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Abstract—Edge deployments perform complex deep learning
inference and analysis in the wild in highly resource constrained
environment. They are positioned everywhere from our largest
cities to the bottom of our oceans, and often necessitate signif-
icant financial resources and labor to create and deploy. These
properties make correctness of edge deployments simultaneously
extremely important and difficult to verify a priori. In the past
decade, a series of IoT and cloud testbeds have emerged to
facilitate this testing. They provide users with access to resources
and, less often, sensors that can be used to emulate workloads
before deployment. While developers can use these resources
to verify the correctness of their configurations, often users
would like to “right-size” their deployments — that is, to find
a minimal resource configuration that guarantees correctness
— to decrease cost and prevent over-provisioning. The current
suite of cloud and IoT testbeds does not provide this capability.
We present Righteous, an automatic deployment right-sizing
tool for edge deployments. Righteous treats configuration as a
hyperparameter optimization problem, testing hyperparameter
combinations to find a near-optimal configuration as quickly
as possible. Righteous uses a new optimization algorithm, in-
formed Pareto Simulated Annealing (iPSA) to find near-optimal
configurations faster than other leading approaches. We use
Righteous in conjunction with the PROWESS testbed to optimize
a drone swarm deployment workload. Our results demonstrate
that Righteous configurations use up to 3.5X less resources than
those identified by leading hyperparameter tuning and resource
allocation techniques, and does so up to 76.3X faster.

Index Terms—resource allocation, edge computing, optimiza-
tion, UAV

I. INTRODUCTION

Edge computing constitutes new and expressive level of the
deployment hierarchy for modern workloads [44]. Fundamen-
tally, edge computing connects sensors on the ground with
increased intelligence, enhanced security, and rich configura-
bility. New and interesting sensors are driving innovation, new
hardware platforms and accelerators are deploying Al in the
wild, and privacy concerns are growing.

Diverse applications can be run in edge contexts. Range in
size from minuscule far-edge sensors [28] to massive content
delivery networks and are deployed in buildings and cities [6],
crop fields [13], forests [17], and even under the ocean [50].
These devices connect to, or are themselves sensors that collect
useful and interesting data, process that data via artificial
intelligence, and often transmit it back to stakeholders for
analysis. Al inference from edge deployments are used to
monitor noise complaints in large cities, track crop health over
the growing season, track and monitor wildfires, and more.

While edge deployments are useful and solve real problems,
their diversity and complexity makes correctness difficult to
verify in development [5], [14], [35]. It can be unclear whether
software, hardware, models, sensors, and networks will behave
well in concert without complete implementation and often
formal verification. Building and deploying these systems
can be expensive, with large deployments costing millions
of dollars. Deployments may also require custom devices,
networking hardware [43], or sensors that require additional
development and expense [28], [43]. Users generally work
to verify the feasibility and correctness of their deployments
before they commit to costly hardware purchases, or while
they are developing aspects of the deployment through either
the use of simulation, custom testbeds, or community testbeds.

For this reason, significant investments have been made in
recent years in edge, cloud, and IoT testbeds [8], [9], [12],
[18], [19], [23], [32], [37], [38], [49], [49]. Testbeds and
testbed platforms like Chameleon, the Platforms for Advanced
Wireless Research (PAWR), GENI, PROWESS, Colosseum,
Kansei, Mirage and many others are allowing users to build
and test platforms with diverse sensors, compute platforms,
and network technologies while requiring minimal upfront
investment. Many users opt to use simulation environments or
custom testbeds to similar effect. While custom testbeds re-
quire additional monetary investment and simulation platforms
may not generalize to real-world conditions, these techniques
are still valuable and almost necessary for verifying large IoT
deployments. Users rely on these techniques to test changes in
potential deployments, select hardware, software, and models,
and very correctness.

Verification of correctness is however, only one aspect
of edge deployment development. As researchers test their
deployments in simulation or using testbeds, they manually
configure hardware, resource allocations, networks parameters,
Al models, and more. One principle benefit of testbed and
simulation platforms is the facilitation of this tuning process.
Users can swap in and out pieces of their deployment and ob-
serve the effects. Ultimately, researchers seek a configuration
that satisfies all of their goals (e.g., meets latency or accuracy
requirements for end users) while also meeting power, form-
factor, and cost constraints. We refer to this process as “ Right-
sizing ”.

For simple deployments, right-sizing can constitute chang-
ing only a few variables. For large deployments, the space of



candidate configurations can explode exponentially. Deploy-
ments may encompass multiple device types with configura-
tion options including network substrate, CPU and memory
allocation, power and battery constraints, software and Al
models. Additional optimizations may also be tested including
early exits for AI models, device duty-cycling, or multi-
tenancy. Complete exploration of these options can quickly
become impossible, and even manual tuning can necessitate
the exploration of hundreds or thousands of configurations to
meet performance goals.

Parameter tuning in high-dimensional spaces is a well-
researched topic. Optimization algorithms in operations re-
search, resource allocation, computer scheduling, and Al
frequently explore high-dimensional spaces. Techniques like
Bayesian optimization [7], economic resource allocation via
the Boston mechanism [27], and multi-resource clustering
algorithms [26] are used to simplify high-dimensional spaces
and find strong candidate solutions in different domains. We
show that these technique are not properly suited to edge
deployments.

We present Righteous, an edge deployment right-sizing tool
for simulators and testbeds. Righteous models edge deploy-
ments as sets of containers, whose hardware, software, models,
and networks can be easily manipulated. Righteous treats these
resources as hyperparameters to be tuned by an optimization
algorithm. As shown in Figure 1, Righteous takes these
containers, along with user-specified performance goals, and
tests them repeatedly to determine a configuration that meets
goals with the lowest possible resource footprint.

Righteous uses a new optimization algorithm called In-
formed Pareto Simulated Annealing (iPSA) to quickly identify
feasible and near-optimal configurations for these containers
based on user-provided goals. We test each hyperparameter
configuration by automatically shaping and deploying Kuber-
netes pods that match our configuration. In this paper, we
show that Righteous and iPSA outperform other state of the
art optimization techniques from computer scheduling and Al
literature. Righteous finds up to 3.5X better configurations
than leading hyperparameter tuning and resource allocation
techniques, and does so up to 76X faster. Righteous is never
out-performed in our testing by optimization techniques, and
finds allocations only 10% more provisioned than optimal
configurations identified by exhaustive grid search, a 1400X
slower technique. We show that Righteous experiments can
be easily parallelized unlike other optimization techniques,
leading to saturation of testbed allocations and decreased
runtimes for each evaluation at no cost.

In section 2 of this paper, we describe the motivation
for Righteous and provide background on edge deployment
optimization. Sections 3 discusses the iPSA algorithm and the
design of the Righteous testbed tool. Section 4 outlines a case
study used to evaluate the performance of Righteous compared
to other optimization algorithms. Section 5 presents results of
our experiments. Sections 6 and 7 provide limitations, future
work, and conclusions.
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Figure 1. Righteous Optimization Process: 1) Provide a workload as set of
containers, 2) Define resource configuration space, 3) Supply performance
goals, 4) Use iPSA and Kubernetes to evaluate candidate configurations.

II. BACKGROUND

The concept of right-sizing is common across engineer-
ing [41], computing [10], economics [22], healthcare [1], and
even in the natural world [47]. This process of finding just
the right configuration to fit a problem has been rigorously
defined mathematically through optimization algorithms. In
this section, we will detail some background on optimization
techniques and applications relevant to right-sizing for edge
deployments.

A. Resource Allocation

A foundational concept in optimization is resource al-
location. Resource allocation problems pose the following
question: given some set of resources S and requests R, how
can we best assign our resources S; < [; to maximize
the performance of our system? Resource allocation problems
are common in economics, healthcare, and computing where
resources (e.g., money, doctors, CPUs) are scarce and must
somehow be assigned, usually for some globally maximum
benefit. Assignments are based on a policy P. P may assign
resources to hospitals or patients based on need or perceived
benefit [33], or may assign CPUs to interactive processes over
daemons, or may assign high-achieving students to magnet
high schools [22]. The goal of a resource allocation is to
select an algorithm F'(R,S) that maximizes some quantities
that reflect policy enforcement.

Policies in resource allocation focus on high-level concepts
like fairness, priority, and envy minimization. In human-
centric systems like healthcare, resources are often indivisible.
Algorithms like first-choice maximality [27] assign resources
to agents in perpetuity based on a policy that does not adapt
after assignment. In computing, resources are often divisible,
requests are ephemeral, and contention is high. For example,
in single-CPU scheduling, many processes will contend for
access to one CPU. Over a processes lifecycle, it will periodi-
cally require CPU access, perform a calculation, and then wait
for some I/O operation. The length of CPU and I/O bursts are
not known prior to their execution, making a-priori resource



allocation unclear. Therefore, scheduling algorithms often rely
on a posteriori information [39].

As computer systems grow in complexity, this lack of clarity
persists. Complex software running across institutions [12],
large IoT and Edge deployments [6], [38], and planet-scale
data centers [15] must be profiled in realistic scenarios to truly
understand resource needs. This profiling process can be sim-
plified in scenarios where resources can be over-provisioned. If
a reasonable upper bound for resource consumption can be de-
termined, the system can be deployed. Edge applications often
violate this assumption. These applications have constraints
on form factor, power consumption, and network substrates
that may be impossible to over-provision without a posteriori
knowledge. They must also satisfy models whose complexity
often scales with accuracy. The purpose of Righteous is to
use accurate profiling and incisive optimization to quickly
determine the proper configuration for an IoT deployment.
In the rest of this section, we will provide background on
1) methods for testing Edge application performance and 2)
relevant optimization algorithms for resource allocation.

B. Computing Testbeds

Testbeds are often used to approximate real-world perfor-
mance for compute workloads before deployment. Testbeds
allow users to deploy workloads in representative conditions,
generally using shared resources. Testbed offerings have im-
proved in recent years [8], [12], [18], [32], [37], [38]. Testbeds
for edge and IoT applications specifically [12], [31] allow
users to either test applications on bare-metal hardware, or
provide light-weight virtualization or containerization that can
constrain applications to edge footprints. Publicly available
testbeds like Chameleon [32] and GENI [8] provide users
access to share resources that can be used to emulate their
workloads. PROWESS [12], an open testbed software plat-
form, allows users to instantiate their own testbeds for sensor
and network dependent applications.

Users may assess the correctness of their applications on
these testbeds, but to right-size an application, they must
explore myriad hardware and software configurations. In the
next section, we rigorously define right-sizing and present
candidate solutions from recent literature.

C. Optimization for Right-Sizing

As shown in Figure 2, we define right-sizing as a
multi-objective optimization problem. Applications A =
{s1, $2,..8,} are sets of software artifacts (s,) that request
hardware resources H = {hq, ha, ...h,, }. Hardware resources
are linked to devices d; € D,d; < {hi, hs,h7}, and each
software artifact must be placed on one such device, thus
sharing its resources d; < {s1,s4}. Software components
can be linked by network resources, therefore behaving as a
bi-directional graph. Applications also contain sets of perfor-
mance goals G = {g1, g2, ...gn }- The goal of our optimization
technique is to determine the minimal set of hardware that can
support our application and meet its goals argmin(H) 3 g; <
piVi
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Figure 2. Our theoretical model for right-sizing decomposes workloads into
devices which house hardware and software. Right-sizing finds a minimal set
of hardware which allows software to meet performance goals.

Before testing, the resource utilization of each compo-
nent is unclear. We define the following evaluation function
R(A,H) = P to determine performance of a candidate
hardware P = py,pa,...pn,|P| = |G| where p; represents
performance with respect to g;. The goal of right-sizing
is to find H,,;,, the minimal set of hardware such that
R(A, Hyin) = Prin and ppin1 > g;Vi. This problem is NP-
hard. Like many resource allocation problems, this problem
corresponds to a multiple knapsack problem [40], where
every d; € D corresponds to a knapsack of capacities with
respect to its hardware resources. Right-sizing is additionally
complicated by the lack of a priori knowledge of the weight
(i.e., performance) of the applications, and the continuous
space across which compute resources can be allocated.

Due to the size of the continuous search space across |H |
hardware allocations, exhaustive search is impractical. Grid
Search [36], where each continuous h; is discretized into a
set of candidate allocations and exhaustively searched, will
yield some meaningful H,,;, whose quality is dependent on
the granularity of the search space. Unfortunately, Grid Search
scales exponentially with |H|. In large edge systems, each
new hardware device can increase |H| by multiple factors
if accounting for is various resources (RAM, CPU, ingress
and egress network capacity, etc). Therefore, we require an
optimization algorithm that can nimbly navigate the search
space.

R(A,H) =P )
H, i, = argmin(H;) 3 p; < g;Vi 2)
}L%lgf(Ra h) = Hyin 3)

We define our edge right-sizing problem in equations 1-3.
The goal of right-sizing is to find H,,;, via an optimization
algorithm f(R,h). Our challenge is to identify or construct
this function. Many optimization algorithms exist for quickly
navigating large spaces. However, via the no free lunch theo-
rem [2], all optimization algorithms will perform equally well



across a large set of problems. We must, therefore, identify an
optimization algorithm suitable for solving this specific right-
sizing problem. Two candidate classes of algorithms are 1)
Bayesian Optimization, and 2) cluster resource allocation.

D. Prior Work

Bayesian optimization (BayesOpt) is a widely used opti-
mization technique based on Bayesian statistics. BayesOpt
seeks to the inputs to a function that will result in globally
optimal outputs [25]. BayesOpt uses a Gaussian process to
iteratively generate a posterior probability distribution across
the search space. Using an acquisition function across the prior
(e.g., expected improvement), BayesOpt selects a sample point
which improves its understanding of the search space per some
criteria.

BayesOpt has emerged as a best-in-class optimization tech-
nique for expensive black box functions [45]. BayesOpt has
found extensive use in machine learning [7], materials sci-
ence [48], physics [16], and other domains where search
spaces are large and evaluations are expensive. Computa-
tional right-sizing has also been performed using BayesOpt.
CherryPick [3] uses BayesOpt to search a large space of
potential cloud deployment configurations. RAMBO similarly
uses BayesOpt for performance tuning of microservices in
cloud environments [34]. BOAT similarly uses structured
BayesOpt to automatically right-size complex systems with a
focus on machine learning [21]. StreamBed predicts suitable
deployment configuration using Bayesian Optimization for
stream processing [42]

BayesOpt is far from the only technique used to opti-
mize system-level hyperparameters. Decades of research on
resource allocation across operating systems, distributed sys-
tems, and data-centers. Here, we mention some recent and
relevant works focused on compute placement and optimiza-
tion. Cilantro is an online learning system that adapts to
changing job conditions, estimating resource-to-performance
mappings and handling uncertainty in learned models by
working within confidence bounds [10]. Chameleon is a
system for tuning video analytics applications to fit the form
factor of available compute resources [29]. Chameleon uses a
version of greedy hill-climbing to iteratively tune performance
knobs. Ekya, another video analytics optimizer, uses a thief
schedule to iteratively re-distribute resources across groups of
video streams [11].

Each of these techniques is performant in its domain,
but may not apply well to edge deployment right-sizing. In
Section 3, we describe iPSA, an optimization algorithm for
IoT right-sizing. In section 5, we will demonstrate its improved
performance with respect to BayesOpt and Ekya specifically.

E. Toy Example: Optimization-based rightisizing at present

To illustrate these techniques, consider a resource-limited
edge node: the Nvidia Jetson Orin Nano. The Jetson Nano is
used often for accelerating robotics and Al workloads, with
its Orin class containing a multi-core ARM CPU, memory, a
1GB network link, and embedded ampere GPU. The capacity

and quality of the CPU, memory, and GPU are variable, with
9 potential offerings of varying computational power, where
prices and power consumption increase as computational
power increases. Given an edge application (e.g a computer
vision workload), which of these hardware offerings, if any,
is best to select? Given complete knowledge, a researchers
may reasonably select the least expensive device that meets
all computational constraints.

To determine the best platform for a workload, a researcher
could buy all existing platforms and perform tests, but this is
also not cost effective. It would be more cost and time effective
to use testbed resources to approximate the hardware device
and proceed accordingly. Using grid search with 10 discrete
allocations for each of the Jetson Orin Nano’s four h;, this
would constitute 10,000 sample points, potentially prohibitive
for workloads that run for minutes before returning results.

Techniques like Ekya and Hyperopt are more incisive.
Hyperopt samples based on a Gaussian prior and expected
improvement. This sampling process is could use the same
grid as Grid Search, or a continuous space, and would intel-
ligently sample based on the prior. While effective, Hyperopt
assumes little about the underlying shape of the function, and
therefore spends precious evaluations exploring the function
unnecessarily. Ekya takes a similar approach, learning the
function over a series of iterations by starting with a candidate
allocation and adding, removing, or trading resources from
S; to S; to identify a maximal allocation. Both technique
take significantly fewer evaluations on average to minimize an
unknown function that grid search, but both treat the function
as a black box. Ultimately, we would like an algorithm that
explores this search space in a targeted way, relying on
fundamental aspects of edge workload performance to avoid
poor candidate solutions.

III. DESIGN

Righteous is a workload right-sizing tool for computer
systems testbeds. Righteous accepts workloads as sets of con-
tainers and resource allocations. It uses a novel optimization
algorithm to quickly pair down their allocations and identify
a minimal set of hardware resources for correct execution. In
this section, we describe the system overview for Righteous
as well as our novel iPSA optimization algorithm.

A. System Overview

Figure 3 shows the high-level design of Righteous. The
Righteous optimization process contains three key compo-
nents: workload definition, optimization, and runtime.
Workload Definition: Users provide workloads to Righteous
as sets of containers. Containers are an OS-level virtualization
mechanism that rely on the host kernel to isolate resources
as opposed to a hypervisor. Containers are widely used to
manage dependencies, deploy micro-services, and migrate
applications. Containers and heavier-weight virtual machines
are also used widely in computing testbeds [8], [12], [32].
We chose to implement Righteous using containerization, but
Righteous could also work with virtualization.
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Figure 3. Righteous Overview: Users provide software as containers, hard-
ware resource limits, and placement information. Righteous uses iPSA to
determine candidate resource allocations. Candidate allocations are configured
and scheduled on a testbed, with potential for parallelism. Performance results
are returned to iPSA, and experiments are run until stopping conditions are
met.

Righteous accepts workloads as sets of interconnected con-
tainers. Each container consists of some {s;,s;..} C A
software artifacts positioned on a device dj. Righteous also
accepts hardware limits {l,,,in, {;maz } for each container where
Iminig < hi < lLpar,Vh € H. Limits can pertain to any
hardware resource that modern container platforms can isolate
(e.g., the number or percent of CPUs, amount of RAM,
network bandwidth) or select (e.g., number or presence of
GPUs, storage medium). As shown in figure 2, network links
between containers can also be considered for optimization.
Optimization Loop: Per equations 2 and 3, the Righteous
optimization process finds the minimum hardware set H,,;,
that can execute application A while satisfying a set of
performance goals G. These are provided as inputs to the opti-
mization loop. Righteous relies on informed pareto simulated
annealing (iPSA), a novel optimization algorithm described in
section 3.2. iPSA, like most optimization algorithms, relies on
performance history to inform outputs. Righteous continually
calls iPSA to generate candidate hardware allocations h’

eand
based on performance history of prior history {hl,, ., A\l 1.

iPSA provides as its principle output a candidate hardware
allocation h’,, , to be tested, or a stopping condition. If iPSA
does not elect to stop, h% ., will be sent to the experiment
configurator for evaluation.

The Righteous experiment configurator constructs an ex-
periment from the hardware allocation provided. This process
is testbed-specific. In section 4, we will describe how the
Righteous configurator creates a kubernetes deployment for
testing on the PROWESS testbed. The configurator’s principle
output is a well-formed file fully describing our application
and hardware specification A(H) that is capable of execution

on a computing testbed.

Righteous, as a testbed tool, must schedule jobs to 1) assure

access to requested resources, and 2) avoid disrupting the ex-
periments of other users. Righteous’ scheduler integrates with
testbed scheduling software to run evaluations within testbed
constraints. The job scheduler can also optionally probe the
testbed for unallocated resources that could potentially be used
for parallel execution. If sufficient unused resources exist,
Righteous’ parallel execution check will request another eval-
uation from iPSA. If iPSA can generate another experiment
without outstanding experimental data, it will be scheduled for
potential parallel execution.
Testbed Runtime: Candidate allocations are configured and
scheduled on the testbed, potentially with multiple experiments
executing in parallel. The testbed will execute the application
as a set of interconnected containers per the configuration
provided by the Righteous optimization loop. Performance
results are returned to iPSA and incorporated into performance
history. After execution, iPSA is continually queried and
experiments are executed until a stopping condition is met.

B. The iPSA Optimization Algorithm

Pareto Simulated Annealing [20] is multi-objective com-
binatorial optimization (MOCO) algorithm that solves
argmaz(fi(x), fa(x),...fn(x)) for x € D where x is a
set of hyperparameters resulting in a feasible solution. Pareto
simulated annealing solves this problem by performing the
following steps:

1) Select a starting sample of feasible hyperparameters sets
S

2) For all * € S construct a neighborhood y <«
V(z), the set of all hyperparameter sets that can
be reached by making a simple move from z (e.g.,
T1,To,...Tk — 1 ...2p).

3) If y is not dominated by z, M < y where M is the set
of feasible solutions

4) Accept y with probability P(z,y,T,A) where T is
temperature, A is a set of random weights, and P returns
a probability based on the Chebyshev metric [20].

The stopping conditions and annealing schedule (rate of tem-
perature degradation) are provided by the user. Ultimately, the
cheapest non-dominated feasible configuration is returned.
PSA is both high-complexity and probabilistic. Depending
on the stopping condition, annealing schedule, and neighbor-
hood selection, simulated annealing can have a considerable
runtime. Due to its probabilistic nature, simulated annealing
(like the metallurgical theory upon which it is based) requires a
long period of temperature lowering to converge approximate
a near-optimal solution [20]. PSA is generally eschewed
for modern black-box MOCO problems in lieu of Bayesian
optimization, as Bayesian optimization’s performance is gen-
erally superior. Certain properties of PSA, however, inspire
our informed PSA algorithm that outperforms even Bayesian
optimization for the compute right-sizing problem. iPSA takes
inspiration from PSA but removes both the probabilistic
component and increases the annealing schedule to deliver



an algorithm with faster convergence for a specific class of
objective function.

Intuition: Architectural parameters for IoT workloads often
improve performance when increased (e.g., more CPU <
faster runtime) or hurt performance when decreased (e.g.,
slower networks, more missed deadlines) as demonstrated in
equation 4. Using this intuition, we present an optimization
algorithm based on PSA that relies on an approach similar to
hill-climbing to eliminate the probabilistic component of PSA
and forgo a slow annealing schedule. iPSA should return a
near optimal configuration in less evaluations than approaches
that sample an objective function with no intuition about its
underlying shape.

C. iPSA Overview

iPSA avoids the probabilistic uncertainty and high com-
plexity of PSA by utilizing the underlying share of resource
utilization in edge workloads. iPSA is informed by equation
4: the principle that adding a hardware resource to an IoT
deployment, all things being equal, will either increase its
performance or have little effect on performance. Conversely,
decreasing a resources allocation from an IoT deployment will
either decrease its performance or have little effect.

pep: {R(A,H,- —T) <= R(H;)

“4)
R(A,H; +t) >= R(H,)

Using this principle, we implement iPSA, a polynomial time
greedy approximation for PSA suited for compute resource
minimization.

Algorithm 1 Informed Pareto Simulated Annealing
1: procedure IPSA(S, Ty, Ar, G, L)

2: T+ 1T

3: B+ {lmzn,z + lmax,i}

4 D+ -1

5: while T > 0 do

6: M+ ¢

7: r+ B

8 Y+« V' (x,D=+T,L)

9: for y €Y do

10: P, = Eval(z,G)

11 if = does not dominate y then
12: M+ y

13: if P, < P, then

14: B=y

15: Pr + Eval(argmin(M),G)

16: if Pr < P, then B = argmin(M)
17: if G, P,|3G; > P, i then

18: D=1

19: T=T-Ap

20: return B

Algorithm 1, the informed Pareto Simulated Annealing
(iPSA) algorithm, approximates a pareto-optimal resource
allocation scheme for a set of software artifacts S passed as

containers. iPSA accepts a set of jobs .S, an initial temperature
Ty, and a temperature modifier Ap. M is a set of non-
dominant hyperparameter sets that form the basis for the iPSA
solution. Values in M navigate to and along the pareto curve
as iPSA progresses. M originally contains a single set of
hyperparameters for each resource equal to the midpoint of the
limits of that resource. This starting point, in the middle of the
parameter space makes no assumption about the relationship
between resource limits and performance. 7' is temperature,
the amount by which hyperparameters change across itera-
tions. T is initialized to Ty. B is the best hyperparameter
combination found by the algorithm, initialized to the null set
0.

iPSA iterates over temperature, decreasing 1" by A until T
reaches 0. At each iteration, a neighborhood Y is constructed
for the best previously identified hyperparameter set B. For
each hyperparameter h € H in B, V'(x,D % T, L) returns
a complete hyperparameter set H' < {hi,ho,..h; + D %
T,...,h,}. One hyperparameter is modified by D T for each
H'.

Each neighbor in Y (y), is evaluated on the testbed and its
performance results P, are returned. If it is not dominated by
x, then it is added to M as a candidate solution. If y’s score
is also lower than B (or B = ¢), then y is therefore the best
non-dominant hyperparameter set, and B is set to y. Once all
y have been evaluated, set F is constructed by combining all
y; € Y; where Y; is not dominated by z. This hyperparameter
set, Yy is then evaluated and compared to B. Finally, if a
feasible, non-dominant hyperparameter set has been found, the
temperature is decreased and iPSA will decrease hyperparam-
eters for the next iteration. If not, the temperature remains at
Ty and iPSA will increase hyperparameters in an attempt to
find a feasible hyperparameter set.

This algorithm is similar to conventional Pareto Simu-
lated Annealing, with some important changes. First, PSA’s
V(x,T,G) finds a random neighbor y € Y surrounding x
by taking making a ’simple’ hyperparameter change. This
function is sampled repeatedly at every temperature step to
build a neighborhood against which to compare values in M.
iPSA’s V'(x,T, Q) returns an array of size |H| that either
increases or decreases each hyperparameter h € X. Instead
of randomly sampling V' as a black box, iPSA deliberately
navigates to the pareto bound via principle 4. Given that our
pareto bound is defined by performance proximity to goal
G, we know that eval(xz) > G reflects resource allocations
greater than necessary to meet goals, and eval(x) < G reflects
insufficient resource allocation. For that reason, V' (x,T, Q)
either increases or decreases resource allocation (not both)
depending on goal performance.

This modification allows for two additional optimizations.
First, due to our knowledge about the underlying shape of
our function, we can hasten the annealing schedule. We test
each hyperparameter to determine its impact on the system in
isolation. All updated hyperparameters that continue to meet
goals are aggregated and tested together. This allows for single
steps in the annealing schedule to be 1) proportional to the



number of hyperparameters, and 2) deterministic. Second, as
we show in section 5, iPSA is also tolerant to a high cooling
rate. In the next section 4, we describe the implementation of
Righteous and our autonomous UAV case study. In section 5,
we present the results of Rightous and iPSA as compared to
other optimization approaches.

D. Toy Example: Optimization-based rightisizing with iPSA

Using the Nvidia Jetson Orin example from section 2, iPSA
would behave as follows. iPSA would begin by sampling
the midpoint hardware allocation: H;psa = (max(h;) +
min(h;))/2 VH. Should Eval(G, H;psa) meet all goals,
iPSA assumes that increasing any h; from h;pg4 would result
in similar performance and higher cost, and will begin to
decrease all h;. Alternatively, if H;ps4 does not meet all
goals, iPSA assumes H;pg 4 is insufficient and increases all h;
and re-evaluates. By leveraging these assumptions about the
underlying function, we hypothesize that iPSA will outperform
approaches like Ekya and Bayesian Optimization that treat the
edge system as a black box.

IV. IMPLEMENTATION AND DEPLOYMENT

To test the performance of Righteous, we implemented
Righteous as a tool for the PROWESS testbed. In this section,
we describe our testbed environment, tool implementation, and
a UAV-based edge right-sizing case study.

A. PROWESS Testbed and Righteous Tool

PROWESS [12] is a Kubernetes-based testbed focused
on wireless and edge systems. PROWESS allows interested
institutions to connect and slice compute resources across their
networks to facilitate edge based experimentation. Unlike large
cloud testbeds, PROWESS can be constructed on premises at
low cost using open-source software. On-premises implemen-
tation allows users to expose and share interesting sensors and
hardware at low latency, and allows PROWESS workloads to
benefit from fast institutional networks between edge nodes.
PROWESS testbeds use a hub and spoke model, with one
or more highly provisioned core-hubs connected to lightly
provisioned edge hubs. Core-hubs act as an ingress point for
users, running a user-facing web application and PROWESS
software for workload scheduling, storage, and resource iso-
lation. Edge hubs are compute resources positioned at access
points across the institutional network. Edge hubs can expose
access to sensors or simply act as available compute.

Our PROWESS testbed consists of one core hub and three
edge hubs. Our core hub is a server with two 24-core Intel
Xeon 5317s, an Nvidia A5000 GPU, 256GB of RAM, 18TB
of storage, and 2 25Gb network cards. Our edge hubs are HP
300 edge systems. Each system is equipped with an Intel i7
8650U, 8GB of RAM, and a 1Gb network card. All systems
run Ubuntu 20.04 LTS Linux, and are deployed on a 40GB
institutional network across one building.

PROWESS uses Kubernetes to schedule and distribute ex-
periments across its hubs. Users providle PROWESS with

resource reservations and containers that compose an experi-
ment as shown in figure 2. PROWESS then schedules these
experiments across its cluster based on resource availability
and returns results to the core-hub for storage.

We implemented Righteous as a tool for PROWESS. Op-
tionally, users can submit experiments that they would like to
right-size. Instead of resource reservations, users provide re-
source limits and performance goals. Righteous then schedules
experiments on PROWESS to right-size the workload using
iPSA. Righteous is implemented in Python 3.11 and will be
made open source upon publication.

B. Case Study: Agricultural UAV Swarm

To test Righteous, we designed an edge based case study
that suits Righteous’ goal to optimize unclear and complicated
deployments. We opted to use an edge based case study
focused on unmanned aerial vehicles (UAV). UAV are highly
maneuverable sensors provisioned with onboard compute.
They have been used in a myriad of deployments, piloted by
software to find crop diseases [13], map wildfires [30], deliver
packages [4], and more. UAVs Mobility, sensing capacity, and
onboard compute provisioning, and small battery capacities
make them challenging to use. Interplay between networks,
onboard and off-board software, model selection, and edge
provisioning can have unexpected effects on deployments that
are hard to model without real-world testing [14]. We view
this class of application as a challenge for Righteous.

Our case study follows a UAV swarm of size 1-5 as it
maps a crop field. We draw inspiration and real-world results
from a 3-UAV autonomous swarm used to scout crops in prior
work [13]. This swarm used 3 DJI Mavic UAVs to partition
and map an 85-acre crop field for a specific crop health
condition, soybean defoliation. A centralized edge device
maintains the map and dispatches UAVs to sample regions of
the field. Each UAV is connected to the centralized edge device
via a controller (i.e., laptop or small edge device). As UAVs fly
across the field, they capture images, the images are processed
in real-time via image classification [51], and the UAVs
determine their next sample point based on reinforcement
learning.

When designing a deployment like this, it can be unclear
where software artifacts should sit (i.e., onboard the UAYV,
on the central device, on the controller), and what resources
they require. We used Righteous to identify bottlenecks in this
deployment and assist with compute provisioning.

1) Case Study Implementation: Figure 4 shows an
overview of our implementation, where components of a typi-
cal UAV swarm deployment are modeled as containers which
are then collectively deployed on the PROWESS testbed for
each experiment. The implementation consists of the following
containers:

1) UAV Maps to a single UAV in the swarm, and simulates
a UAV’s typical functions such as flying, capturing
images, and transmitting the images to a central server
for inference. It traverses the underlying crop fields
modeled as a grid where movement across grid blocks
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Figure 4. Implementation Overview

decrements the UAV’s battery, used as an indicator of
its health.

2) UAV Controller Deployed per UAV, it interacts with the
central controller to move each UAV as well as track its
global and local position in the grid.

3) Autonomous Controller Monitors the health and posi-
tioning of all UAVs in the swarm and optimizes their
movement based on output from the inference server.

4) Inference Server A server to which UAV swarm of-
floads compute-intensive tasks. In our crop scouting use-
case, such a server performs inference on the incoming
crop images to determine crop health [51].

An experiment sample consists of a small section of a
complete deployment of above containers. A sample end when
each UAV in the swarm has made one complete navigation
decision including movement, classification, and path plan-
ning. The experiment run time is recorded for a specific
configuration of resources. Experiments are controlled through
a kubernetes manifest file in which the control parameters, the
resource configurations (CPU, RAM, storage, network, etc.) of
each container, are specified.

Leveraging containers and a kubernetes-based testbed for
deployment allows us to scale and control our experiments at
a granular level. In addition to making resource configuration
simple, kubernetes CNI plug-ins (Calico, Cilium, etc.) which
support fine-grained network tuning make network slicing
control trivial during experimentation. Moreover, the ease and
flexibility of scheduling container workloads across nodes in
the cluster allows for experiments focused on optimizing node
placement which are critical to identifying edge deployment
bottlenecks.

Righteous generalizes accurately with real deployment conditions
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Figure 5. Righteous performance can be mapped easily to real-world
performance.

2) Mapping to real-world performance: Testbed perfor-
mance is only a predictor of real-world performance. When
executing workloads on testbeds, it is necessary to compare
to ground-truth data from execution on candidate hardware
to properly gauge performance. Prior work has provided
simple methods to predict performance characteristics [46] for
transition from testing to deployment and for large scientific
computing workloads. These methods involve sampling work-
loads under various conditions and building a performance
model.

To test Righteous’ ability to generalize performance to real-
world contexts, we tested our case study implementation on
candidate deployment hardware. We executed our single UAV
case study on similar candidate hardware to prior work [13]:
a Lenovo Thinkpad x1 Carbon Laptop with an 12-core Intel
i7 CPU and 32GB of RAM. We also ran our single UAV
workload on PROWESS for comparison. We ran executed
200 randomly generated configurations of hyperparameters on
both the edge device and testbed. We then built a 3rd degree
polynomial regression based on the first 100 random samples.

Figure 5 shows the results of our polynomial regression
on our test set. Our regression achieves an R? value of 0.95,
demonstrating strong fit to our test data. Test data on deploy-
ment hardware is significantly noisier than data executed on
PROWESS. This is expected, and is due to the lack of isolation
the software is provided with respect to other applications
in a deployment context. Furthermore, it can be seen that
PROWESS executes Righteous workloads significantly slower
than deployment hardware. This is due to seccomp overhead
and is used on this testbed for security reasons.

V. RESULTS

We tested the performance of our Righteous tool and PSA
algorithm on our Multi-UAV case study using the PROWESS



Table 1
RIGHTEOUS HYPERPARAMETER SEARCH SPACE.
Resource Min Max ¥ Total
RAM 500MB 3200MB 100MB 28
CPU 0.5 32 0.25 11
Network | 0.5Mbps 10Mbps | 500Kbps 20

testbed described in Section 4. In this section, we describe our
experimental design and results.

A. Experimental Design

To evaluate the performance of iPSA, we implemented three
additional algorithms for hyperparameter optimization and
resource allocation. Each algorithm solved the optimization
problem outlined in equation 3. H; was defined as a set of
12 resource-related hyperparameters: three for each of our
4 container classes. Each container’s CPU allocation [0.5-
3.2 CPUs], RAM [500MB - 3200MB], and ingress/egress
network bandwidth [0.5MB-10MB] were treated as separate
hyperparameters for optimization. Righteous used one of four
algorithms, iPSA, Grid Search, Hyperopt and Ekya, to sample
the hyperparameter search space and return a candidate H,,,;,,.

Our first point of comparison is Grid Search [36]. Grid
Search is a simple hyperparameter optimization technique
that discretizes the search space by some granularity v and
evaluates every point. Grid Search is effective for small search
spaces, but its time complexity grows exponentially as the
number of hyperparameters increases. For functions that are
expensive to evaluate, like our workload, Grid Search can be
prohibitively time consuming. We implemented Grid Search
as an upper bound for comparison. We discretized our search
space as shown in table I. A complete Grid Search of this space
would require 1.43 % 101 unique evaluations of our test case,
which is infeasible. We therefore constrained our Grid Search
further, changing RAM, CPU, and Network hyperparameters
uniformly across all containers of all types, resulting in 6160
unique evaluations. Given the number of evaluations and
runtime (average 41 seconds) of Grid Search samples, we ran
Grid Search for only our 4 UAV swarm.

Hyperopt [7] is a state of the art Bayesian optimization
software package used in many disciplines. As described in
section 2, hyperopt is used in many disciplines to optimize
black-box functions. We configure hyperopt to sample the
hyperparameter space outlined in table I with no significant
modifications.

Ekya [11] is a system for continuous learning in edge-
based video analytics workloads. Like many edge and IoT
applications, Ekya contains an online optimization algorithm
for resource allocation. Ekya uses a thief scheduling algorithm
to re-allocate resources from performant and over-provisioned
components to under-performant components. Ekya’s thief
scheduler (referred to simply as Ekya) performs right-sizing
online. Unlike our approach, however, Ekya does not converge
to a minimal configuration with respect to resource utilization,
but an optimal configuration with respect to performance.

Ekya therefore assumes that a workload is presently saturating
its system and re-allocates resources from one component to
another. We modified Ekya slightly to suit hardware right-
sizing. We allow Ekya’s thief scheduler to 1) steal resource
from a component and unallocate them, and 2) re-allocate
freed resources. This allows Ekya to search the entire hyper-
parameter space for a minimal hardware allocation.

iPSA was implemented as described in section 3. iPSA’s
start point was the mid-point of the resource allocation limits
for each hyperparameter. iPSA used the same search space as
all other algorithms described in table 1 with a temperature
starting at 5, meaning h; € H' = h; £ D x5 % ~y, at Tp.
After each exploration of V’, the temperature decreased by 1,
resulting in 5 total temperature decreases. Both the exploration
step and temperature schedule for iPSA are significantly lower
than PSA [20], [41] due to intuition from principle 4.

To test the performance of our system as IoT workloads
scale, we executed our test case using single UAV and swarms
of size 2-5. For each swarm member added to our experiment,
additional software components and resources are required,
and bottlenecks change. We tested UAV swarms of up to size
5, as larger swarms exceeded the resources available on our
PROWESS testbed. For each swarm size, we optimized to
meet a single runtime goal based on execution time. Execution
goals for each swarm size are as follows: 1 UAV: 5 seconds,
2 UAV: 7 seconds, 3 UAV: 9 seconds, 4 UAV: 11 seconds, 5
UAV: 15 seconds.

B. Performance Analysis

Figure 6 shows the performance results for Ekya, Hyperopt,
iPSA, and Grid Search. For each algorithm, ran identically
configured experiments for swarms of size 1-5. Each algorithm
made no a priori assumptions about the underlying workload.
Hyperopt results are split into two categories: Hyperopt 100
and Hyperopt 500. Unlike iPSA and Ekya, hyperopt does not
have a clear stopping condition, so we executed Hyperopt for
both 100 and 500 evaluations.

Figure 6 (a) shows the percent resource utilization of the
testbed for the H,,;, returned by each algorithm. We see that
iPSA returns configurations that use 1.33-3.57X less resources
than all other algorithms. We also see that this performance
is maintained as workloads scale. iPSA produces consistent
results as resource requirements are increased, where Hyperopt
and Ekya falter. This can be see in figures 6 (b) and 6
(c). Figure 6 (b) shows the total number of evaluations per
workload for each swarm size. As mentioned, Hyperopt 100
and 500 have fixed evaluation sizes, but Ekya and iPSA
do not. We see that Ekya searches less configurations as
swarm size (and therefore resource allocations) increase. At
the outset, Ekya’s thief scheduler evenly splits resources across
all containers. It then selects two containers (or one container
and the system’s unallocated resources) and swaps resources
between, tracking the lowest cost feasible configuration. Each
time it selects a pair of containers, it sets the allocations for all
containers to this best performant configuration. This allows
Ekya to quickly fall into local minima. While iPSA can also



30% 35%
1000 10000

25%

10% 15% 20%
10 1

5%

m

1UAV 2UAV 3UAV 4UAV 5UAV

@

Resource Utilization of Huin

0%

(b)

1UAV 2UAV 3UAV 4UAV 5UAV

Total # of Evaluations Per Alg  Evaluation Performance over Time

40% 50%

100000 1000000

30%

10000

\]

L

20%

10%

1UAV 2UAV 3UAV 4UAV 5UAV

(d)

Total Runtime (Seconds)

é \||i‘|
N

100 8

200 300 400

©

500

0%

B iPSA ® Ekya " Hyperopt100 B Hyperopt500 W Gridsearch

Figure 6. Righteous finds better configurations (a) with less evaluations (b-c) than other approaches and decreases overall runtime (d) through better guess

selection.

experience this issue, the directed nature of its optimization
improves performance over Ekya.

iPSA outperforms Hyperopt for different reasons. Hyper-
opt’s black box function approximation process steadily im-
proves performance, as seen by performance improvements
between 100 and 500 evaluations. This is, however, a slow
process. The hyperparameter space defined by even a relatively
small IoT workload is far too large for Hyperopt to learn in
so few optimization. For this reason, iPSA’s targeted approach
prevails. Ultimately, iPSA finds improved configurations far
faster than Hyperopt, and faster than Ekya so long as Ekya
avoids local minima.

These effects can be observed in Figure 6 (c), which shows
each algorithm’s best configuration at each evaluation step for
our 4 UAV experiment. Ekya and iPSA are able to quickly find
feasible, low utilization configurations, but Ekya also quickly
finds a local minima and ceases optimization. iPSA is able to
avoid similar local minima and find a configuration that uses
2.14X less resources. Hyperopt, conversely, samples broadly
across the search space, methodically finding improvements.
However, it does not eclipse iPSA even after 7X more evalu-
ations.

Ekya and Hyperopt also increase runtime relative to per-
formance. Figure 6(d) shows the runtime of each set of
experiments in seconds. We can see both that 1) even a
relatively simple deployment with only a few components to
optimize can take hours or days to optimize with incorrect
configuration, and 2) that iPSA minimizes runtimes. Because
iPSA optimizes toward the Pareto bound, it spends less time
executing configurations that are woefully under-provisioned
or overly provisioned. Ekya and Hyperopt do not have this
guarantee. Hyperopt, as it treats our problem as a black box,
must sample broadly, resulting in increased average evaluation
times 13.4-44X over iPSA. Specifically, in the 4UAV runtime
of iPSA decreased because its final configuration was very
close to the initial iPSA starting point, leading to an early
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exit.

Figure 7 shows the relationship between these algorithms
and a) the frequency of their guesses with respect to resource
utilization and runtime, and b) the progression of their guesses
across evaluation steps. Images in figure 7 compress our 12-
dimensional search space to two key results, total resource
utilization of the system and workload runtime (our perfor-
mance metric). This allows us to differentiate ideal H; with
(low resource allocations and low runtimes) from H; with high
resource allocations, or improper small allocations resulting in
large runtimes.

Grid Search, whose guesses are predetermined, guesses
widely and methodically across the search space. The most
runtime-utilization pairs can be seen at moderate resource
allocation levels resulting in small runtimes. These are over-
provisioned but feasible configurations. Hyperopt similarly
finds many feasible but over-provisioned configurations. Be-
cause Hyperopt treats our function as a black box, it guesses
widely across the search space like Grid Search. It uses this
information, however, to eventually navigate to ideal more H,.
We can see from Figure 7 that Hyperopt’s early guesses vary
widely, but later guesses focus near the ideal range.

Ekya navigates from highly provisioned guesses quickly
to constrained guesses. Ekya’s initial guesses are over-
provisioned, resulting in low runtimes. As Ekya quickly pairs
down resources, it ultimately reaches a point where guess
runtimes begin to rise above performance goals. Ekya is
ultimately unable to navigate out of the local minima and
therefore returns a feasible but sub-optimal guess.

iPSA navigates the Pareto curve from the midpoint of the
search space, which is over-provisioned in this case, to lower
provisioned and nearly optimal configurations. We can see
from Figure 7 (b) that iPSA navigates toward ideal H; and
slightly changes guesses resulting in improved feasible guesses
and unsuccessful non-feasible guesses. The ideal region, out-
lined in green in Figure 7, is shown for both guess order
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Figure 7. Righteous quickly narrows guesses down to ideal regions of the hyperparameter space as compared to other techniques, producing higher quality

results faster than competitors.

and frequency for Ekya, iPSA, and Hyperopt. Ekya spends
little time in this region, quickly falling into local minima.
Hyperopt guesses broadly within the ideal region but is not
quite capable of improving above iPSA. iPSA spends the
majority of its runtime in this region (77% of guesses, as
opposed to Ekya: 9% and Hyperopt: 49%). By navigating
quickly along the pareto bound and guessing informatively,
iPSA is able to outperform Hyperopt with 7X less guesses.

C. Parallel Execution

High levels of isolation and provisioning in computing
testbeds provides an opportunity for parallel execution. Mul-
tiple experiments can be configured and executed at once so
long as the testbed’s resources can satisfy all requests. We
added the following simple modification to our algorithms: for
some guess H;, if guesses H;41...H;{n, N > 0 are know, we
will run the maximal set of contiguous guesses {H;...H; x}
that do not exceed available testbed resources.

Not all techniques benefit from parallelism. Bayesian opti-
mization algorithms like Hyperopt execute iteratively and rely
on information from previous trials to generate future guesses.
Hyperopt can leverage parallelism, but will necessarily lose
information resulting in decreased performance [7]. Ekya and
iPSA both have exploration phases that are not adaptive and
can be performed in parallel. Ekya’s thief scheduler algorithm
selects pairs of jobs such that job S; steals resources from
job S;. This iterative stealing process is adaptive and can
be parallelized. iPSA’s neighborhood exploration process is
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likewise not adaptive and can be parallelized. Figure 8 shows
the performance improvement garnered by iPSA and Ekya
when their exploration phases are parallelized. We opted not
to parallelize Hyperopt due to the aforementioned trade-off
between parallelism and quality.

iPSA and Ekya both improve performance significantly
via parallel experimentation. Ekya requires 2.01X-4X less
evaluation steps, and iPSA requires in total 2.36X-3.55X
less total evaluation steps when executing multiple workloads
simultaneously. Furthermore, this improvement comes with no
trade-off for both algorithms due to Kubernetes’ isolation of
testbed resources and independence of parallel workloads.

Runtime improvements for both iPSA and Ekya scaled
slower than evaluations for both algorithms. Ekya runtimes
improved by 1.3-3.5X where iPSA runtimes improved by 1.6-
2.5X. Runtimes are decreased as parallel workloads tend to
contain a mix of feasible and non-feasible guesses, where non-
feasible guess runtimes can be large. Jobs whose runtimes are
large can remain running after all other parallelizable jobs have
finished, ultimately increasing runtimes relative to evaluations.

When considering parallelism, iPSA improves performance
significantly over all other algorithms. iPSA finds better con-
figurations (up to 3.5X compared to Ekya, and 2.9X compared
to Hyperopt) and executes faster (up to 4.7X compared to
Ekya, 76.3X compared to Hyperopt, and 1413X compared to
Grid Search). Only Grid Search can find better configurations
that iPSA, but Grid Search finds only a 10% improvement at
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the cost of over 1000X additional runtime.

VI. LIMITATIONS AND FUTURE WORK

Righteous was tested broadly with one representative edge
workload across three resource types. It is likely that other
types of workloads will perform differently when optimized
by Righteous, but we believe that our results will generalize
to other workloads. Furthermore, additional resources that are
difficult to slice across workloads (e.g GPUs) will inhibit the
performance of Righteous and the ability to right-size broadly.

Our UAV application can be mapped to deployment easily
and automatically via regression, but this requires access to
some candidate deployment hardware. Users may not have all
hardware they require to properly map Righteous results to
deployment conditions. Users can still incorporate Righteous
into their development process to analyze applications for
bottlenecks and approximate feasible resource requirements
before deployment planning.

Righteous is based on our novel iPSA algorithm, which
has several levers that this paper did not comprehensively
explore due to space limitations. Instead we selected naive
and understandable values as a user might select. We plan
to explore temperature schedules in a followup work with
additional evaluation for new applications. We also plan to
explore the effects of model staging and early exits [24] on
Righteous optimization in future work.

VII. CONCLUSION

Edge deployments are complicated, diverse, and impossible
to comprehensively evaluate a priori. Users rely on computer
systems testbeds to validate the correctness of their deploy-
ments, but optimizing deployments requires manual tuning or
the employment of unsuitable techniques. We model right-
sizing (i.e identifying a minimal hardware configuration that
satisfies performance goals) as a hyperparameter optimiza-
tion problem where resource allocations are hyperparameters.
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To solve this problem, we introduce Righteous. Righteous
is an Edge deployment right-sizing tool that leverages the
resource partitioning of modern testbeds and the novel iPSA
algorithm to quickly right-size complex deployments. We
tested Righteous on software from a previously deployed UAV
swarm application. We found that Righteous was able to find
feasible resource allocations that were up to 3.5X smaller than
other optimization approaches. Righteous also found these
allocations up to 7X faster than other optimization algorithms
and over 1400X faster than naive exhaustive searches.
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