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Abstract

We compute the structure of flux h/(2e) vortices in a d-wave superconductor using a continuum SU(2) gauge
theory of 2 flavors of charge e, SU(2)-fundamental Higgs bosons. Period-2 charge order is present near the vortex
center. Upon coupling the electrons to the superconducting and charge order parameters, we find that the electronic
local density of states does not have a zero-bias peak, in contrast to BCS theory. But there are sub-gap peaks at
positive and negative bias, and these exhibit anti-phase periodic spatial modulations, as observed in scanning
tunneling microscopy experiments in the underdoped cuprates (K. Matsuba et al., J. Phys. Soc. Jpn. 76, 063704
(2007)).
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I. INTRODUCTION

It is now well established that the superconducting state in the hole-doped cuprates has d-wave pairing
[1]. Moreover, the 4 nodal fermionic quasiparticle excitations observed by photoemission [2] match the
Bogoliubov quasiparticles expected after imposing d-wave pairing on a ‘large’ Fermi surface enclosing the
Luttinger hole volume of 1 + p, where p is hole-doping density away from the insulator. However, a closer
look at the microstructure of the d-wave superconductor is provided by its Abrikosov vortex, and the
pioneering scanning tunneling microscopy (STM) observations of Hoffman et al. [3] were not in agreement
with the Bogoliubov-de Gennes theory of a d-wave superconductor with an underlying large Fermi surface.
A complete understanding of their and subsequent observations [4-8|, and their connection to the normal

state electronic spectrum, remain key open problems in the physics of the cuprates.



Using the Bogoliubov-de Gennes theory, Wang and MacDonald [9] predicted a large zero-bias peak in
the electronic local density of states (LDOS) at the core of each vortex. Such a peak has not been seen in nu-
merous STM experiments [3-8], but has finally been observed [10] in heavily overdoped BiaSraCaCugOg ys;
this observation is consistent with large Fermi surface present in the overdoped cuprates [2].

The focus of the present paper is on the underdoped cuprates, where the normal state above the
superconducting critical temperature, T, is the ‘pseudogap metal’. This pseudogap metal does not have
a large Fermi surface, and instead the photoemission spectrum is characterized by ‘Fermi arcs’ [2] (we will
discuss a specific model for the pseudogap metal below). We will study the consequences of this electronic
spectrum for the vortex below T.. The STM investigations of the vortex structure [3-8] in the underdoped
cuprates have revealed a number of remarkable features, not consistent the Bogoliubov-de Gennes theory

of d-wave superconductivity in a large Fermi surface Fermi liquid:

e There is no Wang-MacDonald zero-bias peak.

e The zero-bias peak is replaced by sub-gap peaks at £6-9 meV in the LDOS [4, 5].

e The LDOS at the sub-gap peaks exhibits periodic spatial modulations in a ‘halo’ around the vortex
core. The modulations were initially observed to have a period of 4 lattice spacings [3-7], but a
recent experiment [8] has seen an additional period 8 modulation. Period 8 modulations have also
been observed in superconducting states without vortices [11-13], and have been interpreted by the

co-existence of pair density waves and a uniform superconductor.

e There is an ‘anti-phase’ relation [5] between the LDOS modulations with positive and negative bias.

Many theories for the vortex structure in the underdoped regime [11, 14-23] commonly involve modeling
with effective actions for multiple competing or intertwined orders, including antiferromagnetism, d-wave
superconductivity, charge density wave, and pair density wave orders. Often implicit in these approaches
is the assumption that the pseudogap state above T, can be understood in terms of a theory of fluctuations
of one or more of these orders [24-26].

We shall proceed here in the opposite direction, and regard the pseudogap metal as a quantum phase
in its own right, and as the ‘parent’ of the ordered phases that emerge at low 7. We model the pseudogap
metal as a ‘fractionalized Fermi liquid’ (FL*) with hole pocket Fermi surfaces enclosing a volume p,
along with a background spin liquid described by a SU(2) gauge theory of fermionic spinons moving in

a background m-flux [27]. Then the low temperature d-wave superconducting, antiferromagnetic, charge



density wave or pair density wave phases emerge upon a transition which confines the fractionalized
excitations of the spin liquid.

The ancilla method [28] provides a powerful tool to describe the FL* pseudogap metal and its confine-
ment transitions. Although it is possible to formulate our analysis without any reference to the ancilla
method [29], we shall employ it as a convenient and foolproof method to connect to a lattice scale Hamil-
tonian, and to account for all anomalies in fractionalized phases. The ancilla method has been used in
earlier work to describe
(7) the electronic photoemission spectrum of the FL* pseudogap metal, with the ‘Fermi arcs’ appearing
as the front-sides of the hole pockets [30],

(7) the onset of a uniform d-wave superconductor with 4 nodal quasiparticles from FL* |29, 31],

(74) and the quantum oscillations in the charge-ordered state at low 7" and high fields [32].

Here, we shall use the ancilla method to describe the structure of the vortex that emerges upon the
confinement transition from FL* to the d-wave superconductor.

The confinement is described by the condensation of a Higgs boson B; = (B, B2;) which is a funda-
mental of the gauge SU(2), and carries charge e under the electromagnetic U(1); here ¢ denotes a square
lattice site, and Bg; (a = 1,2 is a SU(2) gauge index) are complex scalars. Then gauge-invariant bilinears
of B; determine the structure of the confining phase where B; is condensed. The independent on-site and

nearest-neighbor bilinears are [27]:

site charge density: <ch c; > ~ p; = BgBi

(2o 10

bond density: <CT c. +ch e > ~ Qij = Qj; = Im (BTe. .U.ij>

1o jo Jja o 115 1,

bond current: i<cT c. —ch ¢ > ~ Jij = —Jji = Re <BTe--U--B.>

i ja ja i Rt % %

Pairing: (Eaﬁcmcj5> ~ A.,;j = Aj,,; = EabBaieijUiijj . (1.1)

Here 4,j are nearest-neighbors on the square lattice, Us; is the SU(2) lattice gauge field, ¢ is the unit
antisymmetric tensor, and we have specified the interpretation of the bilinears in terms of the underlying
electron operator c;o (o =1, are SU(2) spin indices). The fixed field e;; = —ej; specifies the 7-flux of
the spin liquid, and a choice is €; 543 = 1, €544 = (—1)".

A uniform d-wave superconductor has A; ;.3 = —A; ;44 but independent of %, p; and Q5 spatially
uniform, and J;; = 0. ‘Charge order’ can appear from spatial modulations in p;, Qs5, or A;j, and
modulations in A;; can be identified as pair density waves. But note that the configurations of these order
parameters are all tied to the B;. Thus we can regard B; as simultaneously a ‘square root’ of d-wave

superconductivity, charge density wave, and pair density wave orders, and the different orientations of B;



describes the intertwining of these orders.

Ref. [27] presented an effective lattice action for the B; and U;j, along with its couplings to the fermionic
spinons and the electronic quasiparticles. It would be of interest to study vortex lattice saddle points of this
action in the presence of an applied magnetic field (similar to analyses in Ref. [23] for the Bogoliubov-de
Gennes theory augmented by competing orders). However such a complete analysis would be numerically
very demanding, and here we will limit ourselves to a simplified continuum limit for which analytic results
are possible |27, 33]. The condensation of B; in this limit can lead to charge order only with period of two
lattice spacings. Longer period charge orders are possible in the theory of Ref. [27] (see also Ref. [32]),
and we expect the main features of our results will generalize to more realistic situations. In this context,
it is worth noting that for charge order periods longer than 2, the condensation of the B; is at wavevectors
+Qcdw/2, where Q.qyw is the charge-ordering wavevector. In the presence of co-existing superconductivity,
the orientation of B; can also induce ‘pair density wave’ order at Q4w /2, and we propose this as an origin

of the observed period 8 modulations |8, 11-13].

We also note the relationship between our model for underdoped vortex structure and the analysis of
Nagaosa, Lee, and Wen [34] (see also Refs. [35-40]). These authors also considered the condensation of
complex scalars with quantum numbers similar to Bj;, but in the context of a different ‘staggered flux’
spin liquid with a U(1) gauge field (which is unstable to a trivial U(1)-monopole [41, 42]). In their case,

the condensation of B; leads to d-wave superconductivity or current order, but no charge order.

Our continuum model for the B; is described in Section II. It is expressed in terms of 2 SU(2) funda-
mental complex fields Bys, where s = + is a ‘valley’ index, and a is the previously specified SU(2) gauge
index. For bosons, valleys are determined by the minimum of the dispersion, and for the gauge choice of
eij above, the valleys are chosen at wavevectors @, = §(1,1) and Q_ = F(1,—1). We obtain analytic
results for the vortex with flux h/(2e) in the continuum theory and show that the vicinity of the vortex
core has charge order (for suitable choices of the quartic self-interactions of the B,s). There are some
similarities to this vortex-induced charge order to earlier analyses [38-40] which used a dual model for the

quantum fluctuations of the vortices.

Section III turns to a computation of the electronic spectrum in the background of the vortex obtained
in Section II. We use a simplified continuum model in which the wavevector of the period-2 charge order is
exactly equal to the separation between the nodal points of the superconductor. We find that the charge

order has significant effects on the LDOS, and compare our results to STM data.
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FIG. 1: Schematic illustration of the ancilla model. Red circles denote the actual electrons, while blue
arrows in the second layer and orange arrows in the third layer represent ancilla spins S; and Ss,
respectively, which can be further fractionalized into spinons f; and fo. Black arrows between distinct
layers indicate Kondo coupling Jx and rung-exchange J , respectively.

II. CONTINUUM MODEL FOR HIGGS FIELDS B,

Here, we utilize the ancilla approach introduced in Ref. [27] to describe a single-band Hubbard model of
electrons ¢ with on-site repulsion U. This on-site repulsion U can be captured by coupling the ¢ electrons
to an insulated bilayer square lattice antiferromagnet composed of spin-1/2 moments S; and Sg, as shown
in Fig. 1. When the rung-exchange J, in the bilayer antiferromagnet is much larger than the Kondo
interaction Jg between the c electrons and Sp, the S; and S5 spins form a trivial rung-singlet state. In
this scenario, the c¢ electrons are largely decoupled from the ancilla spins and form a large Fermi surface
with Luttinger volume 1+ p, corresponding to the Fermi liquid phase in the overdoped regime. Conversely,
when J, < Jg, the ancilla spins S; are expected to be Kondo screened by the ¢ electrons, forming a
Fermi pocket with a non-Luttinger volume p. Meanwhile, the S5 spins form a w-flux spin liquid. This
latter case corresponds to the FL* phase, which is the focus of this work.

The corresponding Hamiltonian of the ancilla model is given by:

H=) [tgjcicj + tfjff,i,aflw} +id Y Sy iaiifrio
+) [‘DC;Ufl,i,a + 'L.Blif;i’gfl,i,a —iBgi€apfoiafrip+ He |,
7

where f1 and fo are the fermionic partons of the ancilla spins S7 = ff ofi and Sy = f2T o fo (with o as

the Pauli matrix), respectively. Here, tij and t{ ; represent the hopping terms for physical ¢ electrons and
f1, while e;; denotes the m-flux hopping for fs. Importantly, the hybridization field ® and the chargon
field B with a unit electromagnetic charge are introduced to decouple the Kondo interaction Jx and the

rung-exchange J , respectively. The different phases of H are:

e The FL* pseudogap metal phase is obtained when ® # 0 and B = 0: then the ¢ and f; fermions



hybridize to form the small hole pockets of size p, while the fs fermions realize the ‘spectator’ w-flux

spin liquid.

e The Higgs/confinement transition to the superconductor is described by the condensation of the
Higgs field B in a background with & # 0. We study here the nature of this condensation in the
presence of a h/(2e) vortex in the superconducting phase. The choice between the order parameters

in Eq. (1.1) is made by the orientation of the complex doublet (By;, Ba;).

e The large Fermi surface Fermi liquid phase (FL) is obtained when ® = 0 and B = 0, and the
f1,2 fermions confine to form a rung-singlet phase. We do not study this FL phase or the FL-FL*

transition |28, 43| in the present paper.

Following the analysis in Refs. [27, 33|, the low-lying modes of the B field at the continuum limit can
be regarded as a 4-component bosonic field. Two of these components are the gauge SU(2) components,
as shown in Eq. (2.1), while the other two correspond to two degenerate dispersion minima (two distinct
valleys). Hence, the effective free energy of the chargon B in the continuum limit can be obtained by

integrating out all the other fields in Eq. (2.1), resulting in:

_ 2 - A€ -1 2 t t 2
F = [ d*r|(V+iA°+ia’0,) Bs|” + mB!Bs + u ( B! By (2.2)
1

A(anz)277

1
Tl (p%fr,O) T p%&fr)) + U2D2 + ’U3|A‘2 + 5 (V X Ae)g +
where the relevant conventional order parameters, consisting of bilinear terms of the B fields, are defined

as:

d-wave SC: A = ¢ Byt By
2-CDW :  proy = Bl Bay — Bl_B,_ (2.3)
y-CDW :  pom = Bl Ba- + Bl _Bay

d-density wave : D =i (Bl \Ba_ — BLB(H) .

Here, A represents the d-wave superconducting (SC) order, p(r ) and p(g ) represent the period-2 charge
density wave (CDW) along the x and y directions, respectively, while D represents the d-density wave
order, which breaks time-reversal symmetry and is characterized by a circulating current pattern. In these
equations, s = + and a = 1,2 represent the valley index and the gauge SU(2) index of the B field,
respectively. It is important to note that the CDW states above are primarily in the bond densities, Q;;,
in Eq. (1.1) [27, 33]; so when co-existing with superconductivity this will lead to pair density wave order

represented by modulations in Aj;.



B4+ |Bat|Bi— | Ba-
AC | 27 | 27 | 27 | 27
total| 27 | 27 | 27 | 2@

TABLE I: With the flat configuration of a*, the A®-flux and total flux experienced by B fields far from
the vortex core.

As the mass m becomes negative, confinement occurs via the condensation of the chargon field B,
leading to distinct possible conventional orders as defined in Eq. (2.3). The specific phase of the system is
determined by the parameters vy, ve, and v3 in Eq. (2.2). For our subsequent discussions, we choose these
parameters so that the bulk system is in the d-wave superconducting phase. We hypothesize a solution by

adopting an ansatz for B4 in the SC phase:

B, —b cos 6 B —b —sinf (2.4)
sin cosf
where b and 6 € [0,27) are both real numbers. This leads to A = €,Bs4 By = b? and P(x,0) = P(0,) =
D = 0, indicating a homogeneous superconducting phase without any coexisting order.

Next, we will explore the superconducting vortex states in the presence of an external magnetic field
A€, and we will show that the vortex physics is intimately related to the internal gauge field a?, with
coupling constants introduced by A in Eq.(2.2). It is critical to note that while, in principle, bosonic
chargons By carry fundamental SU(2) gauge charges (i.e., ia’ 0;), only the z-component is considered in

Eq. (2.2) for simplicity. This simplification is justified by the fact that the three components of gauge

fluctuation are completely frozen as the Higgs field BL condenses in the superconducting phases.
A. Flat configuration

As A\ — 0, the cost of finite a* flux tends to infinity, so the flat gauge structure predominates, signifying
a”® = 0. In this scenario, the components of B4 can perceive the flux of A€, as summarized in Table 1.

Consequently, compared with Eq. (2.4), the ansatz for the chargon B is modified to:

cosf ) —sind )
B,y =b f(r)e®, B_=b f(r)e? (2.5)
sin 6 cos

where f(r) € [0, 1] represents the amplitude modulation along the radial direction, and ¢ is the coordinate
angle in the two-dimensional real space, encircling the pole » = 0 with 27 winding. Note that, in general,

phase winding can be any integer multiple of 27 to satisfy the single-valued condition for the charge e



boson By. However, we only consider the lowest energy vortex in this context, corresponding to a 2w
phase winding. Here, b and 6, which are inherited from Eq. (2.4), are independent of spatial coordinates.

Then, as shown in Fig. 2(a), one can determine the spatial dependence of f(r) and ® 4(r) by optimizing
the free energy Eq. (2.2) after replacing the B field with the ansatz Eq.(2.5); see Appendix A 1. These
results reveal that f(r) is suppressed near the vortex core to prevent the divergence of kinetic energy.
Additionally, the electromagnetic flux ®4(r) = § A%(r) - dl asymptotically approaches 27 (= he/e = 2¢q
if the full units are restored) at distances far from the vortex core. Therefore, the order parameters, as

defined in Eq. (2.3), are represented by:

d-wave SC: A = b2 f2(r)e??
x-CDW : p(ﬂ.yo) =0 (2.6)
y—CDW : Po,m) = 0

d-density wave: D =0,

This configuration implies the formation of a 47 superconducting vortex, attributable to the phase 2¢,
while all the other intertwined orders completely vanish. The spatial variation of the magnitudes of these
order parameters is presented in Fig. 2(b), indicating that the superconducting order parameters diminish
in proximity to the vortex core. Consequently, the trivial flat SU(2) gauge structure is capable of yielding

47 superconducting vortices exclusively, without the coexistence of any other order.
B. Vison-like configuration

On the other hand, as A becomes large, contrary to the flat configuration, the existence of a vison-like

configuration is allowed, characterized by a 7 flux structure in the gauge field a*:

Bo(r) = faZ(r) dl 22 (2.7)

Due to the first term in Eq. (2.2), Bys with the opposite index of a perceive opposite fluxes of a®. Thus, the
resulting total gauge structure perceived by B, is summarized in Table I, suggesting that B experiences
a total 27 flux, leading to the 27 phase winding, while Bss does not need to have any phase winding. In

this context, the single-valued condition can still be well satisfied. Similarly, the B,s can be expressed as:

cos 0f (r)e® —sin 0 (r)e’®
Bi=b fne) gy fre (2.8)
sin Oh(r) cos Oh(r)
Based on the ansatz of Eq. (2.8), the results of the spatial dependence for ®,(r), ®4(r), f(r), and h(r)

are depicted in Fig.2(c), illustrating that f(r) is suppressed near the vortex core, while h(r) remains
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FIG. 2: (a)-(b) With the parameters: m = —1, u = 2, v3 = —1, g = 10u. Spatial dependence of ® 4(r)
and f(r) with the chargon B ansatz in Eq. (2.5) is shown in (a), and the corresponding magnitude of
order parameter A and p(, ) in Eq. (2.6) in (b). (c)-(d) With the parameters: m = —1, u = 2, v; = 0.5,
vy = —1, g = 10u, A = g/9. Spatial dependence of ®,(r), ®4(r), f(r), and h(r) with the chargon B
ansatz in Eq. (2.8) is shown in (c), and the corresponding magnitude of order parameter A and p(, ¢y in
Eq.(2.9) in (d).

approximately constant; see Appendix A 2. The fluxes of both ® 4 and ®, converge to m (= hc/2e = ¢y if
the full units are restored) at distances far from the vortex core, satisfying the minimal flux quantization

condition in superconductors. Then, the order parameters defined in Eq. (2.3) can be expressed as:
d-wave SC: A = b?f(r)h(r)e’®
z-CDW 1 pro) = (f2(r) — h*(r)) b* cos 20 (2.9)
y-CDW :  pon) = (fQ(T) — h?(r)) b*sin 20
d-density wave: D =0,
This configuration implies the formation of a 27 superconducting vortex and the potential emergence of

stripe-like CDW. The spatial variation in the magnitudes of these order parameters is shown in Fig. 2(d),

indicating that the superconducting order parameters are suppressed near the vortex core, while CDW

10



By |Boy |Bi— | Ba—

A | 7 | 7 | m | m

aZ

total| 20 | O | 27| O

™ -7 ™ -7

TABLE II: With the vison-like configuration of a?, the A®-flux, a*-flux, and total flux perceived by B
fields far from the vortex core.

P(x,0) and p(o ) become prominent within the vortex core.

As a result, in scenarios where A is not negligible, the existence of a vison-like structure in the gauge
field a® facilitates the formation of a 27 superconducting vortex, in which the core induces a local charge
density wave. Notice that a excitation carrying m flux ‘trapped’ in the vortex is also necessary under the

framework of other parton constructions|[44-46| to obtain the correct flux quantization condition.
III. ELECTRONIC SPECTRUM NEAR THE VORTEX

A. Effective electronic Hamiltonian

This section will further study the single-particle spectrum near the vortex based on the configuration
of the B field obtained in the last section at the continuum limit. The behavior of physical electrons in

Eq. (2.1) can be described effectively after integrating out ancilla spinons f; and fy. Consequently, the

resulting electronic Hamiltonian is given by:

P? .
H.= Z Hoc;fc’gckﬁ + ')/27,] Z ((JZJ + lQij) CIUCjJ + Aijeagciacj5> + H.c., (3.1)
k (i,9)
where v = —(eilzo)_1 and Hj is frequency-dependent with the expression as:
(I)2
H()(k:,w) = 62: + o (32)
w— €'

where €7, and eil are the bare dispersions for electrons ¢ and spinons fi, respectively. These dispersions
include the nearest neighbor terms (¢¢, t/), next nearest neighbor terms ((¢¢), (t/)'), next-next nearest
neighbor terms ((¢¢)”, (t/)"), and next-next-next nearest neighbor terms ((¢¢)") to fit the photo-emission

data. Therefore, the corresponding spectral function

Ak, w) = — - Tm !

7 w40t — Hy(k,w+1i01)’ (3:3)

is shown in Fig.3 (a) at w = 0, demonstrating Fermi arc behaviors. Moreover, the interaction couplings

Aij, Jij, and Q45 in Eq. (3.1) are combinations of the B field on the lattice [as defined in Eq. (1.1)], and

11
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FIG. 3: With parameters t¢ = 200, (t°) = —34, (t¢)" = —36, (t°)" = -7, t/ = —100, (t/)" = 30,
(t1)" = 10, and doping density § = 0.2. (a) Spectral function of Eq. (3.3) at zero frequency. (b) Labeling
of the four Dirac points, shown in gray before and in black after rotation, as described in Eq. (3.6). Red

arrows indicate the x-CDW coupling p(r o) connecting different Dirac points.

their relation with continuum order parameters in Eq. (2.3) are given by:

Aij = niz2(1+V2)A

. 1+ m;;
(D 2V 5t (34)

1 — 13

Jij = =14+ V2)p0) + (1" 2+ V2)pi0.m—;

Qij = —(=1)"* (1 + v2) Dr
where 7; ;45 = —1 and 7; ;49 = 1. According to Eq. (3.4), it is explicitly shown that A;; represents the
d-wave pairing potential, J;; represents the period-2 charge order, and ();; corresponds to the current
pattern, which is consistent with the symmetry analysis in Ref. [27]. Also, the distributions of the
magnitudes of these order parameters near the vortex have been analyzed and obtained in Fig.2 (d).
Importantly, the electronic Hamiltonian of Eq.(3.1) is explicitly gauge invariant, making it a suitable

starting point for our subsequent discussion on the behavior of the electronic spectrum near vortices.
B. Vortex states of Dirac fermions

In the absence of the electromagnetic field, both J;; and @;; vanish in a homogeneous d-wave super-

conducting phase. The Hamiltonian in Eq. (3.1) in momentum space can then be expressed as:
H.= Z HOC]-|;37O-Ck7O' + Z Akeagckﬂc_kﬁ + H.c. (3.5)
k k

with Ag = Ag x (—cosk, + cosky) and Ag = 4(1 + v/2)J71®2+42A. Notably, the self-energy in Hy(w),

ie., Y(k,w) = ®?/ (w — e,{l), is small at the momentum (kp, k), leading to the approximation Hy ~ €

12



near (tkp,+kp). For simplicity, the momentum space will be rotated by 7 /4:

k. 1 1 -1 ks (3.6)
- =— , :
k, V21 k,

resulting in the four Dirac points at the following momenta:
@i = (V2he,0), @2 = (0,V2hr), a5 = (~V2hr,0), @i = (0,~v2kr) (3.7)

as depicted in Fig.3(b). Expanding near each Dirac point g, such that k = q, + p, under the
Nambu basis 1, (p) = <caT(p) cLi(—p)>T, the Hamiltonian in Eq.(3.5) can be rewritten as H. =
> fdPp wzx(p)ha(p)z/za(p), with oo (P) = ¢5 (ga + p), where a denotes the index of the Dirac points.
For now, we focus on the node @ = 1 and postpone the discussion of the other nodes for later. The

corresponding Hamiltonian matrix for this Dirac point with o =1 is given by:
h1 = vppgo. — vpAzoo + VAPyOz (3'8)

where va = AgV2kr and oy, oy, 0, are Pauli matrices while oq is the unit 2 x 2 matrix. So far, the
complicated ‘Fermi arc’-like electronic behaviors Hy have been reduced to four free Dirac fermions in the
d-wave SC phase. Next, based on this simplified description, we will continue the discussion of vortex
physics in the presence of a vortex field.

Based on the analysis in Sec. II B, we established that in the presence of a magnetic field, around the 27
vortex, the d-density wave potential Q;; in Eq. (3.4) always vanishes, while a local charge order potential
Jij in Eq. (3.4) is induced. First, we will temporarily ignore the local charge density potential, focusing
on the problem of Dirac fermions perceiving a w-flux. In the following calculation, the suppression of the
SC order parameter magnitude inside the vortex core will be ignored since the size of the vortex core in
cuprates is so small compared to the size of the magnetic halo.

Now, the Franz-TeSanovi¢ transformation U acting on the electronic Hamiltonian Eq. (3.5) is applicable

here [47-54]:

e—iPage  i®a e—i<I>Aeiq§/2Ak€i¢/2e—i<I>B
U HU = o eAn | | (3.9)
Zk: ez‘bBe—z¢/2Ake—z¢/Qez¢A _6—z<I>B€c_(k+A)€z<I>B
_ Z 627A+V<I>A Ak""A (3 10)
k AptA  —€ia vaop)
where
ei®a 0
U= . o (3.11)
e



and ¢ in Eq. (3.9) represents the coordinate angle, arising from the 27 superconducting vortex. Here, we
assume that ®4 + P = ¢, and the new ‘gauge field’ A = (V&4 — V®p) /2 in Eq. (3.10) satisfies the
relation ¢ dl - A =, corresponding to a m-flux vortex completely localized at the origin.

Following this transformation U, the Hamiltonian matrix of Eq. (3.8) can be expressed as:

hi = (% (pac + -Aac) o, + UFV:EUO +vaA (py + Ay) Ox (312)

where V. = (V&4 + V®p) /2 — A is the Doppler shift of quasiparticle energy due to the background
superfluid flow. To obtain an analytic result for vortex physics, this Doppler shift will be ignored in the
following discussion, as it was previously shown numerically to result in no qualitative modifications of
the analytic results, at least for the case without considering charge order. Then, the length scale can be

normalized:
T — VUpT, Y — UAY. (3.13)
Following the unitary transformation, the rescaled Hamiltonian matrix of Eq. (3.12) can be expressed as:
hi = (pz + az) 02 + (py + ay) 0y. (3.14)

Switching to polar coordinates,

| | wsd ! (3.15)
Py = sin ¢ <—zar) + " (—zaq)
and
sin ¢
de = "7,
o (3.16)
W=y,
the Bogoliubov-de Gennes (BdG) equation for o = 1 with ¢; = (kp,0) takes the form:
| 40 e~ [—zd% — % (—i% + %)} u(r, @) _ u(r, @) . (3.17)
e'® [—ia% + 7 (—ia% + %)} v(r, @) v(r, @)

By using the ansatz u(r, ¢) = /" Du(r) and v(r, ¢) = €*®v(r), one obtains the normalized wavefunction

with the corresponding energy E, ;. = gk:

.
urtga-1 (@) \ _ [qk [ €TI0 1y (k) 3.15)
4 il ‘ '
Uk,l,g,0=1(T, ) T\ siige" (141 (Rr)
where s; = sgn(l) with s;—g = —1 and J are Bessel functions of the first kind. Here, the states are labeled

by three quantum numbers: radial wave vector k > 0, angular momentum [ € Z, and ¢ = =+, which

characterize the particle and hole branches of excitations.
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C. Induced local charging order near the vortex

Next, we will study how the induced local CDW potential J;; influences the electronic spectrum near
the vortex. Noting that z-CDW p(, o) and y-CDW p(g ) are degenerate, we will let p ) = 0 in the
following calculation for simplicity. Thus, from Eq. (3.4), the CDW potential in Hamiltonian Eq. (3.1) is
given by:

(I)Z
_ % Z (J'ijcl,acjﬂ + HC)
<i7j>

—(2+V?2) Z Z /drp =0)( T, (r)cat1,0(r) + H.c.>

o a—13 (3.19)

2.2
<I>J (2_|_f)/drp,r0 /dkdkzzz Wy g0 (T) + Vi g o (7)]

LU q,q o=13

22

22

X [tk 1,0.041(7) = 10k 10041 (P V) 1 7 0 Viligia1 + hic

where cq s is the physical electron near the Dirac point with the index «, while v represents the Bogoliubov
quasiparticles characterized by the quantum numbers k, 1, ¢, o, with the corresponding wave function of
(u,v) obtained in Eq. (3.18). To ultimately obtain an analytic result, the following approximations are

made here:

e The momentum of Dirac points deviates slightly from (+m/2,£7/2) as shown in Fig.3(b), but
we will position it exactly at (£7/2,£m/2) to let the 2-CDW p(, o) and y-CDW p(g ) potentials

connect different Dirac points perfectly.

e We assume that the size of the vortex halo is so large that the CDW potential can be approximately
regarded as spatially independent inside the region we are concerned with, i.e., p(r0)(T) = p(r.0);

allowing modes with different k£ to decouple due to the orthogonality relation of Bessel functions.

e The rotational symmetry is broken when the coupling between different Dirac points leads to a
coupling term between modes with [ and [ + 1. We will neglect the off-diagonal term of [ in the

following calculation.

Calculations of more realistic situations without these approximations must be done numerically and
depend on some microscopic details, i.e., the specific form of spatial decay of the CDW potential. However,
we expect that there will be no significant qualitative modifications since the final analytic consequence

we obtained mainly arises from the mixture between different flavors of Dirac fermions.
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Based on these approximations, we can plug the wavefunction Eq.(3.18) into Eq.(3.19), then the

electronic Hamiltonian Eq. (3.1) can be expressed as:

H.= / k> ( (a)) g (3.20)

I a=13
with the basis:
\I’(a) _ T
o] = (et Mhomtart Teio—a Thigmati ) (3.21)
and the corresponding matrix
Vk(jl) = =ko3g — (o —2)Fs; (031 + 032 — 011 — 012) , (3.22)

where 0;; = 0;®7j, with o and 7 being Pauli matrices representing the Dirac point index and particle/hole
branch with ¢ = &, respectively. The parameter F = —®2~2(2+ \@)p(mo)/élJ is associated with the CDW
potential.

Next, we will calculate the LDOS near the superconducting vortex in the presence of the local charging
potential. According to Eq. (3.20), Bogoliubov modes from different Dirac points have an overlap, so the

LDOS p(w,r) can be decomposed into a uniform part puni(w,r) and a modulation part pcpw (w, r):
p(w7 T) = puni(w7 T) + pCDW(wa T) X (_1)1”7 (323)

where the uniform part pyn;(w,r) comes from the combination of the same Dirac fermions:

4
puss (@,7) = = 35" T (o (r)ch (1)) (3.24)

o a=1
and the modulation part pcpw(w, ) with the spatial oscillation factor (—1)" comes from the combination
of distinct Dirac fermions:
pepw (@, 7) Z 3 Im [<cw chor o )> n <ca+1,0(r)cTa’U(r)>} (3.25)
o a=1,3
Finally, by combining the electronic Hamiltonian for the Bogoliubov quasiparticles in Eq. (3.20) and
the wavefunction of Bogoliubov quasiparticles given in Eq. (3.18), the total density of states Eq. (3.23) is

given by:
1 |w] [4000 2 cos (2w, )
w,T) == (2w, +=
plwsr) TV—=2F? 4+ w? = Z ) r

(2\/§F + awa) (3.26)

X |1+ sgn(w)
’ \/5\/2F2+ (wg+a\/§F)2

(="
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FIG. 4: With the parameters ¢ = 1/10 and F' = 0.3, LDOS p(r,w) near the vortex from Eq. (3.26) is
plotted in the left panel, and p(r,w)s far from the vortex from Eq. (3.27) is plotted in the right panel,
following the substitution » — cr. (a) Frequency-spatial distribution of LDOS. (b) Spatial dependence of
LDOS near the coherence peak around the sub-gap. (c) Spatial dependence of LDOS at frequencies
much higher than the coherence peak.

as w? > 2F? while p(w,r) = 0 as w? < 2F2. Here, wy, = —0V/2F + v/ —2F? 4+ w? and Si(z) = Iy Sltit dt =
T 150 Jl2+1 /2 (x/2). This hard gap of 2F in this spectrum is an artifact of the assumed exact nesting of
the the CDW wavevector with the separation between the nodal points. Note that in our simplified model,
the induced charge order interaction only exists around the vortex and completely vanishes far away from

the vortex and deep in the homogeneous SC part. In the latter case, the local density of states poo(w,r)
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FIG. 5: Left panel: experimental data from STM as reported in Fig. 2(c) of Ref. [5] (red arrows added).
Right panel: The total local density of states p(r,w) in Eq. (3.26) and Eq. (3.27), following the
substitution r — ¢r. The observed sub-peaks in the STM are indicated with red arrows in both panels.

can be obtained by setting F' = 0 in Eq. (3.26), resulting in:

(3.27)

i) = pls s = 2 [ 20 i(2um) + “22T)

,
which is consistent with the result obtained in Ref. [52, 53]. However, note that the crossover regimes
between them depend highly on microscopic details, which is not the focus of this work.

Additionally, the inverse coordinate transformation in Eq. (3.6) and Eq. (3.13) is also needed to fit the
actual situation, resulting in r — c¢r along the z direction, where ¢ = \/0;2/2 + 052/2, which will be
determined phenomenologically in realistic cases.

As a result, the total LDOS spectra after the replacement r — c¢r are shown in Fig. 4, with the left
panels corresponding to the physics near the vortex core, as described by Eq. (3.26), and the right panels
corresponding to the physics far away from the vortex core, as described by Eq.(3.27). From Fig. 4(a),
instead of a zero-bias peak, a gap of magnitude v/2F is observed around the vortex at zero frequency,
accompanied by a coherent peak at the +1/2F frequency. This phenomenon originates from the interaction

of the CDW potential coupling distinct gapless Dirac points, forming a gap. Note that this is the effective
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theory of Dirac points, so the observed sub-gap is actually inside the d-wave SC gap, meaning the SC
Bogoliubov peak with higher energy is not shown here. Moreover, compared with the LDOS close to the
coherent peak ++v/2F [as shown in Fig.4(b)| of the sub-gap and far away from such peak [as shown in
Fig. 4(c)], one can find that, in proximity to the vortex core, the sub-gap spectrum exhibits apparent spatial
modulation with a period of 2a. More importantly, this modulation exhibits an ‘anti-phase’ behavior for
frequencies of opposite signs: this arises from the fact that the charge order induced amplitude for an
electron near one Dirac point to convert to a hole near a different Dirac point, given in Eq. (B1) exhibits
opposite signs for opposite frequencies, as discussed in Appendix B. Furthermore, far from the vortex
core, the density of states exhibits a featureless linear-w dependency, which is shown in the dashed line of
Fig.5(b), and can be directly obtained via the expansion of Eq. (3.27) at the large r limit. Such a result
aligns with the characteristic ‘V’-shape behavior of d-wave superconductors.

Finally, the total local density of states p(r,w) in Eq. (3.26) and Eq. (3.27) can be compared with the
vortex halo observed by STM [3, 57| directly, as shown in Fig. 5.

IV. DISCUSSION

Our paper has considered the nature of vortices in a d-wave superconductor obtained by a confinement
transition from the pseudogap metal. In terms of broken symmetry, and low energy quasiparticle spectrum,
such a superconductor is identical to a d-wave superconductor obtained from a BCS pairing transition of
a Fermi liquid with a Luttinger volume Fermi surface [31]. But, as we have shown here, the nature of the
pseudogap does reveal itself in the short-distance physics in and around the vortex core.

As is well known, the conventional transition from the Fermi liquid to the d-wave superconductor is
described by the Landau-Ginzburg theory of the condensation of a complex scalar field carrying charge 2e,
representing the superconducting order parameter. We have considered here a continuum theory of the
pseudogap [27, 33| in which the transition to the d-wave superconductor is described by the condensation
of Higgs fields, the 4 charge e complex scalars B,s (s = + is a valley index, and a = 1,2 is a fundamental
SU(2) gauge index), coupled to a SU(2) gauge field. Gauge-invariant bilinears of these Higgs fields realize
the d-wave superconducting and period-2 bond density wave order parameters, as shown in Eq. (2.3),
and so we can loosely state that the Higgs fields are the ‘square roots’ of the superconducting, charge
density wave, and pair density wave order parameters. STM experiments observe LDOS modulations with
periods 4 and 8 [3-8, 11-13]. Our theory can be extended to these longer periods |27, 32], either by working
with an extended lattice action for the Bg;, or by taking the continuum limit with additional valleys and

continuum fields. We have left this computationally demanding task for the future, and worked here with
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the simpler situation with period 2 density waves for which significant analytic progress has been possible.
We also mention earlier work on the vortex structure with 2 complex Higgs fields and a U(1) gauge theory,

which did not have charge density wave order parameters [34-37].

Our analysis should be contrasted with numerous earlier studies [11, 14-23] in which the vortex core
is described directly in terms of multiple gauge-invariant order parameters, including superconductivity,
pair and charge density waves. In such approaches, the normal state above T, is presumed to be amenable
to be a description in a theory of these fluctuating orders. We have instead assumed that the normal
state is better described as a FL* metal with a background spin liquid: see Ref. [30] for a description of
photoemission and STM in the normal state by such a theory. No symmetry is broken in the FL* state,
and there is no direct reference to any particular fluctuating order. The multiple order parameters only
make an explicit appearance when we consider the confinement of the spin liquid by the condensation of

the Higgs field B.

Our main results appear in Figs. 2(d), 4, and 5(b), along with experimental data in Fig. 5(a). We
considered a Higgs potential for B so that the bulk homogeneous ground state is a d-wave superconductor.
Nevertheless, as shown in Fig. 2(d), charge order emerges in the vortex core: this is a natural consequence
of the associated suppression of superconductivity in the core, and the ability of the Higgs fields to
rotate into the charge order direction (a complementary approach to this physics is provided by dual
theories of quantum fluctuations of the vortices [38-40]). Figs. 4(a) and 5(b) show the absence of the
Wang-Macdonald zero-bias peak, and the associated appearance of peaks at non-zero bias in the vortex
core. Finally, and most remarkably, these peaks have spatial modulations which are out-of-phase between
positive and negative bias, as seen in Figs. 4(b) and 5(b). This is due to the Dirac structure of the
quasiparticles in the d-wave superconductor, and matches the observations of Matsuba et al. [5], which

we show in Fig. 5(a).

Looking ahead, it is clearly important to extend this work to spatial modulations with longer periods,
and understand the connection to models used for quantum oscillations [32]. As we have noted earlier,
the spatial modulations of the Higgs fields appear both in A;; and p; (see Eq. (1.1)), and this can help
understand the relative roles of charge and pair density wave order. Finally, a significant experimental
and theoretical challenge is to understand the evolution of the vortex structure from low to high doping,

as one proceeds from the parent pseudogap metal to the parent Fermi liquid |28, 43].
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Appendix A: Self-consistent calculation of B field

In this section, we will provide more details about the determination of the spatial modulation function

in the ansatz for the chargon B at the continuum limit, as shown in Sec. II.
1. Flat configuration

With the flat configuration of a?, the ansatz for the chargon B is given by Eq. (2.5). The free energy,
derived by plugging this ansatz into Eq. (2.2), is given by:

I /°O P~ {8{;)]2 el [1 . <1>A<r>r+ 2 12() [1+ @Amr
0 r . .

2T 2

110 ?
+2mrb? f2(r) + (4u + v3)rb fA(r) + o7 <8T(I)A(7“)) (A1)

where f(r) € [0,1] and ¢ is the angle in real space (as illustrated in Fig.6), encircling the pole. The

equations of motion derived from Eq. (A1) are:

98 () 0*f(r) | f(r) ®a(r)]? | f(r) 04(r)]”
or o oz Ty [1+ 27 } L [1+ 27 ]
+2mrf(r) + 2(4u + v3)rb? f3(r) = 0 (A2)
rf? rf? r r 020(r
2b2f()[++<1>27<r)]+22fi)[_gbgi)%z; <r>_2g")§g>=o (A3)
with the boundary conditions:
f) =%0,  fr) 20 "

Ddu(r) 250, Bu(r) 22 om

The numerical results derived from Eq.(A2) and Eq. (A3) under the boundary conditions Eq. (A4) are
depicted in Fig. 2(a).
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FIG. 6: The schematic diagram of r and ¢ in Eq. (2.5).
2. Vison-like configuration

Similarly, with the vison-like configuration of a?, the ansatz for the chargon B is given by Eq. (2.8).
The free energy, derived by plugging this ansatz into Eq. (2.2), is given by:

F = /Ooo drb®r {‘9{;@]2 + b%r [W]Z + b%«fi(;) [—1 + ®alr) + M]Q +b2rh2<r) [‘DA(T) - ‘I)“(’”)r

or 27 27 r2 2 2

2 2 2 4 2 2 2 4 2/ 12 2 4. 02 9, \Of(r)
+b*rm (f (r)+h (r)) + b%ru (f (r)+h (1“)) + v1b°r [f (r)—nh (7“)] + v3b®r f=(r)h*(r) 5 (A5)

11 (0®a(r)\? 11 [0Da(r))?
+g7~< o ) Ur( o, )

The corresponding equations of motion are:
) BE P ®,(r)]?
0P I IO BAE S ) 2P (20 41200 0)

+2016% [f2(r) — B2 (r)] £(r) + vsb® f(r)h*(r) = 0(AG)

r 2 r r r a\T 2
_71«625) - 8311(2 ) hT(‘Q) F;(r ) <1>27(T )] +mh(r) +26%u (f2(r) + h*(r)) h(r)

—201b% [fQ(r) - h2(7‘)} h(r) + vngh(r)f2(r) = 0(A7)

e 30 840 S [0 4 250 S
0 [+ T 0] i [0 0] LR - LA~
with the boundary conditions:
F) =0, fr) S50,
hr) 2% ho,  h(r) 22251 A1)



;
Im{yge1vVig-2)

’ 10
\2F — .
s 0 3
_\/EF > — 0

-5

00 02 04 06 08 10 12 14
k

FIG. 7: With parameters F' = 0.3 and I' = 0.03, the imaginary part of <7k,l,+,1%1 L 2> for [ > 0 from
Eq. (B1) after the replacement of w — w + il

The value b can be deduced from Eq. (A6) in the large 7 limit, resulting in b> = ﬁ. Also, hy is set such

r—0

that 0,h(r) —— 0. The numerical results derived from Egs. (A6)-(A9) under the boundary conditions
Eq. (A10) are shown in Fig. 2(c).

Appendix B: Derivation of LDOS Near the Vortex

In this section, we will provide more details about the determination of LDOS p(w,r) in Eq. (3.26).
Firstly, based on the electronic Hamiltonian Eq. (3.20), the Green’s function of Bogoliubov quasiparti-

cles 7y is given by:

(a) @\ _ [ e\l M
<\Ilkvl ® (kal> > o (w Vk,l ) 16F% — 8F2w2 + (k2 —w2)2 (B1)

where a = 1,3 and M(® represents a 4 x 4 matrix with the expression:

M(O‘) = 4F? (w000+k010) + (k:2—w2) (w000+k030)—(a—2)FSl (4F2—w2) (—011—012+031—|—032)

+ (a—2)Fs (ka (001 + 002) + k> (011 + 012 + 031 + 0'32)) (B2)

Here, we present the imaginary part of <7k,l,+,1711,l,—,2>7 which corresponds to the amplitude for an electron
near the o = 1 Dirac point converting to a hole near the o = 2 Dirac point, in Fig. 7 as an example. The
sign of the amplitude is opposite for opposite frequencies, and all the weight is inside the gap —v2F <
w < V2F.

Starting from Eq. (3.23), the LDOS p(w, ) is contributed by both the uniform part pyni(w,r) and
the modulation part pcpw(w,r). In the following, we will discuss these two parts of the contribution

separately.
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w>V2F|w < VoF
V2F +Vw? = 2F2 + —
V2F — \/w? — 2F? — -

—V2F +Vw? —2F2| + +
—V2F —y/w? — 2F? — —

TABLE III: The sign of £v/2F 4+ v/ —2F2 + w? in different regions of w

Using the wavefunction of Bogoliubov quasiparticles given in Eq. (3.18), the uniform part puni(w,r) can

be further expressed as:

Puni(w, ) = —ZIm<caT 7T( )>

= Z / dk Z Z ukzlyq’ - ka7l7q7a(r)] [uz,l,q’,a (T) + Z.v;:,l,q’,a (T)] Im <7k717q7a711,l,q’7a>

l q,q'==%

2 cos(2k —k
_ / dkzz AN TR k) + COSI(W r) 3 Im

1>0 01,00=2% 2 <w + 10T — o3 \/2F2 + (k + 0’2\@F)2>

_ i/ooodk [2:81(2137') 1 cos( ri] 3 5( —01\/2F2—|—(/<:+02\/§F>2>

o1,00=1%

where <fyk,l7q7a7;l’q,7a> can be obtained from Eq. (B1).

According to the relation 6[g(z)] = >, 5‘;9,6(; :]_C)i|), where x; denotes the roots of g, the following equation

can be derived:

5 (m: V2F? + (k+a\@F)2> - ‘\/2;2"? K (k— (—U\@F+a’\/—2F2 +w2)>. (B4)
/=4

By referring to Table III, which illustrates the signs of +v/2F + /—2F2 + w2, we can analyze the values

of puni(w, ) within different regions of w. In the case of w > V2F,

2
S s w—al\/2F2+(k—|—02\/§F) =3 | =50 (k= (~oveF + V2P +?))
01,02=% o=% —2£7? + w?
(B5)
Consequently, the expression for pyni(w, ) in Eq. (B3) is:
1 w 4w, 2 cos (2w,T)

uni\W, e - 2 o - B

puni(w,) = — _2F2+w22[7r8(wr)+ . ] (B6)

where

wo = —0V2F 4+ Vw? — 2F2, (B7)

24

(B3)



8
b 6 3
®) © w=05x~\2F
Puni (r,w) 6 5 3
10 3 34
3 8 = \"::3
6 z
i(z) — r=4 1
0 0
-\2F 0 \2F o 1 2 3 4 5
w r

FIG. 8: The uniform component of the local density of states puni(r,w) in Eq. (B10), following the
substitution » — cr. This is considered with the parameters ¢ = 1/10 and F' = 0.3.

In the scenario where w < /2F, a similar approach leads to the conclusion that puni(w, ) remains as

defined in the above equation. However, for —V2F < w < \/§F, w— o1 \/2F2 + (k‘ +02\/§F)2 0

consistently, implying that:

Z 5<w—01\/2F2+(k+02\/§F>2> =0, (B8)

o1,00=1%

and therefore,
Puni (w,7) =0 (B9)

As a result, puni(w,r) can be formulated as:

L || e [22 S (2wpr) 4+ 22220 25 op
Puni (Wa 7”) = TV ==L 7 " " (BlO)
0 w < 2F?

The results of Eq. (B10) after substituting » — cr, are depicted in Fig.8. This illustration suggests the
opening of a gap with a magnitude of v/2F, leading to a coherent peak at the frequency v/2F. Notably,
LDOS exhibits a tendency towards divergence as it approaches the vortex core.

On the other hand, the modulation part pcpw(w, ) can be further given by:

pcow (w,r) = %Im [<cl7g(r)c£p(r)> +1< 24+ <C37U(T)C:LU(T)> +3 & 4]

2 [ 4 2 2 AFk (4F? — v?
= = [ Si(2kr) + Cosli kr)} I ( o)
e " 4 " HJ1,02=:|: <w+i0+ —01\/2F2+ (k+02\/§F)2>
1 /oo ” [41@ Si(2kr) + 2 cos(2kr)} (2V2F + o1k) U
= T L . 2
T " Tl el x@\/2F2 + (k+ 01 V2F)
2
X8 <w+02\/2F2+ (k+al\/§F> ) (B11)
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FIG. 9: The charge modulation component of the local density of states pcpw(r,w) in Eq. (B19),
following the substitution » — cr. This is considered with the parameters ¢ = 1/10 and F' = 0.3.

From Eq. (B4) and Table III, we can discuss the value of pcpw(w,r) at different w regions. Specifically,
when w > V2F,

2V2F
( V2 +Ulk) 20’25 (w+02\/2F2—|—(k—|—01\/§F)2)
o1,02=+ \/i\/2F2 + (k+ o1V2F)

(2V2F + 01k) y ‘ w

5 (k - (—alx/iF /2R ¢ w2)) (B12)

A VE2F? + (k4 oy2F) VR
thus,
2¢/2F -
pcow (w, ) = 1 Z [4"‘)‘7 Si (2w,r) + 2 cos (2wg7“)] ( V2F + ow ) .~ |<,02| : (B13)
Tl T r \/5\/2F2+(wa+0\/§F) —2F2?2 +w
where
Wo = —0V2F 4+ /—2F2 + 2 (B14)
When w < V/2F,
2v2F k 2
(\[ o ) 025<w+02\/2F2+(/£+01\/§F>>
01,02=% \/5\/2]’72 + (k + 0'1\/§F)2
(2\/§F+01k:) ’ w
= X §(k— (—o1V2F + VvV —2F2 +w?)) (B15)
o1=% \/i\/ZFQ—F(/{?—l—O'l\/iF)Z \/m < ( )>
thus,
2¢V2F o
pcow (w, ) = L > [4% Si (2wor) + 2 cos (20007")} (2V2F + ow,) - \WJ - (B16)
=t T AR 4 (w4 ovaR) VR
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FIG. 10: Local density of states without charge order potential, prpos(r,w), in Eq. (B21) with the
substitution r» — cr. Parameters: ¢ = 1/10.

When —v2F < w < V2F, w — 01\/2F2 + (k+02\/§F)2 # 0 all the time, so that

> s <w — 01\/2F2 + (k + 02«/§F)2> =0, (B17)

01,02=%

yielding

pcow (w, ) = 0 (B18)

As a result, the expression for pcpw(w, ) can be summarized as:

L —— _ [4“’—“ Si(2wer) + ECOS(%”)] sgn() (2v2F+ow, ) as w? > 2F?
peow(w,r) = { VT | S [ 81 Ger) 27 V2P 4 (wo+ov/2F)’ (B19)

0 as w? < 2F?2
where

We = —0V2F 4+ \/—2F2 4 2 (B20)

The result of Eq. (B19) after the substitution 7 — ¢r is shown in Fig.9, indicating that coherent peaks
at the frequency /2F exhibit opposite signs. Note that the formation of a peak is associated with the
formation of a gap, while the opposite sign arises from the opposite amplitude for an electron converting
to a hole at distinct Dirac points for opposite frequency, as illustrated in Fig. 7. Such opposite signs of
amplitude, combined with the modulation factor (—1)" in Eq. (3.23), lead to the out-of-phase modulation
between positive and negative frequencies.

Combining the results of pyp; in Eq. (B10) and pcpw in Eq. (B19), one obtains the LDOS p in Eq. (3.26).

On the other hand, the LDOS without the charge order potential can be obtained by setting F' = 0,
which leads to

2
2w Si(2wr) + M , (B21)

4

Poo(w,T) = p(w,T)F—s0 = 2

™
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as in Eq. (3.27). The result of Eq. (B21) is shown in Fig. 10, indicating the enhancement of density as it

approaches the vortex core (r — 0), while there is no significant peak at zero bias. Importantly, far from

the vortex core, the LDOS exhibits a linear dependence on frequency, which is characteristic of d-wave

superconductors.
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