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To efficiently yet reliably represent and process information, our brains need to produce
information-rich signals that differentiate between moments or cognitive states, while
also being robust to noise or corruption. For many, though not all, natural systems,
these two properties are often inversely related: More information-rich signals are less
robust, and vice versa. Here, we examined how these properties change with ongoing
cognitive demands. To this end, we applied dimensionality reduction algorithms and
pattern classifiers to functional neuroimaging data collected as participants listened
to a story, temporally scrambled versions of the story, or underwent a resting state
scanning session. We considered two primary aspects of the neural data recorded in
these different experimental conditions. First, we treated the maximum achievable
decoding accuracy across participants as an indicator of the “informativeness” of the
recorded patterns. Second, we treated the number of features (components) required
to achieve a threshold decoding accuracy as a proxy for the “compressibility” of the
neural patterns (where fewer components indicate greater compression). Overall, we
found that the peak decoding accuracy (achievable without restricting the numbers of
features) was highest in the intact (unscrambled) story listening condition. However,
the number of features required to achieve comparable classification accuracy was also
lowest in the intact story listening condition. Taken together, our work suggests that
our brain networks flexibly reconfigure according to ongoing task demands and that
the activity patterns associated with higher-order cognition and high engagement are
both more informative and more compressible than the activity patterns associated
with lower-order tasks and lower engagement.

information | compression | temporal decoding | dimensionality reduction | neuroimaging

Large-scale networks, including the human brain, may be conceptualized as occupying
one or more positions along on a continuum. At one extreme, every node is fully
independent from every other node. At the other extreme, all nodes behave identically.
Each extreme optimizes key properties of how the network functions. When every node
is independent, the network is maximally expressive: If we define the network’s “state”
as the activity pattern across its nodes, then every state is equally reachable by a network
with fully independent nodes. On the other hand, a network of identically behaved
nodes optimizes robustness: Any subset of nodes may be removed from the network
without any loss of function or expressive power, as long as any single node remains.
In addition to considering flexibility across space (nodes), these properties may also
vary, largely independently, across time. A network is maximally expressive when its
nodes’ activity patterns vary in meaningful ways from moment to moment, whereas
it is maximally robust to signal corruption when its activity is constant over time.
Presumably, most natural systems tend to occupy positions between these temporal and
spatial extremes. Under different circumstances, it may even prove beneficial for systems
to make different tradeoffs between expressiveness and robustness along the temporal
and spatial dimensions. We wondered: might the human brain reconfigure itself to be
more flexible or more robust according to ongoing demands? In other words, might the
brain reconfigure its connections or behaviors under different circumstances to change
its positions along these continuums?

Closely related to the above notions of expressiveness versus robustness are measures
of how much information is contained in a given signal or pattern and how redundant a
signal is (1). Formally, information is defined as the amount of uncertainty about a given
variable’s outcomes (i.e., entropy), measured in bits, or the optimal number of yes/no
questions needed to reduce uncertainty about the variable’s outcomes to zero. Highly
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complex systems with many degrees of freedom (i.e., high
flexibility and expressiveness) are more information-rich than
simpler or more constrained systems. The redundancy of a signal
denotes the difference between how expressive the signal could be
(i.e., proportional to the number of unique states or symbols used
to transmit the signal) and the actual information rate (i.e., the
entropy of each individual state or symbol). If a brain network’s
nodes are fully independent, then the number of bits required
to express a single activity pattern is proportional to the number
of nodes. The network would also be minimally redundant since
the status of every node would be needed to fully express a
single brain activity pattern. If a brain network’s nodes are fully
coupled and identical, then the number of bits required to express
a single activity pattern is proportional to the number of unique
states or values any individual node can take on. Such a network
would be highly redundant since knowing any individual node’s
state would be sufficient to recover the full-brain activity pattern.
Highly redundant systems are also robust since there is little total
information loss due to removing any given observation.

We take as a given that brain activity is highly flexible: Our
brains can exhibit nearly infinite varieties of activity patterns.
This flexibility implies that our brains’ activity patterns are
highly information rich. However, brain activity patterns are also
highly structured. For example, full-brain correlation matrices are
stable within (2–4) and across (4–7) individuals. This stability
suggests that our brains’ activity patterns are at least partially
constrained, for example, by anatomical, external, or internal
factors. Constraints on brain activity that limit its flexibility
decrease expressiveness (i.e., its information rate). However,
constraints on brain activity also increase its robustness to noise
(e.g., “missing” or corrupted signals may be partially recovered).
For example, recent work has shown that full-brain activity
patterns may be reliably recovered from only a relatively small
number of implanted electrodes (8, 9). This robustness property

suggests that the relevant signals (e.g., underlying factors that have
some influence over brain activity patterns) are compressible.

To the extent that brain activity patterns contain rich task-
relevant information, we should be able to use the activity patterns
to accurately differentiate between different aspects of a task (e.g.,
using pattern classifiers; 10). For example, prior work has
shown a direct correspondence between classification accuracy
and the information content of a signal (11). To the extent
that brain activity patterns are compressible, we should be able
to generate simplified (e.g., lower dimensional) representations
of the data while still preserving the relevant or important
aspects of the original signal. In general, information content
and compressibility are often related but are also dissociable
(Fig. 1). If a given signal (e.g., a representation of brain activity
patterns) contains more information about ongoing cognitive
processes, then the peak decoding accuracy should be high.
In the simulations shown in Fig. 1C, we construct synthetic
datasets that have high or low levels of informativeness by
varying temporal autocorrelations in the data (Synthetic Data). If
a signal is compressible, then a low-dimensional embedding of the
signal will be similarly informative as the original signal. In the
simulations shown in Fig. 1C, we construct synthetic datasets
that have high or low levels of compressibility by varying the
covariance structure across features (Synthetic Data). As shown
in Fig. 1D, highly informative datasets yield higher decoding
accuracies than less informative datasets (i.e., the peaks of the
curves in theTop panels of Fig. 1D are higher than the peaks of the
curves in the Bottom panels). Highly compressible datasets show
steeper slopes when we plot decoding accuracy as a function of the
number of components used to represent the data (i.e., the slopes
of the curves in the Left panels of Fig. 1D are steeper than the
slopes of the curves in the Right panels). Whereas characterizing
the informativeness and compressibility of synthetic data can be
instructive, we are ultimately interested in understanding how
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Fig. 1. Information content and compressibility. (A) Variance explained for two images. Consider two example images: a photograph and simple drawing. The
images have the same resolutions, but their content is very different. The photograph is more information rich: When we compare the original photograph
and drawing (leftmost column), we can see that the photograph captures much more detail. We can also apply principal components analysis to the images,
treating the rows of the images as “observations.” Across columns, we identified the numbers of components required to explain 100%, 95%, 75%, or 50% of
the cumulative variance in each image (the 100% columns denote the original images). The numbers of components are indicated in parentheses, and the
resulting “compressed” images are displayed. This analysis reveals that the drawing is more compressible: Just 16 components can explain 95% of the variance
in the drawing, whereas 50 components are required to explain 95% of the variance in the photograph. (B) Representing two images with different numbers
of components. Using the same principal component decompositions as in Panel (A), we computed the cumulative proportion of variance explained with 380
(original images), 20, 4, or 2 components. This analysis provides another way of characterizing the compressibility of each image by showing that the same
number of components can explain more variance in the drawing than in the photograph. (C) Template data from four synthetic datasets. We constructed
four synthetic datasets, each comprising 25 features (columns) observed across 100 samples (rows) from each of 10 simulated “participants.” The datasets
were constructed to contain different levels of informativeness and compressibility (Synthetic Data). (D) Decoding accuracy by number of components. For each
synthetic dataset, we trained across-participant classifiers to decode timepoint labels. Each panel displays the decoding accuracy as a function of the number
of components used to represent the data. Error ribbons denote bootstrap-estimated 95% CIs.
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these properties relate to brain activity patterns recorded under
different cognitive circumstances.

Several recent studies suggest that the complexity of brain
activity is task-dependent, whereby simpler tasks with lower
cognitive demands are reflected by simpler and more com-
pressible brain activity patterns, and more complex tasks with
higher cognitive demands are reflected by more complex and less
compressible brain activity patterns (12, 13). These patterns hold
even when the stimulus itself is held constant (12). These findings
complement other work suggesting that functional connectivity
(correlation) patterns are task-dependent (3, 7, 8), although see
ref. 4. Higher-order cognitive processing of a common stimulus
also appears to drive more stereotyped task-related activity and
functional connectivity across individuals (14–17).

The above studies are consistent with two potential descrip-
tions of how cognitive processes are reflected in brain activity
patterns. One possibility is that the information rate of brain
activity increases during more complex or higher-level cognitive
processing. If so, then the ability to reliably decode cognitive
states from brain activity patterns should improve with task
complexity or with the level (or “depth”) of cognitive processing.
A second possibility is that the compressibility of brain activity
patterns decreases during more complex or higher-level cognitive
processing. If so, then individual features of brain recordings
should carry more information (over and above the information
carried by other features) during complex or high-level (versus
simple or low-level) cognitive tasks. The tradeoffs between
these two aspects of brain activity may also vary across brain
regions or networks, for example, according to each region’s
functional role.

We used a previously collected neuroimaging dataset to
estimate the extent to which each of these two possibilities
might hold. The dataset we examined comprised functional
magnetic resonance imaging (fMRI) data collected as participants
listened to an audio recording of a 7-min story, temporally
scrambled recordings of the story, or underwent a resting
state scan (17). Each of these experimental conditions evokes
different depths of cognitive processing (13–15, 17). We used
across-participant classifiers to decode listening times in each
condition, as a proxy for how “informative” the task-specific
activity patterns were (16). We also used principle components
analysis to generate lower-dimensional representations of the
activity patterns. We then repeated the classification analyses after
preserving different numbers of components and examined how
classification accuracy changed across the different experimental
conditions.

Results

We sought to understand whether higher-level cognition is
reflected by more reliable and informative brain activity patterns
and how compressibility of brain activity patterns relates to
cognitive complexity. We developed a computational framework
for systematically assessing the informativeness and compressibil-
ity of brain activity patterns recorded under different cognitive
circumstances. We used across-participant decoding accuracy
(Forward Inference and Decoding Accuracy) as a proxy for
informativeness. To estimate the compressibility of the brain
patterns, we used group principal components analysis (PCA) to
project the brain patterns into k-dimensional spaces, for different
values of k [Hierarchical Topographic Factor Analysis (HTFA) and
PCA]. For more compressible brain patterns, decoding accuracy
should be more robust to small values of k.

We analyzed a dataset collected by Simony et al. (17) that com-
prised four experimental conditions. These conditions exposed
participants to stimuli that systematically varied in cognitive
engagement. In the intact experimental condition, participants
listened to an audio recording of a 7-min Moth Radio Hour
story, Pie Man, by Jim O’Grady. In the paragraph-scrambled
experimental condition, participants listened to a temporally
scrambled version of the story, where the paragraphs occurred
out of order, but where the same set of paragraphs was presented
over the entire listening interval. All participants in this condition
experienced the scrambled paragraphs in the same order. In the
word-scrambled experimental condition, participants listened to
a temporally scrambled version of the story, where the words
occurred in a random order. Again, all participants in this
condition experienced the scrambled words in the same order.
Finally, in the rest experimental condition, participants lay in
the scanner with no overt stimulus, while keeping their eyes
open and blinking as needed. This public dataset provided a
convenient means for testing our hypothesis that different levels
of cognitive processing and engagement affect how informative
and compressible the associated brain patterns are.

To evaluate the relation between informativeness and com-
pressibility for brain activity from each experimental condition,
we trained a series of across-participant temporal decoders on
compressed representations of the data. Fig. 2A displays the
decoding accuracy as a function of the number of principal
components used to represent the data (SI Appendix, Figs. S1 and
S2). Several patterns were revealed by the analysis. First, in
general (i.e., across experimental conditions), decoding accuracy
tends to improve as the number of components are increased.
However, decoding accuracy peaked at higher levels for ex-
perimental conditions that exposed participants to cognitively
richer stimuli (Fig. 2D). The peak decoding accuracy was highest
for the “intact” condition (versus paragraph: t(99) = 35.205,
P < 0.001; versus word: t(99) = 43.172, P < 0.001; versus rest:
t(99) = 81.361, P < 0.001), next highest for the “paragraph”
condition (versus word: t(99) = 6.243, P < 0.001; versus
rest: t(99) = 50.748, P < 0.001), and next highest for the
“word” condition (versus rest: t(99) = 48.791, P < 0.001).
This ordering implies that cognitively richer conditions evoke
more stable brain activity patterns across people.

The cognitively richer conditions also displayed steeper initial
slopes. For example, the intact condition decoders reached
an arbitrarily chosen threshold of 5% accuracy using fewer
components than the paragraph condition decoders (t(99) =
−7.429, P < 0.001) or word condition decoders (t(99) =
−7.300, P < 0.001), and decoding accuracy never exceeded 5%
for the rest condition. This suggests that brain activity patterns
evoked by cognitively richer conditions are more compressible,
such that representing the data using the same number of
principal components provides more information to the temporal
decoders (Fig. 2 B and C ). Taken together, as shown in Fig. 2E,
we found that brain activity patterns evoked by cognitively richer
conditions tended to be both more informative (i.e., associated
with higher peak decoding accuracies) and more compressible
(i.e., requiring fewer components to achieve the 5% accuracy
threshold).

If informativeness (to the temporal decoders) and compress-
ibility vary with the cognitive richness of the stimulus, might
these measures also vary over time within a given condition? For
example, participants in the intact condition might process the
ongoing story more deeply later on in the story (compared with
earlier in the story) given the additional narrative background
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Fig. 2. Decoding accuracy and compression. (A) Decoding accuracy by number of components. Ribbons of each color display cross-validated decoding
performance for each condition (intact, paragraph, word, and rest), as a function of the number of components (features) used to represent the data. For
each condition, decoding accuracy has been normalized by subtracting expected “chance” decoding performance (estimated as 1

T , where T is the number of
timepoints in the given condition). This normalization was intended to enable fairer comparisons across conditions; a relative decoding accuracy of 0.0 denotes
“chance” performance. The horizontal black line denotes 5% decoding accuracy (used as a reference in Panel B). (B) Numbers of components required to reach a
fixed decoding accuracy threshold, by condition. The panel displays a zoomed-in view of the Inset in Panel (A). Intersections between each condition’s decoding
accuracy curve and the 5% decoding accuracy reference line are marked by arrows. All error ribbons in Panels (A and B) denote bootstrap-estimated 95% CIs.
(C) Estimating “compressibility” for each condition. The probability density plots display the numbers of components required to reach at least 5% (corrected)
decoding accuracy, across all cross-validation runs. For the “rest” condition, where decoding accuracy never reached 5% accuracy, we display the distribution
of the numbers of components required to achieve the peak decoding accuracy in each fold. (This distribution is nearly flat, as also illustrated in Panel E).
The scale bar denotes a height of 0.01. (D) Estimating “informativeness” for each condition. The probability density plots display the peak (corrected) decoding
accuracies achieved in each condition, across all cross-validation runs. The scale bar denotes a height of 0.01. (E) Informativeness versus compressibility.
Each dot displays the minimum number of components required to achieve at least 5% corrected decoding accuracy (x-coordinate; for the rest condition,
the numbers of components are estimated using the peak decoding accuracies as in Panel C) and the peak (corrected) decoding accuracy (y-coordinate). The
smaller dots correspond to individual cross-validation runs and the larger dots display the averages across runs. The Inset displays a zoomed-in view of the
indicated region in the main panel.

and context they had been exposed to by that point. To examine
this possibility, we divided each condition into four successive
time segments. We computed decoding curves (Fig. 3A) and
the numbers of components required to achieve 5% decoding
accuracy (Fig. 3B) for each segment and condition. We found
that, in the two most cognitively rich conditions (intact and
paragraph), both decoding accuracy and compressibility, as
reflected by the change in decoding curves, increased with
listening time (e.g., at the annotated reference point of k = 20
components in Fig. 3C : Intact: t(99) = 7.915, P < 0.001;
paragraph: t(99) = 2.354, P = 0.021). These changes may
reflect an increase in comprehension or depth of processing
with listening time. In contrast, the decoding accuracy and
compressibility decreased with listening time in the word
condition (t(99) = −10.747, P < 0.001) and rest condition
(t(99) = −22.081, P < 0.001). This might reflect the depletion
of attentional resources in the less-engaging word and rest
conditions.

These results make some intuitive sense. As the contextual
information available to participants increases (i.e., over time in
the cognitively rich intact and paragraph conditions), it makes
sense that this might constrain neural responses to a greater
extent. While this pattern may not necessarily hold for every
possible story or stimulus, we suspect that it is generally the case

that our knowledge about what is happening in a story tends to
increase as we experience more of it. In turn, this could lead to
greater consistency in different people’s interpretations of and
neural responses to the stimulus. Similarly, as participants are
left to “mind wander,” or as they experience mental fatigue
(i.e., over time in the less cognitively rich word and rest
conditions), we suggest that this might lead to greater variability
in neural responses across people, resulting in lower decoding
accuracy. Again, it is not necessarily the case that every possible
“unengaging” stimulus will lead to greater neural variability as
time progresses, but we suspect this phenomenon is likely to
hold for a variety of such stimuli. These findings replicate at least
to a limited extent (e.g., across both cognitively rich conditions
and across both cognitively impoverished conditions, and for
the different groups of participants in each of those conditions).
However, determining whether these patterns generalize to other
stimuli (e.g., other scramblings, other stories, other modalities,
etc.) would require additional study (with new stimuli).

If the informativeness and compressibility of brain activity
patterns vary over time, might these properties also vary across
brain networks? We used a network parcellation identified by Yeo
et al. (5) to segment the brain into seven distinct networks. The
networks can be sorted (roughly) in order from lower-level to
higher-level cortex as follows (Fig. 4 A–C ): visual, somatomotor,
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Condition
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C

Fig. 3. Changes in decoding accuracy and compression over time. (A) Decoding accuracy by number of components, by story segment. Each family of curves
is plotted in the same format as Fig. 2A but reflects data only from one quarter of the dataset. (B) Informativeness versus compressibility by condition and
segment. Each scatter plot is in the same format as Fig. 2E, but reflects data only from one quarter of the dataset. (C) Change in decoding accuracy over time,
by number of components. For each number of components (x-axis) and condition (color), we fit a regression line to the decoding accuracies obtained for the
first, second, third, and fourth quarters of the dataset (corresponding to the columns of Panels A and B). The y-axis denotes the slopes of the regression lines.
The black vertical line marks k = 20 components, as referenced in the main text. All error ribbons denote bootstrap-estimated 95% CIs.

dorsal attention, ventral attention, limbic, frontoparietal, and
default mode. Next, we computed decoding curves separately
for the activity patterns within each network and identified
each network’s inflection point, for each experimental condition.
Moving from low-order networks to higher-order networks,
we found that decoding accuracy tended to increase in the
higher-level experimental conditions and decrease (slightly) in
the lower-level experimental conditions (Fig. 4 D and E ;
Spearman’s rank correlation between decoding accuracy and
network order: intact: � = 0.362, P < 0.001; paragraph:
� = 0.441, P < 0.001; word: � = −0.102, P = 0.007;
rest: � = −0.354, P < 0.001). This suggests that higher-order
networks may carry more content-relevant or stimulus-driven
“information.” We found no clear trends in the proportions of
components required to achieve 5% decoding accuracy across
networks or conditions (Fig. 4F ). We note that the limbic
network we considered here often overlaps with low (imaging)
signal regions, and therefore it may be difficult to draw strong
conclusions about this network’s informativeness or compress-
ibility. We also considered the possibility that the correlations
with network order might be influenced by the numbers of nodes
in each network. We designed a permutation-based procedure
to address this possibility, whereby we repeated the above
analyses using shuffled network labels (Network Permutation
Tests). The correlations between decoding accuracy and network
order were reliably more positive than the shuffled correlations
for the intact (t(1,998) = 276.431, P < 0.001) and paragraph
(t(1,998) = 330.334, P < 0.001) conditions, and reliably more
negative for the word (t(1,998) = −16.386, P < 0.001) and
rest (t(1,998) = −318.631, P < 0.001) conditions. These
results suggest that the correlations between decoding accuracy
and network order were not driven solely by the numbers of
nodes in each network.

Whereas the above analyses examined different networks
in isolation, how do full-brain (i.e., potentially multinetwork)
activity patterns reflected by different principal components vary
across different experimental conditions? As shown in Fig. 5,
we used Neurosynth (18) to identify, for each component, the
associations with each of 80 themes (Reverse Inference). In general,

the first principal components across all of the experimental
conditions tended to weigh most heavily on themes related to
cognitive control, memory, language processing, attention, and
perception. Other components appeared to vary more across
conditions.

To gain further insights into which brain functions might
be most closely associated with the top-weighted components
from each experimental condition, we manually grouped each
Neurosynth-derived topic into a smaller set of core cognitive
functions. Separately for each component, we computed the
average weightings across all topics that were tagged as being
associated with each of these cognitive functions (Fig. 6A and
SI Appendix, Fig. S6 A). To help visualize these associations,
we used the patterns of associations for each component to
construct graphs whose nodes were experimental conditions
and cognitive functions (Fig. 6B and SI Appendix, Fig. S6 B).
We also computed correlations between the sets of per-topic
weightings from each of the top-weighted components from
each experimental condition (Fig. 6 C and D) and between
the brain maps for each condition’s components (SI Appendix,
Fig. S6C andD). Taken together, we found that each component
appeared to weigh on a fundamental set of cognitive functions
that varied by experimental condition. For example, the top
principal components from every condition weighed similarly
(across conditions) on the full set of Neurosynth topics (Fig. 5A)
and cognitive functions (Fig. 6 A and B and SI Appendix,
Fig. S6 A and B), suggesting that these components might
reflect a set of functions or activity patterns that are common
across all conditions. The second components’ weightings were
similar across the intact, paragraph, and rest conditions (highest-
weighted functions: cognitive control, memory, social cognition,
and resting state), but different for the word condition (highest-
weighted functions: sensory perception and cognitive control).
The fourth components’ weighting grouped the paragraph and
word conditions (highest-weighted functions: memory, language
processing, and cognitive control) and the intact and rest condi-
tions (highest-weighted functions: emotion, social cognition).
We also used ChatGPT (19) to sort the list of manually
tagged cognitive functions from lowest-level to highest-level

PNAS 2024 Vol. 121 No. 35 e2400082121 https://doi.org/10.1073/pnas.2400082121 5 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

D
A

R
TM

O
U

TH
 C

O
LL

EG
E;

 A
C

Q
 S

ER
V

IC
ES

/S
ER

IA
LS

 A
 o

n 
Fe

br
ua

ry
 2

3,
 2

02
5 

fr
om

 IP
 a

dd
re

ss
 1

29
.1

70
.1

97
.1

05
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials


Left Anterior Posterior Right Superior Inferior
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Fig. 4. Network-specific decoding accuracy and compression. (A) Network parcellation map. The glass brains display the locations of each of the seven
networks identified by Yeo et al. (5). (B) Node labels. We assigned network labels to each of the 700 Hierarchical Topographic Factor Analysis-derived nodes
[Hierarchical Topographic Factor Analysis (HTFA)]. For each node, we evaluated its radial basis function (RBF) at the locations of every voxel in the parcellation
map displayed in Panel (A). We summed up these RBF weights separately for the voxels in each network. We defined each node’s network label as its highest-
weighted network across all voxels. The RBF center location of each node is shown as a circle in the glass brains, and the colors denote each node’s assigned
network label. (C) Per-network node counts. The bar plot displays the total number of HTFA-derived nodes assigned to each network. (D) Informativeness
versus compressibility by network and condition. Each dot corresponds to a single cross-validation run. The dots’ coordinates denote the minimum proportion
of components (relative to the number of nodes in the given network) required to achieve at least 5% corrected decoding accuracy (x-coordinate; for the
rest condition these proportions are estimated using the peak decoding accuracies) and peak (corrected) decoding accuracy (y-coordinate). We repeated the
analysis separately for each network (color) and experimental condition (column). (E) Informativeness by network. For each network, sorted (roughly) from
lower-order networks on the Left to higher-order networks on the Right, the curves display the peak (corrected) decoding accuracy for each experimental
condition (color). (F ) Compressibility by network. For each network, the curves display the proportion of components (relative to the total possible number of
components displayed in Panel C) required to achieve at least 5% decoding accuracy (or, for the rest condition, peak decoding accuracy, as described Above).
Error ribbons in Panels (E and F ) denote bootstrap-estimated 95% CIs.

(SI Appendix, Table S2 and Fig. 6E ; also see Ranking Cognitive
Processes). We found that higher-level functions tended to be
weighted more heavily by top components from the intact
and paragraph conditions than lower-level functions (intact
versus word: t(198) = 11.059, P < 0.001; intact versus
rest: t(198) = 3.699, P < 0.001; paragraph versus word:
t(198) = 13.504, p < 0.001; paragraph versus rest: t(198) =
4.812, P < 0.001; also see Ranking Cognitive Processes). The
top components from the word condition showed the opposite
tendency, whereby lower-level functions tended to be weighted
more heavily than higher-level functions (word versus rest:

t(198) = −7.315, P < 0.001). The weighting trends for
the intact and paragraph conditions were not reliably different
(t(198) = −0.479, P = 0.633). The components from the
rest condition showed only a small trending difference in the
weights associated with high-level versus low-level functions (rest
versus 0: t(99) = 1.836, P = 0.081). These findings suggest
that when participants were engaged more strongly (in the
more engaging intact and paragraph conditions), their dominant
neural patterns reflected higher-level cognitive functions. In
contrast, when participants were engaged less strongly (in the
less engaging word and rest conditions), their dominant neural
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Rest
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Condition
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Social cognition
Spatial cognition
Attention
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Fig. 5. Neurosynth topic weightings by component. We used a reverse inference procedure (Reverse Inference) to estimate the correspondences between
brain images and a set of 80 topics derived from the Neurosynth database of neuroimaging articles (18). (A) Topic correlations by component. For each of the
top five highest-weighted principal components (columns) derived from each experimental condition (colors), the radar plots display the correlations between
the component images and the per-topic images derived for each topic (topic identities are denoted by the colored dots; a legend with high-level labels for
each base color is on the Right, and a legend with lower-level labels (denoted by tints and shades of each base color) is in the Lower Right. An annotated list of
the top-weighted topics for each component and condition may be found in SI Appendix, Fig. S3 and the Top-weighted terms for each topic may be found in
SI Appendix, Table S1. (B) Topic correlations averaged across components. The radar plot is in the same format as the plots in Panel (A), but here, we display the
per-condition average correlations across the top five components (for each condition) reflected in Panel (A). (C) Component images. Each plot displays a right
sagittal view of a glass brain projection of the top five principal components (columns) for each experimental condition (rows). Additional projections for each
component may be found in SI Appendix, Fig. S4.

patterns reflected lower-level cognitive functions. Although they
were highly statistically reliable, it is also important to note that
these latter effects are also relatively small (e.g., the slopes for
all of the experimental conditions are numerically close to zero;
Fig. 6E). We suggest that this phenomenon may merit further
investigation in future work.

Discussion

We examined fMRI data collected as participants listened to an
auditory recording of a story, scrambled recordings of the story,
or underwent a resting state scan. We found that cognitively
richer stimuli evoked more reliable (i.e., consistent across people)
and information-rich brain activity patterns. The brain patterns
evoked by cognitively richer stimuli were also more compressible,
in that each individual component provided more “signal” to
temporal decoders relative to components of data from less
cognitively rich conditions (Fig. 2). Over time (e.g., as the
experiment progressed), these phenomena were strengthened.
Specifically, across story segments, data from more cognitively
rich conditions became more informative and compressible, and
data from less cognitively rich conditions became less informative
and compressible (Fig. 3). We also repeated these analyses
separately for different brain networks. We found that networks
traditionally associated with higher-level cognitive functions
tended to provide more informative brain patterns than networks
traditionally associated with lower level cognitive functions
(Fig. 4). Finally, we examined the most dominant components of
the brain activity patterns from each experimental condition. We
used a reverse inference approach (18) to identify the terms in
the neuroimaging literature most commonly associated with the
corresponding maps. As summarized in Fig. 6E, we found that

the intact and paragraph conditions tended to weight higher-level
cognitive processes more than lower-level cognitive processes,
whereas the word condition weighted lower-level processes more
than higher-level processes and the rest condition showed no
reliable difference in high-level versus low-level weightings.
Taken together, our findings indicate that the informativeness
and compressibility of our brain activity patterns are task-
dependent and these properties change systematically with factors
like cognitive richness and depth of processing.

Our explorations of informativeness and compressibility are
related to a much broader literature on the correlational and
causal structure of brain activity patterns and networks (5, 13, 20–
38). Correlations or causal associations between different brain
regions simultaneously imply that full-brain activity patterns
will be compressible and also that those activity patterns will
contain redundancies. For example, the extent to which activity
patterns at one brain area can be inferred or predicted from
activity patterns at other areas (e.g., refs. 8 and 9) reflects
overlap in the information available in or represented by those
brain areas. If brain patterns in one area are recoverable using
brain patterns in another area, then a “signal” used to convey
the activity patterns could be compressed by removing the
recoverable activity. Predictable (and therefore redundant) brain
activity patterns are also more robust to signal corruption. For
example, even if the activity patterns at one region are unreadable
or unreliable at a given moment, that unreliability could be
compensated for by other regions’ activity patterns that were
predictive of the unreliable region. Whereas compressible brain
patterns are robust to spatial signal corruption, high versus low
informativeness reflects a similar (though dissociable; e.g., Fig. 1)
tradeoff between expressiveness and robustness of temporal
patterns. Highly informative brain patterns (by our measure;
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Fig. 6. Summary of functions associated with top-weighted components by condition. (A) Top-weighted topics by condition. Here, we display per-condition
(rows, indicated by colored dots) topic correlations, averaged across topics that pertain to each of several broad cognitive functions (columns within each
subpanel, indicated by colored dots). Each subpanel reflects correlations for the components indicated in the panel titles. SI Appendix, Table S1 provides a list
of each topic’s top-weighted terms, along with each topic’s manually labeled cognitive classification. A full list of the topics most highly associated with each
component may be found in SI Appendix, Fig. S3. (B) Associations between per-condition components and cognitive functions. The network plots denote positive
average correlations between the component images for each condition (gray-outlined dots on the Left sides of each network; colors denote conditions) and
topic-specific brain maps associated with each indicated cognitive function (black-outlined dots on the Right sides of each network; colors denote cognitive
functions). The line thicknesses are proportional to the correlation values (correlation coefficients are noted in the heat maps in Panel A). (C) Correlations
between each principal component, by condition. The heat maps display the correlations between the brain maps (SI Appendix, Fig. S4) for each principal
component (subpanel), across each pair of conditions (rows and columns of each subpanel’s matrix, indicated by colored dots). (D) Associations between
per-condition components, by component. Each subpanel’s network plot summarizes the pattern of correlations between the nth top-weighted principal
components (subpanel) for each experimental condition (gray-outlined dots). The line thicknesses are proportional to the correlation values (correlation
coefficients are noted in the heat maps in Panel C). (E) Change in weights by condition. The bar heights reflect the slopes of regression lines, fit separately to the
top five components from each condition, between the ChatGPT-derived “rank” of each cognitive classification and the correlations between the component
and topic maps associated with cognitive processes at the given rank (Ranking Cognitive Processes) Error bars denote bootstrap-estimated 95% CIs. Also see
SI Appendix, Fig. S6 for additional information.

i.e., patterns that yield greater temporal decoding accuracy) are
expressive about ongoing experiences or cognitive states, since
each moment’s pattern is reliably distinguishable from other
moments’ patterns. However, when each moment’s pattern is
unique, brain activity becomes less robust to temporal signal
corruption. Our finding that brain activity patterns becomes
more informative (i.e., less robust to temporal signal corruption)
and compressible (i.e., more robust to spatial signal corruption)
when cognitive engagement is higher suggests that our brain
may optimize its activity patterns to prioritize either temporal or
spatial robustness, according to task demands.

Our findings that informativeness and compressibility change
with task demands may follow from task-dependent changes in
full-brain correlation patterns. A number of prior studies have
found that so-called “functional connectivity” (i.e., correlational)
patterns vary reliably across tasks, events, and situations (7,
13, 17, 39). By examining how these task-dependent changes
in correlations affect informativeness and compressibility, our

work suggests a potential reason why the statistical structure
of brain activity patterns might vary with cognitive task or
with cognitive demands. For lower-level tasks, or for tasks that
require relatively little “deep” cognitive processing, our brains
may optimize activity patterns for robustness and redundancy
over expressiveness, for example, to maximize reliability. For
higher-level tasks, or for tasks that require deeper cognitive
processing, our brains may sacrifice some redundancy in favor
of greater expressiveness.

One potential limitation of our work concerns how our
measure of informativeness might generalize across different
tasks, cognitive representations, and processes. As in many
neuroimaging studies, our findings may also be influenced by
our preprocessing decisions, which could in turn affect temporal
and spatial correlations in the data. Our use of across-participant
temporal decoding accuracy as a proxy for informativeness
is motivated in part by prior work that introduced across-
participant similarity (in time-varying response to a stimulus) as a
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means of identifying stimulus-driven brain activity patterns (17).
Intuitively, only activity patterns that are driven by the stimulus
would be expected to synchronize (i.e., be time-locked to the
stimulus) across participants. This approach implicitly removes
idiosyncratic responses (e.g., neural patterns that are not similar
across people). However, there are also some published examples,
including in our own prior work, that indicate that some types
of stimulus-evoked activity will be missed by across-participant
comparisons. For example we have reported how brain regions
like the ventromedial prefrontal cortex (vmPFC) show stimulus-
driven responses that are, for the most part, not similar across
people (40). In that paper (and drawing on other work), we
suggest that the vmPFC seems to represent or support highly
idiosyncratic internal states, like affective responses. Although
we would consider the vmPFC to be a “high-level” region (e.g.,
we consider affect to be a relatively high-level aspect of cognition),
the measure of informativeness that we used in our current study
would identify regions like the vmPFC as having low informa-
tiveness. This is because across-participant decoding accuracy
(our proxy measure for informativeness) will only be high for
representations or responses that are common across people.

Relatedly, even in the experimental conditions we describe
as “less cognitively engaging,” we think it likely that high-
level thought or cognitive processing is still present. Rather, we
suggest that these high-level representations will tend to be more
idiosyncratic when the stimulus is less engaging, and therefore
less constraining on people’s thoughts. Nonetheless, even during
highly engaging tasks, people may engage in idiosyncratic
stimulus-driven processes. For example, people might retrieve
personal information as they listened to the story. Those retrievals
could happen at different times for different people according to
each individual’s prior experiences. Even when those sorts of
retrievals happen to be temporally synchronized across people,
the specific memories or information being retrieved might still
be idiosyncratic. Our measure of informativeness is insensitive to
these processes. Further, even in response to an identical stimulus,
task instructions or participants’ internal goals could change
the relationship between compressibility and informativeness.
Some work has shown that the “dimensionality” of neural
representations can change systematically with task complexity,
even in response to an identical stimulus (12). Taken together, we
expect that the way we have defined informativeness in this paper,
and the specific dataset we examined, are likely to have influenced
our findings. While we see our approach as a reasonable first
step, we also suggest that future work should explore alternative
measures of informativeness and compressibility, and should
examine how these measures vary across different tasks and
datasets.

In the information theory sense (1), when a signal is trans-
mitted using a fixed alphabet of “symbols,” the information
rate decreases as the signal is compressed (e.g., fewer symbols
transmitted per unit time, using an alphabet with fewer symbols,
etc.). Our finding that each individual brain component (symbol)
become more informative as cognitive richness increases suggests
that the “alphabet” of brain activity patterns is also task-
dependent. Other work suggests that the representations that
are reflected by brain activity patterns may also change with
task demands. For example, our brains may represent the same
perceptual stimulus differently depending on which aspects of the
stimulus or which combinations of features are task-relevant (12).

We found that different brain networks varied in how
informative and compressible their activity patterns were across
experimental conditions (e.g., Fig. 4). This might follow from
evolutionary optimizations that reflect the relevant constraints

or demands placed on those networks. One possibility is that
the cortex is organized in a hierarchy of networks “concerned
with” or selective to different levels of processing or function.
To the extent that different levels of processing (e.g., low-
level sensory processing versus “deeper” higher-level processing)
reflect different stimulus timescales (e.g., ref. 41), the network
differences we observed might also relate to the timescales at
which each network is maximally sensitive (14, 15, 42, 43).

Our reverse inference analyses (Figs. 5 and 6) also provide
some insights into how neural activity patterns change with
cognitive engagement or task demands. Prior work has shown
that the components and network “parcels” identified through
covarying activity patterns can be highly similar even across
different tasks (including “rest,” e.g., refs. 39 and 44). We
replicated this basic finding in that the first principal components
from all four experimental conditions were strikingly similar (e.g.,
see the leftmost columns of Figs. 5A and 6 C and D). We also
found some small, though statistically reliable, systematic changes
in the weights associated with different cognitive functions
across conditions (Fig. 6E). This result provided an additional
way of characterizing network-level differences across conditions
(Fig. 4E). Taken together, these findings suggest that although
similar networks may be involved in different tasks, the ways in
which those networks are engaged may vary systematically with
task demands.

Concluding Remarks. Cognitive neuroscientists are still grap-
pling with basic questions about the fundamental “rules”
describing how our brains respond, and about how brain activity
patterns and the associated underlying cognitive representations
and computations are linked. We identified two aspects of brain
activity patterns, informativeness and compressibility, that appear
to change systematically with task demands and across brain
networks. We speculate that these changes may reflect ongoing
tradeoffs between how robust to signal corruption versus how
expressive about ongoing cognitive states our brains’ activity
patterns are. Our work also provides a framework for evaluating
these tradeoffs in other datasets, or in future studies.

Materials and Methods

We measured properties of recorded neuroimaging data under different task
conditions that varied systematically in cognitive engagement and depth of
processing. We were especially interested in how informative and compressible
the activity patterns were under these different conditions (Fig. 1).

Unless otherwise noted, all statistical tests are two-sided, all error bars and
error ribbons denote bootstrap-estimated 95% CIs across participants, and all
reported P-values are corrected for multiple comparisons using the Benjamini–
Hochberg procedure (45).

Functional Neuroimaging Data Collected during Story Listening. We
examined an fMRI dataset collected by Simony et al. (17) that the authors have
made publicly available at arks.princeton.edu/ark:/88435/dsp015d86p269k.
The dataset comprises neuroimaging data collected as participants listened
to an audio recording of a story (intact condition; 36 participants), listened
to temporally scrambled recordings of the same story (17 participants in the
paragraph-scrambled condition listened to the paragraphs in a randomized
order and 36 in the word-scrambled condition listened to the words in a
randomized order), or lay resting with their eyes open in the scanner (rest
condition; 36 participants). Full neuroimaging details may be found in the
original paper for which the data were collected (17). Procedures were approved
by the Princeton University Committee on Activities Involving Human Subjects,
and by the Western Institutional Review Board. All subjects were native English
speakers with normal hearing and provided written informed consent. We have
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excerpted the relevant portions of the dataset documentation here to provide
information about the scanning parameters and preprocessing steps used to
generate the data we analyzed (the original descriptions may be found at the
above link):

Subjects were scanned in a 3T full-body MRI scanner (Skyra; Siemens)
with a 16-channel head coil. For functional scans, images were
acquired using a T2* weighted echo planer imaging pulse sequence
[repetition time (TR), 1,500 ms; echo time (TE), 28 ms; flip angle,
64◦], each volume comprising 27 slices of 4 mm thickness with 0 mm
gap; slice acquisition order was interleaved. In-plane resolution was
3×3 mm2 [field of view (FOV), 192×192 mm2]. Anatomical images
were acquired using a T1-weighted magnetization-prepared rapid-
acquisition gradient echo pulse sequence (TR, 2,300 ms; TE, 3.08 ms;
flip angle 9◦; 0.89 mm3 resolution; FOV, 256 mm2). To minimize
head movement, subjects’ heads were stabilized with foam padding.
Stimuli were presented using the Psychophysics toolbox (46, 47).
Subjects were provided with an MRI-compatible in-ear monoearbuds
(Sensimetrics Model S14), which provided the same audio input to
each ear. MRI-safe passive noise-canceling headphones were placed
over the earbuds, for noise removal and safety.

Functional data were preprocessed and analyzed using FSL (Func-
tional Magnetic Resonance Imaging of the Brain Software Library;
www.fmrib.ox.ac.uk/fsl), including correction for head motion and
slice-acquisition time, spatial smoothing (6 mm full width half
maximum Gaussian kernel), and high-pass temporal filtering
(140 s period). Preprocessed data were aligned to coplanar and
high-resolution anatomicals and the standard MNI152 brain, and
interpolated to 3-mm isotropic voxels.

The intact and word conditions each comprised 300 TRs (7.5 min) per partici-
pant. The paragraph condition comprised 272 TRs (6.8 min) per participant. The
rest condition comprised 400 TRs (10 min) per participant.

HTFA. Following our prior related work, we used HTFA (48) to derive a compact
representation of the neuroimaging data. In brief, this approach approximates
the timeseries of voxel activations (44,415 voxels) using a much smaller number
of radial basis function (RBF) nodes (in this case, 700 nodes, as determined by
an optimization procedure; 48). This provides a convenient representation for
examining full-brain activity patterns and network dynamics. All of the analyses
we carried out on the neuroimaging dataset were performed in this lower-
dimensional space. In other words, each participant’s data matrix was a number
of timepoints (T ) by 700 matrix of HTFA-derived factor weights (where the row
and column labels were matched across participants). Code for carrying out HTFA
on fMRI data may be found as part of the BrainIAK toolbox (49), which may be
downloaded at brainiak.org.

We also considered alternative approaches to obtaining compact represen-
tations of the neuroimaging data, including network parcellations (e.g., refs. 50
and 51). Whereas network parcellations are typically derived from large resting
state datasets, HTFA may be applied to much smaller datasets. In our prior work,
we showed that HTFA applied to the same dataset used here can explain full-brain
activity to within a maximum of 0.25 SDs of each voxel’s observed activity in
the original dataset, taken across all voxels, images, and participants, using the
700-node representation we also employed here (48). Some of the explanatory
power of HTFA comes from the fact that each node’s influence falls off smoothly
with distance to its center. Intuitively, the result is a representation that looks like
a lightly spatially smoothed version of the original data, but where the degree
of smoothing varies across the brain according to how spatially autocorrelated
the local activity patterns are.

Network Permutation Tests. In our analyses of how informativeness varied
across brain networks (Fig. 4), we considered the possibility that the correlations
withnetworkordermightbeinfluencedbythenumbersofnodesineachnetwork.
We designed a permutation-based procedure to address this possibility, whereby
we repeated the above analyses using shuffled network labels. Specifically, for

each of n1 = 10 iterations, we randomly shuffled (without replacement) the
network labels of the HTFA nodes, and then we reran our entire decoding
analysis pipeline, including applying PCA with 3...m features for each condition
(where m is the number of nodes in the given network), and then running 100
cross-validation runs of the decoding procedure for each condition and number
of components. This resulted in 10 sets of shuffled data, where each network
had the same numbers of nodes, but where the decoding results no longer
maintained the fidelity of each individual network. Note that, for each of the
shuffled datasets, the same shuffled labels were used for all participants.

We sampled the original and shuffled datasets (with replacement) to create
n2 = 1,000 bootstrap samples. For each bootstrap sample, we computed
the correlations between the decoding accuracies and network order for each
conditionandnumberofcomponents.Thisyieldedadistributionofn2 correlation
values for each condition, for both the original and shuffled datasets. We then
compared the distributions of Spearman’s � values for the original and shuffled
datasets using two-sided independent samples Welch’s t tests.

PCA. We applied group PCA (52) separately to the HTFA-derived representations
of the data (i.e., factor loadings) from each experimental condition. Specifically,
for each condition, we considered the set of all participants’ T by 700 factor weight
matrices. We used group PCA to project these 700-dimensional matrices into a
series of shared k-dimensional spaces, for k ∈ {3, 4, 5, ..., 700}. This yielded a
set of number-of-participants matrices, each with T rows and k columns.

Temporal Decoding. We sought to identify neural patterns that reflected
participants’ ongoing cognitive processing of incoming stimulus information. As
reviewed by Simony et al. (17), one way of homing in on these stimulus-driven
neural patterns is to compare activity patterns across individuals. In particular,
neural patterns will be similar across individuals to the extent that the neural
patterns under consideration are stimulus-driven, and to the extent that the
corresponding cognitive representations are reflected in similar spatial patterns
across people (16). Following this logic, we used an across-participant temporal
decoding test developed by Manning et al. (48) to assess the degree to which
different neural patterns reflected ongoing stimulus-driven cognitive processing
across people. The approach entails using a subset of the data to train a classifier
to decode stimulus timepoints (i.e., moments in the story participants listened to)
from neural patterns. We use decoding (forward inference) accuracy on held-out
data, from held-out participants, as a proxy for the extent to which the inputted
neural patterns reflected stimulus-driven cognitive processing in a similar way
across individuals.
Forward inference and decoding accuracy. We used an across-participant
correlation-based classifier to decode which stimulus timepoint matched each
timepoint’s neural pattern. For a given value of k (i.e., number of principal
components), we first used group PCA to project the data from each condition
into a shared k-dimensional space. Next, we divided the participants into two
groups: a template group, Gtemplate (i.e., training data), and a to-be-decoded
group, Gdecode (i.e., test data). We averaged the projected data within each
group to obtain a single T by k matrix for each group. Next, we correlated the
rows of the two averaged matrices to form a T by T decoding matrix, Λ. In
this way, the rows of Λ reflected timepoints from the template group, while
the columns reflected timepoints from the to-be-decoded group. We used Λ to
assign temporal labels to each timepoint (row) from the test group’s matrix, using
the row of the training group’s matrix with which it was most highly correlated.
We repeated this decoding procedure, but usingGdecode as the template group
and Gtemplate as the to-be-decoded group. Given the true timepoint labels (for
each group), we defined the decoding accuracy as the average proportion of
correctly decoded timepoints, across both groups (where chance performance
is 1

T ). In Figs. 2 and 3, we report the decoding accuracy for each condition and
value of k, averaged across n = 100 cross-validation folds.

Reverse Inference. To help interpret the brain activity patterns we found within
the contexts of other studies, we created summary maps of each principal
component, for each experimental condition. Each principal component
comprises 700 “weights” on each of the HTFA-derived RBF nodes (HTFA). For
each node, we evaluated its RBF at the locations of every voxel in the standard
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2 mm MNI152 template brain and multiplied the RBF by the node’s weight.
The sum of these weighted RBF activation maps provides a full-brain image, in
MNI152 space, of the given principal component (SI Appendix, Fig. S4).

Next, we considered 80 topics estimated using Latent Dirichlet Alloca-
tion (53) applied to 9,204 functional neuroimaging articles in the Neurosynth
database (18). The topics, as well as associated brain maps identified using
Neurosynth, were identified and reported in several prior studies (54–56). The
topic labels for each topic were generated automatically with the following
ChatGPT (19) prompt: “Please help me come up with intuitive labels for topics
I found by fitting a topic model to thousands of neuroscience and psychology
articles. I’ll paste in the top 10 highest-weighted words for each topic, and I’d
like you to respond with a suggested label. For each topic, please respond with
just the topic label and no other formatting or text. Here are the next topic’s top
words”: followed by a comma-separated list of the given topic’s top-weighted
words reflected in SI Appendix, Table S1. For some topics, ChatGPT responded
with a longer-form response rather than a concise topic label. In these instances,
on a case-by-case basis, we used a second follow-up prompt to achieve the given
topic’s label: “Could you please come up with a more concise label for that topic?”
We then manually identified a set of 11 cognitive labels that were intended to
encapsulate a representative range of widely studied low-level and high-level
cognitive functions. In choosing the set of cognitive labels, we jointly considered
each topic’s ChatGPT-derived topic label, along with the top-weighted words for
the topic. We attempted to generate a concise set of labels that still spanned the
full set of cognitive functions reflected across the 80 topics. Topics that appeared
unrelated to specific cognitive functions (e.g., topics related to specific methods
or clinical themes) are designated with dashes in SI Appendix, Table S1.

Finally, following an approach used in several prior studies (54–56), we
treated the correlation between a given component’s brain map and each topic’s
brain map as an approximate measure of how much the component was reflective
of the given topic. This resulted in a set of 80 “weights” (correlation coefficients)
for each component’s brain map, with one weight per Neurosynth-derived topic.

Ranking Cognitive Processes. We manually identified 11 cognitive labels
spanning the set of 80 Neurosynth-derived topics: cognitive control, language
processing, memory, emotion, social cognition, spatial cognition, attention,
reward, sensory perception, motor control, and resting state. We then used
ChatGPT to automatically “rank” the processes from high-level to low-level using
the following prompt: “Please rank these cognitive processes from highest-
level to lowest-level, where higher values indicate higher-order or higher-
level processes. Return the result as a csv file with a header row and two
columns: ‘Cognitive label’ and ‘Rank.’ Here are the processes: cognitive control,
language processing, memory, emotion, social cognition, spatial cognition,
attention, reward, sensory perception, motor control, resting state.” SI Appendix,
Table S2 displays the output.

We recognize that ChatGPT is not omniscient, nor should it be treated as
an expert cognitive neuroscientist. We therefore reviewed ChatGPT’s responses
carefully by hand to verify that they seemed reasonable to us. Whereas prior
work has often constructed such rankings by hand, we see our use of ChatGPT in
this case as a small additional “sanity check” on our rankings that helped us to
be slightly more objective than if we had simply created the rankings ourselves
manually.

In the analysis presented in Fig. 6E, we summarize difference in topic
weightings across experimental conditions. In particular, we sought to
characterize how the dominant neural patterns evoked by each experimental
condition weighted on different cognitive functions. For each of the top five
principal components from each experimental condition (Fig. 5), we computed
the average weights for each of the 11 manually identified (and ChatGPT-
ranked) cognitive labels described above (SI Appendix, Table S2). We then
fit a line separately for each experiment condition (x-values: cognitive rank;
y-values: weights). In carrying out this analysis, we used a bootstrap procedure

to estimate the variability in the slopes of the regression lines, whereby we
repeated this process for each of n = 100 iterations, each time resampling
(with replacement) the set of observed ranks and weights. This procedure yielded
distributions of 100 estimated slopes for each experimental condition. We used
these distributions to compare the slopes across experimental conditions and to
estimate 95% CIs.

Synthetic Data. To help illustrate the relationship between informativeness
and compressibility (Fig. 1), we generated four synthetic datasets, varying
in informativeness and compressibility. Each dataset comprised simulated
observations of k = 25 features across n = 100 timepoints, from each of
S = 10 participants. To create each dataset, we first constructed a “template”
matrix of N timepoints by K features. We then generated participant-specific data
by adding independent noise to each entry in template matrix, drawn from the
unit normal distribution (i.e., with a mean of 0 and a variance of 1). We repeated
this process for each participant, yielding S participant-specific matrices for each
dataset.

Since we estimate informativeness using the temporal decoding accuracy
across participants, highly informative data will tend to have observations that
are highly timepoint specific. Relatively uninformative data, in contrast, will tend
to have more similar observations across timepoints. To generate data with “high
informativeness,” we constructed template matrices whose rows (observations)
were drawn independently from zero-mean multivariate normal distributions.
The covariances of these distributions were determined according to the desired
compressibility of the data, as described below. We used a multistep process
to generate data with “low informativeness.” First, we generated new template
matrices using the same procedure as for the “high informativeness” datasets.
We then multiplied each matrix by a constant (� = 0.1) and computed the
cumulative sum of each matrix’s rows. This yielded matrices whose rows were
highly similar across observations.

Compressibility reflects the extent to which decoding accuracy is affected
by reducing the number of components used to represent the data. Highly
compressible data will tend to exhibit more similarities across features, whereas
less compressible data will tend to show greater independence across features.
To generate data with “high compressibility,” we set the covariance matrix of
the multivariate normal distribution to a Toeplitz matrix whose first row was
given by [K, K − 1, ..., 1]. To generate data with “low compressibility,” we set
the covariance matrix to the identity matrix.

Template matrices for datasets with high informativeness and high com-
pressibility, high informativeness and low compressibility, low informativeness
and high compressibility, and low informativeness and low compressibility
are displayed in Fig. 1C. The corresponding decoding curves are displayed in
Fig. 1D.

Data, Materials, and Software Availability. All of the code used to produce
the figures and results in this manuscript, along with links to the corresponding
data, may be found at github.com/ContextLab/pca_paper (57).

ACKNOWLEDGMENTS. We acknowledge discussions with Rick Betzel, Luke
Chang,EmilyFinn,andJimHaxby.OurworkwassupportedinpartbyNSFCAREER
Award Number 2145172 to J.R.M. The content is solely the responsibility of the
authors and does not necessarily represent the official views of our supporting
organizations. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Author affiliations: aDepartment of Psychiatry and Human Behavior, Carney Institute for
Brain Sciences, Brown University, Providence, RI 02906; bDepartment of Psychological and
Brain Sciences, Dartmouth College, Hanover, NH 03755; and cDepartment of Computer
Science, University of Montana, Missoula, MT 59812

1. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
2. E. S. Finn et al., Functional connectome fingerprinting: Identifying individuals using patterns of

brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
3. E. S. Finn et al., Can brain state be manipulated to emphasize individual differences in functional

connectivity. NeuroImage 160, 140–151 (2017).
4. C. Gratton et al., Functional brain networks are dominated by stable group and individual factors,

not cognitive or daily variation. Neuron 98, 439–452 (2018).

5. B. T. T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic functional
connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

6. E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, M. Sams, Functional magnetic resonance
imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 2,
91–101 (2012).

7. M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, S. E. Petersen, Intrinsic and task-evoked network
architectures of the human brain. Neuron 83, 238–251 (2014).

PNAS 2024 Vol. 121 No. 35 e2400082121 https://doi.org/10.1073/pnas.2400082121 11 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

D
A

R
TM

O
U

TH
 C

O
LL

EG
E;

 A
C

Q
 S

ER
V

IC
ES

/S
ER

IA
LS

 A
 o

n 
Fe

br
ua

ry
 2

3,
 2

02
5 

fr
om

 IP
 a

dd
re

ss
 1

29
.1

70
.1

97
.1

05
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400082121#supplementary-materials
https://github.com/ContextLab/pca_paper


8. L. L. W. Owen et al., A Gaussian process model of human electrocorticographic data. Cereb. Cortex
30, 5333–5345 (2020).

9. K. W. Scangos et al., Biomarkers of depression symptoms defined by direct intracranial
neurophysiology. Front. Hum. Neurosci. 15, 746499 (2021).

10. K. A. Norman, S. M. Polyn, G. J. Detre, J. V. Haxby, Beyond mind-reading: multi-voxel pattern
analysis of fMRI data. Trend. Cogn. Sci. 10, 424–430 (2006).

11. S. A. Alvarez, An Exact Analytical Relation Among Recall, Precision, and Classification Accuracy in
Information Retrieval (Boston College, 2002).

12. M. L. Mack, A. R. Preston, B. C. Love, Ventromedial prefrontal cortex compressesion during concept
learning. Nat. Commun. 11, 46 (2020).

13. L. L. W. Owen, T. H. Chang, J. R. Manning, High-level cognition during story listening is reflected in
high-order dynamic correlations in neural activity patterns. Nat. Commun. 12, 5728 (2021).

14. U. Hasson, E. Yang, I. Vallines, D. J. Heeger, N. Rubin, A hierarchy of temporal receptive windows
in human cortex. J. Neurosci. 28, 2539–2550 (2008).

15. Y. Lerner, C. J. Honey, L. J. Silbert, U. Hasson, Topographic mapping of a hierarchy of temporal
receptive windows using a narrated story. J. Neurosci. 31, 2906–2915 (2011).

16. E. Simony, C. Chang, Analysis of stimulus-induced brain dynamics during naturalistic paradigms.
NeuroImage 216, 116461 (2020).

17. E. Simony, C. J. Honey, J. Chen, U. Hasson, Dynamic reconfiguration of the default mode network
during narrative comprehension. Nat. Commun. 7, 1–13 (2016).

18. T. N. Rubin et al., Decoding brain activity using a large-scale probabilistic functional-anatomical
atlas of human cognition. PLoS Comput. Biol. 13, e1005649 (2017).

19. OpenAI, ChatGPT (2023). https://chat.openai.com. Accessed 15 March 2023.
20. M. G. Preti, T. A. W. Bolton, D. Van De Ville, The dynamic functional connectome: State-of-the-art

and perspectives. NeuroImage 160, 41–54 (2017).
21. B. P. Rogers, V. L. Morgan, A. T. Newton, J. C. Gore, Assessing functional connectivity in the human

brain by fMRI. Magn. Reson. Imaging 25, 1347–1357 (2007).
22. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations.

NeuroImage 52, 1059–1069 (2010).
23. A. E. Sizemore et al., Cliques and cavities in the human connectome. J. Comput. Neurosci. 44,

115–145 (2018).
24. S. M. Smith et al., Resting-state fMRI in the human connectome project. NeuroImage 80, 144–168

(2013).
25. S. M. Smith et al., Functional connectomics from resting-state fMRI. Trend. Cogn. Sci. 17, 666–682

(2013).
26. R. Srinivasan, W. R. Winter, J. Ding, P. L. Nunez, EEG and MEG coherence: Measures of functional

connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods 166, 41–52
(2007).

27. D. Tomasi, N. D. Volkow, Association between functional connectivity hubs and brain networks.
Cereb. Cortex 21, 2003–2013 (2011).

28. Y. Adachi et al., Functional connectivity between anatomically unconnected areas is shaped
by collective network-level effects in the macaque cortex. Cereb. Cortex 22, 1586–1592
(2012).

29. D. S. Bassett, O. Sporns, Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).
30. E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and

functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
31. O. Sporns, C. J. Honey, Small worlds inside big brains. Proc. Natl. Acad. Sci. USA 103,

19219–19220 (2006).
32. O. Sporns, R. F. Betzel, Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

33. O. Sporns, J. D. Zwi, The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).
34. M. Dhamala, G. Rangarajan, M. Ding, Analyzing information flow in brain networks with

nonparametric Granger causality. NeuroImage 41, 354–362 (2008).
35. A. Korzeniewska, C. M. Crainiceanu, R. Kus, P. J. Franaszczuk, N. E. Crone, Dynamics of event-

related causality in brain electrical activity. Hum. Brain Mapp. 29, 1170–1192 (2008).
36. A. Brovelli et al., Beta oscillations in a large-scale sensorimotor cortical network: Directional

influences revealed by Granger causality. Proc. Natl. Acad. Sci. USA 101, 9849–9854 (2004).
37. C. W. Lynn, D. S. Bassett, Quantifying the compressibility of complex networks. Proc. Natl. Acad. Sci.

USA 118, e2023473118 (2021).
38. M. Shinn et al., Functional brain networks reflect spatial and temporal autocorrelation. Nat.

Neurosci. 26, 867–878 (2023).
39. S. M. Smith et al., Correspondence of the brain’s functional architecture during activation and rest.

Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).
40. L. J. Chang et al., Endogenous variation in ventromedial prefrontal cortex state dynamics during

naturalistic viewing reflects affective experience. Sci. Adv. 7, eabf7129 (2021).
41. J. R. Manning, Context Reinstatement in Handbook of Human Memory M. J. Kahana, A. D.

Wagner, Eds. (Oxford University Press, 2023).
42. M. Regev et al., Propagation of information along the cortical hierarchy as a function of attention

while reading and listening to stories. Cereb. Cortex 29, 4017–4034 (2018).
43. C. Baldassano et al., Discovering event structure in continuous narrative perception and memory.

Neuron 95, 709–721 (2017).
44. A. R. Laird et al., Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23,

4022–4037 (2011).
45. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A practical and powerful approach

to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
46. D. H. Brainard, The psychophysics toolbox. Spat. Vis. 10, 443–446 (1997).
47. D. G. Pelli, The VideoToolbox software for visual psychophysics: Transforming numbers into

movies. Spat. Vis. 10, 437–442 (1997).
48. J. R. Manning et al., A probabilistic approach to discovering dynamic full-brain functional

connectivity patterns. NeuroImage 180, 243–252 (2018).
49. M. Kumar et al., BrainIAK: The brain image analysis kit. Apert. Neuro. 1, 1–19 (2021).
50. A. Schaefer et al., Local-global parcellation of the human cerebral cortex from intrinsic functional

connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
51. E. M. Gordon et al., Generation and evaluation of a cortical area parcellation from resting-state

correlations. Cereb. Cortex 26, 288–303 (2016).
52. S. M. Smith, A. Hyvaärinen, G. Varoquaux, K. L. Miller, C. F. Beckmann, Group-PCA for very large

fMRI datasets. NeuroImage 101, 738–749 (2014).
53. D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022

(2003).
54. A. S. Fox, L. J. Chang, K. J. Gorgolewski, T. Yarkoni, Bridging psychology and genetics using

large-scale spatial analysis of neuroimaging and neurogenetic data. bioRxiv [Preprint] (2014).
https://doi.org/10.1101/012310 (Accessed 15 March 2023).
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