification 
(Schmitz et al. 2022). This hinders the use of WGBS at the popu
lation level for species with large genomes, such as maize (Zea 
mays) (2.1 Gb; Hufford et al. 2021) and wheat (Triticum aesti
vum, 14.5 Gb; International Wheat Genome Sequencing 
2018). To overcome this disadvantage, several alternative strat
egies have been developed to capture DNA methylation at tar
get genomic regions, such as reduced representation bisulfite 
sequencing (RRBS; Meissner et al. 2005, 2008), methylated 
DNA immunoprecipitation sequencing (MeDIP-seq; Weber 
et al. 2005), genome-wide DNA methylation microarray 
(Bibikova et al. 2011), and the convert then capture of modified 
cytosines (Li et al. 2015).

Bisulfite-free long-read sequencing
One limitation of bisulfite-based sequencing approaches is 
the bias inherent in library preparation and methylation 
mapping. This is largely due to the harsh sodium bisulfite 
treatment conditions during the cytosine conversion reac
tion and the difficulty in uniquely aligning short reads to gen
omic regions harboring repetitive DNA sequences. The origin 
of the bias can be, but is not limited to, faster degradation of 
genomic regions enriched for unmethylated cytosines, in
complete cytosine conversion, and PCR bias caused by 
skewed base content (Olova et al. 2018). In recent years, 
many bisulfite-free strategies have been developed to reduce 
this bias via third-generation sequencing or enzymatic 
reaction-based sequencing techniques (Table 1).

Third-generation sequencing, also known as long-read se
quencing, yields long reads with lengths ranging from 10 kb 
to several megabases. Nanopore sequencing records changes 
in current, which are used to distinguish among different types 
of nucleobases, when single-stranded DNA/RNA goes through 
a voltage-based nanoscale pore (Deamer et al. 2016). After 
training a computational model, the current signal can be 
used to accurately distinguish methylated from unmethylated 
cytosines, enabling the direct detection of DNA methylation 
(Fig. 1A; Rand et al. 2017; Simpson et al. 2017; Liu et al. 
2019a). Single molecule real-time (SMRT) sequencing, an alter
native third-generation sequencing technology, utilizes surface 
chemistry to immobilize a DNA polymerase into a nanostruc
ture called zero-mode waveguides. SMRT determines the DNA 
sequence by detecting the distinguishable fluorescent pulse sig
nal when a fluorescently labeled dNTP is incorporated during 
PCR (Eid et al. 2009). Given that methylation modification 
can affect the kinetics of DNA polymerase, SMRT sequencing 
has been used to detect cytosine methylation genome-wide. 
This method builds a “holistic kinetic” computational model 
from training data based on 3 parameters—the time needed 
for the incorporation of 1 base, the duration between 2 con
secutive base incorporations, and the sequence context flank
ing the cytosine. This model is then applied to real SMRT 
sequencing data to detect methylated cytosines (Fig. 1B; Tse 
et al. 2021). These third-generation sequencing techniques dir
ectly profile the methylation of DNA without bisulfite treat
ment. The resulting long reads can easily span highly 
repetitive regions of less than 100 kb.

Bisulfite-free enzyme-based sequencing
In addition to long-read sequencing, 2 bisulfite-free 
methods are largely dependent on the enzymatic activities 
of ten-eleven translocation (TET) dioxygenase, beta- 
glucosyltransferase (β-GT), and APOBEC3A deaminase. TET 
oxidizes methylated cytosine to 5-carboxylcytosine (He et al. 
2011), while APOBEC3A deaminates cytosines that are not 
oxidized by TET (Fig. 1C; Schutsky et al. 2017). TET-assisted 
pyridine borane sequencing (TAPS) utilizes TET and pyridine 
borane reduction to convert methylated cytosines to dihy
drouracils, which are subsequently converted to thymines 

ADVANCES

• The development of new bisulfite-free methods 
(i.e. third-generation sequencing and 5-letter se
quencing) enables the simultaneous detection of 
genotypes and the quantification of genome- 
wide DNA methylation.

• The dynamic DNA methylation patterns illus
trate the phenotypic plasticity within cells, tis
sues, individuals, and accessions.

• The genetic basis of the variation in DNA 
methylation within natural populations has been 
revealed by GWAS.
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during PCR (Fig. 1D; Liu et al. 2019b). Enzymatic methyl-seq 
(EM-seq) uses 3 enzymes in 2 consecutive reactions—TET 
and β-GT in the first reaction to convert methylated cytosines 
into products that cannot be oxidized by APOBEC3A, and 
APOBEC3A in the second reaction to deaminate unmethy
lated cytosines into uracils (Vaisvila et al. 2021). During subse
quent PCR, products of the TET/β-GT reaction are converted 
to cytosines, while uracils are converted to thymines (Fig. 1E). 
Remarkably, EM-seq can be successfully performed with as lit
tle as 100 pg DNA as input.

Simultaneous detection of genetic and epigenetic 
information
Besides long-read sequencing technologies, MethylSaferSeqS 
and 5-letter seq are important techniques that can simultan
eously determine genetic information and methylation sta
tus. Compared to traditional bisulfite library preparation, 
MethylSaferSeqS separates the original DNA template and 
amplification products after PCR, which are used as input 
for subsequent WGBS and WGS, respectively (Wang et al. 
2023). Unlike MethylSaferSeqS, which stores genetic and 

Table 1. Comparison of methods for genome-wide quantification of DNA

Method DNA inputa Bisulfite treatment Enzyme treatment Read length Genetic variants Training model Cost

WGBS 100 ng Y N <500 bp ND N $
Nanopore 50 ng N N >10 kb D Y $$$$
SMRT 300 ng N N >10 kb D Y $$$$
TAPS 1 ng N Y <500 bp ND N $
EM-seq 100 pg N Y <500 bp ND N $
MethylSaferSeqS 30 ng Y Y <500 bp D N $$$
Five-letter seq 2 ng N Y <500 bp D N $$

aMinimum DNA input. 
Y, required; N, not required; D, detectable; ND, not detectable.
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Figure 1. Bisulfite-free methods for the quantification of DNA methylation. A) Nanopore long-read sequencing. B) SMRT long-read sequencing. C 
to E) Two enzyme-based sequencing methods for the quantification of DNA methylation. The enzymatic reactions used in 2 bisulfite-free enzyme- 
based sequencing methods are shown in C). D and E) are schematic diagrams of TAPS and EM-seq, respectively. Some elements in this figure were 
created with BioRender (BioRender.com).
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epigenetic information in 2 separate libraries, the 5-letter seq 
retains both genetic and epigenetic information in a single li
brary (Fullgrabe et al. 2023). In this method, both ends of 
fragmented DNA are ligated to hairpin adapters containing 
a uracil residue. The 2 DNA strands are then separated by 
treatment with uracil-specific excision reagent. Upon synthe
sis of the cDNA strand, the resulting amplicons form a hair
pin structure, with 1 strand containing the original epigenetic 
information and the complimentary strand maintaining the 
genetic information. Following ligation with sequencing 
adapters, methylated cytosines are protected from oxidation 
by APOBEC3A with TET and BGT, and unmethylated cyto
sines are converted to uracils with APOBEC3A and UvrD heli
case. The methylated cytosines remain unchanged, and the 
unmethylated cytosines are converted to thymine in the final 
sequencing reads. Following the decoding rules, methylated 
and unmethylated cytosines are distinguished from sequen
cing reads for each hairpin (Fullgrabe et al. 2023). The 5-letter 
seq can determine genetic sequences and DNA methylation 
levels in a single library, dramatically reducing the cost of 
methylome studies in a population. These methods hold 
great potential for application in the field of population epi
genomics, which requires information about both genetic 
variations and methylation patterns, especially for species 
with large genomes.

Profiling DNA methylation in a single cell or single  
cell type
The cytosines in DNA should be in 1 of 2 states (i.e. either 
methylated or unmethylated) in a living cell. However, the 
methylation level often quantitatively varies from unmethy
lated to fully methylated due to cell heterogeneity and the 
pooling of samples from tissues and individuals. More than a 
dozen methods have been developed to profile DNA methyla
tion in mammals from a single cell during the past decade (re
viewed by Karemaker and Vermeulen 2018; Vandereyken et al. 
2023). These include single-cell reduced representation bisulfite 
sequencing (scRRBS; Guo et al. 2013), single-cell bisulfite se
quencing (scBS-seq; Smallwood et al. 2014), single-cell CpG is
land methylation sequencing (scCGI-seq; Han et al. 2017), and 
Smart-RRBS for DNA methylation and transcription in a single 
cell (Gu et al. 2021). Single-cell multiomics sequencing technol
ogy (scNOMeRe-seq) is used for genome-wide profiling of 
chromatin accessibility, DNA methylation, and RNA expression 
simultaneously from the same single cell (Wang et al. 2021). 
Compared to the rapid development of these techniques in 
mammals, the progress in profiling single-cell DNA methylation 
in plants has been much slower. While the majority of single 
cell studies in plants have focused on the transcriptome, 1 
study revealed the single-cell DNA methylomes of 16 micro
spores from 4 tetrads in maize using bisulfite-converted ran
domly integrated fragments sequencing (BRIF-seq; Li et al. 
2019). WGBS, combined with fluorescence-activated cell sort
ing, has allowed the DNA methylomes of specific cell types 
to be revealed, including 6 different root meristem cell 

populations (Kawakatsu et al. 2016b), sperm and vegetative 
cells (Hsieh et al. 2016), and stem and nonstem shoot meristem 
cells (Gutzat et al. 2020). These studies have shed light on the 
heterogeneity of plant cells and the dynamics of DNA methy
lation among various cell types.

The plasticity of DNA methylation
Variation in DNA methylation within Arabidopsis 
accession Col-0
At the individual level, DNA methylation is dynamic and can 
vary among generations of plants from the same ancestor 
(Becker et al. 2011; Schmitz et al. 2011), from different labora
tories (Fig. 2A; Zhang et al. 2018b), in tissues from the same 
plant (Fig. 2B; Widman et al. 2014; Williams et al. 2022), and 
in cells from the same tissue (Fig. 2C; Kawakatsu et al. 2016b; 
Gutzat et al. 2020). The difference of methylation levels of 
Col-0 genomic DNA from different labs reaches up to 10% 
for CG and 7% for non-CG methylation (Fig. 2A). DNA 
methylation patterns show context-dependent differences, 
with stable CG methylation, increased CHG methylation, 
and decreased CHH methylation observed during various 
stages of development (Gutzat et al. 2020). Notably, most 
development-associated changes in methylation occur in 
centromeric transposable elements (TEs).

In contrast, the differences in methylation patterns be
tween tissues (i.e. roots and shoots) are dynamic, with great 
variations in CG methylation in euchromatic regions and 
non-CG methylation in centromeric regions (Widman 
et al. 2014). This epigenome plasticity is largely attributed 
to spontaneous epigenetic mutation. Compared to genetic 
mutation, the rate of epigenetic mutation is several orders 
of magnitude higher (Becker et al. 2011; Schmitz et al. 2011; 
Yao et al. 2023). Interestingly, epimutation hotspots have 
been identified in the Arabidopsis genome. Although these 
regions only cover ∼12% of CG sites in the genome, ∼63% 
of the epimutation events were observed in these hotspots 
(Hazarika et al. 2022). Another important factor in 
differences in methylation patterns is the tissue/cell- 
specific expression of the methylation machinery. Ten 
genes are known to participate in epigenetic regulation, in
cluding DECREASE IN DNA METHYLATION 1 (DDM1), 
ARGONAUTE 9 (AGO9), and SU(VAR)3-9 HOMOLOG 4 
(SUVH4), which are upregulated in stem cells compared 
to nonstem cells (Gutzat et al. 2020). CLASSY family genes 
exhibit a tissue-specific expression pattern; these proteins 
regulate 24-nt siRNA production and DNA methylation in 
a tissue-specific matter (Zhou et al. 2022). Active DNA de
methylation is another contributor to the differential 
methylation among tissues. In Arabidopsis, DNA demethy
lation is controlled by 4 DEMETER family members—DME, 
DML2, DML3, and ROS1 (Law and Jacobsen 2010). Many 
tissue-specific changes in methylation identified in the 
wild type were absent in quadruple mutants of these 4 
genes (Williams et al. 2022).
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Variation in DNA methylation in response to the 
environment
Accumulating studies have demonstrated that DNA methy
lation, a heritable modification of cytosines, can respond and 
adapt to various biotic and abiotic stress factors. This topic 
has been the focus of several reviews (Feil and Fraga 2012; 
Meyer 2015; He and Li 2018; Zhang et al. 2018a; Alonso 

et al. 2019; Lloyd and Lister 2022). In this section, we focus 
on the latest studies in Arabidopsis describing the important 
roles of DNA methylation in the adaptation of plants against 
biotic and abiotic stress.

Whereas genetic mutations confer long-term plant adapta
tion, DNA methylation can rapidly respond environmental 
challenges and quickly enhance fitness. Sheikh et al. (2023)
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recently discovered the important roles of the linker histone H1 
and DNA methylation in plant defense. An Arabidopsis triple 
mutant of 3 histone H1 variants (h1.1 h1.2 h1.3) showed in
creased resistance to plant pathogen infection due to the al
tered expression of plant defense genes. The priming process 
involving pretreatment with 22-amino-acid flagellin (flg22) 
prior to pathogen infection enhanced the resistance of wild- 
type plants to subsequent pathogen infection. However, the 
h1 mutant was insensitive to priming. This could be partially 
explained by the observation that flg22 treatment resulted in 
increased DNA methylation in the promoters of defense genes 
in h1, leading to their repression (Fig. 2D; Sheikh et al. 2023). 
This study suggests that DNA methylation can quickly respond 
to pathogen infection and affect plant defense by regulating 
the expression of defense genes.

DNA methylation can also enhance plant adaptation during 
long-term evolution, dependent or independent of genetic mu
tations. A recent study by Shahzad et al. (2020) showed that 
changes in DNA methylation coupled with genetic mutation al
low plants to cope with potassium deficiency. Sensing and re
sponding to nutrient elements in the soil are essential for 
plants. The deficiency of potassium, an essential nutrient elem
ent, can lead to poorly developed roots (Tsay et al. 2011). 
Different Arabidopsis accessions have evolved 2 strategies to 
overcome low potassium stress by increasing the growth of 
main or lateral roots (Kellermeier et al. 2013). Using genome- 
wide association study (GWAS), Shahzad et al. (2020) identified 
CLSY1 as a regulator of lateral root development under low- 
potassium conditions. Low potassium prevents the degradation 
of INDOLE-3-ACETIC ACID INDUCIBLE 27 (IAA27), which 
negatively regulates root branching via the auxin signaling path
way. In parallel, CLSY1 can silence IAA27 through DNA methy
lation. The change of aspartate to glutamate at position 538 of 
CLSY1 is significantly associated with lateral root development 
under low-potassium conditions in natural Arabidopsis acces
sions. Accessions harboring the CLSY1 aspartate-encoding allele 
showed significantly higher DNA methylation of the IAA27 pro
moter and lower expression of IAA27 than accessions harboring 
the glutamate-encoding allele (Fig. 2E; Shahzad et al. 2020). 
These findings demonstrate that DNA methylation can coord
inate genetic changes and facilitate lateral root development to 
enable plants to overcome a challenging environment.

Although DNA methylation has been implicated in plant 
adaptation, the evidence is mostly from studies showing 
the association of changes in DNA methylation with environ
mental changes. Jiang et al. (2021) provided direct evidence 
to illustrate how exposure to UV light can suppress DNA 
methylation. DNA methylation in Arabidopsis responded 
to UVB light through the physical interaction between UV 
RESISTANCE LOCUS 8 (UVR8, a UVB photoreceptor) and 
DRM2 (a de novo DNA methyltransferase). UVB irradiation 
induced genome-wide DNA hypomethylation and derepres
sion of TEs via a UVR8-dependent pathway (Fig. 2F). This 
UVR8-DRM2–mediated TE reactivation mechanism could 
directly or indirectly regulate the expression of key genes in
volved in plant protection against UV exposure.

The genetic basis of variation in DNA methylation in 
natural populations
Studies of both specific genomic loci and genome-wide 
methylomes of different Arabidopsis accessions have shown 
great variations in DNA methylation among natural acces
sions (Vaughn et al. 2007; Schmitz et al. 2013; Kawakatsu 
et al. 2016b). In contrast to the well-characterized regulators 
of the establishment and maintenance of DNA methylation 
in an individual accession (Fang et al. 2021, 2022; He et al. 
2022; Leichter et al. 2022), the genetic and mechanistic basis 
of the variation in DNA methylation among natural accessions 
is poorly understood. Several contributors to this process have 
been identified by GWAS (Baduel and Sasaki 2023). Among 
these, CMT2 was mapped by multiple GWASs based on 
non-CG methylation levels of the whole genome, DMRs, 
and CMT2-targeted TEs (Shen et al. 2014; Dubin et al. 2015; 
Kawakatsu et al. 2016a; Sasaki et al. 2019; Hüther et al. 2022; 
Sasaki et al. 2022). This aligns well with the function of 
CMT2 as a DNA methyltransferase responsible for maintain
ing CHH methylation (Zemach et al. 2013) and the strong cor
relation between CHH and CHG methylation (Sasaki et al. 
2022). Another major determinant of CHH methylation at 
TEs is NRPE1, which encodes the largest subunit of RNA poly
merase V and a key component of the RNA-directed DNA 
methylation (RdDM) pathway (Kawakatsu et al. 2016a; 
Sasaki et al. 2019). The role of NRPE1 in controlling the mobil
ization of TEs was also revealed via GWAS (Baduel et al. 2021).

In a GWAS, miR823A was found to be frequently associated 
with CHG DMRs (Hüther et al. 2022). Another GWAS of CHG 
methylation of RdDM/CMT2-targeted TEs identified both 
CMT3 and miR823A after setting CHH methylation as 
a covariate (Sasaki et al. 2022). CMT3 encodes a DNA 
methyltransferase responsible for CHG methylation mainten
ance (Lindroth et al. 2001), while miR823A encodes 
microRNA823A, which is predicted to target CMT3. These find
ings point to possible miR823A-CMT3 module-mediated regula
tion of CHG methylation, although further validation is 
required.

ARGONAUTE genes, including AGO9 and AGO1, have 
been identified as regulators of CHH methylation of 
RdDM-targeted TEs in natural populations (Kawakatsu 
et al. 2016a; Sasaki et al. 2019). The functions of these genes 
in these accessions may differ from the function of AGO9 in 
Col-0, as the ago9 mutant showed no changes in methylation 
in RdDM-targeted hypo-DMR regions (Stroud et al. 2013). 
This suggests that AGO proteins that are not involved in 
the RdDM pathway in Col-0 may participate in DNA methy
lation in other accessions.

MULTICOPY SUPPRESSOR OF IRA1 (MSI1) encodes a 
subunit of Polycomb repressive complex 2 (PRC2), which 
catalyzes the trimethylation of histone 3 at lysine 27 
(H3K27me3; Kohler et al. 2003; Bemer and Grossniklaus 
2012). In 2 recent GWAS, MSI1 was shown to be associated 
with CHG methylation at 44 DMR regions, as well as 
RdDM- and CMT2-targeted TEs (Hüther et al. 2022; Sasaki 
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et al. 2022). In the Col-0 background, H3K27me3 has been 
shown to be independent of DNA methylation (Zhang 
et al. 2007), unlike H3K9me2, which is required for CHG 
methylation by CMT3 (Fang et al. 2022). These findings point 
to a possible relationship between DNA methylation and 
H3K27me3 in other accessions, which remains to be 
characterized.

Although not repeatedly identified, genetic variations of 
JUMONJI26 (JMJ26)—a homolog of INCREASE IN BONSAI 
METHYLATION 1 (IBM1)—were reported to be associated 
with CHG methylation of RdDM-targeted TEs in conditional 
GWAS using CHH as a covariate (Sasaki et al. 2022). 
Knockout of JMJ26 resulted in increased CHG methylation of 
RdDM-targeted TEs (Sasaki et al. 2022). The key for the identi
fication of JMJ26 is conditional analysis in which CHH methyla
tion is included as a covariate when performing GWAS of CHG 
methylation. This finding highlights the potential for innova
tions in GWAS, including improved methods or population 
construction, in population epigenetic studies.

Besides trans regulators, a substantial number of genetic 
variations, whether nearby or at a considerable distance, 
have been shown to be associated with variations in DNA 
methylation at the target sites (Schmitz et al. 2013; Dubin 
et al. 2015; Sasaki et al. 2019; Hüther et al. 2022). Still, little 
is known about the causal genetic changes, as there has 
been no validation of the genetic changes underlying these 
associations. Several studies have demonstrated that genetic 
variations, such as TE insertions and structural variations 
(SVs), can influence DNA methylation at nearby sites. 
Ahmed et al. (2011) found that hundreds of TEs with no 
matching 24-nt siRNA acquired DNA methylation through 
the spreading of the methylation from adjacent densely 
methylated TEs with matching 24-nt siRNA. Another study 
identified the recent TE transpositions in 211 Arabidopsis ac
cessions and found that half of the new TE insertion sites are 
highly methylated and spread to adjacent region in acces
sions with TE insertions (Quadrana et al. 2016). Direct evi
dence comes from the de novo deposition of CEN180 
repeats into a euchromatic target site, which induced the es
tablishment and spreading of local DNA methylation in the 
ibm1 mutant (Liu et al. 2023). In the Arabidopsis 1001 
Methylomes, a large proportion of SVs (22% to 50%) are dif
ferentially methylated (Kawakatsu et al. 2016a), highlighting 
the impact of SV on the DNA methylation of flanking se
quences. The best example showing how SV affects DNA 

methylation is the PHOSPHORIBOSYLANTHRANILATE 
ISOMERASE (PAI) gene family (PAI1 to PAI4) in 
Arabidopsis. Some accessions contain unmethylated PAI 
genes, such as Col, while others contain methylated PAI 
genes, such as WS. Col contains 3 unlinked PAI genes 
(PAI1, PAI2, and PAI3), while WS contains 4 PAI genes with 
a PAI1 to PAI4 inverted duplication. This inverted repeat 
leads to methylation of all 4 PAI genes (Bender and Fink 
1995; Luff et al. 1999; Melquist et al. 1999).

Concluding remarks
Recent GWASs have provided important information about 
the genetic basis of the natural variation in the non-CG 
methylation of TEs. However, our understanding of the gen
etic basis of CG methylation and the DNA methylation of 
other genomic features, such as promoter regions and 
protein-coding genes, remains largely unknown. The discov
ery and validation of epiallele functions in a high-throughput 
manner and the application of epialleles in crop breeding 
programs represent important future endeavors (see 
“OUTSTANDING QUESTIONS”). Furthermore, the availabil
ity of a genome-wide chromatin atlas with a multiomics 
data set at the population level will undoubtedly enhance 
our understanding of epigenetic variations. The use of com
bination of big data analysis with epigenetic editing tech
nologies for the mining and application of epigenetic 
variations will greatly enhance crop breeding programs.
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