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While nanoalloys are of paramount scientific and practical interest, the main processes leading to their

formation are still poorly understood. Key structural features in the alloy systems, including the crystal

phase, chemical ordering, and morphology, are challenging to control at the nanoscale, making it difficult

to extend their use to industrial applications. In this contribution, we focus on the gold/silver system that

has two of the most prevalent noble metals and combine experiments with simulations to uncover the

formation mechanisms at the atomic level. Nanoparticles were produced using a state-of-the-art inert-

gas aggregation source and analyzed using transmission electron microscopy and energy-dispersive

X-ray spectroscopy. Machine-learning-assisted molecular dynamics simulations were employed to model

the crystallization process from liquid droplets to nanocrystals. Our study finds a preponderance of nano-

particles with five-fold symmetric morphology, including icosahedra and decahedra which is consistent

with previous results on mono-metallic nanoparticles. However, we observed that gold atoms, rather than

silver atoms, segregate at the surface of the obtained nanoparticles for all the considered alloy compo-

sitions. These segregation tendencies are in contrast to previous studies and have consequences on the

crystallization dynamics and the subsequent crystal ordering. We finally showed that the underpinning of

this surprising segregation dynamics is due to charge transfer and electrostatic interactions rather than

surface energy considerations.

1. Introduction

By combining two or more metallic elements within the same
nanoparticle, synergistic properties can emerge and result in
innovative technological applications.1–4 Numerous research
fields including optics, catalysis, biomedicine and electronics
are already considering these so-called nanoalloys mainly
because they exhibit the fundamental advantage of an extre-
mely rich structural landscape with a variety of shapes, chemi-

cal ordering and crystalline phases. However, since the physi-
cal and chemical properties of nanoalloys are intrinsically
related to their internal structure, advances in this field are
strictly constrained by synthesis experiments, and it becomes
crucial to better understand the intricate relationship between
the experimental conditions and the obtained structures.
Addressing this pivotal challenge first comes directly from
experimental studies, where two types of complementary
approaches are usually considered: (1) systematic variations of
experimental conditions are followed by post-mortem struc-
tural analysis5–10 and (2) in situ experiments allow for a direct
observation of the nanoalloy formation.11–17

Computational simulations have been the ideal comp-
lementary tool because they offer an unambiguous atomistic
picture and enable standardized examinations of various
experimental parameters. In this context, the dynamics of
nanoalloy formation are usually investigated with classical
force fields via Monte Carlo and molecular dynamics simu-
lations, typically employed to study large-scale systems.18–22

The derived predictions, however, often lack chemical accuracy
and can hardly be used to draw quantitative conclusions. As
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an alternative, quantum simulations based on first-principles
density functional theory (DFT) have been performed in order
to address this accuracy issue.23–27 However, due to their high
computational costs, these methods are often limited to the
equilibrium properties of bulk systems or small clusters.
Recently, machine-learning approaches have been proposed to
bridge the gap between these two approaches. Indeed,
machine-learning interaction potentials (MLIP) are con-
structed by combining a very complex mathematical formu-
lation with numerous fitting parameters along with an exten-
sive DFT-generated database composed of different structures
in conjunction with their associated energies, forces, and
virials. Evidence of the success of these methods can be seen
through the very diverse types of materials that have been so
far modeled with MLIP, including metals, oxides, carbon and
silicon-based organics, and perovskites.28–44 Prompted by
these advances, DFT accurate large scale simulations can
finally be carried out to investigate the intricate formation pro-
cesses occurring in nanoparticle synthesis.

Herein we studied the formation of AuAg nanoalloys that
have been considered in many applications owing to, in particu-
lar, their plasmonic,45–47 catalytic45,47–49 and antibacterial50–53

properties. In this context, targeted technological applications
require the control over two principal structural parameters.
First, different morphologies can be stabilized with a compe-
tition between truncated octahedron structures and five-fold
symmetric morphology including an icosahedron and decahe-
dron that originates from the balance between cohesive, surface
and elastic strain energies.54–64 Second, while metallic species
can be found in different chemical arrangements with the possi-
bility of surface segregation, there is currently no consensus in
the literature on whether gold or silver is more likely to segre-
gate on the surface.23,57,65–80

In this contribution, we experimentally show that gas-phase
synthesis can lead to decahedral and icosahedral AuAg nanoal-
loys both exhibiting unambiguous gold surface segregation. Our
machine-learning assisted simulations confirmed these experi-
mental findings and enabled investigations over a wider spec-
trum of chemical compositions. Moreover, the simulations
allowed us to go beyond post-mortem analysis, thus uncovering
how gold segregation can affect the nucleation process trigger-
ing the nanoparticle crystallization at the atomistic level. When
compared to the current literature, the novelty of this work is
three-fold: (1) pentatwinned decahedra/icosahedra are not only
present in mono-metallic systems and can also be stabilized in
the case of AgAu nanoalloys, (2) gold atoms can segregate at the
nanoparticle’s surface even with equimolar and silver-rich com-
positions and (3) machine-learning assisted simulations can be
used to model nanoalloys accurately to observe atomic scale pro-
cesses occurring during their formation.

2. Methodology

Two complementary approaches were applied to investigate
the formation of AgAu nanoalloys. We used gas-aggregation

magnetron-sputter deposition from two elemental targets of
gold and silver to synthesize the AuAg nanoparticles. Note that
this synthesis process involves the nucleation and growth of
the nanoparticles inside a gas aggregation chamber, before
their landing on the substrate.81 These nanoparticles are extre-
mely pure, i.e., free from any ligand or surfactant. The syn-
thesized nanoparticles were further investigated using high-
resolution transmission electron microscopy (HRTEM) and
high-angle annular dark-field scanning TEM (HAADF-STEM)
for uncovering their structural and morphological details. The
chemical distribution of the two elements inside a given nano-
particle was analyzed by energy-dispersive X-ray spectroscopy
(EDS-STEM). In concert, machine-learning-assisted simu-
lations were carried out. In particular, we used a deep neural
network potential (DNP) that was previously developed by
Andolina et al.82 and was further tested under numerous con-
ditions [see ESI A†]. A key advantage of using the DNP
approach is that, although this is not yet sufficient for reaching
the observed experimental sizes (≈7.5 nm), we still managed to
perform molecular dynamics (MD) with a much longer dur-
ation and a larger number of atoms (≈15 000 atoms i.e.
6.3 nm) than that can be expected from typical DFT
calculations.

2.1. Experimental setup

AuAg nanoparticles were grown in a water-cooled Nanogen-
Trio Gas Aggregation Source (GAS), from Mantis Deposition
Ltd. The nucleation and growth of the particles are obtained
through DC magnetron co-sputtering of extremely pure
(99.99%) Au and Ag targets of diameter equal to 1 inch,
located side by side on an integrated magnetron sputtering
head, positioned at 90 mm from the exit slit of the aggregation
zone. The DC magnetron current, applied independently to
the two targets, was fixed to 40 mA for both gold and silver.
With the synthetic method, it would be possible to control the
stoichiometry by using an alloyed target with precise chemical
composition. However, studying the influence of the chemical
composition would then require the fabrication of targets with
different stoichiometry. For each of them, the sputtering prop-
erty would not necessarily be similar which should change the
nanoparticle size distribution. In order to study the influence
of the chemical composition for a fixed size distribution, we
opted instead to use two elemental targets with a specific set
of electrical powers applied in each of them. This allows us to
obtain different chemical compositions in a single experiment
all with the same sputtering conditions. Before depositing on
the ultra-thin-carbon coated copper TEM grid, located in an
ultra-high-vacuum deposition chamber (with a base pressure
of 10−9 mbar), the nanoparticles were size-selected using a
quadrupole mass filter installed between the GAS and the
deposition chamber. The obtained nanoparticles were studied
through high-resolution TEM (HRTEM), atomically resolved
high-angle annular-dark-field scanning TEM (HAADF-STEM)
and energy-dispersive X-ray spectroscopy (EDS) experiments. A
Cs-corrected 200 kV FEI Tecnai F20 microscope was used for
HRTEM studies, and a probe-corrected Jeol ARM200F micro-
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scope was used for HAADF-STEM and EDS studies. We noted
that no oxidation of the nanoparticles was observed even when
the EDS analysis was performed several months after the
synthesis.

2.2. Atomistic simulations

Regarding the interaction potentials, the complexity and non-
linearity of deep neural networks allowed the development of
interaction potentials capable of making predictions close to
DFT accuracy. The deep neural network interaction potential
for Au–Ag (DNP) developed by Andolina et al.82 using the
DeepPot-SE83 method of the DeePMD-Kit84 was selected for
this work because of its excellent accuracy with pure as well as
alloyed systems [see ESI A†]. All DFT calculations were per-
formed with VASP85–87 using the Perdew–Burke–Ernzerhof88

(PBE) functional and the projector augmented wave (PAW)
method89 with an energy cutoff of 400 eV.

Molecular dynamics (MD) trajectories were obtained using
a large-scale atomic/molecular massively parallel simulator
(LAMMPS) coupled to the DNP. We employed a constant
volume and constant temperature (NVT) ensemble in these
simulations with a time-step of 1 fs and a damping coefficient
of 100 fs. Liquid droplets were obtained by melting nano-
particles of three sizes (250, 500 and 750 atoms with respect-
ively 1.4 nm, 2.0 nm and 2.4 nm diameters) for three stoichi-
ometries (Ag3Au, AgAu and AgAu3) at 2000 K. For the freezing
simulations, we utilized a cooling rate of 2 × 1011 K s−1 from
750 K to 350 K. The process was repeated three times with
different initial velocities. The employed numerical setup that
involved freezing disordered liquid droplets was already used
to simulate nanoparticle formation and mimic gas-phase
synthesis.90–92 In addition, to assess the stability of our
obtained systems, we also carried out hybrid MD/MC simu-
lations that involved 10 Monte Carlo (MC) moves combined
with 10 atomic species swapping every 100 MD time steps.

We noted that our choice of simulation protocol assumes
that the nanoparticles were formed from the liquid phase.
However, we must note that similar experiments have also
been modeled with atom by atom growth directly from solid
precursors.93–95 At this stage, it remains difficult experi-
mentally to know which formation pathway is more likely to
occur in our experimental protocol.

Finally, simulations were analyzed using Ovito96 built-in
functions. Common neighbor analysis was employed to
measure crystal ordering.97 To obtain the size of the largest
ordered cluster, atoms with crystalline order were grouped
together in clusters within a cut-off equal to 3.5 Å.

3. Results
3.1. Morphology

We began by analyzing the morphologies of both the experi-
mentally synthesized and the simulated structures.
HAADF-STEM observations show that the synthesized nano-
particles are well-dispersed on the substrate and show a

narrow size distribution with a mean diameter of 7.4 nm and a
standard deviation of 0.75 nm (see ESI B†). When suitably
oriented along (or close to) one of their low-index zone axes,
the synthesized nanoparticles can be clearly identified as
either decahedra or icosahedra,98 both exhibiting triangular
surfaces dominated by (111) orientations. Fig. 1(a–c) show
three different HRTEM images of representative nanoparticles,
one 10.5 nm large decahedron (Fig. 1(a)), one 7.5 nm large ico-
sahedron (Fig. 1(b)) and one 9.9 nm large icosahedron
(Fig. 1(c)). Similarly, although not with the same size because
of the computational cost of the numerical freezing setup, our
MD simulations in conjunction with the DNP were able to
reproduce the (111) surface preponderance signature of the
icosahedron and decahedron shapes [see Fig. 1(d–f )]. In
addition, DNP simulations allowed for characterizing the
crystal structure at the atomic scale [Fig. 1(d–f )]. In all cases,
the facets consist of face-centered cubic triangles whose edges
are characterized by hexagonal close-packed atoms which is
consistent with the (111) orientation of the surfaces. To better
characterize the crystallinity of the simulated nanoparticles,
we also measured the atomic strain distribution with respect
to the radial position [see ESI E†]. The strain map shows
overall very small deviations from the bulk. The latter is
slightly more pronounced for atoms located at the droplet
surface, which can be attributed to inherent surface relax-
ations. Importantly, with our hybrid MD/MC simulations, no
structural modification was observed, thus confirming the
stability of five-fold symmetric shapes [see ESI C†]. Altogether,
our results suggest that an icosahedron/decahedron can be
stabilized instead of a truncated octahedron even with AgAu
nanoparticles in the investigated size regime, i.e. up to
10.5 nm in experiments and up to 2.4 nm in simulations.

For metallic systems in general, icosahedron/decahedron
and truncated octahedral shapes are considered more stable
respectively at small and large sizes according to surface vs.
volume energy considerations54–56,59–64 However, the size
threshold allowing for the transition between the two shapes
is still highly debated. In experiments for mono-metallic
systems, an icosahedron and decahedron were usually
obtained by physical methods of synthesis.54–56,58

Furthermore, previous studies investigated gold nanoparticles
of diameters up to 10 nm and showed that the as-obtained ico-
sahedron/decahedron-shaped nanoparticles remain stable
after long periods of electron irradiation in the TEM
experiments,54,55 demonstrating that, even when obtained
under non-equilibrium conditions, both an icosahedron and
decahedron are thermodynamically more stable than a trun-
cated octahedron. So far, such experimental results were only
obtained with mono-metallic systems including both silver
and gold. Meanwhile, from the simulation viewpoint, the lit-
erature regarding this competition in shape also focused solely
on mono-metallic systems. In this context, early works based
on semi-empirical interaction potentials attained much
smaller crossover sizes leading to truncated octahedral par-
ticles being more preponderant even at sizes in the 1 nm to
10 nm regimes.62–64,99 However, most recent results combining
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DFT accurate models with equilibrium thermodynamic
approaches based on Helmholtz free energy demonstrated
instead the decahedral stability54,60 for nanoparticles up to
15 nm. Similar to previous studies focusing on mono-metallic
systems, our study shows with alloyed AuAg nanoparticles that
icosahedron/decahedron shapes are stable even for diameters
up to 10.5 nm. Altogether, our results are therefore consistent
with the literature obtained in the mono-metallic regime.
Finally, we must note that the stability of non-crystalline struc-
tures including decahedra can be favored when mixing
different metals in a nanoparticle like in AgCu.100,101

Furthermore, it cannot be ruled out that the observed decahe-
dra may also result from kinetic trapping at the early stages of
the growth processes.

3.2. Chemical ordering

By using EDS measurements, we were able to investigate the
chemical distribution inside a given nanoparticle. Fig. 2(a–c)
display the chemical maps of isolated nanoparticles with com-
positions Au0.58Ag0.42, Au0.65Ag0.35 and Au0.74Ag0.26.
Interestingly, these different compositions were observed in
the same sample. Such composition variations can be attribu-
ted to a slight evolution of the synthesis conditions such as
targets’ race track and temperature during the deposition
time, which was in our case as long as 15 minutes, a duration
necessary to collect a sufficiently large number of nano-
particles on the TEM grid in our setting. We were thus able to
analyze nanoparticles with different compositions although
silver-rich nanoparticles were not observed experimentally. A
striking feature in all these maps is the occurrence of a non-
homogeneous distribution with gold atoms segregating at the
surface for all of the synthesized chemical compositions. For a

more quantitative picture, density profiles recorded along the
diameter of the nanoparticles are presented in Fig. 2(d–f ).
These profiles confirm the gold surface segregation, the silver
atoms being mostly confined in the nanoparticle core. In more
details, for nanoparticles with compositions Au0.58Ag0.42,
Au0.65Ag0.35 and Au0.74Ag0.26, we obtained the following
respective Au/Ag ratio 1.41, 1.29 and 1.10 by averaging the Au
content over the 5 external atomic layers (∼1.25 nm). Note that
gold surface segregation was also qualitatively confirmed by
HAADF-STEM observations owing to the sensitivity of this
technique to the atomic number of the encountered elements
(z-contrast) (see ESI B†).

In order to span a larger range of chemical composition, we
complemented the experimental observations with numerical
simulations. We separated surface atoms from the bulk based
on their lower coordination numbers (<10). Fig. 2(g) shows the
ratio between the gold proportion at the surface and in the
entire nanoparticle denoted by ξAusurf . As seen in the figure, our
results confirm that gold segregates on the surface even in the
regime of silver-rich nanoparticles [see ESI D† for the density
profile obtained from the simulations].

An additional finding is that the gold surface segregation is
larger for Au0.25Ag0.75 than for the less silver-rich nano-
particles. In order to better understand the gold surface segre-
gation obtained at the end of the freezing simulation, we also
measured the temporal evolution of the mean square displace-
ment in the initial liquid regime[see Fig. SI F†]. While all
atoms located in the center of the droplet exhibit similar be-
havior for the mean square displacement, atoms located at the
surface possess different diffusion properties depending on
their chemical nature or the chemical composition of the
droplet. In particular, the diffusion at the surface is lowered
when increasing the gold composition. More importantly,

Fig. 1 (Left) HRTEM images of 3 representative AuAg nanoparticles. (a) A decahedral NP observed along its five-fold symmetry axis, (b) an icosahe-
dral NP observed along its two-fold symmetry axis, (c) an icosahedral NP observed close to its 3 fold-symmetry axis. (Right) (d–f ) Typical nano-
particles obtained after freezing using machine-learning-assisted MD simulations for three different chemical compositions along with the corres-
ponding crystal analysis as obtained using common neighbor analysis with FCC, HCP and BCC being respectively face-centered cubic, hexagonal
close-packed and body-centered cubic. Non-crystalline atoms (including surface atoms) were removed for clarity.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 384–393 | 387

Pu
bl

is
he

d 
on

 2
0 

N
ov

em
be

r 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
/2

3/
20

25
 4

:4
6:

04
 P

M
. 

View Article Online

https://doi.org/10.1039/d3nr04471h


silver atoms are always more diffusive than gold atoms at the
surface which is consistent with silver atoms being less stable
at the surface and showing the tendency to migrate inside the
core of the droplet.

Because these first numerical results were obtained from
fully freezing liquid droplets, we could only consider systems
not larger than 750 atoms which correspond to a diameter of
2.4 nm. Therefore, we also performed simulations with an
alternative protocol to study larger nanoparticles of diameters
up to 6.3 nm. The systems were initialized in the icosahedral
structures that circumvent the necessity of having to simulate
the whole freezing mechanisms while enabling for directly
reaching the previously observed morphology. The atomic
chemical species between gold and silver were then randomly
assigned to correspond to the three studied stoichiometries of
AgAu alloys. MD simulations were combined with MC moves
and atomic species swapping at 600 K, which is large enough
for atomic swapping to operate while maintaining the crystal
ordering and overall morphology. By starting with ordered
structures yet with chemical disorder, we can focus on the tem-
poral evolution of the surface composition while simulating
the larger nanoparticles. In particular, we studied nano-
particles made of 923, 5083 and 14 993 atoms, which corres-
pond respectively to 2.5 nm, 4.4, nm and 6.3 nm. Fig. 3 shows
that the convergence is already obtained after 10 ps for the
smallest studied systems while the others would require unrea-
sonably higher computational times. Yet, it remains that in all
cases, while starting at a value of 1, ξAusurf monotonically
increases with time indicating that similar to the smaller
nanoparticles gold segregation at the surface exists in the
larger sizes, which is consistent with the experimental results.
Moreover, similar to previous results obtained after the freez-

ing simulations for the smaller nanoparticles, the gold surface
segregation remains higher in the silver-rich stoichiometries.

Altogether, both our experimental and numerical results
demonstrate that gold surface segregation can be obtained in
AgAu nanoparticles regardless of the size and the composition.
In experiments, we show that it happens for gold-rich systems
while in simulations, we confirm the experimental results and
predict that it remains true even for silver-rich systems.

Fig. 2 (Left) (a–c) Experimental EDS measurements for three nanoparticles with different chemical compositions. Au and Ag elements are respect-
ively colored in red and green. (d–f ) Distribution of atomic species for the corresponding nanoparticles. (Right) (g) Surface chemical composition
obtained in machine-learning assisted MD simulations. Results are shown for different chemical compositions and nanoparticle sizes. Error bars are
obtained from averaging over three independent initial conditions.

Fig. 3 Temporal evolution of the surface chemical composition
obtained from machine-learning assisted MD simulations combined
with Monte-Carlo and atomic species swap initialized with icosahedral
nanoparticles for three different nanoparticles sizes 923, 5083 and
14 993 atoms which correspond respectively to 2.5 nm (a), 4.4, nm (b)
and 6.3 nm (c).
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3.3. Study of the crystallization dynamics

A key advantage of our DNP simulations over experiments, and
also DFT calculations that usually employ 0 K minimization to
explore the structural landscape, is that we can retrieve the
crystallization dynamics at the atomistic scale. To this end, we
followed the evolution of crystal ordering by measuring the
size of the biggest ordered cluster [Ncrys in Fig. 4(a)] and
observed that crystallization started at different temperatures
depending on the chemical composition. In particular, silver-
rich nanoparticles crystallized first and also reached a higher
final value for Ncrys. Fig. 4(b) shows the temporal evolution of
ξAusurf . While oscillations were observed, ξAusurf consistently
remains greater than one, indicating that gold segregation
already occurs in the liquid regime at the early stages of freez-
ing. A plateau in ξAusurf is also reached after 1 ns and bellow
550 K. In the same intermediate times, according to Fig. 4(a),
the plateau for Ncrys is not yet fully achieved, suggesting that
chemical ordering happens beforehand. We further define
ξAucrys as the relative chemical composition that was previously
measured, but within the largest crystalline cluster as opposed
to the surface. Fig. 4(c) shows that ξAucrys also quickly converges
when compared to Ncrys thus confirming that chemical order-
ing occurs first. The values of the observed plateaus are all

below or close to 1, which is consistent with ξAusurf being above
1. Indeed, the more gold atoms are present at the surface, the
more silver atoms are within the crystalline core of the nano-
particles. For this analysis, while we only showed the temporal
evolution of one nanoparticle per chemical composition, ESI
G† shows two additional cases that exhibit similar behavior.
Finally, the associated snapshots for different sizes of the
largest crystalline cluster can be retrieved from those temporal
evolutions [see Fig. 4(d)]. From these images, one can observe
that crystallization occurs first at the periphery of the droplet
instead of its core and slowly grows towards the core [see ESI
H† for a more quantitative confirmation].

Altogether, our findings show that the gold surface segre-
gation occurs already in the liquid regime which has conse-
quences on the subsequent crystallization process. First, we
note that gold possesses a larger melting temperature both in
bulk and at the nanoscale thus indicating that gold crystals are
more stable than silver ones. However, in the silver-rich
system, the atoms available to trigger crystallization are mostly
silver since the majority of gold atoms are at the surface. In
contrast, in the gold-rich system, there is a mixture of the
remaining gold atoms with all the silver atoms. In one case, a
nearly pure metal crystallizes, but in the other, nucleation
occurs in an alloying regime which is less favorable. As such,

Fig. 4 (a–c) Temporal evolution obtained from MD freezing with nanoparticles of 750 atoms. Ncrys is the number of atoms within the biggest crys-
talline cluster. ξAusurf (resp. ξ

Au
crys) denotes the ratio between the gold proportion at the surface (resp. in the biggest crystalline cluster) and in the entire

nanoparticle. We note that for ξAucrys results are only shown when the crystalline cluster is big enough i.e. Ncrys > 50. (d) The corresponding images
obtained during the crystallization. Non-crystalline atoms are rendered in transparency and grey (resp. yellow) spheres correspond to silver (resp.
gold) atoms.
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the fact that silver-rich nanoparticles are more crystalline in
our simulations is a consequence of the initial chemical order-
ing that is established already in the liquid regime.

4. Discussion

The surface segregation in AgAu nanoparticles has been the
subject of numerous studies with experimental65–69 and
numerical70–80,102 approaches. Experimentally, chemically-syn-
thesized nanoparticles have been found to exhibit silver
surface segregation,65–67 which was explained in part by the
presence of the oxidized surfaces.77 To the best of our knowl-
edge, only two experimental studies observed surface segre-
gation in AgAu nanoalloys made with physical routes of syn-
thesis which is crucial for comparison with our results since
they allow for the effects of the ligands and the liquid solvent
to be ruled out.57,69 The first study shows surface segregation
occurring for the most preponderant chemical species and
explained these observations by kinetic trapping at the early
stages during growth.57 On the one hand, in the gold-rich
system, their result is similar to ours although we will show
later that kinetic trapping is not the only possible stabilizing
effect and that charge transfer can also stabilize the gold segre-
gated structures. On the other hand, in the silver-rich system,
difficulty in interpreting the experimental results can arise
because oxidation seems to be present and to provoke the
apparent silver segregation. Similar to our work, the second
study also used EDS to characterize the chemical ordering69

and reported Au surface segregation. However, the results were
obtained only with one nanoparticle that exhibited equal
amounts of gold and silver (Ag0.51Au0.49).

In the present study, while we consistently observed gold
segregation, we did not manage to generate silver-rich nano-
particles using our experimental approach and it is therefore
difficult to be assertive that gold segregation remains in the
whole composition range of the alloy. However, our machine-
learning assisted simulations predict that Au would segregate
even for Ag-rich compositions. While further experimental
studies are required to confirm these trends, we posit that
these predictions can be rationalized by combining a literature
review of the numerical simulations along with additional cal-
culations, as discussed below. Indeed, the gold segregation at
the surface, even for silver-rich nanoparticles, might appear
counterintuitive at first sight because it is not found in all
experiments, and because it is in contradiction with the
surface energy hierarchy (γ(Ag) is slightly lower than γ(Au)) and
with the atomic size (Ag is slightly bigger than Au).
Furthermore, silver surface segregation was consistently found
in simulations when using empirical force fields.70,71,73,74,102

However, in this context, the simplicity of the employed
empirical force fields when compared to our MLIP may lead to
inaccurate modeling. In particular, in the work of Paz-Borbón
et al.,73 the Gupta potential seemed at first to demonstrate
silver segregation but when further optimization was made at
the DFT level, the authors found that gold segregation was

favored instead. Similarly, we tested an embedded-atom model
(EAM) which was used in the recent paper of Moreira et al.102

and demonstrated that it leads to much more energetic nano-
particles when exhibiting silver surface segregation [see ESI
J†].

Meanwhile, all ofthe DFT studies also showed the gold seg-
regation both for extended surfaces or for nanoparticles up to
a few hundred atoms.73,75–80 As an explanation, it has been
shown from electronic structural investigations that the segre-
gation of the Au atoms at the surface, regardless of the compo-
sition, is caused by electrostatic forces rather than the surface
energy. In order to confirm this hypothesis, we performed
single-point DFT calculations initialized with the 250-atom
nanoparticles found with our freezing simulations and com-
puted the Bader charges. In Fig. 5(a), the total charge on the
different layers from the center of the NP (index 1) to the
surface of the NP (index 4) are shown for the three compo-
sitions. It is interesting to note that the surface is always nega-
tively charged and the subsurface is positively charged, by the
same magnitude in all the studied chemical compositions.
The charge distribution on the different atom types is depicted
in Fig. 5(b–d) as color maps and in Fig. 5(e–g) as histograms of
averaged values taken over atoms in the different layers. A sig-
nificant charge transfer from Ag atoms to Au atoms is thus
observed with Au and Ag atoms being always respectively nega-
tively and positively charged. A striking observation is that the
charge transfer is more observed for the silver-rich nano-

Fig. 5 (a) The total Bader charge distribution averaged over the three
nanoparticles per chemical composition. (b–d) Slices of typical nano-
particles where atoms are colored following the Bader charges. (e–g)
The absolute value of the Bader charge distribution per atomic species
averaged over three nanoparticles per chemical composition. We note
that the charges are always negative for gold and positive for silver and
that only the nanoparticles made of 250 atoms were studied because of
the large computational costs associated with DFT calculations.
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particles. Indeed, in the Au0.25Ag0.75 nanoparticles (Fig. 5(b)
and (e)), a small number of surface Au atoms bear a negative
charge of ≈−0.3e whereas the Au atoms at the Au0.75Ag0.25
nanoparticles surface carry a much lower average charge of
≈−0.1e (Fig. 5(d) and (g)). Overall, the total charge of the
surface layer remains the same for all the studied compo-
sitions but it is carried by a few but highly charged Au atoms
in Au0.25Ag0.75 nanoparticles and by many but less charged Au
atoms in Au0.75Ag0.25 nanoparticles. These results show that
the same effects observed in previous DFT studies on small
clusters are also present in larger nanoparticles obtained in
our own machine-learning based simulations. They also show
that charge transfer between Ag and Au always yields the same
surface charge irrespective of the alloy composition. We there-
fore hypothesize that, as Au atoms become negatively charged
when alloyed with silver, they will tend to move towards the
surface due to Coulomb repulsion. Furthermore, because the
nanoparticle’s surfaces then become negatively charged, posi-
tively charged Ag atoms are attracted to the subsurface. As the
charge transfer from Ag atoms to Au atoms is more pro-
nounced for Ag-rich compositions, the segregation of gold at
the surface will be favored even for such compositions, over
that of the majority species, as could be intuitively expected.
We note that, even if it did not explicitly take into account the
atomic charges, the DNP model as it was fitted to DFT calcu-
lations was still able to remarkably translate such complex
charge transfer mechanisms into the corresponding changes
in forces.

5. Conclusion

The main goal of this work was to study the formation of AgAu
nanoalloys. Our results in terms of experimental synthesis in
the gas phase produced two remarkable observations. First, we
found five-fold symmetric particles, including both an icosahe-
dron and decahedron with nanoparticles of diameters up to
10 nm. Second, while surface oxidation can induce silver segre-
gation, only gold segregation was observed in our synthesis
results that were obtained under vacuum conditions. These
experimental findings were first confirmed by machine-learn-
ing assisted simulations. Then, we further explored the chemi-
cal phase space by reaching different chemical compositions
and confirming the gold segregation and the stability of the
five-fold symmetric morphology, even in silver-rich systems.
We emphasize that in contrast to previous works using classi-
cal interaction potentials, the use of MLIP to provide quantum
accurate modeling was the key to reproduce the gold surface
segregation. An additional advantage of our simulation
approach was that we managed to explore the crystallization
dynamics that required large-scale simulations with unpre-
cedented chemical accuracy and found that gold surface segre-
gation occurs before crystal ordering and leads to better crys-
tallization in silver-rich composition.

By showing that gold surface segregation can be observed
under vacuum while silver surface segregation is usually found

under more reactive conditions, our study highlights the
importance of environmental effects on the chemical distri-
bution of species in a bi-metallic nanoparticle. It also demon-
strates the need to study nanoparticles using advanced experi-
mental observations to be able to harness these effects.
Furthermore, our results show the importance of taking into
account electronic structural effects in nanoalloys, which are
impossible to reproduce with conventional empirical poten-
tials. To this end, we demonstrate the tremendous power of
MLIP-type potentials for studies of this kind, making it poss-
ible to combine the modeling of nucleation processes in realis-
tically-sized systems with DFT precision calculations.
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