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ABSTRACT: Machine learning interatomic potentials, particularly ones based on deep neural networks,
have taken significant strides in accelerating first-principles simulations, expanding the length and time
scales of the simulations with accuracies akin to first-principles simulations. Notwithstanding their
success in accurately describing the physical properties of pristine ionic systems with multiple oxidation
states, herein we show that an implementation of deep neural network potentials (DNPs) yield vacancy
formation energies in MgO with a significant ~3 eV error. In contrast, we show that moment tensor
potentials can accurately describe all properties of the oxide, including vacancy formation energies. We
show that the vacancy formation energy errors in DNPs correlate with the strength of ionic interactions
in the system as evidenced by contrasting MgO with the less ionic systems Cu,O, and Ag,O,. Our
findings suggest that descriptors employed in the DNP may be inadequate and cannot accurately describe vacancies in ionic systems.
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he high fidelity of first-principles calculations accelerates investigations (all databases and potentials can be found on
the digital discovery and design of materials.' > However, our GitHub page'®).
this approach typically requires significant computational As the aim of MLIAPs is to help bridge the gap between
resources that limit its applicability for large simulations, DFT scales and experiments,”” there is a need for these
which have on the order of thousands of atoms and for time frameworks to successfully describe vacancies that are
scales beyond nanoseconds. To enable the design of omnipresent in materials. For instance, even under ideal
increaSinglz); complex materials, such as high entropy synthesis conditions leading to pristine materials with no
materials, " and to simulate more complex conditions, e.g, defects, it can be expected at nonzero temperatures from
alloy—oxide interfaces and extreme environments, there is a entropic considerations that a bulk material will contain a finite
need to have an accompanying or alternative approach that can concentration of vacancies.'> In our previous studies on metals
achieve similar accuracy but with less computational resources. and alloys, MLIAPs based on DNPs were able to successfully
To this end, machine learning interatomic potentials describe vacancies with high fidelity.'>'*'® However, to our
(MLIAPs) are emerging as a new frontier in materials knowledge, MLIAPs have not been extensively utilized to
modeling at the atomic scale that can accelerate first-principles describe vacancies in ionic systems, which unlike metallic
modeling by orders' of magnitude while retaining high-fidelity systems could pose a challenge owing to the nature of ionic
quality simulations.” interactions in the system.
In a recent study, we highlighted MLIAP’s capability to Herein, we show that DNPs based on DeePMD-kit,”* as

describe pristine binary metal oxides. Specifically, we trained
deep neural network potentials (DNPs) using DeePMD-kit”*
for A,O, (A = Cu, Mg, Ag, Pt, Zn) and found that each
potential can successfully replicate basic physical properties of
the oxides, such as cohesive energies, lattice constants, elastic
constants, and surface energy with an accuracy akin to first-
principles methods.” This finding was noteworthy given the
multivalent nature of each oxide and the different lattice
symmetries, e.g., the Ag,O, DNP was able to describe well two
AgO polymorphs, monoclinic (P2,/c) and orthorhombic
(Cecm), cubic Ag,0 (Pn3m), and monoclinic Agy0, (P2,/c).
With further training, e.g., for MgO, the DNP replicated DFT Received:  October 10, 2024
results in thermal expansion,’ even the phase transition at Revised:  November 21, 2024
extreme pressures and temperatures.” In our efforts to design Accepted: November 26, 2024
DNPs for oxides® as well as for pure metals,'"~"* we focused Published: December 18, 2024
on designing compact training data sets that can be used as a

stepping-stone for the community to utilize in additional

employed in our previous study,’ fail to correctly describe the
neutral oxygen and magnesium vacancies in binary oxides
despite extensive extensions of the training data set. We show
that the moment tensor potential (MTP) as implemented in
the MLIP"” package, in contrast, can provide a framework for
accurately modeling the oxides including vacancies. We
systematically explore the underpinnings of these findings
and how they relate to the ionic nature of the interactions of
the system. Our findings suggest that descriptors of atomic
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environments as employed in MTP can be a viable approach
for describing ionic systems with DNP without resorting to
more complex and expensive computational approaches.

In our previous study, we created and validated DNPs to
model various properties of metal oxides Ag.O, CuO,
Mg,0O,, Pt,O,, and Zn,O, with different oxidation states and
importantly without additional charge information, while
utilizing a minimal data set with less than ~4000
configurations per oxide. Further, we showed that these data
sets can be augmented to enhance the DNP transferability, e.g,,
as demonstrated for a new polymorph, surface energies, and
thermal expansion, or even in modeling the liguid phase of the
oxide at extreme pressures up to ~300 GPa.”’

Using the Mg,O, data set and focusing on the rock salt cubic
phase, we find that the initial DNP has substantial errors in
excess of few eV for calculating neutral O and Mg vacancy
formation energies. We attributed this deficiency to the lack of
explicit vacancy configurations in the data set. To address this,
we applied an adaptive training approach similar to our
previous protocol®” targeting specifically vacancy configura-
tions by adding 7214 new configurations (an ~20% increase
compared to the original 44,792). However, the DNP still
failed to accurately describe the vacancy formation energies.
Notably, we find that the error in the vacancy formation energy
was, respectively, 1.9 and 2.0 eV for the O and Mg vacancies
for the 1 X 1 X 1 conventional unit cell with eight atoms. The
variation of the vacancy formation energies with different
supercells is summarized in Figure 1 and compared to DFT
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Figure 1. Vacancy formation energy as a function of system size for
MgO with O vacancy (green) and Mg vacancy (blue) as obtained
based on DFT (circle), DNP (triangle), and MTP (square). The
smallest supercell 1 X 1 X 1 contains eight atoms and the largest one 3
X 3 X 4 has 288 atoms.

values. Significantly, the figure illustrates that for the 3 X 3 X 4
supercell containing 288 atoms, the vacancy formation energy
in the dilute limit converges to values with errors of 3.5 eV for
O and 3.4 eV for Mg relative to DFT calculations.

To ensure that this finding is not an artifact of the training
data set, we carried out two additional training computational
experiments. First, using the data set developed so far with
52,006 configurations, we developed a DNP after adding 5696
configurations with O and Mg vacancies based on molecular
dynamics (MD) simulations for a 2 X 2 X 2 supercell. The
DNP results with the new potential, after retraining, however,
still displayed significant errors. In particular, the 2 X 2 X 2
supercell that was specifically targeted in the new training
protocol had substantial errors of 3.0 and 3.4 eV for O and Mg
vacancy formation energies, respectively. In the second
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experiment, we trained a set of potentials using only the
vacancy configurations, which amounts to 12,910 config-
urations. This set is nearly 3 times the size of the data set
utilized to train a DNP that can describe the basic physical
properties of the pristine binary oxide with high accuracy.’
While this process allowed for a slight reduction in error (the
error decreased, respectively, by 0.6 and 0.7 eV for O and Mg),
the average error for both vacancy types is still over ~2 eV.
The persistent nature of these energy values is shown in Figure
SI.

Due to the nature of deep neural networks, it is difficult to
identify the cause of the divergence by DNPs from DFT
results. Our investigations ruled out that this could be due to
the inadequacy of the computational framework adopted to
develop the training database. For instance, the DNP
properties of pristine MgO agree well with DFT (Table S1).
Also, the DFT vacancy formation energies are also consistent
with previous studies.'® We thus posit that the descriptors
employed in the DNP may be inadequate and cannot
accurately describe vacancies in ionic systems.

To provide more insight, we investigated applying an
alternative MLIAP based on the moment tensor potentials
(MTPs), as implemented in MLIP.'”"” There are some
notable differences between the two MLIAPs. Both MLIAPs
employ implementations of atomic descriptors that account for
all of the angular and radial information in the local atomic
environment. The two methods differ, however, in their
regressor, where the DNP employs a multilayered deep neural
network while the MTP is based on linear regression with a set
of basis functions. Additionally, the active learning mechanism
employed to train the model error is also different between the
two methods, though not expected to impact the fidelity of the
potential. Specifically, the DNP utilizes an ensemble of
potentials that acts as a committee that “votes” for energy,
force, and stress of a given atomic environment.”® The
deviation of these votes indicates a level of disagreement,
which pinpoints the new information that is needed to be
supplemented into the data set. On the other hand, the MTP
employs D-optimality criterion,”’ which is a geometric
prescription to determine the extent of distinctness of a
give1r71 configuration compared to the ones existing in the data
set.

Figure 2 shows the employed protocol in developing the
MTPs for the oxides (see the Methodology section for further
details). To assess the quality of the resulting MTPs, we
compared the MTP performance to that of DFT and DNP on
different properties of the system. Table S1 shows that MTP
performs equally to DNP in replicating DFT values.
Importantly, and in contrast to the DNP results, the MTP
and Mg vacancy formation energies are very close to the
corresponding DFT values with ~0.05 eV deviations, as shown
in Figure 1. We note that the MgO MTP is trained on only
1231 configurations (including configurations with vacancies),
which is a fraction of the data set size used with the DNP. As a
further validation, we also examined finite size effects on
vacancy formation energies by increasing the supercell size up
to 10 X 10 X 10 (8000 atoms). As shown in Figure S2, the
MTP formation energies are already well-converged with 2 X 2
X 2 supercells (64 atoms) consistent with DFT (see Figure 1).

The MgO MTP is further examined in simulating a more
complex property, namely, thermal expansion, to contrast with
similar investigations obtained using the DNPs.*” Since the
MTP was already trained in MD simulations with an NPT
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MTP training process workflow in this study
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Figure 2. The MTP training process employed in this study. See the
Methodology section for further details.

(constant pressure, temperature) ensemble, we did not add an
additional active learning process and it was utilized as is for
this investigation. Figure 3 shows that the MTP results (green
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Figure 3. Relative expansion of MgO from room temperature as a
function of temperature. Orange diamonds represent DNP results,’
green diamonds represent MTP from this study, blue markers are
from Dubrovinsky and Saxena,”® green markers are from Aguado et
al,”® and yellow markers are from Fiquet et al.**

diamonds) overlap with those of DNP (orange diamonds),
indicating that both methods perform similarly in the thermal
expansion of the pristine system. Notably, as shown in Figure
3, the MTP and DNP potentials capture the nonharmonic
behavior as temperature increases,”” % in agreement with
other studies.”’™>

Our findings clearly show that the MTP approach can
successfully replicate all previous results for the MgO system
that were obtained with the DNP approach and further is also
able to describe with high fidelity the formation energies of the
O and Mg vacancy formation energies. To ensure that these
results are not specific to MgO, we also investigated two
additional binary metal oxides Cu,O, and Ag,0,. For Cu,O,,
we included two CuO polymorphs, orthorhombic (Ccem) and
tetragonal (P4,/mmc), along with Cu,0O (Pn3m). The Ag,O,

33

included two AgO polymorphs, monoclinic (P2,/c) and
orthorhombic (Cccm), cubic Ag,O (Pn3m), and monoclinic
Ag;0, (P2,/c). These structures were selected to observe
trends for different charge states, lattices, and polymorphs
along with contrasting the results between different metal
atoms.

Similarly to the MgO case, we began with the existing DNP
for Cu,O, and Ag,O, that we had previously developed, which
includes ~7.4k configurations. To capture environments
specific to vacancies, we employed an active learning protocol,
adding respectively 21,145 and 14,561 vacancy configurations
to Cu,0, and Ag,O, databases, with a variety of supercell sizes
from unit cell to 3 X 3 X 3. Here, we significantly expanded the
data set size, as our goal is to develop an optimal DNP with
enhanced accuracy, placing less emphasis on the compactness
of the data set. Further, using the same protocol discussed in
Figure 2 for MgO, we also developed MTPs using 2449 and
3267 configurations for Cu,O, and AgO,, respectively,
including configurations with vacancies. As shown in Figure
S6 and Tables S2 and S3, the MTP results for several physical
properties of the oxides are in very good agreement with those
obtained with DFT and DNP.

Figure 4 summarizes the MLP and DNP vacancy formation
energies as a radar chart of error vs DFT where the area in the

a.) Average Error O Vacancy b.) Max Error O Vacancy

CuO Oort

CuO Ort

AgO Mono Ag20 Cub AgO Mono Ag:20 Cub
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Figure 4. Radar chart of error vs DFT values for MTP (blue) and
DNP (red) for Cu,O, and Ag,O,. The average and max error (a and
b) for O vacancies and (c and d) for Mg vacancies. The area in the
radar plots correlates with the error, where smaller area is indicative of
smaller errors. All values are in eV.

radar plot is indicative of accuracy. To capture both trend and
largest error outliers, we present the average and maximum
errors for formation energies over 2 X 2 X 2 (24 atoms) to 3 X
3 X 4 (288 atoms) supercells. As can be observed in Figures S4
and SS, the Ag,0, and Cu,O, DFT vacancy formation energies
tend to flatten out for system sizes beyond the 2 X 2 X 2
supercell size. Also, we note that because the primitive unit cell
of the smallest system may consist of as few as four atoms, we
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opted to exclude supercell sizes smaller than 2 X 2 X 2 to avoid
unphysical systems.

Compared to MgO, the DNP fidelity is appreciably better
for Cu,0, and Ag,O, as none of the red radar in Figure 4
exceeds 0.8 eV. Scrutinizing Figure 4 further, it is interesting to
note that the DNP performs best for oxides with more complex
oxidation states, i.e., Ag,O, Cu,0O, and Ag;O,, and worse for
AO (A = Ag, Cu) regardless of lattice, albeit the Ag vacancy in
Ag;0, is an outlier in this trend. On the other hand, the MTP
does not seem to be affected by the oxidation state of the
oxides and overall does not seem to have appreciable difficulty
in replicating the energetics from the DFT calculations, as
indicated by the small radar area. The raw numbers for all of
the data points can be found in Tables S4 and SS. A slightly
different way to observe this comparison is through a parity
plot, as shown in Figure S3.

The differences in the DNP performance among the three
different oxides are notable. To better understand these
differences, we performed Bader charge analysis®* " to
quantify the degree of ionicity for each solid; the results can
be found in Table 1. While the Bader charge values are not

Table 1. Bader Charge Analysis of the Pristine Binary
Oxides

average electron donated to oxygen

binary oxide (contribution per metal atom
MgO 1.54

CuO (ort) 0.95

CuO (tet) 0.95

Cu,0 1.05 (0.525)

AgO (mono) 0.83

AgO (ort) 0.82

Ag,0, 0.77 (1.03)

Ag,0 0.94 (0.47)

absolute given the ambiguities of charge decomposition
schemes in DFT, the analysis still provides a means of
comparison of the ionicity for any given vacancies. Our DNP
results show that the largest error in vacancy formation energy
is for MgO (~3 eV), and we observe that this system is also
the most ionic out of the three investigated oxides. In contrast,
Cu,0, and Ag,O, are at least ~50% less ionic, which is
consistent with the smaller observed DNP errors in the
vacancy formation energies for these systems.

From the point of view of electron transfer per metal atom,
binary oxides with more complex oxidation systems tend to
involve electron contributions from multiple metal atoms. For
instance, per primitive cell, the 1.05 electrons transferred to O
in Cu,O originate from two different Cu atoms, as opposed to
CuO, where it originates from one Cu atom; similar arguments
are applicable for Ag,O. Ag;O, offers a more complex case, as
the total 0.77 electrons that each O receives requires 1.03
electrons transferred from each Ag atom. The larger amount of
electrons transferred from the Ag atom may be related to the
higher error for the Ag vacancy formation energy for Ag;O,
compared to the Ag,O, systems. Hence, instead of the
complexity of the oxide, the extent of the electrons transferred
per metal atom may correlate to the extent of the error in the
vacancy formation energy. On the other hand, such correlation
is not as apparent from the perspective of the oxygen atom. For
instance, AgZO, whose oxygen atoms receive more electrons
than the AgO polymorphs, has a lower O vacancy energy error.
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Hence, correlations, if any, between the amount of electrons
accepted by the oxygen atoms and the DNP errors observed in
the vacancy formation energies are not as clear. Due to the
simplicity of this analysis, performing Bader charge analysis on
a unit cell of a material of interest could still be a useful and
inexpensive approach to assess the fidelity of the DNP prior to
performing any training.

The DNP as implemented through the DeepMD-kit has
multiple descriptor implementations for describing the atomic
environment. To examine their impact, we examined other
descriptors, namely, se e2 a, se e2 1, se e3, and se at-
ten_v2,8‘29’3’0 as im8plemented in a new version of the code,
DeepMD-kit 2.2.4.° The details of these descriptors can be
found elsewhere in the developers’ documentation.”’ We
elected to focus on the Ag,O, system as this system has the
largest number of polymorphs and the DNP performed
relatively better than the other oxides (Figure 4). We utilized
the same Ag,O, data set developed in this study for these
investigations and utilized the same hyperparameters as in our
previous studies””™'>'® except for se_e3, as discussed below.

The vacancy formation energies for the DNPs with the
different descriptors are summarized in Figure 5. Namely, to
provide a quick summary of the results, we show the average
errors with respect to the DFT values. The complete
breakdown can be found in the SI containing all the raw
data for all MLIAPs, supercell sizes, and vacancy types. Also, as
comparative reference, we show the corresponding average
errors for the MTP (green bar) and DNP (blue bar) based on
the data in Figures S3c and S3d, which correspond to the bars
in Figures Sa and S5b, respectively. The orange se_e2_a bars
represent results from DNPs trained with DeepPot-SE,* but
with the newer software version DeepMD-kit 2.2.4. The
se_e2 r descriptor that only utilizes the radial information
does not appreciably affect the performance for the O vacancy
but is worse for the Ag vacancy, as shown by the gray bar in
Figure Sb. The se_atten_v2 (pink bar) descriptor that employs
an attention-based descriptor’’ performs better than the
reference DNP for O vacancies, but similar to se_e2 r could
not retain the performance advantage for Ag vacancy. The
se_e3 descriptor (white bars) incorporates a three-body
descriptor, which involves the most information about the
atomic environments compared to the other DNP descriptors.
Indeed, this improved descriptor allowed for more accurate
potentials, exceeding the benchmark DNP and becoming
closer to that of MTP. However, this higher fidelity of the
DNP simulations comes at a steep increase in training costs
and required a reduction in hyperparameter values. Specifically,
for the DNP training with se_e3, we had to reduce the
maximum cutoff from 7 to 6 and the maximum neighbors from
140 to 80. The increase in training cost is most conveniently
described by the change in GPU time spent that increased by a
factor of 17 (on the NVIDIA A100 GPU).

Following this result, we additionally trained DNPs for MgO
and Cu,O, with the se_e3 descriptor. While Figure Sc shows
that this three-body descriptor significantly improved the
Cu,O, results similarly to the AgO, system (Figure Sc),
especially for the case of the O vacancies, this improvement did
not carry over to MgO (Figure 5Sd). Indeed, as seen in the
figure, any improvement in the vacancy formation energy for
MgO is relatively small, less than 0.5 eV (Figure 5d). Thus, we
conclude that utilizing the three-body descriptor can improve
the vacancy formation energy only for binary oxides with a
lesser degree of ionicity.
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Figure S. Average vacancy formation energy error for different MLIAPs and descriptors for (a) O vacancy and (b) Ag vacancy for supercells sized 2
X 2 x 2 and above. The comparison between MTP, DNP, and DNP_se_e3 for vacancies in (c) Cu,O, and (d) MgO. The standard deviations of
the averages are not included for clarity; the complete raw data can be found in Tables S4—S6.

We systematically investigated the performance of DNPs in
describing vacancy formation energies in binary metal oxides.
In particular, the standard DeepPot-SE as implemented in the
DeepMD-kit has difficulty achieving high fidelities despite
being proven to be robust for other properties of pristine
oxides and also in metals and alloys including vacancy
formation energies. Analyzing the trend in DNP error for
each binary oxide through Bader charge analysis, we discovered
that atoms that provide more ionic contribution correlate to
larger errors when vacant. As such analysis is inexpensive
relative to training a DNP, this approach is a good indicator
that the resulting modeling can be explored prior to developing
a DNP for vacancies. Further, we showed that the computa-
tionally costly three-body descriptor, se_e3, allows for some
improvement, but only for the less ionic oxides.

Finally, we proposed the utilization of MTP as implemented
in the MLIP package as an alternative solution. This
diversification in the MLIAP approach provides a means to
create MLIAPs that can describe physical properties equally
well, while not encumbered by the same issue. Further
MLIAPs that do not utilize neural networks tend to involve
smaller data sets, which may translate to smaller computational
resource requirements. Our findings suggest that descriptors
employed in the DNP may be inadequate and cannot
accurately describe vacancies in ionic systems.
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B METHODOLOGY

DFT calculations were carried out using the Vienna Ab Initio
Simulation Package (VASP). 32734 The Kohn—Sham equations
were solved within periodic boundary conditions with the
Perdew—Burke—Ernzerhof (PBE)** exchange—correlation.
Projector augmented wave (PAW)** was used to represent
the electron—nucleus interactions in the pseudopotentials
available with VASP.*® The electronic cutoff was set to be 520
eV for all of the binary oxides. The Brillouin zone was sampled
such that the smallest distance in the k-grid was set to be 0.24
A~ The self-consistent electronic loop was set to terminate at
a tolerance of at least 107° eV, suﬂiaent convergence in
physical properties for these systems.® The system investigated
in this study is nonmagnetic as a perfect crystal, and similarly,
the vacancy concentration in this study for relevant sizes, i.e., 2
X 2 X 2 and above, is insufficient to induce any meaningful
magnetism.””** Hence, all DFT calculations in this study are
done without spin-polarization. Full relaxation on the atomic
positions were performed for all configurations with vacancies.

Unless otherwise noted, all DNPs were developed using
DeepMD-kit”® version 2.0. 3 wh1ch has proyen to be robust for
the previous oxide studies.”” DeepPot-SE*’ descriptor is the
standard descriptor, which was constructed from angular and
radial information and is utilized in our previous stud-
ies.%”!17131¢ A cutoff radius of 7 A was used for neighbor
searching, and 2 A was set for the distance in which the
smoothening starts. The embedding net was set to be 25 X 50
X 100 and the fitting net to be 240 X 240 X 240. The neural
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network was trained using the Adam stochastic gradient
descent method that decreases exponentially from 0.001. The
loss function prefactors for the energy, forces, and virials were
kept at constant values of 1, 10,000, and 10, respectively. These
parameters were found to be adequate and appropriate in our
previous studies.'"’”'>'® The DNP ada;)tive training follows
the same protocol as discussed before.”

The MTP training process involves a learning-on-the-fly
(LOTF) scheme, as depicted in Figure 2. This process involves
the use of MD simulation with the NPT and NVE (constant
volume and energy) ensembles along with a separate
calculation on a 3 X 3 X 3 supercell to calculate the elastic
constant using the finite difference method. The elastic
constant calculations are specifically included to provide a
small number of configurations with skews in different
directions. The MD simulations were done on the relevant
systems with cell sizesof 1 X 1 X 1,1 X1X2,1X2X2,2X2
X2,2X2X3,2X3X3,and 3 X 3 X 3. The pristine system is
only included as a unit cell. All other cell sizes consist of a
system with a missing oxygen or metal atom. The training
process is deemed complete when the NPT/NVE simulation
can be fully carried out to 100 ps with no new configurations
identified. The default weights of 1, 0.01, and 0.001 for
energies, forces, and stresses, respectively, were chosen for the
MTP. In our study, we chose the level of moments of 16 that
has been shown to work well in various applications for solid
state systems.'” The potential cutoff of 7 A is set the same as
the DNP for consistency. The MTP package utilizes the
extrapolation grade, y, which determines the suitability of a
given configuration with respect to the existing training data.'”
We used the default values for y as 2 < y e < 10, where the
upper bound of y is the break condition for a given iteration
and the configurations with y in between are selected to be
evaluated with DFT and included in the training set. The MgO
MTP has an additional training scheme to ensure parity in
thermal expansion comparison. The additional LOTF scheme
involves NPT simulations at 500, 1000, 1500, 1900, 2000,
2250, 2700, 2850, and 3150 K at 0 pressure, and at 1, S, 10, 30,
50, 100, 150, and 200 kbar at 2850 K. All atomistic calculations
using the MLIAPs and DNPs were carried out using
LAMMPS.*
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