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Street-View Image Generation From a
Bird’s-Eye View Layout

Alexander Swerdlow , Runsheng Xu , and Bolei Zhou , Member, IEEE

Abstract—Bird’s-Eye View (BEV) Perception has received in-
creasing attention in recent years as it provides a concise and unified
spatial representation across views and benefits a diverse set of
downstream driving applications. At the same time, data-driven
simulation for autonomous driving has been a focal point of recent
research but with few approaches that are both fully data-driven
and controllable. Instead of using perception data from real-life
scenarios, an ideal model for simulation would generate realistic
street-view images that align with a given HD map and traffic
layout, a task that is critical for visualizing complex traffic scenarios
and developing robust perception models for autonomous driving.
In this letter, we propose BEVGen, a conditional generative model
that synthesizes a set of realistic and spatially consistent surround-
ing images that match the BEV layout of a traffic scenario. BEV-
Gen incorporates a novel cross-view transformation with spatial
attention design which learns the relationship between cameras and
map views to ensure their consistency. We evaluate the proposed
model on the challenging NuScenes and Argoverse 2 datasets. After
training, BEVGen can accurately render road and lane lines, as well
as generate traffic scenes with diverse different weather conditions
and times of day.

Index Terms—Computer vision for automation, deep learning
methods, simulation and animation.

I. INTRODUCTION

B EV perception for autonomous driving is a fast-growing
research area, with the goal of learning a cross-view rep-

resentation that transforms information between a perspective
and a bird’s-eye view. Such a representation can be used in
downstream tasks such as path planning and trajectory fore-
casting [1]. The recent successes in BEV perception, whether
for monocular [2] or multi-view images [3], [4], focus on the
predictive aspect of BEV perception with street-view images as
input and a semantic BEV layout as output. However, the genera-
tive side of BEV perception–which aims at synthesizing realistic
street-view images from a given BEV semantic layout–is far less
explored. A BEV layout concisely describes a traffic scenario at
the semantic level and thus it is a natural representation to use
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Fig. 1. Proposed BEVGen model generates realistic and spatially consistent
street-view images from BEV layout. There are 3 camera views surrounding the
ego vehicle as indicated by the green rectangle in the BEV layout.

to generate corresponding street-view images. This is the first
work we are aware of to introduce and tackle such a task. There
are many applications for this new BEV-conditioned generative
model. For example, we can create synthetic training data for
perception models or visualize safety-critical situations.

Whereas most current approaches to synthetic training data
involve a complex simulator or 3D reconstructed meshes, a
controllable generative model is not only simpler but naturally
provides diverse image generation. Another benefit provided by
BEV generation is the ease of visualizing and editing traffic
scenes. In the case of self-driving vehicles, we often care about
a small set of rare scenarios where an accident is likely to happen.
These corner-cases represent the long-tail distribution that is a
key obstacle to robust autonomous driving [5], [6]. Human users
can intuitively edit a BEV layout and then use a generative model
to output a diverse set of corresponding street-view images for
the stress test of the driving system. As shown in Fig. 1, our
proposed BEVGen model can synthesize realistic street-view
images from the BEV layout either collected from real world or
provided by a driving simulator.

The fundamental question for BEV generation is: what is a
plausible set of street-view images that correspond to a BEV lay-
out? One could think of numerous images with varying vehicle
types, backgrounds, and more. For a set of views to be realistic,
we must consider several properties of the images. Similar
to the problem of novel view synthesis, images must appear
consistent–as if they were taken in the same physical location.
For instance, cameras with an overlapping field-of-view (FoV)
must ensure overlapping content is correctly shown, accounting
for the shifted perspective. The visual styling of the scene also
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needs to be consistent such that all virtual views appear to be
created in the same geographical area (e.g., urban vs. rural), at the
same time of day, with the same weather conditions, and so on.
In addition to this consistency, the images must correspond to the
HD map, faithfully reproducing the specified road layout, lane
lines, and vehicle locations. Unlike image-to-image translation
with a semantic mask–which has significant amount of prior
work–a BEV generation model must infer the image layout to
account for occlusions between objects and the relative heights
of objects in a scene.

In this work, we tackle this new task of generating street-view
images from a BEV layout and propose a generative model to
address the underlying challenges. We develop BEVGen, an
autoregressive neural model that generates a set ofn realistic and
spatially consistent images as seen in Fig. 1. BEVGen has two
technical novelties: (i) it incorporates spatial embeddings using
camera intrinsics and extrinsics to allow the model to attend to
relevant portions of the images and HD map, and (ii) it contains
a novel attention bias and decoding scheme that maintains both
image consistency and correspondence. Thus the model can
generate high-quality scenes with spatial awareness and scene
consistency across camera views. Compared to baselines, the
proposed model obtains substantial improvement in terms of
image synthesis quality and semantic consistency. The model
can also render realistic scene images from out-of-domain BEV
maps, such as those provided by a driving simulator or edited
by a user. We summarize our contributions as follows:! We tackle the new task of multi-view image generation

from BEV layout. It is the first attempt to explore the
generative side of BEV perception for driving scenes.! We develop a novel generative model, BEVGen, that can
synthesize spatially consistent street-view images by incor-
porating spatial embeddings and a pairwise camera bias.! The model achieves high-quality synthesis results and
shows promise for applications such as data augmentation
and simulated driving scene rendering.

II. RELATED WORK

Synthetic data-generation for autonomous driving has been
widely studied, with early approaches relying on handcrafted
assets in a game engine, and more recent data-driven approaches
that augment or entirely replace specified handcrafted assets
with learned generative models [7]. Prior works have demon-
strated purely data-driven simulation [8], [9] but have not tackled
multi-view generation and lack the ability to arbitrarily control
the position of actors and objects.

Outside of autonomous driving applications, there has also
been significant work on image generation models. One large
area of research has been on image generation conditioned on
modalities such as text and audio [10], [11] or more directly
through semantic masks [12] or bounding boxes [13]. Our task
has spatial constraints as in the latter tasks, but is distinct in that
the constraints must be inferred from an alternate perspective
which requires a 3D understanding of the scene.

Next, our task is closely related to–but distinct from, novel
view synthesis (NVS), where the goal is to generate an image

of a scene from a virtual perspective given a true image from
a different perspective. This has been studied in the context of
transforming satellite images into a corresponding street-view
image, which is commonly referred to as cross-view synthe-
sis [14]. Other approaches to NVS focus on smaller viewpoint
transformations and use warping [15] or simply implicitly learn
the transformation [16], [17]. BEV Generation requires a similar
3D understanding between different viewpoints as in NVS, but
lacks the conditioning information provided by a source view(s)
and requires consistency not only between frames but also with
an HD map.

III. METHOD

In this section, we introduce the framework of the pro-
posed BEVGen. The problem definition of BEV generation is
that given a semantic layout in Birds-Eye View (BEV), B ∈
RHb×Wb×cb with the ego at the center and cb channels describing
the locations of vehicles, roads, lane lines, and more (see Section
IV-A), we would like to generate n images Ik ∈ RHc×Wc×3

under a set of n virtual camera views (Kk, Rk, tk)nk=1, where
Kk, Rk, tk are the intrinsics, extrinsic rotation, and translation
of the kth camera.

Fig. 2 illustrates the framework of the proposed BEVGen.
BEVGen consists of two autoencoders modeled by VQ-VAE,
one for images and one for the BEV representation, that allow
the causal transformer to model scenes at a high level. The
key novelty lies in how the transformer can relate information
between modalities and across different views. The cross-view
transformation encodes a cross-modal inductive 3D bias, allow-
ing the model to attend to relevant portions of the HD map and
nearby image tokens. We explain each part in more detail below.

A. Model Structure

Image Encoder: To generate a globally coherent image, we
model our distribution in a discrete latent space instead of
pixel space. We use the VQ-VAE model introduced by Oord
et al. [18] as an alternative generative architecture to GANs.1

We replace the L2 with a perceptual loss and incorporate a
patch-wise adversarial loss as in [19]. The VQ-VAE architecture
consists of an encoder Ec, a decoder Dc, and a codebook Zc =
{zf}Fc

f=1 ⊂ Rnc where Fc is the number of code vectors and nc

is the embedding dimension of each code. Given a source image,
xk ∈ RHc×Wc×3, we encode ẑck = Ec(xk) ∈ Rhc×wc×nc . To
obtain a discrete, tokenized representation, we find the nearest
codebook vector for each feature vector ẑck,ij ∈ Rnc where i, j
are the row, column indices in the discrete latent representation
with size hc × wc:

zck,ij = argmin
f

∥∥ẑck,ij − zf
∥∥ ∈ N. (1)

This creates a set of tokens zck ∈ Nhc×wc that we refer to as
our image tokens. To generate an image from a set of tokens,

1Note that switching to the recently developed class of diffusion models can
potentially improve the image synthesis quality, but such models require an order
of magnitude of additional data and computational resources for training and
thus we leave it for future works.
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Fig. 2. BEVGen framework. A BEV layout and source multi-view images are encoded to a discrete representation and are flattened before passed to the
autoregressive transformer. Spatial embeddings are added to both camera and BEV tokens inside each transformed bloc. We construct a pairwise matrix that
encodes relationship between a given image token and another BEV/image token (bottom right). This learned pairwise camera bias is added to the attention
weights. We pass the generated tokens to the decoder to obtain generated images during inference.

we first obtain z̃ck ∈ Rhc×wc×nc , by using zck as an index to our
codebook,Zc. We can later decode with a convolutional decoder,
Dc(z̃ck) ∈ RHc×Wc×3, using the same architecture as [19].

BEV Encoder: To condition our model on a BEV layout,
we use a similar discrete representation as for camera images,
except we replace the perceptual and adversarial losses with a
binary cross entropy loss for binary channels and an L2 loss for
continuous channels. We encode our BEV map h as before with
Eb(h) ∈ Rhb×wb×nb and Zb = {zf}Fb

f=1 ⊂ Rnb to obtain a set
of tokens, zb ∈ Nhb×wb . We discard the decoder stage, Db, after
training the 1st stage as it is not needed for our second stage or
for inference.

Autoregressive Modeling: Given a BEV layout and a set of n
camera parameters, we seek to generate n images by learning
the prior distribution of a set of discrete tokens, zc conditioned
on zb, (Kk, Rk, tk)nk=1.

p(zc|zb,K,R, t) =
hc×wc×n∏

i=0

p(zci |zc<i, z
b,K,R, t). (2)

We model p(.) by training a transformer τ that iteratively pre-
dicts a probability distribution over all possible tokens based on
prior image tokens, discretized BEV features, and their respec-
tive camera parameters. We choose a transformer architecture as
it provides global attention which aids in cross-view consistency.
To implement this, we perform causal self-attention between
image tokens such that image tokens cannot look at future tokens
in the attention process. We allow global attention between
image tokens and all BEV tokens. This serves as an extension
to the prior modeling proposed in [18], [19] which we refer to
for further details.

B. Spatial Embeddings

To help the model attend to relevant tokens both in the camera
and BEV feature space, we introduce positional embeddings.

We take inspiration from work on BEV segmentation [3] on
alignment between the BEV and first-person view (FPV) per-
spectives.

Camera Embedding: In order to align image tokens with
BEV tokens, we use the known intrinsics and extrinsics to
reproject from image coordinates to world coordinates. Given a
token in image space, zck,ij ∈ R2, we convert to homogeneous
coordinates, z̄ck,ij and obtain a direction vector in the ego frame
as follows:

dk,ij = R−1
k K−1

k z̄ci,jk − tk (3)

We use a 1D convolution, θc(d) ∈ Rn×hc×wc×nemb , to encode
our direction vector in the latent space of the transformer, nemb.
We encode our image tokens using a shared learnable embedding
λc(zck,ij) ∈ Rnemb , and add a per-token learnable parameter,
Λc
k,ij ∈ Rnemb , across image tokens:

lk,ij = λ(zck,ij) + θ(dk,ij) + Λk,ij . (4)

BEV Embedding: To align our BEV tokens with our image
tokens, we perform a similar operation as in (4) and use the
known BEV layout dimensions to obtain coordinates in the
ego frame. We obtain tyx ∈ R2, where y, x correspond to the
row and column indices of discrete BEV representation, for
each token and encode these into our transformer latent space,
with θb(t) ∈ Rhb×wb×nemb . We similarly use a shared learnable
embedding for our discrete tokens, λ(zbyx) ∈ Rnemb , and a per-
token learnable parameter, Λyx:

lyx = λ(zbyx) + θb(tyx) + Λyx. (5)

where l represents the final input embeddings for the transformer
decoder block.

C. Camera Bias

In addition to providing the model with aligned embeddings,
we add a bias to our self-attention layers that provides both an
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intramodal (image to image) and intermodal (image to BEV)
similarity constraint. This draws inspiration from [17], but in-
stead of providing a blockwise similarity matrix that is composed
of encoded poses between frames, we provide a per-token sim-
ilarity based on their relative direction vectors. Our approach
also encodes the relationship between image and BEV tokens.
For self-attention in any layer between some query qr ∈ Rnemd

and key/value kc/vc ∈ Rnemd , where r, c are the row, column of
the pairwise attention matrix, we have:

Attention(qr, kc, vc) = vc softmax

(
arc√
d

)
, (6)

arc = qrkc + βrc. (7)

The transformer sequence is composed of hbwb conditional
BEV tokens followed by camera tokens. If r, c > hbwb, both
positions correspond to image tokens and thus we have two
direction vectors, dr, dc, computed as in (3). As discussed in
Section III-A, we have a mapping between the sequence index
and image token (i, j) in camera k. If r > hbwb > c, we have a
query for some image token and a key/value pair corresponding
to BEV token. Thus, we again construct two direction vectors.
In this case our BEV direction vector consists of the 2D World
coordinates (in the ego-center frame) and our image direction
vector is the same as in (3) except with the row value as the
center of the image. Given these two direction vectors, dr, dc,
we add the cosine similarity and a learnable parameter, θrc, as
shown in the bottom right of Fig. 2:

βrc =
dr · dc

∥dr∥∥dc∥
+ θrc. (8)

IV. EXPERIMENTS

A. Datasets

We evaluate the proposed method using the nuScenes
dataset [20] and Argoverse 2 dataset [21], which are commonly
used for BEV segmentation and detection. Each instance in
both of our datasets contain ground-truth 3D bounding boxes,
mutli-view camera images, calibrated camera intrinsics and
extrinsics, and LiDAR. We project these 3D bounding boxes
onto a BEV layout following standard practice used in BEV
segmentation [3], [22].

NuScenes: The nuScenes dataset consists of 1000, 20-second
scenes captured at 12 Hz by 6 cameras, which provide full 360◦

camera coverage. However, synchronization between cameras
occurs only at 2 Hz so we increase our dataset size by re-
sampling at 20 Hz, pruning instances where any camera is more
than 100 ms outside of the frame. We linearly interpolate from
the nearest ground-truth annotations to create paired annotation
data. This provides roughly 9x the number of instances as
the original training set, for a total of 260 k instances. For
validation, we use the standard set containing 6 k instances.
For all visualizations, we flip the back left and right cameras
along the vertical axis to highlight the image consistency of our
model.

Argoverse 2: Argoverse 2 comprises 1000, 15-second scenes
annotated at 10 hz, with a synchronized camera captured at

20 hz. Compared to Argoverse 1 [23], it covers much broader
and more diverse image content and is comparable to the size
of nuScenes dataset. This provides 210 k and 30 k instances for
train and validation, respectively. As the front camera is rotated
90◦, we extract a square crop from the front three cameras for
all experiments.

Preprocessing: The BEV layout representation used in train-
ing and testing covers 80 m × 80 m around the ego center. On
nuScenes, there are 21 channels, with 14 channels being binary
masks representing map information (lane lines, dividers, etc.)
and actor annotations (cars, trucks, pedestrians, etc.). The re-
maining 7 channels provide instance information, including the
visibility and size of the annotation. On nuScenes, we resize all
images to H ×W = 224× 400, resulting in a discrete latent
representation of hc × wc = 14× 25. On Argoverse 2, we crop
to H ×W = 256× 256, resulting in hc × wc = 16× 16. Our
BEV layout has a discrete latent representation of hb × wb =
16× 16. We appropriately modify intrinsics after cropping and
resizing. To enable our weighted cross-entropy loss, we project
the provided 3D annotations onto the camera frame and weight
the corresponding tokens in our discrete camera frame represen-
tation, zk ∈ Nhc×wc .

B. Training Details

VQ-VAE: We train the 1st stage camera VQ-VAE with ag-
gressive augmentation consisting of flips, rotations, color shifts,
and crops. Similarly, we train our 1st stage BEV VQ-VAE with
flips and rotations. For the 2nd stage, we add minimal rotations
and scaling, as well as cropping.

Transformer: Our transformer is GPT-like [24] with 16-
heads and 24-layers. We use DeepSpeed to facilitate sparse
self-attention and 16-bit training. We clip gradients at 50 and
use the AdamW optimizer [25] with β1,β2 = 0.9, 0.95 and a
learning rate of λ = 5e-7. Both the BEV and image codebooks
have |Zc| = |Zb| = 1024 codes with an embedding dimension,
nc = nb = 256.

Additionally, we develop a lighter-weight model that uses
sparse attention as in [26]. As opposed to a uniform random
attention mask, we unmask regions of the image near the token
we attend. Using the same formulation as in (8), we create
a pairwise similarity matrix for image tokens only. As sparse
attention groups the input sequence into discrete blocks, we
perform average pooling on these blocks and use these values as
weights for sampling. Additionally, we have a sliding window in
which we always attend to the last r tokens, and we attend to all
BEV tokens. For our sparse models, we have an attention mask
density of 35% with a sliding window length of r = 96. Except
as described in Section IV-D, our sparse model is derived from
fine-tuning our full-attention model for 10 epochs.

C. Results

Qualitative result: Fig. 3 exhibits the generation examples
from BEVGen on nuScenes. Our model is able to generate
a diverse set of scenes including intersections, parking lots,
and boulevards. We observe that each camera view not only
correctly displays the surrounding of the same location, but
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Fig. 3. Synthesized multi-view images from BEVGen on nuScenes. Image contents are diverse and realistic. The two instances in the bottom row use the same
BEV layout for synthesizing the same location in day and night.

Fig. 4. Comparison to real-views on Argoverse 2. Images on the left are synthesized, images on the right are corresponding real ones.

also preserves the spatial perspective. BEVGen synthesizes
images under various weather conditions, with the same weather
apparent in all images, including physical artifacts such as rain.
We also demonstrate that our model is capable of generating
diverse scenes corresponding to the same BEV layout. We see
at the bottom of Fig. 3 the same location rendered in the day and
at night by the model.

In Fig. 4, we compare synthesized images to real ones for the
same BEV layouts on Argoverse 2. We observe that our model
places vehicles in the same location as the real one, even when a
vehicle is in multiple views, demonstrating that the model learns
to synthesize coherent content across views. Quantitative result:
We use the Fréchet Inception Distance (FID) to evaluate our
synthesized quality compared to the source images. Metrics are

calculated on the validation set for each respective dataset. We
employ no post-generation filtering. For calculating FID scores,
we use clean-fid [28].

To differentiate between the performance of our 1st and 2nd
stage, we compare our results to the results obtained by feeding
the encoded tokens directly to the decoder, as is done when
training the 1st stage. This represents the theoretical upper bound
of our model’s performance, largely removing the effect of the
1st stage which is not the focus of this letter.

As seen in Table I, our BEVGen model achieved an FID score
of 25.54 on nuScenes, compared to the baseline score of 138.30.
This is in comparison to our reference upper-bound FID score
of 9.37. Our model utilizing our sparse masking design from
Section 3.4 achieved an FID score of 28.67. This sparse variant
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TABLE I
BASELINE COMPARISON OVER ALL 6 VIEWS ON NUSCENES VALIDATION

TABLE II
ABLATION OF THE KEY MODEL COMPONENTS

is approximately 48% faster during inference and 40% faster for
training. On Argoverse 2, our model achieves an FID score of
25.51.

While FID is a common metric to measure image synthesis
quality, it fails to entirely capture the design goals of our task
and cannot reflect the synthesis quality of different semantic
categories. Since we seek to generate multi-view images con-
sistent with a BEV layout, we wish to measure our performance
on this consistency. To do this, we leverage a pre-trained BEV
segmentation network CVT from [3]. We apply the CVT to
the generated images and then compare the predicted layout
with the ground-truth BEV layout. We report both the road and
vehicle class mean intersection-over-union (mIoU) scores. As
shown in Table I, we beat our baseline by 4.4 and 1.45 for road
and vehicle classes respectively. Note that the performance of
the BEV segmentation model on the validation set is 66.31 and
27.51 for road and vehicle mIoU respectively. This reveals that
though the model can generate road regions in the image in a
reasonable manner, it still has a limited capability of generating
high-quality individual vehicles that can be recognized correctly
by the segmentation network. This is a common problem for
scene generation where it remains challenging to synthesize the
small objects entirely. Our work is a starting point and we plan
to improve small object synthesis in future work.

Finally, we seek to quantitatively verify the cross-view consis-
tency of our model. To do this, we introduce a consistency metric
that looks at the similarity between overlapping portions of
images. For example, for the front-left and front-center camera
on nuScenes, we extract a window on the right and left edges
of the images, respectively. We then attempt to find keypoint
correspondences between these image patches by performing
feature matching with [29]. As each correspondence has a con-
fidence, we simply find the sum of these confidences and average
across all windows to obtain a metric for cross-view consistency.
We call this metric the View Consistency Score (VSC). On
nuScenes, synthesized view images from our model obtain a
VSC of 5.65, with the corresponding real images obtaining a
result of 12.86. On Argoverse 2, synthesized view images obtain
a VSC of 13.00, with the corresponding real images obtaining
a result of 42.90. We see further results in Table II. We show

Fig. 5. We display point correspondences (blue) obtained with LoFTR for
the VSC metric. Green lines indicate inliers from RANSAC. Top: Generated
images, Bottom: Real images.

matched keypoints in Fig. 5, with both images corresponding
to the same BEV layout. We note that this metric does not
evaluate whether there is a proper perspective shift between the
viewpoints, only that there are point correspondences in over-
lapping regions. Qualitatively, BEVGen consistently generates
a realistic shift in perspective between views.

As far as we know, our work is the first attempt at synthesizing
street views conditioned on a BEV layout. To establish a com-
parison baseline, we reproduce one of the cross-view synthesis
methods proposed in [27]. Firstly, we project the BEV semantic
mask onto the camera perspective view using extrinsics and
intrinsics. Next, we utilize a conditional GAN to generate a street
view semantic mask from this warped BEV layout. Finally, we
use another conditional GAN to perform the semantic mask-to-
image translation. As neither the nuScenes nor the Argoverse
datasets provide 2D segmentation labels, we use a pre-trained
segmentation model [30] to generate pseudo ground-truth la-
bels for the first conditional GAN. Following [27], we use the
Pix2Pix [12] model for the first and second stage. However, at
their core, existing cross-view synthesis methods such as this
one are not designed to handle the BEV generation task as, at
their core, they translate existing rich RGB information rather
than generate new images from a sparse semantic layout.

D. Ablation Study

To verify the effectiveness of our design choices, we run
an ablation study on key features of our model. We run these
experiments on the same subset of the nuScenes validation set
as in Section IV-C, but only consider the 3 front-facing views
to reduce training time. The 3 front-facing views have a larger
FoV overlap and capture more relevant scene features compared
to the side-facing rear views. This area is more relevant to our
task and still allows us verify the model design objectives.

We test four variants of our model, one with only center-out
decoding, one with our camera bias, one with the camera bias and
spatial embeddings, and a final model that we train from scratch
using our sparse masking, instead of fine-tuning. Table II shows
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Fig. 6. Generating images based on the BEV layouts provided by the MetaDrive driving simulator.

a steady decrease in FID scores and increase in VSC, as we add
the camera bias, and spatial embeddings.

V. APPLICATIONS

Generating realistic images from BEV layout has many ap-
plications. In this section we explore the applications of data
augmentation for BEV segmentation and image generation from
simulated BEV.

Image generation from simulated BEV: Since one motivation
for our task definition lies in the simplicity of the BEV lay-
out, we wish to determine whether this enables our model to
generate new scenes from out-of-domain (OOD) HD maps. We
use MetaDrive simulator [31] to procedurally generate traffic
scenarios and input these BEV layouts into BEVGen. Generated
images are shown in Fig. 6. Scenario generation that addresses
the long-tail problem is itself an active area of research [32], [33]
and outside the scope of our work, but we clearly demonstrate
that we can synthesize such synthetic scenarios into real images
using the BEV layout as a bridge. This has potential to address
the sim2real gap.

Additionally, we demonstrate that we can generate a safety-
critical scenario by editing an existing scene. This functional-
ity is an important component of the safety testing for many
autonomous driving systems as it allows for both permutation
testing for real-life scenarios but also for a human developer to
construct difficult scenarios would otherwise be dangerous and
observe the behavior of a system. We demonstrate this editing
ability in Fig. 7 where we translate cars in two different scenes.

Data augmentation for BEV segmentation: An important ap-
plication of our BEV conditional generative model is generating
synthetic data to improve prediction models. Thus, we seek
to verify the effectiveness of our model by incorporating our
generated images as augmented samples during the training
of multiple camera-only BEV segmentation and 3D detection
models. For BEV Segmentation, we use CVT [3], which is also
used in Section IV-C, and compare our results to training without
any synthetic samples. We generate 6,000 unique instances using
the BEV layout from the train set on nuScenes and use these to
augment the original training set. These synthetic instances are
associated with the ground truth BEV layout for training, with
no relation to results from Section IV-C. For the detection task,
we verify on the state-of-the-art detector BEVFormer [34]. We

Fig. 7. We modify two existing BEV layouts to demonstrate spatial disentan-
glement of the model.

TABLE III
DATA AUGMENTATION RESULTS FOR BEV SEGMENTATION AND DETECTION ON

THE VALIDATION SET OF NUSCENES

select two model sizes for testing and apply the same augmen-
tation regime used for CVT. As seen in Table III, our synthetic
data improves validation mIoU for BEV Segmentation by 0.6 for
both the road category and the vehicle category. Additionally,
we see more substantial gains in BEV Object Detection with
improvements of 1.6 and 1.3 for mAP and NDS respectively for
the Tiny model and 2.9 and 2.7 respectively for the Small
model.
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VI. CONCLUSION

In this letter we introduce this new BEV generation task and
propose and approach in the form of a generative model we
call BEVGen. After training on real-world driving datasets, the
proposed model can generate spatially consistent multi-view
images from a given BEV layout. We further show its application
in data augmentation and simulated BEV generation.
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