2405.08817v4 [cond-mat.str-el] 4 Nov 2024

arxiv

Quantum oscillations in the hole-doped cuprates
and the confinement of spinons

Pietro M. Bonetti'®, Maine Christos?®, and Subir Sachdev®
2Department of Physics, Harvard University, Cambridge MA-02138, USA

This manuscript was compiled on November 5, 2024

A long standing problem in the study of the under-hole-doped
cuprates has been the description of the Fermi surfaces underlying
the high magnetic field quantum oscillations, and their connection
to the higher temperature pseudogap metal. Harrison and Sebastian
(Phys. Rev. Lett. 106, 226402 (2011)) proposed that the pseudogap
‘Fermi arcs’ are reconstructed into an electron pocket by field-induced
charge density wave order. But computations on such a model (Zhang
and Mei, Europhys. Lett. 114, 47008 (2016)) show an unobserved
additional oscillation frequency from a Fermi surface arising from
the backsides of the hole pockets completing the Fermi arcs. We
describe a transition from a fractionalized Fermi liquid (FL*) model
of the pseudogap metal, to a metal with bi-directional charge density
wave order without fractionalization. We show that the confinement
of the fermionic spinon excitations of the FL* across this transition
can eliminate the unobserved oscillation frequency.
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D ecades of careful experimental study of the hole-doped
copper oxide based high temperature superconductors
have revealed a remarkable evolution of their low energy
fermionic excitations in the underdoped regime. In the higher
temperature pseudogap metal, photoemission (1-3) and scan-
ning tunneling microscopy (4, 5) display ‘Fermi arcs’ which
have been described by excitations of a hole pocket model
(6-24). In contrast, at low temperatures and high magnetic
fields, quantum oscillations (25-33) are consistent with the
excitations of an electron pocket model (33-37). A theoretical
understanding of the evolution between these distinct Fermi
surfaces at high and low magnetic fields remains a central
open problem in the study of the cuprates. A crucial ingre-
dient in the evolution from Fermi arcs to electron pockets is
the field-induced charge density wave (CDW) order that is
experimentally known to set in at high fields (38-40).

In the present paper we argue that charge neutral, spin-1/2,
fermionic spinons are another important and necessary ingre-
dient to reproduce the experimental data. We present a model
that has spinon excitations with massless Dirac dispersion in
the higher temperature pseudogap metal, and these spinons
confine across the transition involving the onset of CDW order
at low temperatures. Our model displays key features of the
observations which have been difficult to reconcile so far:

(7) It describes the ‘Fermi arc’ spectra and other features of the
higher temperature pseudogap metal, as was already discussed
in Ref. (19).

(i7) The spectrum of quantum oscillations in the low temper-
ature, high field CDW state in our model is consistent with
only a single electron pocket, as has been argued from the
experimental observations (29, 31).

(ié¢i ) It can account for the excess linear-in-temperature specific

heat observed in the high field CDW state in HgBasCuOu45
(41).

A key to the resolution of the experimental observations
has been an understanding of the role of the ‘backside’ of the
hole pockets (the v pockets of Figs. 1 and 3) presumed to
complete Fermi arcs of the pseudogap metal—see Fig. 1. This
‘backside problem’ shows up in a number of experimental
observables, as we now describe.

The backside problems.

(A) Photoemission in the pseudogap metal.

In almost all metals, the low energy fermionic excitations are
charge +e, spin-1/2 quasiparticles on a Fermi surface enclosing
a volume dictated by the Luttinger relation. But in the higher
temperature pseudogap, photoemission observations reveal
a ‘Fermi arc’ spectrum along the Brillouin zone diagonals.
This is most commonly modeled by hole pockets with Fermi
surfaces that enclose a non-Luttinger area p at hole density p
(6-24) (the Luttinger area at this doping is 1 + p). As shown
in Fig. 1, such v hole pockets have an approximately elliptical
shape, and the observed Fermi arcs are the ‘front side’ of the
ellipse. The ‘backside’ has not been observed in photoemission
or tunnelling experiments; it has a low spectral intensity in
theoretical models, and is presumably further suppressed from
the mean-field computation in Fig. 1 by quantum fluctuations
associated with spinons (19) and impurities.

(B) Eatra frequency in quantum oscillations
The backside problem is also manifested in the quantum
oscillations at low temperatures and high fields. A compu-
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Fig. 1. Color density plot of the electron spectral density A(w, ks, k) (frequency
w and wavevector (k, k,)) computation in the FL* pseudogap metal (19) without
CDW order or d-wave superconductivity, showing the four v hole pockets (as denoted
in Fig. 3a) which enclose the non-Luttinger area corresponding to hole density p. The
‘front sides’ of the « hole pockets are the bright Fermi arcs, while the faint ‘backsides’
have not been detected in photoemission. The dashed lines indicate the zeros of the
pairing amplitude in the d-wave superconductor. The eight filled circles indicate the
nodal points of Bogoliubov quasiparticles obtained when d-wave pairing is imposed
on the hole pockets. The four open circles indicate the positions of the nodal fermionic
spinons of the critical spin liquid (42): these fermionic nodal spinons annihilate the
four nodal Bogoliubov quasiparticles on the backsides in a d-wave superconductor in
which the spin liquid confines, leaving only four nodal Bogoliubov quasiparticles on
the front sides. The ordering wavevectors of the CDW are Q.4+ ; connecting the front
sides of the hole pockets yields the electron pocket model of quantum oscillations
(34). Fermi surfaces with CDW order present are not shown in this figure.

tation (37) of the fermionic spectrum in a model of hole
pockets in the presence of field-induced CDW order yields the
observed « electron pockets (37) (see Fig. 3) by connecting
together the hole pocket front sides by the CDW ordering
wavevector, as was argued by Harrison and Sebastian (34)
(Fig. 1). However, in the presence of CDW order, in addition
to the a pockets, the backsides of the hole pockets also lead
to a second electron-like 8 Fermi surface (37) (Fig. 3) which
has not been observed.

(C) Eight nodal points in the d-wave superconductor

A third manifestation of the backside problems arises when
we consider the transition from the pseudogap metal to the
superconducting state in the absence of CDW order. Imposing
a d-wave pairing gap upon the - hole pocket model of the pseu-
dogap leads to eight nodal points of Bogoliubov quasiparticles
in the d-wave superconductor (sketched in Fig. 1) because,
without long-range antiferromagnetic order, the first Brillouin
zone remains that of the underlying square lattice. However,
there is much experimental evidence for only four nodes in
the superconducting state (43), and such thermal conductivity
and specific heat measurements preclude a scenario where
there are additional nodes with a low spectral intensity in the
superconducting state.

A resolution of the backside problem (C) in the supercon-

ducting state was proposed in Refs. (44, 45) using charge
neutral spin-1/2 fermionic spin excitations of the pseudogap.
Such fractionalized excitations are required to be present when-
ever there are Fermi surfaces at zero temperature which do
not enclose the Luttinger volume (46-49), leading to a ‘frac-
tionalized Fermi liquid’ (FL*). Christos et al. (50) proposed
that the fermionic spinon excitations are those of the multi-
or pseudo-critical spin liquid (51-54) of the Néel-valence bond
solid transition (55), whose mean-field realization (56) is the
m-flux phase with four nodal points (42) (see Fig. 1; this spin
liquid also exhibits d-wave superconductivity upon doping
(57, 58)). In the low energy theory of Ref. (50), the Higgs
condensation of the boson which couples the physical elec-
trons to the fractionalized spinons drives transitions to various
symmetry-breaking phases, including charge order and d-wave
superconductivity. The spin liquid must confine in a conven-
tional superconductor: in the confined superconducting phase,
the four spinon nodal points of the spin liquid are allowed
to mix and annihilate with the four Bogoliubov quasiparticle
nodal points on the backsides of the 7 hole pockets. This leaves
just the required four Bogoliubov nodal points associated with
the front sides in the confining d-wave superconductor.

In the present paper, we exploit the fermionic spinons of
the m-flux spin liquid to address the backside problem (B)
of the low temperature, high field quantum oscillations. In
analogy with the case where the ordered phase is a d-wave
superconductor, we assume that the spin liquid is confined
across the transition from the FL* pseudogap metal to the
CDW state (50, 59) (where neither phase has antiferromagnetic
order). The Higgs condensation of the boson which couples the
physical electrons and spin liquid allows the fermionic spinons
to mix with the excitations on the Fermi surfaces in the CDW
state. We find that this mixing can eliminate the unobserved 3
quantum oscillations, leaving prominent quantum oscillations
only from the « electron pocket of Harrison and Sebastian
(Fig. 4b). A Fermi surface consisting of a single electron
pocket can also be obtained in a state with coexisting CDW
and (incommensurate) antiferromagnetic order (33, 60). The
confinement of spinons across the FL*¥*—CDW transition also
leaves small § pockets (Fig. 3c) which we propose as the origin
of the excess linear-in-temperature specific heat (41).

We will begin in Section 1 by introducing the ‘ancilla’ ap-
proach (18) which allows for a simple, microscopic description
of the FL* phase, and its confinement transitions, in a single-
band Hubbard model. We note, however, that the ancilla
approach is not essential for our results, and similar results
can also be obtained in more phenomenological approaches
which do not introduce ancilla degrees of freedom (44). We
describe the Fermi surfaces in the phases of the ancilla model
in Section 2, and their quantum oscillations in a magnetic
field in Section 3. These results are connected to experimental
observations in Section 5.

1. The ancilla model

Fermi surfaces which do not enclose the Luttinger volume are
relatively easy to obtain in two-band Kondo lattice models (47—
49) coupling a single band of conduction electrons to a second
band of localized spins. One assumes the ‘small’ Luttinger-
volume-violating Fermi surface is formed by the conduction
electrons alone, while the localized spins form a fractionalized
spin liquid. However, it is much more difficult to obtain a sys-
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Fig. 2. Ancilla model to describe a single band Hubbard model of electrons c on
a square lattice. The ancilla are S = 1/2 spins S1, S2 in bilayer square lattice
antiferromagnet. The Kondo coupling between the electrons and first layer of spins is
denoted by a dotted line with coupling Jx, the antiferromagnetic coupling between
the first and second layer of spins is denoted with a dashed line and J | .

tematic model of a Luttinger-volume-violating Fermi surface in
a single-band Hubbard-like model. Here we employ the ancilla
approach introduced in Ref. (18) to describe a single-band
Hubbard model of electrons ¢ with on-site repulsion U, which
has successfully described photoemission (19) and polaronic
correlations (61-63) in the pseudogap metal. After a Schrieffer-
Wolff-type transformation (19), the Hubbard interaction is
realized by coupling otherwise free ¢ electrons to an insulating
bilayer square lattice antiferromagnet of spin-1/2 moments
S1 and S> (see Fig. 2). For large rung-exchange J, in the
bilayer antiferromagnet, the ancilla spins can be eliminated
by a canonical transformation, yielding a Hubbard interaction
U~ Jf(/JL between the ¢ electrons, where Jg is the Kondo
interaction between the ¢ electrons and the S; spins. When
J1 > Jk, the Si2 spins form a trivial rung-singlet state,
while the c electrons form a Luttinger-volume ‘large’ Fermi
surface. The non-Luttinger volume, FL* pseudogap metal hole
pocket phase of interest in this paper is obtained at smaller
J1, when the c electrons are Kondo-screened by the S; spins,
while the S2 spins form a 7-flux spin liquid.

The S: and S: spins can be represented by spin-1/2
fermionic partons fi 2 via

=flof , S2=flof, 1]

with o the Pauli matrices. In the ancilla mean-field theory
(18), the pseudogap regime is characterized by a finite hy-
bridization between the c-electrons and the fi-fermions, and a
decoupled m-flux spin liquid for the f2 spinons, with an emer-
gent SU(2) gauge field. The (condensed) hybridization field ¢
can be introduced decoupling the Kondo interaction between
the c-electrons and the fi-fermions. The term J, S; - .S2 can
be further decoupled introducing a chargon field B = (B, B2).
In the pseudogap regime the chargon field carries a unit elec-
tromagnetic charge and, along with the fs spinons, it lives in
the fundamental representation of the emergent SU(2) gauge
group. The condensation of B will fully confine (Higgs) the
SU(2) gauge field and, depending on the exact form of the
condensate, it leads to different symmetry broken states, such
as d-wave superconductivity, CDW, or current loop orders (50).
There are no unbroken gauge symmetries once B is condensed,
and so a mean-field treatment is reasonable, as in the heavy
Fermi liquid state of Kondo lattice models.

Mean-field Hamiltonian. In this paper, we focus on a mean-field

ansatz for B that induces bi-directional period-4 CDW order.
Additional results for other periods CDW are presented in
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Sec. 6 of the Supplementary Information (SI). The mean-field
Hamiltonian reads

H= Z t5icles —|—t{jff,if1,j]

+Z (f)CTflz‘FHC +2J2f2,ezjf21
(4,9) [2]
'HZ [Bu' fg,ifl,i — Bai f2,i(i0”) f1,i + H.C-]

2

+ig Z [Bu fglc, — Bzifg,i(ia?')c,' + H.c.] ,

where 4 = (z,y), t; and t are hopping parameters that can
be obtained fitting angular resolved photoemission (ARPES)
data (19), and e;; are the w-flux hoppings, defined in Sec. 1
of the SI and in Ref. (50). Fluctuations of the hybridizaton
field ¢ can induce a direct coupling g of the chargons and f>
spinons to the c-electrons. For this reason we have included
the last line of Eq. (2) in our Hamiltonian. We make an ansatz
for B such that the induced CDW takes the form

z y

BiB; = | <1 - (_1);(_1)> cos®(qz) cos”(qy), [3]
where b is a parameter quantifying the strength of CDW order,
and ¢ = 7/4, and no additional superconducting or time-
reversal-symmetry-breaking orders are induced (see Sec. 1
of the SI). The Fourier transform of Eq. (3) has delta func-
tions at a number of wavevectors (including (w,0) and (0, 7)
listed below Eq. (S2) of the SI), apart from the primary CDW
wavevectors (£2¢,0), (0, £2q). These appear as a consequence
of the confinement transition associated with the condensation
of B that leads to the CDW phase, and are, in principle, an
observable consequence of our theory. However, we expect
that these additional wavevectors will have distinct renormal-
izations from SU(2) gauge fluctuations (not included in our
mean-field theory here), which are expected to suppress the
additional wavevectors relative to the primary CDW wavevec-
tors; this is an important questions for further research which
accounts for the gauge fluctuations more completely. In Sec. 7
of the SI, we show the charge and bond density profiles induced
by the mean-field ansatz Eq. (3).

Another distinct possible CDW phase of the ancilla model is
a so-called CDW* phase, in which the c-electron density is spa-
tially dependent but the SU(2) gauge field remains deconfined.
This can be achieved setting B = 0 in Hamiltonian Eq. (2) and
adding a modulated potential V')~ [cos(Qx) + cos(Qy)]cles,
with @ = 7/2, in the top layer. The ancilla description of
the CDW order of such a phase is similar to the one con-
sidered in Ref. (37), with the difference that we added a set
of self-consistently calculated Lagrange multipliers coupled
to the fi fermions to keep their density uniform and equal
to 1 (see Sec. 2 of the SI); see also Ref. (64). (We adopted
this procedure also for the f fermions in the CDW phase.)
However, these earlier approaches do not explicitly account
for the spinon excitations in the CDW* phase, which are re-
quired to be present by general arguments (48), and which are
automatically included in the ancilla approach.

2. Fermi surfaces

The Fermi surfaces in CDW phase descending from the large
Fermi surface Fermi liquid (FL) have been computed ear-
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Fig. 3. Computed Fermi surface reconstruction in the (a) FL* pseudogap metal, (b) FL*—CDW?*, and (c) FL*— CDW phases of the ancilla model; (c) is our proposal for cuprate
quantum oscillations. In (a) the four ~ hole pockets (enclosing non-Luttinger area p) are brought close to each other by integer combinations of the CDW momenta (%, 0) and
(0, % ). The dashed lines represent the area obtained by shifting the hole pockets by higher harmonics. (b) In the CDW* phase one has « and 3 Fermi pockets, as in Ref. (37).
The black ~ pockets is the same as the red ~ pocket in (a). A co-existing 7-flux spin liquid is present in CDW*, and its spinons have nodal points located at the green stars,
which are shifted by multiples of halfthe CDW wavevectors (see Sec. 1 of the Sl). (c) In the CDW phase, the 7-flux spinons hybridize with the f;-fermions and the c-electrons,
thereby disrupting the 3 pocket and leaving four & pockets of small volume. The « electron pocket remains instead unaffected. The dashed gray lines represent the boundaries

between different reduced Brillouin zones.

lier (36) (for FL—CDW only t° and V are non-zero). Here
we obtain the distinct Fermi surfaces for FL*—CDW and
FL*—CDW*, which describe reconstruction of the hole pock-
ets in Fig. 1 by CDW order. In Eq. (2), we choose t;; and t{j as
in Refs. (19, 45), ¢ = 0.1 eV, J = 0.14 €V, and fix the c-electron
density to n. = 0.8425, which, in absence of CDW order, gives
Qcaw ~ /2 (see Fig. 1). We calculate the CDW bandstruc-
ture in the reduced Brillouin zone (BZ) (k¢, ky) € [0,7/2), but,
for visualization purposes, we unfold the resulting Fermi sur-
faces to an enlarged BZ (kq, ky) € [-7/4,37/4). The Fermi
surfaces in the reduced BZ are shown in Sec. 4 of the SI.

In Fig. 3, we show the Fermi surface reconstruction in the
CDW* (panel b) and CDW (panel c) states. In panel (a) of
Fig. 3 we show how the four hole pockets appear when the
7 pockets are shifted by wavevectors of the form (Zn., Fny),
Ng,Ny € Z. In panel (b) of Fig. 3, we show the Fermi surfaces
in the CDW* state for V ~ 0.02 eV. The CDW potential
opens a gap at the points where the shifted pockets of Fig. 3a
cross, leaving two electron pockets, o and 3, both centered
around (7/4,7/4), and whose spectral weight comes mostly
from the c¢- and fi-fermions, respectively. The m-flux spin
liquid remains decoupled and displays nodal points at the
locations marked with green stars. In Fig. 3c, we show the
Fermi surfaces in a CDW state, obtained for |b| ~ 0.1V, g =1,
and with an additional modulated potential for the c-electrons
with V' ~ 0.01 eV. We observe that the presence of a finite
b inflates the w-flux nodes to proper Fermi surfaces, which
then hybridize with the backside of the hole pockets, leaving
two different kind of Fermi surfaces: an a pocket, similar to
the CDW* phase, and two elongated hole pockets, which we
denote by 4, and which enclose a volume corresponding to
a tiny fraction of the full Brillouin zone. Note that we have
added a small modulated potential in Fig. 3 only to get rid
of very small hole pockets (much smaller than the § pockets)
appearing in the vicinity of the nodes of the quantum spin
liquid dispersion. Also note that a g ~ 1 is essential to obtain
the d-pockets instead of a larger S-pocket. In fact, for g =0

and small b, one gets similar Fermi surfaces as in Fig. 3c, but
further increasing b closes the gap between the d-pockets again,
giving back a B-pocket.

3. Quantum Oscillations

We now turn our attention onto how the Fermi surfaces dis-
played in Fig. 3(b)-(c) for FL*—CDW?* and FL*—CDW show
up in quantum oscillations in a magnetic field (32, 40) (quan-
tum oscillations for FL—CDW (36) do not agree with observa-
tions). We couple Hamiltonian Eq. (2) to a uniform magnetic
field by multiplying the hopping terms ¢;; and tif ; by a Pelerls
phase

Aty 2 (13) [4]
In the pseudogap phase, the condensation of the hybridization
field ¢ gives the f1 fermions an electromagnetic charge, which
is why also the hoppings t{j must acquire a Peierls phase. In
the CDW regime, when B condenses, the fs fermions become
charged under the electromagnetic U(1) symmetry. For this
reason, in the calculations in the CDW phase (but not in the
CDW* phase) we also multiply e;; by Eq. (4). We choose a
gauge in which A; = Hz(0,1,0), with H the magnetic field
measured in units of Hy = %i/(ead), with e the elementary
charge, h the reduced Planck constant, and ap ~ 3.86A the
lattice spacing. As a function of H, we have computed the
density of states at the Fermi level of Hamiltonian Eq. (2) on
a system with N, = 2000 sites and open boundaries in the
z-direction, and N, = 96 sites and periodic boundaries in the
y-direction (see Sec. 3 of the SI for details on the numerical
procedures).

In Fig. 4, we show the quantum oscillations of the density
of states p as a function of 1/H (insets), as well as their
Fourier spectra (main plots), both in the CDW* (panel a) and
CDW (panel b) phases. The parameters chosen for Fig. 4 are
exactly the same as in Fig. 3. Plots for different choices of the
parameters are shown in Sec. 5 of the SI.

In the CDW* phase (Fig. 4a), we observe a main peak
in the Fourier transform of p(1/H) occurring at frequency

Bonetti et al.
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Fig. 4. Quantum oscillations in the (a) FL*—CDW* and (b) FL*—CDW phases of
the ancilla model; (b) is our result for the cuprates. The insets show oscillations of
the density of states p as a function of the inverse magnetic field, whereas the main
panels display their Fourier spectrum. The labeling of the peaks corresponds to the
Fermi surface sheets indicated in Fig. 3 in panels (b) and (c), respectively. Both p and
its Fourier spectrum | F[p]|? are measured in arbitrary units.

fo =~ 0.055f7 ~ 1500 T (fpz = (27)*Ho/(27) ~ 27.6 kT),
corresponding to the a pocket. However, additional peaks
appear, with heights that cover a significant fraction of the
height of the main peak. Aside from higher harmonics of the
main frequency f«, we observe a sizeable peak (~ 47.5% of the
height of the peak at f,) at the frequency fg ~ 0.12fgz ~ 3300
T, corresponding to the 8 pocket of Fig. 3b.

Differently, in the CDW phase (Fig. 4b), the peak at fq
is much more pronounced. We observe a tiny peak (~ 4%
of the o peak) at fs = 0.004fpz, corresponding to the §
pocket in Fig. 3c. A magnetic breakdown frequency emerges
at f,/fez ~ 0.02, corresponding to (1 — n)/8, that is the
volume of the hole pockets in absence of CDW order (denoted
by «v in Fig. 3). Other lower peaks appear at f = fo — fy and
f=2fa.

4. Results for period 6 CDW and CDW*

In this section we present results obtained for period 6 CDW*
and CDW phases. Within our formalism, we can only obtain
density modulations with even periods, as the wavevectors
(m,0) and (0, 7) are always present in the CDW order parame-
ter (see Ref. (50) and Sec. 1 of the SI for details). It is possible,
however, that fluctuations beyond mean-field will remove the
CDW components at (7,0) and (0, 7). In Sec. 7 of the SI, we
show the charge and bond density profiles for a period 6 CDW
phase.

To study a period 6 CDW and CDW* phase, we start
from Hamiltonian Eq. (2) and make an ansatz for B such that
Eq. (3) still holds but with ¢ = 7/6. We fix the c-electron
density to n = 0.945, so that the nesting vector Qcaw in Fig. 1
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equals (27)/3. Moreover, we add a modulated potential in
the top layer, V' > [cos(Qx) + cos(Qy)]clei, with Q = (2m)/3.
Additional details are provided in Sec. 6 of the SI, where we
also show the Fermi surfaces in the reduced Brillouin zone for
a CDW* and a CDW phase. Also in this case, we find an «
and a 3 pocket in the CDW* state, while in the CDW phase
the hybridization of the 8 pocket with the f spinons disrupts
it into two elongated & pockets (see Fig. S5 in Sec. 6 of the
SI).

When calculating the quantum oscillations of the density
of states in the period 6 CDW* phase, we get peaks at the
frequencies corresponding to the volumes of the o« and
pockets, similar to Fig. 4a. Differently, in the CDW phase the
B pocket peak is strongly suppressed, but, unlike the period 4
case, it is still present with a weak intensity, possibly due to
magnetic breakdown processes. The a frequency obtained in
this case is about 650 T, which is in much better agreement
with the experimentally observed frequencies (500 T to 900 T,
depending on the material and doping level). These results
are displayed in Fig. S6 in Sec. 6 of the SI.

5. Discussion

We summarize the manner in which our computation recon-
ciles experimental observations, as claimed in the introduction.
(¢) Our FL* ~ Fermi surfaces in Fig. 3a are very similar to
those in Ref. (19), which matched zero field photoemission
data in both the nodal and anti-nodal regions of the Brillouin
zone.

(i7) We have shown how backside problem (B) is resolved by
the FL*—CDW transition, as the spinons of the FL* pseu-
dogap metal remove the 8 Fermi surface in Figs. 3b and 4a,
while preserving the Harrison-Sebastian electron pocket a in
Figs. 3c and 4b. The new § pockets in the CDW phase in
Fig. 3c show up only at very low frequencies in the quantum
oscillations in Fig. 4b, making them very difficult to detect
over the available field range. Moreover, the § pockets are
small and not associated with a significant electron density,
and so the chemical potential oscillations in a magnetic field
will be those of the « pocket alone, as is observed (29, 31).
(i77) Although they are not manifest in the quantum oscilla-
tions, the two small § pockets will have significant consequences
for the specific heat at high field. Indeed, the combination
of the single o pocket and the two § pockets yields just the
required factor of 3 enhancement in the linear-in-temperature
co-efficient of the specific heat observed by Girod et al. in
HgBasCuOy44s (41) (assuming the effective masses of the o
and § pockets are the same). There is an enhancement of
around a factor of 2 in YBasCu3zOg.56 (28, 41), and this is
possibly connected to the presence of bilayers.

We have not addressed issues related to bi- versus uni-
directional CDW order (65), but suggest that the resolution
may lie in charge order that has anisotropic strengths (36).

The spinons and chargons employed in our theory of quan-
tum oscillations should also help resolve backside problem
(A)—the presumed completion of the Fermi arcs into v hole
pockets in the higher temperature pseudogap metal, supported
by angle-dependent magnetoresistance (ADMR) observations
(66). Quantum and thermal fluctuations of low energy char-
gons should reduce the backside spectral intensity, just as
condensation of chargons has resolved backside problems in
the (B) quantum oscillations and (C) d-wave superconductor.
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Such effects could also resolve the issues with interpreting
ADMR raised in Ref. (67)

A. Direct detection of spinons. Given the central role of the
spinons in resolving backside problems (B) and (C), it would
be of great interest to detect the spinons in neutron scattering.
There has been recent progress in neutron scattering detection
of spinons in triangular lattice Mott insulators (68, 69). For
the insulating, undoped square lattice, there is long-range Néel
order, but signatures of spinons have been claimed in the higher
energy neutron scattering (70, 71). Detection on the doped
square lattice without magnetic order will require accurate
theoretical computations of the higher energy dynamic spin
structure factor from spinons at the Néel-valence bond solid
transition (51-56, 72). At lower energies, the influence of the
doping is likely to be more appreciable, and approaches using
confined degrees of freedom (73, 74) are more appropriate.

The mean-field theory of fermionic spinons has gapless Dirac
spinons at wavevector (mw/2,7/2), and this predicts spinon
continua of equal intensity at (7, 7) and (,0). However, it is
now possible to go well beyond the free spinon theory (75), and
include the consequences of the SU(2) gauge fluctuations. We
can accurately estimate the magnitude of neutron scattering
from spinons at various wavevectors in the insulating quantum-
critical spin liquid from the remarkable fuzzy sphere results of
Zhou et al. (51). If the scaling dimension of the spin operator
at a wavevector q is Agq, then the Fourier transform implies
that the zero temperature dynamic structure factor, S(q,w),
at q diverges as

S(q,w) ~ w73, [5]

We obtain estimates of Aq in Table II of Zhou et al. (51).
At q = (w,m), we use the SO(5)-fundamental operator ¢ as
3 components of it correspond to Néel order. We therefore
obtain

Ar,x = 0.585, [6]

yielding a strong dynamic spectrum scaling as w ™83

At q = (m,0), a first attempt is to employ the operator
with spin S = 1 and momentum (7, 0) which is obtained from
the fusion of the Néel order (which has S = 1 and momentum
(m, 7)) and valence bond solid (VBS) order (which has S =0
and momentum (0, 7)). The VBS order is also a component of
¢, and so we have to consider the fusion of ¢ with itself. This
yields the operator T' of Zhou et al. (51): from their Table
I1, its scaling dimension yields A, ¢y = 1.458, and a dynamic
spectrum scaling as w™%%%*, which is a very weak divergence.
However, a more careful analysis shows that the scaling at
(m,0) is even weaker. The VBS order is odd under certain
reflections about lattice sites, and we need an operator which
is even under all such reflections. So we have to consider the
fusion of ¢ with 05,,¢ (72). This yields the first descendant of
T, with dimension 2.458, and also the SO(5) current J,, with
dimension 2. Choosing the smaller dimension, we conclude

Ao =2, (7]

yielding a dynamic spectrum scaling as w. This extremely
weak scaling explains the absence of any signal in neutron
scattering at (m,0) (76-78).

For completeness, we note that the total magnetization also
scales as Jy,, and so A o) = 2.

These results imply that SU(2) gauge fluctuations strongly
renormalize the free Dirac spinon predictions for S(q,w). The
dominance of spin fluctuations at (7, ) indicates that the CP*
formulation of the same spin liquid may be a better starting
point for computations of S(q,w) (74). Nevertheless, the Dirac
fermion formulation has been useful for addressing the nature
of the fermionic excitations for quantum oscillations in the
present paper, and of the Bogoliubov quasiparticles in the
superconducting state (45).

On the experimental side, the remarkable observations of
Refs. (79-81) indeed show high energy spin fluctuations in
the pseudogap regime of the doped system without antifer-
romagnetic order. These spin fluctuations are near (m,),
as expected from the theoretical considerations above. They
appear as remnants of the spin waves of the antiferromagnet,
and have been interpreted as damped paramagnons. However,
there is no large Fermi surface at this doping, and so it does
not seem reasonable that the large spectral weight of “intense
paramagnon excitations” (79) can be due to particle-hole fluc-
tuations on the observed small Fermi surface. Moreover, a
spin-wave interpretation is only valid at low energies in the
antiferromagnetically ordered state. We argue that the natural
interpretation of the signal is that it is a spinon continuum,
similar to that computed in Ref. (72). This aligns the observa-
tions of Refs. (79-81) with the spinons required by the small
non-Luttinger-volume Fermi surface of the FL* description of
the pseudogap metal. More precise theoretical computations
and experimental observations should help settle the issue.
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Supporting Information Text
1. Ansatz for bi-directional CDW order
Within the ancilla theory presented in the main text, we assume the chargon order parameter to condense in the form

jus

Bi,; = beos(qz) cos(qy) [08 (ss — (—1)%cs) €' 2T 4 g (ss + (—1)"cs) €' 2 <zfy)] , [S1a]
By; =0, [S1b]

where ¢ = (z,y), cs = cos(m/8), and sg = sin(7/8). Such an ansatz induces a CDW order parameter of the form

G R C)

; = BIB; = |b|?
p i II( 3

) cos®(qz) cos”(qy) , [S2]
whose Fourier transform is nonzero for the wave-vectors (0,0), (m,0), (0,7), (+2q,0), (0, £2q), (£2q, +2q), (7 £+ 24,0), (7, +2q),
(m £ 2q,+2q), (£2¢,7), (0,7 + 2q), and (+2q, ™ + 2q).

Within Ansatz Eq. (S1), both the (mean-field) superconducting order parameter A;; and the current order parameter J;;
vanish. They are defined as (1):

Agj = Ba,i €ab €ij By j [S3a]

Jij = Re (B: 6iij) 5 [S3b]

where €45 = ((1) Bl ), and e;; = —ej; are the w-flux hopping parameters, which are nonzero only if ¢ and j are nearest neighboring
sites. Within our choice of gauge, e;; read

€iitx = 17 [S4a‘]

eii+y = (—1)%, [S4b]

with X = (1,0) and y = (0,1). The SU(2) gauge degree of freedom in the spin liquid is important in obtaining an ansatz for B
which yields a CDW with modulated p;, but with vanishing current J;; and superconducting A;; orders.

In the following, we assume ¢ to take the form

_mr S5
4= 7> [

with m and N mutually prime positive integers, satisfying m < N/2. This choice limits us to the study of commensurate CDW
order. The incommensurate limit can be studied by approximating g as in Eq. (S5), with m an N suitably chosen to satisfy the
desired degree of accuracy. In the following, we will assume N to be even. This choice ensures that all Fourier modes of the
CDW in Eq. (S2) can be expressed as ny(2g,0) 4+ ny(0,2g) modulo a reciprocal lattice vector, with ng, n, € {0,1,... N — 1}.

For future convenience, we re-write Ansatz Eq. (S1) in the form

N-1
Bii= ei(%—q)(xﬁ-y) Z by iy eziq(nm-m-&-ny-y) ) [S6]

g My =0

bn, n, can be obtained comparing Eq. (S6) with Eq. (S1a).

2. Mean-field theory of bi-directional CDW

Inserting expression Eq. (S1) into Eq. (2) of the main text, and Fourier transforming, we obtain the following mean-field
Hamiltonian

H = Z [eﬁ CL’JCk,o + ei f{rykﬁfl,k,a + 2J cos(ky — q) f;k,ofg,k,(, + 2J cos(ky — q) f;r’lﬂ_Q,Jfg,kya}
k,o

N-1
+3 [eel fraco HH] 40> > [buainy o forci2ameny) o + Hel 7]
k,o

k,0 ng,ny=0

N-1
+ Zg Z Z I:b"za”y CL’U f2,k+2q(nm,ny),o' + HC] )

k,0 ng,ny=0

where o =7, is the spin projection, e and e}{ are the Fourier transforms of the real space hoppings t; and tf respectively,

i3’
Q= (m0)~ %(2q, 0), and we have redefined the 7-flux spinons as fo ko = fo,k—(r/2—q,7/2—q),0- The explicit form of elc(/f is

e;/f =— 2t8/f (cos ka4 cos ky) — 4t/ cos ky cos ky — 257 (cos(2kz) + cos(2k,))

[S8]
- 4t§/f (cos(2ke + ky) + cos(ks + 2ky)) ,
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with, as in Refs. (2, 3), t§ = 0.22 eV, 5 = —0.034 eV, t§ = 0.036 &V, 15 = —0.007 eV, t] = —0.1 &V, t{ = 0.03 &V, t{ = 0.01 &V,
tg = 0 eV. We chose the hybridization field ¢ to equal 0.1 eV. These parameters have been obtained by fitting photoemission
data for the compound Bi2201 (Pbo.55Bi1.55r1.6La0.4CuOe4s) (2).

The fi- and fo-spinons, living in the middle and bottom layer, respectively, must satisfy the constraints

fo,i,afl,i,a =1 Wi, [S9a]

S Hishio=1 Vi. [S9b]

We enforce these constraints on average by adding two sets of Lagrange multipliers to the Hamiltonian, as well as a chemical
potential for the c-electrons to keep their density fixed:

H—H— Z |fL CI »Ci,o T Z (pjfm’ny fl i, oS0+ an,ny fQT,i’UfQ,i,a>€2iq<"zz+"yy)‘| ) [S10]

Ny, My =0

Finally, we add a modulated potential in the top layer,

H—-H+V Z [cos(2qx) + cos(2qy)] clgci,g . [S11]
Defining the 3N2-component spinor
~ ~ ~ ~ ~ T
Upeo = (00 Wyl oowpNTt ot gy N ) [S12a]
Too™ = Ceragnpmy)e Fract2amemy)e fot2qmomy)o ) [S12b]

we can cast Hamiltonian Eq. (S11) in the form

3N?
H= Z Z ‘I’k to le;z’ Ui,ero [S13]
k,o £,0=1

where the momentum sum E; is performed over the reduced Brillouin zone (BZ) ks, ky € [0,27/N).
For a fixed set of b, g, V and for a fixed electron density, we self-consistently determine u¢, /LTfllwny and ,uffw’ny imposing

n=y . 0<c;f( - Ck,o) and the constraints Eq. (S9) on average. Once convergence is achieved, we diagonalize Hff, to obtain the
band structure in the CDW state.
Calculations in the CDW* state are performed setting b = 0 and pnm,ny =0.

3. Calculation of the Quantum oscillations

To compute the quantum oscillations of the density of states as a function of the inverse magnetic field 1/H, we consider the
Hamiltonian

H = Z [t tararz 79 cley 4] et AGrar/z o) gl g ]

+Z (ZSCTflz‘i'HC +zJZfT etCastA(itg) 2 (i J)e i o
(4,3)

Y3 [ e e
2 nl,ny—O [814}

Y T [ ) g ]

i ng,ny=0
T . QiQ(nmx+nyy)
- E ,u Ccz g MnT ny f11f11+ﬂnf ny f2,if2,z €
i Mg Ny =0

with A; = Hz(0,1,0), and eqs1 = 0 if b =0, and eqq = 1 otherwise. We self-consistently determine the parameters u°, uﬁmny,

and Mff,,ny for H = 0. We exploit the residual translation symmetry ¢ — ¢ + N¢ to Fourier transform along the y-direction.
We therefore cast Hamiltonian Eq. (S14) in the form

H= ZZ Z Z U eyt HE S (ke )Wy, iy 0o [S15]

o ig,jx ky £,0/=1
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/ 2m
where we have defined Z = f o 2%y "and the 3N -component spinor
ky

27 )

~ ~ T
— 0 N—-1
\Ijiz,ky,o = ( \Ilim,ky,a \Pix,ky,g ) , [Sl6a]
Tl
Vi kyo = ( Cigky+20a,0  J1ic,ky+20q,0 f2,im,ky+(2£—1)q+%,o- ) . [S16Db]

For 7 — 0T, the density of states at the Fermi level is defined as

p(H™) = —21m S [(ifn_ﬁ(ky,H))‘l} , S17]

™
ky

where H(ky, H) is a matrix both in in the real space index i, and in the index £ of the spinor Eq. (S16), and I is the
(BNNz) X (3NN_) identity matrix, with N, the number of lattice sites in the z-direction. Imposing open boundary conditions
along z, and considering up to fourth-neighbor hoppings in t;; and t{ 0 ﬁ(ky, H) is a block tridiagonal matrix, each block
having linear dimension 2 x 3N. In total, there are N /2 of these blocks along the main diagonal. We exploit this structure to
employ an iterative algorithm to compute Eq. (S17), as described in Refs. (4, 5). The matrix in Eq. (S17) can be cast in the

form

hi1 ti2 0
. . thy hao taz ...

H(kZH H) - ”7[ = 0 t;3 hss ... ’ [818]
with

h — ( Hg{t/,in(kf‘iw H) - Z’r] 652/ , Hg{:,Qn-‘—l (kIM H) ) [819]

H€i+1,2n(kva) Hgl;b+1,2n+l(kyaH) — 1) Ogp
and
174
tn,n+1 — ( 7}[2/71,271+2(ky7H) o 0 > . [SQO]
H2n+l,2n+2(ky,H) H2n+l,2n+3(ky7H)

We can efficiently calculate the density of states as

Na/2

p(H ™) = %Im 5SS (han = Lo — Ra) s21]

where L,, and R,, are iteratively determined as

Log1 =t} iy (hon — L) tansr [S22a)
Ru—1 = tn1,n(hnn — Ra) " 'th_ 0 [S22b]

with the initial conditions L; = 0 and Ry, /2 = 0.

We discretize k, with Ny, points uniformly spaced in the interval [0,27/N), corresponding to a system with N, = N x Ny,
lattice sites in the y-direction with periodic boundary conditions. For the plots shown in the main text and here, we have fixed
n=25x10""eV, Ny, =24, and N, =2 x 10°.

4. Plots of the Fermi surfaces in the reduced BZ

We have calculated the eigenenergies of Hamiltonian Eq. (S7) and the corresponding Fermi surfaces for every k in the reduced
BZ. We have subsequently "unfolded" the Fermi surfaces to obtain Fig. 3 of the main text and Fig. S3. Fig. S1 illustrates how
Fig. 3 of the main text has been obtained from the eigenenergies of Hamiltonian Eq. (S7): we first plot the eigenergies (gray
lines) in the full BZ, and we then mark in red (or blue) the contours corresponding to the «, 3, and § pockets, sometimes
crossing the borders between neighboring reduced BZs. In Fig. S2, we show the Fermi surfaces in the reduced BZs, together
with their orbital content. We observe that the o pocket is essentially made by the c-electrons, while the 8 and § pockets have
their most weight on the f; fermions.
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Fig. S1. Same as in Fig. 3(b) (panel a) and Fig. 3(c) (panel b) of the main text. In addition, we show (gray lines) the zeros of the eigenenergies of Hamiltonian Eq. (S7).
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Fig. S2. Fermi surfaces in the reduced BZ k., k,, € [0, w/2) for the CDW* phase (left panel) and the CDW phase (right panel). The parameters are the same as in Figs. 3
and 4 of the main paper. The color codes (see insets) indicate the orbital weight of the ¢, f1 and f2 fermions on the Fermi surfaces.

5. Additional results for different choices of the parameters

In this section, we show plots of the Fermi surfaces for different choices of the parameters b and V', compared to the main text.
In Fig. S3, we show that the structure of the Fermi surfaces shown in Fig. 3 of the main paper is not qualitatively affected by
different choices of the parameters, both in the CDW* (panel a) and in the CDW (panel b) phases. In the former, we recognize
the o and 3 electron pockets, whereas in the latter we have an « electron pocket and two § hole pockets, as well as small
pockets centered around the locations where the nodal points of the m-flux spin liquid would emerge in absence of CDW order.

In Fig. S4, we show the quantum oscillations (insets) of the density of states p as a function of the inverse magnetic field,
and its Fourier spectrum (main plots). In panel (a), we observe that a stronger modulated potential in the CDW* phase
further enhances the peak at fs, compared to what we have shown in Fig. 4a of the main paper, but the qualitative structure
remains unaffected. In panel (b), with parameters corresponding to a CDW phase, we observe that, compared with Fig. 4b of
the main text, a stronger CDW order parameter suppresses the magnetic breakdown peak at f = f,, while enhancing the peak
at fs, which could be anyway beyond the experimental resolution, due to its low frequency fs ~ 0.002fgz ~ 55 T.

6. Additional results for a period-6 bi-directional CDW

In this section, we present results for period-6 CDW* and CDW states. The formalism is the same as in Secs. 1 and 2, except
that we consider ¢ = %, and N = 6. We fix the density to n = 0.945, such that the hole pockets have nesting vectors (27/3,0)

Pietro M. Bonetti, Maine Christos, and Subir Sachdev 50f10
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Fig. S3. Same as in Fig. 3(b)-(c) of the main paper but with the parameters V' = 0.04 eV, b = 0 in panel (a),and b = 0.2 eV, g = 1, V = 0.03 eV in panel (b).

and (0,27/3). For this reason, differently than for the N = 4 case, we define the potential in the top layer as

\% Z [cos(4gx) + cos(4qy)] c;fyaci,(, . [S23]

1,0

Since for V' = 0 and b = 0, Hamiltonian Eq. (S7) has nodal points of the f2 spinons at (nxg, nyg) (instead of ((2nx +1)%, (2ny + 1)%)
for the N =4 case), in order to have a nodal point at the center of the reduced BZ, we define it as (ksz, ky) € (—7/6,7/6]. In

Fig. S5, we show the Fermi surfaces in the reduced BZ for a period-6 CDW* and CDW. Comparing Fig. S5 with Fig. S2, we

see that the qualitative structure observed remains the same. In the CDW* state, we find an a pocket and a larger 3 pocket,
while in the CDW phase we observe the « pocket, two small elongated § pockets as well as five extremely small pockets around

(kz, ky) = (0,0) with a significant contribution of the f» fermions.

In Fig. S6, we show the quantum oscillations (insets) and the power spectrum (main plots) for a period-6 CDW* phase
(panel a) and for a period-6 CDW phase (panel b). The parameters we used are the same as in Fig. S5. In both cases we
observe a dominant peak at the frequency fo =~ 0.024 fgz, corresponding to the o pocket. Note that, compared to the results
presented in Fig. 4, this frequency, corresponding to about 650 T, is much closer to the values 530 T (6, 7), 660 T (8), and 840
T (9) observed in YBa2C30¢+s at hole doping p = 0.11, YBasCusOs at p = 0.125, and HgBasCuOy4ys at p = 0.09, respectively.
The mismatch between the experimentally observed frequency and our theoretical calculation has two main reasons. First of
all, we have used hopping parameters that best reproduce another compound, namely Bi2201. Moreover, we are working at a
different doping level, namely p = 0.055 here and p = 0.155 in the main text. In the CDW* state, Fig. S6a, we also observe a
pronounced peak, whose height is about 30% of the height of the peak at fa, at fg ~ 0.05fgz, corresponding to the 8 pocket,
as well as higher harmonics of f,. In the CDW phase, Fig. S6b, a magnetic breakdown frequency at f, ~ 0.01fgz appears,
with a peak height of about 14% of the peak at f,. This frequency roughly corresponds to the volume of the hole pockets
in absence of CDW order. A tiny peak (3% of the peak height at f,) appears at fz, probably due to magnetic breakdown
processes. A low peak at 2f, is also present.

7. Charge and bond density profiles

In this section, we show how the charge and bond density profiles appear in the period 4 and period 6 CDW phases, where the
spinons are confined. The charge and bond densities are defined as

N—-1
o = Z Z<CIT< Ck+2q(ng,ny)) €2iq(n$‘z+ny'y) ) [S24al
ng,ny=0 k
N-1
. 1
Qi)»x — Z Z cos kz <c;r( Ck+2q(nw,ny)> e2zq(nm-(x+§)+ny‘y) , [S24b]
ng,ny=0 k
N-1
) 1
oo = Z Zcos ey (el rer2q(mms) eia(ne-ztny-(v+3)) [S24c]

ng,my=0 k
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Fig. S4. Quantum oscillations of the density of states (insets) and their Fourier spectra (main plots). The parameters in panel (a) and (b) are the same as in Fig. S3(a) and

Fig. S3(b), respectively.

where o5, gi.”“:, and gi”y are the charge, z-bond and y-bond densitites, respectively. The expectation value (...) are taken with
respect to the mean-field Hamiltonian Eq. (S7). In Fig. S7, we show the charge and bond density profiles for a period 4 (left
panel) and period 6 (right panel) CDW phase. We see that in the period 6 CDW, even though the chargon condensate has a
period 6, the modulated potential Eq. (S23), having period 3, couples more strongly to the electrons, giving the impression of a

period 3 CDW.
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Fig. S5. Fermi surfaces for a period-6 CDW* state (left panel), and CDW state (right panel). The parameters are b = 0, V' = 0.02 eV in the left panel, and b = 0.1 eV,
g = 0.5,V = 0.02 eV in the right one. The color codes (see insets) indicate the orbital content of the Fermi surfaces.
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Fig. S6. Quantum oscillations of the density of states (insets) and their Fourier spectra (main plots) for a period-6 CDW* phase (panel a) and a period-6 CDW phase (panel b).
The parameters of panel (a) and (b) are the same as in Fig. S5a and S5b, respectively. The density of states has been computed on a finite size system with 1333 x 96 sites.
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Fig. S7. Typical charge and bond density profiles in a period 4 CDW state (left) and in a period 6 CDW state (right). Larger and darker dots and thicker and darker lines
represent higher charge and bond densities, respectively, whereas smaller and brighter dots and thinner and brighter lines represent lower charge and bond densities,
respectively. Note that the period 6 state appears to have period 3 because the period 3 potential V' Zl (cos(2mx/3) + cos(2my/ 3))01 c; couples more strongly to the
electron charge and bond density than the chargon condensate. The parameters are b = 0.2 eV, g = 1, V. = 0.03 eV for the left panel, and b = 0.1, g = 0.5, and
V' = 0.02 eV for the right panel.
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