IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

Reconstruction of Sets of Strings From
Prefix/Suffix Compositions

Ryan Gabrys

, Member, IEEE, Srilakshmi Pattabiraman

, Student Member, IEEE,

and Olgica Milenkovic™, Fellow, IEEE

Abstract—The problem of reconstructing strings from sub-
string information has found many applications due to its impor-
tance in genomic data sequencing and DNA- and polymer-based
data storage. One important paradigm requires reconstructing
mixtures of strings based on the union of compositions of
their prefixes and suffixes, generated by mass spectrometry
devices. We describe new coding methods that allow for unique
joint reconstruction of subsets of strings selected from a code
and provide upper and lower bounds on the asymptotic rate
of the underlying codebooks. Our code constructions combine
properties of binary B}, and Dyck strings that can be extended to
accommodate missing substrings in the pool. As auxiliary results,
we present simple entropy upper bounds for binary Bj codes
and an improved bound for h = 4, and also describe errors that
arise during mass spectrometry.

Index Terms—Binary By, codes, Dyck strings, polymer-based
data storage, unique string reconstruction.

I. INTRODUCTION

ODERN digital data storage systems are facing fun-
damental density limits. To address the emerging
needs for large-volume information archiving, it is of impor-
tance to identify new recording media that operate at the
nanoscale level. Recently proposed DNA-based data storage
paradigms [1], [2], [3], [4], [5], [6], [7], [8] use macromole-
cules as storage media and offer storage densities that are
orders of magnitude higher than those of flash and optical
recorders. However, these systems often come with a pro-
hibitively high cost as well as slow and error-prone read/write
platforms. To address some of these problems, several new
coding solutions that aid in string assembly, dealing with
asymmetries in the readout channel and reconciliation of
multiple string evidence sets were introduced in [9], [10], [11],
[12], [13], [14], and [15] (see also the related and follow-up
lines of work [16], [17], [18], [19], [20], [21]).
As an alternative to DNA-based data storage systems,
polymer-based data storage systems [1], [6] are particularly

Manuscript received 4 October 2021; revised 20 February 2022, 15 July
2022, 29 September 2022, and 4 November 2022; accepted 7 November 2022.
Date of publication 14 November 2022; date of current version 16 January
2023. The work was funded by the DARPA Molecular Informatics Program,
the NSF portion of funding from the SemiSynBio program and the NSF grants
CIF 2008125 and 1618366. An earlier version of this paper was presented in
part at the Information Theory Workshop (ITW) 2020, Riva del Garda, Italy
[DOI: 10.1109/ITW46852.2021.9457660]. The associate editor coordinating
the review of this article and approving it for publication was E. Rosnes.
(Corresponding author: Olgica Milenkovic.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Illinois Urbana—Champaign, Urbana, IL 61801 USA
(e-mail: ryan.gabrys@gmail.com; spl16@illinois.edu; milenkov @illinois.edu).

Digital Object Identifier 10.1109/TCOMM.2022.3222341

attractive due to their low synthesis cost [1]. In such platforms,
two molecules of significantly different masses are synthesized
to represent the bits 0 and 1, respectively. The molecules
are used as building blocks in the sequential process of
recording user-defined information. The obtained synthetic
polymers are read by tandem mass (MS/MS) spectrometers.
A mass spectrometer breaks multiple copies of the polymer
uniformly at random, thereby creating prefixes and suffixes
of the string of various lengths. The readout system outputs
masses of these prefixes and suffixes. If the masses of all
prefixes from a single string are accounted for and error-free,
reconstruction is straightforward. But if multiple strings are
read simultaneously and the masses of prefixes and suffixes
of the same length are confusable, the problem becomes
significantly more complicated. It is currently not known
which combinations of coded binary strings can be distin-
guished from each other based on prefix-sufix masses and for
which code rates it is possible to perform unique multistring
reconstruction.

In a related research direction, the problem of reconstruct-
ing a string from an abstraction of its MS/MS sequencer
output was considered in [22], under the name string recon-
struction from substring composition multisets. The com-
position of a binary string is the number of Os and the
number of 1s in the string. For example, the composition
of 001 equals 021, indicating that 001 contains two Os and
one 1, without revealing the order of the bits. The substring
composition multiset C(s) of a string s is the multiset
of compositions of all possible substrings of the string s.
As an illustration, the set of all substrings of 001 equals
{0,0,1,00,01,001}, and the substring composition multi-
set of 001 equals {0',0',11,0%,011,0%21'}. Two modeling
assumptions are used for the purpose of rigorous mathematical
analysis of this reconstruction problem [22], [23], [24], [25]:
a) Based on MS/MS measurements, one can uniquely infer
the composition of a polymer substring from its mass; and
b) When a polymer is broken down for mass spectrometry
analysis, the masses of all its substrings are observed with
identical frequencies.

Under the above modeling assumptions, the authors of [22]
established that strings are uniquely reconstructable up to
reversal, provided that the length of the strings n is < 7 or
one less than a prime or one less than twice a prime. The
works [23], [24], [25] demonstrated that at most logarithmic
code redundancy can ensure unique reconstruction of single
strings drawn from codebooks based on Bertrand-Catalan
strings and Reed-Solomon-like redundancy.

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4028-5309
https://orcid.org/0000-0002-1871-4912

However, the assumption that MS/MS output measurements
include masses of all substrings is not true in practice,
as breaking the string in one rather than two locations is easier
to perform. In the former case, one is presented with masses of
the prefixes and suffixes. Thus, for the string 001, one would
observe the multiset {0*,0%, 1,02, 0'1",021'}. Furthermore,
in practice, the contents of multiple strings are often read
simultaneously, in which case it is not known how to associate
prefixes and suffixes with their corresponding strings.

The problem addressed in this work may be formally stated
as follows. Given h > 2, where h € IN, we seek the size
of the largest code C'(h) of binary strings of a fixed length n
with a property that we refer to as h-unique reconstructability.
In this setting, for any subcollection s1, s, ...,s; of h<h
distinct strings from C'(h), one is presented with the multiset
union M(s1) U M(s2) U --- U M(sy,) of the prefix-suffix
composition multisets, M(s;), i = 1,..., h, of the individual
strings s;, i = 1, ..., h. The prefix-suffix composition multiset
M(s) of a string s captures the weights of prefixes and suffixes
of the string s of all lengths. Unique reconstruction refers to
the property of being able to distinguish all possible A-unions
and nonambiguously determine the identity of the strings in
the collection. Our main result provides a construction for
C(h) that asymptotically approaches a rate of 1/h, under
certain mild parameter constraints. The proofs of our results
rely on the use of Dyck and binary By, strings. For the latter,
constructions and bounds pertaining to h = 2 and h = n
have been investigated in-depth [26], [27], [28], [29], [30],
[31], [32], and we provide new nontrivial results for & = 4 that
improve simple entropy bounds also reported in this work (see
also [32], [33], [34], [35] for bounds corresponding to some
special parameter choices). We also introduce some simple
schemes for combating missing prefix-suffix errors in the pool.

II. PROBLEM STATEMENT AND PRELIMINARIES

All logarithms are taken with respect to base 2, unless
stated otherwise. The symbol [n] is used to denote the
set {1,2,...,n}, while [[n]] is used to denote the set
{0,1,...,n}. A collection of i contiguous Os in a string is,
as already noted, represented by 0. A similar notation is used
for 1s. We also find the following notation relevant to our
subsequent exposition.

Let s = s1...5, € {0,1}" be a binary string of length
n and let M(s) denote the composition multiset of all pre-
fixes and suffixes of s. For example, if s = 01101, then,
M(s) = {0,01,012,0212,0213,1,01,012,013,0213 . We
denote the set of prefix and suffix compositions of s by M,(s)
and M(s), respectively. For the above string, M,(s) =
{0,01,012,0212,0213} and M,(s) = {1,01,012%,013,0213}.

We seek to design a binary codebook C(n,h) C {0,1}"

so that for any collection of distinct strings si,S2,...,s; €
C(n, h) with h < h, the multiset
M(s1) UM(s2)U---UM(sy) (1)

uniquely determines the individual strings in the collec-
tion. We refer to a code with such a property as an
h-multicomposition code, or an h-MC code. For simplicity,

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

we often use M (S) to describe the multicomposition set for
S = {s1,82,...,s,}. We also say that Cj,(n,h) C {0,1}" is
a h-prefix code if for any two distinct sets of size < h, say
S1,52 € Cpo My(S1) # My(S2).

The next claim establishes a useful connection between our
problem and the related problem of determining binary strings
based on their real-valued sum.

Claim 1: Given M,,(s1) UM (s2)U---UM,(sy), one can
determine s; +ss + -+ s, € R".

Proof: We prove the result for h = 2 as the generalization
is straightforward. Suppose that sq,s2 € {0,1}". Then, given
M, (s1) UM, (s2), let n; denote the total number of ones in
the two compositions of prefixes of length ¢ in the multiset
(i.e., sum of their weights). It is straightforward to see that
81+ 89 = tity...t,, where t; = n; —n;_1, withng=0. B

Example 2: Consider the strings s; = 110100 and sy =
101010, for which we have s; + so = 211110. As before,
s1+s2 denotes addition over the reals, while (s; +s2); denotes
the i'" symbol in the string. Clearly, (s; + s2); = 2, which
we obtained by summing up the compositions of prefixes of
length one, i.e., 1 +1 = 2. It is also easy to see that (s; +
s2)2 = (81 +82)% — (s1 + 82)1, where (s + s2)7 denotes the
sum of the weights of the first two symbols, or alternatively,
the sum of the weights of the prefixes of length two of the
strings s1, S2. A straightforward calculation reveals that (s; +
S2)2 = (24 1) — 2 = 1. Other values can be determined
similarly. U

The above claim provides a useful connection between our
problem and the problem of designing binary B} sequences.
A binary Bj sequence is a set Sp(n) of binary strings
of fixed length n such that for any two distinct subsets of
distinct strings in Sp(n), say S = {s1,82,...,85,} # 7 =
{t1,t2,...,t5,}, where h1, hy < h, one has

hy ha

Z S 75 Z tj.
i=1 j=1

)

Note that although Sp(n) consists only of binary strings,
addition is performed over the reals.

Binary Bj, sequences are different from the better-known
B;, and Sidon sequences (sets). A Sidon (Bj,) sequence is a
single sequence of integers such that the sums of two elements
(h elements) of the sequence are all distinct [36]. Addition
can be performed over the integers or over finite fields [37],
[38]. To avoid possible confusion with the naming convention,
we henceforth refer to the set Sp(n) C R™ as a binary
B;, code of length n. For shorthand, we also refer to any
codestring s € Si(n) as a binary By, string.

If S is a By, sequence over IF4, for some positive integer
d, then it is also a binary B}, code. However, the opposite is
not necessarily true; hence, arguments typically used to derive
upper bounds for B;, sequences do not carry over to binary
By, codes.

Example 3: Consider the set S3(6) = {110100,
101010,110010}. It is easy to verify that the sums of pairs
of strings in S2(6)C IR® are distinct. Thus, S2(6) is a binary
Bs code.

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 5

However, S§4(6) = {110100,101010,110010,101100} is
not a binary By code since 110100 + 101010 = 110010 +
101100 = 211110. O

Based on Claim 1, it is easy to identify two sufficient
conditions for a collection of binary strings to be an h-MC
code, where h < h.

1) Condition 1: One can recover M, (s1)U---UM,(s;,)
from M(sy) U ---U M(sy), for any choice of distinct
codestrings s1,...,sy; and

2) Condition 2: The codestrings si,..
binary By, code Sp,(n).

These observations will be used to construct /-MC codes in
Section III. The condition that the codestrings in an MC code
belong to a Bj-code is not necessary. For example, consider
the strings s; = 011, so = 000, s3 = 001, s4 = 010. Then,
s1 +s2 = 011 = s3 + s4, but 012 € M(s1) U M(s3) and
012 ¢ M(s3) U M(s4), so that {s1,s2} and {s3,s,} are not
confusable.

We show next that for sufficiently large code lengths, the
maximum rate of an h-MC code is at least % In comparison,
the best currently known upper bound on the rate of binary
By codes is .5753 [39]. For related bounds and bounds for
slightly differently defined binary Bj codes, the reader is
referred to [31], [33], and [40].

.,sy belong to a

III. A CONSTRUCTIVE LOWER BOUND FOR h-MC CODES

We start with a binary Bj, code and introduce redundancy
into the underlying strings to ensure that given the multicom-
position set of at most h strings, one can separate the prefixes
from the suffixes. Then, given the set of prefixes, one can use
the same idea behind Claim 1 to recover the sum of the h
codestrings and hence the codestrings themselves.

Let S;,(n) € R™ be a binary By, code. One way to construct
the code Sp(n) is to use the columns of a parity-check
matrix of a linear code with minimum Hamming distance
> 2h + 1 [41]. This follows from the simple observation that
no two distinct collections of A distinct columns of a binary
parity-check matrix of a code with dpy, > 2h + 1 can have
the same sum modulo 2, and consequently, cannot have the
same real-valued sum either. For such binary codes Sj(n)
of largest size, one can show that the asymptotic code rate
satisfies lim,, . 2 log |Sx(n)| = +.

For our problem and the underlying approach for solving
it, we also have to make use of Dyck strings.

Definition4: A string s € RY of even length N is a Dyck
string if its weight satisfies wt(s) = &, and for i € [N — 1],
wt(s182...8;) > {%—‘

The approach for generating the binary code C'(N,h) C
RY is to ensure that: 1) A string s € C(NV, h) is a Dyck string;
2) the set C(N, h) is a binary By, code of length N. The first
property guarantees that the mixtures of prefixes and suffixes
can be partitioned into two sets, one containing all the prefixes
and another containing all the suffixes. The second property
ensures that given the prefix set (or, alternatively, the suffix set)
one can recover the codestrings using the simple observation
that the prefixes uniquely determine the real-valued sum of the

strings in the mixture. We illustrate these observations with an
example.

Example 5: Consider the binary B code S2(6) =
{110100, 101010, 110010}. Clearly, all three strings are Dyck
strings as their prefixes of any length contain at least as many
ones as Zeros.

Next, write sy = 110100 and s, = 101010,
so that M(s;) U M(sz) = {1,1,01, 12012
012,012, 013,0%13,0%13, 0%1%,0%13, 0%13,0%13,

0%12,0%12,0%12,0%1,0%1,021,01,0%,0,0}. Since s; and
so are Dyck strings, each of the string prefixes must have
at least as many 1s as 0Os. Similarly, each suffix must have
at least as many Os as 1s. It follows from this observation
that one can easily recover the multiset M, (s1) U M, (s2) =
{1,1,01, 12,012, 012,0%12, 013,0%13,0%13, 0313,031%}.
Claim 1 ensures that given M,(s1) U My(sz2), one can
determine s; + s; = 211110. Since S»(6) is a binary
Bs code, the sum s; + sy uniquely determines the strings
s1 and ss. O

The next claim establishes the formal result that if the code
C(N, h) satisfies these two properties, then it is an h-MC
code.

Claim 6: Suppose that C(N, h) is a binary Bj, code where
for any s € C'(N, h), the defining Dyck property holds. Then,
C(N, h) is an h-MC code.

Proof: Similar to Claim 1, we prove the statement for
h = 2, since the extension for general h is straightforward.
In light of Claim 1, we need to show that the Dyck property
allows us to uniquely recover M, (s1)UM,,(s2) from M (sq)U
M(s2). To see that this is indeed possible, observe that based
on the Dyck property both prefixes of length ¢ in M(s;) U
M((s2) have at least [£] 1s whereas both suffixes of length i
in M(s1) U M(s2) have at most 5] 1s. [|

To maximize the rate of the coding scheme and combine
the two constraints that h-MC strings need to satisfy, we use
two ideas. First, we use Bj binary strings obtained from
appropriate parity-check matrices of binary error-correcting
codes with minimum distance > 2h + 1, parsed into blocks
(substrings) that allow us to tightly control the number of ones
(weights) of the codestrings via balancing. Upon balancing
blocks in each codestring s € Sy (n) we append O(/n) bits
of redundancy both to the beginning and to the end of s so
that the resulting string has length N = n + O(y/n). Second,
rather than work directly with the weights of strings we use the
running digital sums (RDSs). For a binary string s, the RDS
up to coordinate i is defined as R(s); = 2wt(s182...8;) — i.
If the subscript ¢ is omitted, then R(s) = 2wt(s) — |s|,
where |s| denotes the length of s. Furthermore, using the
running digital sum, the Dyck constraint can be rewritten as
wt(s) = [5] and R(s); > 0, i € [n]. It follows that for any

e > 0 and n sufficiently large, we have + log |C(N, h)| =
n+i\/ﬁ log |Sk(n)| = + — €, where & is a constant.

The balancing procedure operates as follows: Let s € Sy, (n)
and for simplicity assume that /n is an even integer. Start
by parsing s into blocks s; of length \/n, i = 1,...,/n,
so that s = s185...s S Using s construct an auxiliary string
u=ujuy...u s thatis “approximately” balanced following

an idea similar to Knuth’s balancing [42], which operates on

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

blocks rather than individual symbols. To this end, initialize
u; = sy; for binary strings u, we use u to denote the binary
complement of u. For j € {2,3,...,/n}, let

sj, if R(uy...uj_1) <0, and R(s;) >0,

w §;, if R(ui...u;—1) <0, and R(s;) <0, 3)
7)y, if R(up...uj_1) >0, and R(s;) < 0,
§;, if R(ui...u;j—1) >0, and R(s;) > 0.

Claim7: For any j € [/n], |[R(u;...u;)| < /n.

Lemma 8: For any ¢ € [n], |R(u);| < %\/ﬁ Hence, the
RDS of any prefix of u does not exceed 3/n in absolute
value.

Proof: Suppose to the contrary that |R(u);| > 3yn

™. For
simplicity, we will only consider the case R(u); > 3‘?,
as the other case can be handled similarly. Next, assume that
j € [n] is the smallest index for which R(u); > @ and
that R(u); = # + 1. Now, let j = k1y/n + ko, where 0 <
ko < y/n. According to Claim 7, since R(u); = # +1 and
k2 < /n, we have 4 < R(uy...ug,—1) < /n. Based
on (3), and since R(uy...up,—1) > 4, it follows that
R(uy,) <0 so that —/n<R(uy,)e < 4, for any ¢ € [\/n].
Combining the two inequalities, we arrive at R(u)y, /mip, <
%ﬁ , a contradiction.]

We now describe our encoder. Let u € {0,1}" be the
string which is the result of the procedure described in (3),

and suppose that r € {0,1} V™ is such that for any j € [/n],
1, if uy ;
o fr e

if u; = Sj.
Using r, we now form a string s € C(N,h), where N =
n+ % n, and assume for simplicity that N is an even integer.
The following claim is used in our subseq7uent analysis.

Claim9: Let v = 13V"ru € {0,1}"3V", Then, for any
i € [n+ Zy/nl, |R(v);| < 5y/n. Furthermore, for any i €
[n+ 2v/n], R(v); > 0.

Next, we append redundant bits to the string v described in
Claim 9 in order to get a binary string s of length N which
is a Dyck string.! This results in the following claim.

Claim 10: Let N = n + %\/ﬁ be an even integer and let
v =13V"ru € {0,1}"*2V" be as in Claim 9. Suppose that
w = wt(v). Then, the string s = vliz—we>—(vl-w) ig 4
Dyck string.

Now, assume that the binary code C(N,h) C RY is
constructed according to the procedure outlined in Claim 10
and once again assume that N = n + 177 n is an even
integer. The next theorem establishes the correctness of our
construction.

Theorem 11: Suppose that s1,s2,...,s, € C(N,h), where
C(N, h) is constructed according to the balancing procedure
operating on some selected codebook of binary Bj strings.
Then, given M(s1) UM (s2)U---UM(sp), we can uniquely

“)

I'Splitting the string into blocks of length m and then performing the
approximate balancing task over these blocks would incur a redundancy of
% + cm, where c is a constant. The redundancy is minimized when the
summands are of the same order, \/n, which justifies the choice for the length
of the parts.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

determine {si,...,sp}. Furthermore, for any ¢ > 0, there
exists a . > 0 such that for all N > n., % log |C(N,h)| >
TR,

Proof: We prove the result for h = 2, as the exten-
sion for general values of h is straightforward. According
to Claims 6 and 10, we can recover M,(s1) U M,(s2)
from M(s;) U M(sz) since sq,s2 are Dyck strings. From
M, (s1) U Mp(s2), we can recover s; + sy according to
Claim 1. Given s; = 13Vrpu1 32— w03 —(vil-w) g, =

5 NN (||
12Viroup1z ~w202 ~(V2l=%2) from the first n+ Z/n coor-
dinates of s + so we can recover (ry + rs,u; + us) mod 2.
Note that here we only make use of the parity information
although we are presented with real-valued sums, as we wish
to recover the binary indicator r string for block complemen-
tation and the binary blocks themselves.

For simplicity, and with a slight abuse of notation, we write
u = uj;+up mod 2 :uluQ...uﬁandr: ri+ro mod 2 =
ri...r 5. Leta=1...0 . Then, for j € [v/n],

Wi
~ YR
;=9

u;

It is straightforward to verify from (3) that i = s;+s2 mod 2.
Since 81,82 € Sa(n) are codestrings of a binary By, codebook
comprising columns of a binary error-correcting code of
appropriate parameters, we can recover s; and sy from u.
This concludes the proof. |

In what follows, to improve our understanding of the max-
imum asymptotic rate of h-MC codes, we describe straight-
forward general entropy bounds and derive a (tighter) upper
bound for binary B4 codes that outperforms the entropy bound.
These results imply upper bounds on the rates of h-MC
codes which are not necessarily constructed using Theorem 11,
centered around binary error-correcting codes and general con-
structions of binary B), codes. For example, it is known [39]
that the maximum rate of a binary By sequence is at most
0.5753 which implies that the maximum rate of any 2-MC
code using binary Bs codes is at most 0.5753. The interested
reader is referred to a selected collection of entropy and other
bounds for related notions of binary By, strings in [31], [33],
and [40].

if 7; = 0,

if?"jzl.

A. New Upper Bounds on Binary By Sequences (Binary By
Codes)

We extend and generalize the idea used in [43] and [28] to
obtain an upper bound on the maximum rate of a binary B,
code, and h = 4 in particular. We first introduce the relevant
notation before describing our main result in Theorem 14.

Let Bp(n) denote a binary Bj code of length n. Since
By, (n) is a binary By, code it follows that for any two distinct
sets of codestrings, say {s1,82,...,8p}, {s],s5,...,s,,} C
By, (n), we have Z?:l Sj # >_;—1S;, where addition is over
the reals.

Let H(h) denote the entropy of the Binomial distribution
with parameters (h, §),

no=-3 (1) () v () B))- ©

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 7

It is well-known [43] that the above entropy can be written as

H(h) = %1og2 (27re%> +0 (%) ,

and that the entropy of a Binomial distribution with parameters
(h,p), 0 < p < 3 is maximized for p = 3. A straightforward
upper bound for general h follows directly from the ideas
in [43] and [28], which assert that one can impose a uniform
(probabilistic) model on the product set of codestrings in
B> and then employ the entropy of each coordinate in the
2-sum. In our case, we use the entropy of a Binomial random
variable with parameters (h, 1) to bound the contribution of
each coordinate. This approach results in an asymptotic upper
bound on the rate of the form +H (h), where H(h) is the
entropy of a Binomial random variable as defined in the
previous equation.

As will be discussed in more details, for h = 4, rather than
work directly with the prefixes of codestrings as suggested
in [28] for the case h = 2, we instead use the sum of prefixes
of codestrings in a binary By code. Then, through simple
counting argument, we arrive at Theorem 14. We outline the
argument for general even-valued /& and specialize the bound
to h = 4 only in the last step, since the proposed approach
can potentially lead to improved bounds for larger A through
tighter bounds on the size of specific sets used in the proof.

Let Aj /o denote the set of sums of any collection of
h/2 prefixes of distinct codestrings from By, (n), where n =
a+b and a and b are the lengths of the prefixes and suffixes,
respectively:

Ah,/Q = {a1+"'+ah/2 € {0,1,...,}1/2}0’:
(a1b1), ..., (an/2bn/2) € Br(n)}.
For ¢ € Ay, /5, define B, as

Be={bi+-+byne{0,1,... h/2}":

(albl), ey (ah/gbh/g) S B},,(TL), a;+-- -+ah/2 = C},
and recall that, by definition, By, (n) has the property that any
collection of < h distinct codestrings in By, (n) has a distinct
sum. This implies that no two strings in B, are the same.

We proceed by proving the next claim.
Claim 12: Let ¢1,c2 € Ay 2. Then for any dy,dy € Be,
and dg, dy € BCQ,

di —dy # d3 — dy, (6)

where subtraction is performed over the reals.

Proof: Suppose, to the contrary, that (6) is an equality.
Then (¢1dy)+(cads) = (ca2ds)+(c1dz). In this case, we may
write

a(11) _’_aél) +-~-+a§3/)2 — e, a(12) +a§2)
++al), =,
1 1 1 2 2
b +by" + -+ b, = di, b + b
+o+ b, = ds,
bi” + b5+ +byY), =ds, b{" +bf"
+ - 4 bg:l/)Q = d4,

If the assumption above holds, it follows that

(@) + - + (af)ybi",)
+(@PD) + -+ (a,bi,))
= (@) + -+ (a7,bi))

1 2 1 2
+ (@) 4+ (@l ,bi)),

Dy.(1 1,01 1) 4.2
where (ag)bg)), e (a() b;/)Q), ces (aé/)QbEL/)Q) € Bp(n),

h/2
a contradiction. [|
Based on the result of the previous claim,
we focus on the differences between elements
in the set B, and define the multiset D =

{dl —dy € {—h/2,...,0,...,h/2}b : de s.t.dy,ds € BC}

Claim13: Any nonzero d € {—h/2,...,0,...h/2}®
appears at most once in D, while the all-zero vector appears
(B}’;/(;”)‘) times.

Proof: The first statement follows immediately from
Claim 12. For the second claim, since Bp(n) is a binary By,
code, it follows that the sum of any distinct h/2 codestrings
from By, (n) is necessarily unique and hence d; — ds = 0 if
and only if d; = ds. Since EceAh/2 1Be| = (lB}}f/(g)‘)’ the
result follows. n

Let D; = {d : d € D} be the ser containing the elements
in D except for the all-zero strings (which are removed) and
recall that b stands for the length of the strings in D and D;.
More formally, let Dy stand for

{(531+"'+wh/2)_(w/1+"'+w2/2) #0:
Jest x4 .+ @, T+ Ty € Bely

where addition is performed over the reals.

It is straightforward to see that |D,| < (h+1)°. This bound
suffices to obtain an upper bound on the size of Bj, codes for
h = 4 that outperforms the entropy bound described at the
beginning of this section. For even values of h > 6, a tighter
bound on |D;| is needed, akin to the one derived in [43]
and [28] that relies on estimating the probabilities of zero and
nonzero symbols in the individual coordinates of the sum of
codestrings.

Theorem 14: For h = 4, the maximum asymptotic rate of a
binary B4 code is bounded from above by 0.471.

Proof: Once again, we outline the argument for general
even h and specialize the proof for h = 4 at the last step when
invoking the simple bound for |Dy|. By definition,

(|Bh(n)|

h/2) = [Beul + [Bes | - 4 [Beyy, |

From the previous equation and the convexity of the func-
tion x2, we have

[A2 (\Bh<n>\)2 h
h/2 |Br(n)|
ID| = Z 1B, > > ~
j=1

| A2l |Apjal

where we ignored constants involving h. Since according to
Claim 13 the all-zero vector appears at most | By, (n)|"/? times

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

and all the other vectors appear at most once in D,

[Bi(a+0)[" 5 |D|[Anja| = D\ Dsl[Apja| + Ds|| Apyol
< |Bh((l+ b)|h,/22alog2(%+1) + 2b10g2(h,+1)+alog2(%+1)’

where we used the facts that |4y, /2| < (4 + 1)“ and |D;| <

b logy (541)
(h+1) . Let b: alOgZ(ifL-‘rl)'

can be rewritten as:

|Bu(a+0)|" 5 [Bu(a +b)|"/? 200G 1) 4 g2e om0,

Then, the previous expression

It then follows that |By(a + b)|"/? S 2alog2(5+1) To see
why this bound holds, note that either (i) max {22“ log (5+1)
[Bu(a+b)|"/? 201om: (40} (ii)
|Bh(a+b)|h/2 2a10g2(%+1)} _
|Bp,(a + b)|h/2 9alog5(3+1) Therefore, by ignoring constants,

log | Bn(a+b)| « 2 alogy(5+1)
a-+b ~ a-+b

asymptotic rate of a binary B), codes is at most

92alogy(5+1) p

2alog, (241
max 2 gz(z)’

we can write . Consequently, the

2/hlog,(L+1)
logo (2 4+1)

1+ logo (}zz,+1)

For h = 4, this bound reduces to % = 471. |
loga (5)

For h = 4, the entropy bound +H (h) equals .5077, whereas
the bound derived above gives the value .471.

IV. UPPER BOUNDS ON h-MC CODES

Next, we derive an upper bound on the maximum rate of an
h-MC code. To this end, recall that C), C {0,1}" is a h-prefix
code if for any two distinct string subsets of sizes h < h, say
81,85 C Cpy My(S1) # My(Ss). Let CM9 (n) be the size
of the largest h-MC code of codelength n and suppose that
C'f(Lp) (n) is the size of the largest h-prefix code of codelength n.
Formally, we use RELMC)
rate of an h-MC code,

(MC) 1. 1 (MC)
R," = nhj& sup log |C),™ 7/ (n)|.

to denote the maximum asymptotic

We show next that when h is an even constant, RﬁlMC) <1-
% 14}%
on the case h = 2 before considering the general result.

The next lemma states that in order to derive an upper bound
on the quantity RgMC), we can limit our attention to prefix
codes.

Lemma 15: For any e > 0, there exists an n. > 1 such that

for all n > n., one has

). Once again, for simplicity of exposition, we focus

1 1
~log |04 (n)] < ~1og |G} ()] + €.

Proof: To simplify the discussion, we focus on the

case h = 2; the extension to h > 2 is straightforward.
For w € [n], let Céw)(n) C C}(LMC) (n) denote the set of
codestrings of weight w in CQ(MC)(n). By the pigeon-hole

principle, there exists a w* € [n]| such that |C§w*)(n)| >
%|CQ(MC) (n)|. Given two codestrings in C’Q(w* (n), say S =
{s1,s82}, we can easily determine M, (S). Assuming that only
the prefix composition set is known, the set M(S) can be
derived as follows. To determine the compositions of suffixes
of length ¢, for ¢ € [n], we subtract from w* the number of

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

ones in each prefix of length n — 7. For instance, suppose
the compositions of prefixes of length n — 1 of si,so are

{{1“]*,0"*“)**1}, {1w" -1, OTHU*}}. Then, the length-1 suf-
fixes of s1, 82 are {{1}, {0}} This implies that n|C§p) (n)| >

n|C§ ()| > 1G58 (n)], which establishes the desired
result.

Let us first examine the case h = 2. For any s € Cép) (n),
we write s as s = ab € Cép) (n), where a € {0,1}*" equals
the prefix of an symbols of s while b equals the suffix of
(1 — a)n symbols of s. We represent the codestrings in the
codebook using a bipartite graph G = (Vp, Vg, E) with

Vp = {a €{0,1}*":Js € Cép)(n) s.t.s= ab} ., (D

Vs = {b € {0,131 . 3 ¢ Cép)(n) s.t. s = ab}.
(®)

An edge (v1,v2) € E, with v; € Vp and va € Vg, connects an
admissible prefix (vertex in Vp) to an admissible suffix (vertex
in Vs). Hence, an edge corresponds to a codestring in Cz(p) and
vice versa. Furthermore, let w € {0,1,...,an} = [[an + 1]].

We also find it useful to work with another bipartite graph
G = (Vl(gw), Vs(w), E()) whose edges are a subset of the
edges in E. The partition of the vertices V() = (V") v{*))
is such that v; € VI(Dw) if and only if the prefix a € {0,1}"
represented by the vertex v; in G has weight w, and in
addition, vy € Véw) if and only if there exists a v; € Vlﬁl“
such that (vy,v2) € E. The set E(") C FE is such that
(v1,v2) € E®) if v, € VF(,w) and vy € Vs(w).

Lemma 16: The graph G(*) cannot contain a cycle of length
four.

Proof: Suppose to the contrary that G(*) contains a
4-cycle, say (aijby,asbg,aibg,asby). Then, M,(a;b;) U
My (azbs) = M,(azby) U M, (aibs). To verify the above
claim, note that all prefixes of length an have to be the same
since My, (a1) UM, (ag) = Mp(az) UM, (ar). Furthermore,
since wt(a;) = wt(ag) it is straightforward to verify that the
compositions of all prefixes of length longer than an are the
same in M, (a;b1)UM,(azbs) and M, (azby)UM,(a;bs).
This contradicts the fact that the prefixes and suffixes involved
correspond to a 2-prefix code. |

We are now ready to prove our upper bound on h-prefix
codes for h = 2.

Theorem 17: For any € > 0, there exists an n, > 0 such
that for all n > n, one has = log IC$P ()| < 2te

Proof: In order to bound the number of codestrings in
C’Q(p) (n), we will upper bound the number of edges in the graph
G = (Vp,Vs, E). To this end, we consider the maximum
number of edges in the graph G(*) = (Vlg“’>,V§“’>,E<w>).
It follows from the pigeonhole principle that there exists
a w* € [[an + 1]] such that E(“}(*))‘ > - Thus,

|E|
%log‘E(“’(*))’ can be approximated by %log‘C’Q(p) (n)’ for

n sufficiently large.
According to Lemma 16, G@™) cannot contain a 4-cycle.
It is known [44] that the number of edges in an m; X mo

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 9

bipartite graph without cycles of length 4 is at most
1
mims + my + ma. ©)
Letting an = % in (9) so that m; = 27/3 and my = 227/3
gives

1 . 2 1
—log‘E(w(>)‘ <_+0<_>.
n 3 n

|
The next corollary follows from Theorem 17 and Lemma 15.
Corollary 18: A 2-prefix code must have a rate bounded as
R(MC) < 2
2 =3
Next, we consider the extension to the case where h > 2
based on the same approach. Let C}(Lp) (n) denote an h-prefix
code of length n. As before, we represent our codestrings using
a graph G = (Vlgh), Vs(h’), E™) as defined in (7) and (8),
except that (a,b) € E™ if and only if (a,b) € C,(Lp) (n).
As before, we will also work with the bipartite graph G(*-") =
(Vlﬁ““h’, Vs(w’h),E(“”h)) C G, which is restricted to only
use prefixes of weight w. Lemma 19 is a natural generalization
of Lemma 16.
Lemma 19: The graph G(*>") cannot contain a 2h-cycle.
Proof: Suppose to the contrary that the statement in the
lemma does not hold and that (a;,b;), (b1,a2), (az,bs),
.., (an,bp), (bp,a;) forms a 2h-cycle. Then, we have
aiby, asbs, asbs, ..., ayb, € C}(Lp) (n), as well as

bias, boas,bsas,...,bpa; € C,(Lp) (n). Since all the prefixes
in G have weight w, the claim follows. [|
Theorem 20: For odd h, RELMC) < BH For even h,

RMY <11 (1%)'

Proof: The result follows using the same arguments as
those described in Theorem 17 and Corollary 18 by noting
that the maximum number of edges in a mj X mso bipartite
graph that does not contain a cycle of length 2/ is at most
(mlmg)hﬂh 4+ m1 + mo when h is odd [44]. For the

case when h is even, the maximum number of edges equals
k+2 1

my?F m2 +mq +ma [44].2]

As a final note, we observe that the work in [27] and [28]
also considered the case of nonbinary B}, codes for h = 2. The
main result is that for a large enough alphabet, the maximum
asymptotic rate of nonbinary By codes is at most % Fur-
thermore, graph-theoretic methods have used in establishing

related bounds for separable codes, reported in [32].

V. A BRIEF DESCRIPTION OF ERROR MODELS
AND ERROR-CORRECTION

The MS/MS readout technique is error-prone, and not all
masses of prefixes and suffixes are measured or reported.
Furthermore, polymer fragmentation causes the loss of some
atoms and creates errors in the actual mass values. Another
type of error occurs when fragmentation fails, in which case
both a prefix and suffix of complementary length are missing.
A useful assumption for error-correction that we follow is that
one can actually determine the length of the prefixes/suffixes

2Note that the result in our preprint [45] contains an error on page 4. The
assertion that the lower and upper bound are asymptotically equal is incorrect.

based on their masses. This is possible if the masses of Os and
1s differ significantly (for example, if the masses of the 1 or 0
molecules differ by at least n) or if other design criteria are
met.

If at most ¢, prefix compositions are erased (missing), and
at most ts suffix compositions are erased (missing), then one
needs to correct not more than 2 min {¢,,¢,} erasures in the
prefix (suffix) string, each occurring in a contiguous burst
of length at least two. We show next that one can employ
simple one-step or two-step error-control coding approaches
to handle missing prefixes/suffixes or instead resort to the use
of integrals of strings [11].

We start with a scheme that can correct up to ¢ missing
prefix-suffix composition errors. Recall that the B;, codebook
Sh(n), described in Sections II and III, can be constructed
using the columns of a parity-check matrix of a code with
minimum Hamming distance d > 2h + 1. The idea behind
our error-correction technique is to ensure that the real-valued
sum of every h-string subset of the code is an error-tolerant
codestring. A solution to this problem was proposed in [41]
for the purpose of designing signature codes for a noisy
MAC (i.e., codes capable of correcting errors in the syndrome
of a received word). It consists of encoding the columns
of a parity-check matrix H**™, capable of correcting h
substitution errors, using a linear binary code that can correct
L%J substitution errors. Note that the parameter ¢ can be
chosen independently from the parameter h as long as L%J <
k < n. For encoding purposes, the authors suggest using
two binary BCH codes, so that H is the parity check matrix
of a BCH code of designed distance > 2h + 1, while the
parity-check matrix used to introduce error-control redundancy
to the columns of H is also chosen according to a BCH code
with dimension k, length n and redundancy not exceeding
|£] log(n+1), capable of correcting at least | 5| substitution
errors. Clearly, the only difference is that in our setting,
we encounter erasures in the coded strings (the augmented
columns), and wish to handle erasures. Note also that this
construction, as pointed out by the authors, does not fully
exploit the fact that addition is performed over the reals and
not over the field FF».

In [41], one starts with finding the smallest prime p > h,
and using a linear code over [F, (e.g., a Reed-Solomon code
of length p — 1) for the syndrome error-control redundancy.
The dimension of the latter code equals n, and it is required
that the code be able to correct ¢ substitution errors over the
field IF,. Since the redundancy is nonbinary, each symbol of
the parity-check string is converted into a string of length
log(p + 1), representing the binary expansion of the symbol
over [F,. The binary expansions are stacked on top of each
other according to the given parity-check string. The inter-
esting observation is that, from the sum of the binary strings
over the reals, one can clearly obtain the binary expansion
of the symbols in the sum, and then generate the residues
modulo p of the elements of the string to obtain the redundancy
information needed for decoding. The obtained code is linear.

Henceforth, we use the value N to denote the length
of the uniquely reconstructable strings h-MC with added
error-control redundancy. It is not to be confused with the

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

parameter N from Section III as this particular notation is
reused to avoid clutter. Also, as before, we let Si(n) be a
binary B), code constructed using the parity-check matrix of
a binary code with minimum Hamming distance > 2h + 1;
to add the syndrome redundancy, we use a BCH code with
appropriate parameters. The main observation is that due to our
encoding method, which uses the complementation/bit flipping
procedure, we require an unequal error-protection scheme.
Recall that the substring r used in the construction described in
Section IIT is the indicator vector for substring (of length \/n
bits) flips. Errors in the r substring may clearly cause a burst
of “complementation errors” due to the fact that r indicates
if a string or its complement should be used. There are
two approaches one can follow by either encoding the string
to handle a larger number of erasures independent on their
location (the One-Step procedure) or by adding specialized
redundancy to the r string (the Two-Step procedure).

The One-Step encoding method proceeds as follows:

o Each string s € Si(n) is encoded using a BCH code
into an intermediary string s’ of length m, capable of
correcting t(y/m + 1) erasures. The redundancy required
is at most [£](y/m + 1)log(m +1).

o The intermediary string s’ of length m is subse-
quently encoded via the balancing procedure described
in Section III. The encoded balanced string has length N
and belongs to a h-MC code capable of correcting up to
t composition erasures; here, N = m + %\/E, which is
at most n + [£](y/m + 1)log(m + 1) + LL/m; N can
be further upper-bounded by

n+ %](\/54- 1)logn + g\/ﬁ+en\/ﬁ

X ([%—l 1ogn + g) + ’—%] 671,7
where
__ [51(/m + 1)log(m + 1)
" 2n
and
5, — Llv/m + Dlog(m + 1)

As either the partial prefix-sum or the partial suffix-sum string
has < ¢(y/m+1) erasures, the binary sum of the input strings
can be recovered correctly. The decoding procedure for strings
involved in the sum is identical to the one as described in
Section III.

We observed in the context of the One-Step scheme that
errors in the substring r, encoding information about which
blocks are complemented, cause blocks of errors in the global
string. Each erasure in r results in y/m additional erasures,
where m is the length of the (approximately) balanced sub-
strings. In order to overcome this issue, one can use unequal
error-correction schemes that ensure that the binary sum of the
r substring components across the input strings can be recov-
ered independently from the rest of the string. The correctly
reconstructed binary r sum can then be used for subsequent
decoding of the complete collection of input strings.

As before, let Sp(n) be a binary By, code constructed using
the parity-check matrix of a code with minimum Hamming

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

distance > 2h + 1 (say, a BCH code). Furthermore, let NV
denote the overall length of the h-MC codestrings with added
redundancy for mass error-correction. Encoding is performed
as follows:

o Each string s € S,(n) is encoded into an intermediary
strings s’ of length m; capable of correcting ¢ erasures,
using a BCH code. The redundancy is at most ¢ log(mq +
1), and

4
mi < n+ (51 log(mi + 1).

o Each intermediary string s’ of length m is encoded into a
Dyck string using the procedure described in Section III,
to arrive at a second intermediary string s” of length ms,
where my = my + 1L, /my.

o The substring r of the intermediary string s” is encoded
into a codestring rr’ of total length mg, capable of
correcting ¢ erasures. Let my = mg3 — /m1 denote the
length of r'. It is easy to see that my < [£]log(ms+1).

o Since the string has to be balanced, r' = r{rj...77,,
is converted into z = 77’1191 ...y, 17" m,, Where
'y =1—rl

o The balanced redundancy z is appended to the r substring
of the intermediary string s”. Also, a bit 1 is added to
the prefix of 1s and a bit 0 is appended to the suffix of
0s to preserve the Dyck property of the string.

The length of the coded string equals N = m; + %,/ml +
2(mg — /m1) + 2, and upper-bounded in terms of the length
n as

o T3]0+) + 5 VAL+ w3) + 5] Qogn+ pn)

+20, +2,

where

[5]log(mi +1) +1

Hn =)
n
 T4]tog0my +1)
n — 2n b
and
0 — tlog(ms +1)+1
n —

\/n + [log(my + 1).

Erasures/errors caused in one mass may result in mul-
tiple errors, thereby leading to errors in the reconstructed
real-valued sum of the strings. One simple means to mitigate
this problem is to use integrals (i.e., running sums) of bits,
in which case the errors cancel. Without loss of generality,
suppose that ¢, < t,. In this case, it is always possible for
the errors in the suffix string to be such that we receive
no additional information by considering both the prefix and
suffix string, and so the problem at hand becomes to recover
s from a set of at most n — ¢, prefix compositions.

Claim 21: Suppose that C(n,d) C F5 is a code with
minimum Hamming distance d = min{?,, s} +1. Let s € F}
and fix wi(s) = wp. Let M, (s) be the result of removing t,
compositions from M, (s), and ¢, compositions from M(s).
Then, we can recover s = 5155 ...5, € {0,1}" from M,(s)

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 11

provided that

mod 2) (s1 + s2 +s3 mod 2)
mod 2) € C(n,d).

(s1) (s1+ 52
c(s1+s2+ 4 sy

Proof: ~ Without loss of generality, assume that ¢, =
min{t,,ts}. The result follows since for ¢ € [n] the value of
the i-th component in the string (s1) (s1 + s2 mod 2) (s1 +
s2+83 mod2) ... (s1+82+ -+ s, mod2) € C(n,d)
can be recovered by summing up the number of 1s (modulo
2) in the ¢-th prefix composition. The claim then follows since
we know the lengths of the compositions that are missing from
the set Mp(s) and can hence recover the string (s1) (1 + s2
mod 2) (s1+s2+s3 mod 2) ... (s1+82+- -+, mod 2),
where s € [F5, from which s can be then determined uniquely.
Note that for the case that t; = min{¢,, ¢, }, since the weight
of s is known, a missing composition of a prefix of length 4
can be recovered from the known composition of a suffix of
length n — i. Thus, t, + t, missing compositions in M,(s)
can be recovered from M,(s) and wy. This concludes the
proof. []

Using the result of Claim 21, we can encode our mixtures

using the following approach:

o Givenastrings € {0,1}", construct I(s) = (s1) (s1+52
mod 2) (s1+82+s3 mod2) ... (s1+82+- -+ 8,
mod 2) = I(s)11(8)2...1(S)n.

o Encode I(s) using a BCH code such that the resulting
string I(s)R’(s), where R'(s) is the string of redundancy
bits, has length m and can correct L%J erasures. Observe
that I(s)R'(s) does not satisfy the condition in Claim 21.

o Given R'(s), construct I(s)R(s) as follows. First, set
R(s); = R'(s)1 + I(s), (modulo 2 addition). Balance
the string by setting R(s)s = 1 — R(s);. Next, set
s14+ S22+ -+ sy + R(s)1 + R(s)2 + R(s)s = R'(s)q,
which results in R(s)3 = I(s),,+1+R’(s). Similarly, set
R(S)Qi = 1—R(S)2i_1, and R(S)QH_l = R/(S)i—l—i—f—I(S)n
for all i € [m —n — 1], where m,n are as described in
the encoding scheme of Section III.

o Encode s as sR(s).

To apply the above procedure, we need to be able to partition
the prefix and suffix compositions of the sR(s). This is easily
achieved when sR(s) is a substring of a Dyck string such that
the composition of the prefix preceding the sR(s)-substring
in the Dyck string is known. In particular, since the substring
sR(s) occurs after the runlength of 1s in the construction of
Section III, the prefix compositions of the constructed string
sR(s) can be recovered by subtracting the weight of the
leading runlength of 1s from the corresponding compositions.
By construction, sR(s) satisfies the conditions of Claim 21.
Since each code was constructed using a BCH code, the binary
sum of multiple strings constructed using this technique also
satisfies the conditions in Claim 21.

VI. OPEN PROBLEMS

Many combinatorial and coding-theoretic problems related
to string reconstruction from prefix-suffix compositions remain
open. A sampling is listed below.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

Our techniques for converting a binary string of length
n into strings that are both Dyck and belong to a B,
codebook have suboptimal redundancy. We seek methods
that can reduce our overhead and at the same time, offer
low encoding and decoding complexity.

In practice, one often encounters nonbinary alphabets,
as polymers can be synthesized to have highly different
masses and chemical properties. The question remains
to generalize our approach for nonbinary alphabets. Fur-
thermore, it is of interest to investigate such coding
techniques for strings that have some form of balanced
symbol contents or masses confined to a certain interval.
It remains an open question to characterize all the missing
mass errors that can be corrected by simply utilizing the
Dyck, By, properties of strings and the presence of both
prefix and suffix masses.

At this point, we have no efficient means for correcting
mass reducing (or, mass increasing) substitution errors
in our mixtures. A solution to this problem can have
interesting and important implications in the field of
polymer-based data storage.

REFERENCES

A. Al Ouahabi, J.-A. Amalian, L. Charles, and J.-F. Lutz, “Mass spec-
trometry sequencing of long digital polymers facilitated by programmed
inter-byte fragmentation,” Nature Commun., vol. 8, no. 1, pp. 1-8,
Dec. 2017.

N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, no. 7435,
p- 77, 2013.

R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angew. Chem. Int. Ed., vol. 54, no. 8, pp. 2552-2555,
2015.

S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, ‘“Portable and
error-free DNA-based data storage,” Sci. Rep., vol. 7, no. 1, pp. 1-6,
Dec. 2017.

H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable,
random-access DNA-based storage system,” Sci. Rep., vol. 5, pp. 1-10,
Sep. 2015.

K. Launay et al., “Precise alkoxyamine design to enable automated
tandem mass spectrometry sequencing of digital poly(phosphodiester)s,”
Angew. Chem. Int. Ed., vol. 60, no. 2, pp. 917-926, Jan. 2021.

S. K. Tabatabaei et al., “DNA punch cards for storing data on native
DNA sequences via enzymatic nicking,” Nature Commun., vol. 11, no. 1,
pp- 1-10, Dec. 2020.

C. Pan, S. K. Tabatabaei, S. M. H. Tabatabaei Yazdi, A. G. Hernandez,
C. M. Schroeder, and O. Milenkovic, “Rewritable two-dimensional
DNA-based data storage with machine learning reconstruction,” Nature
Commun., vol. 13, no. 1, Dec. 2022.

H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125-3146,
Jun. 2016.

R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” IEEE Trans. Inf. Theory, vol. 63, no. 8,
pp- 4982-4995, Aug. 2017.

R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for deletion and adjacent transposition correction,” IEEE Trans.
Inf. Theory, vol. 64, no. 4, pp. 2550-2570, Apr. 2018.

R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Trans. Inf. Theory, vol. 65, no. 12,
pp. 7682-7696, Dec. 2019.

R. Gabrys, H. S. Dau, C. J. Colbourn, and O. Milenkovic, “Set-codes
with small intersections and small discrepancies,” SIAM J. Discrete
Math., vol. 34, no. 2, pp. 1148-1171, Jan. 2020.

A. Agarwal, O. Milenkovic, S. Pattabiraman, and J. Ribeiro, “Group
testing with runlength constraints for topological molecular storage,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 132-137.

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]
[31]

[32]

[33]

[34]

(35]
[36]
[37]

[38]

[39]

M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace
reconstruction,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6084-6103,
May 2020.

S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms,” IEEE Trans.
Inf. Theory, vol. 63, no. 8, pp. 4996-5010, Aug. 2017.

N. Raviv, M. Schwartz, and E. Yaakobi, “Rank-modulation codes for
DNA storage with shotgun sequencing,” IEEE Trans. Inf. Theory,
vol. 65, no. 1, pp. 50-64, Jan. 2019.

M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. 1. Fabregas,
“Coding for deletion channels with multiple traces,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1372-1376.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based
correction of substitutions in indexed sets,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2019, pp. 757-761.

Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of DNA
sequence profiles for practical values of read lengths,” IEEE Trans. Inf.
Theory, vol. 63, no. 11, pp. 7166-7177, Nov. 2017.

I. Shomorony and R. Heckel, “DNA-based storage: Models and funda-
mental limits,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3675-3689,
Jun. 2021.

J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” 2014, arXiv:1403.2439.
S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Reconstruction and
error-correction codes for polymer-based data storage,” in Proc. IEEE
Inf. Theory Workshop (ITW), Visby, Sweden, Aug. 2019, pp. 1-5.

R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction
codes for polymer-based data storage,” in Proc. IEEE Int. Symp. Inf.
Theory (I1SIT), Los Angeles, CA, USA, Jun. 2020, pp. 25-30.

S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Coding for polymer-
based data storage,” 2020, arXiv:2003.02121.

B. Lindstrom, “Determining subsets by unramified experiments,” in
A Survey of Statistical Design and Linear Models. Amsterdam, The
Netherlands: North Holland, 1975.

B. Lindstrom, “Determination of two vectors from the sum,” J. Combi-
natory Theory, vol. 6, no. 4, pp. 402-407, 1969.

B. Lindstrom, “On B2-sequences of vectors,” J. Number Theory, vol. 4,
no. 3, pp. 261-265, Jun. 1972.

H. V. Tilborg, “An upper bound for codes in a two-access binary
erasure channel (corresp.),” IEEE Trans. Inf. Theory, vol. IT-24, no. 1,
pp. 112-116, Jan. 1978.

A. G. D’yachkov and V. V. Rykov, “Bounds on the length of disjunctive
codes,” Problemy Peredachi Inf., vol. 18, no. 3, pp. 7-13, 1982.

A. G. D’yachkov, “Lectures on designing screening experiments,” 2014,
arXiv:1401.7505.

A. D’yachkov, N. Polyanskii, V. Shchukin, and I. Vorobyev, “Separable
codes for the symmetric multiple-access channel,” IEEE Trans. Inf.
Theory, vol. 65, no. 6, pp. 3738-3750, Jun. 2019.

A. D’yachkov and V. Rykov, “On a lower bound to the length of B4-
codes,” Problems Control Inf. Theory, vol. 10, no. 5, pp. 301-307, 1981.
S. I. Bross and I. F. Blake, “Upper bound for uniquely decodable codes
in a binary input N-user adder channel,” IEEE Trans. Inf. Theory, vol. 44,
no. 1, pp. 334-340, Jan. 1998.

Y. Gu, ‘“Zero-error communication
arXiv:1809.07364.

H. Halberstam and K. F. Roth, Sequences. Berlin, Germany: Springer,
2012.

K. O’Bryant, “A complete annotated bibliography of work related to
Sidon sequences,” 2004, arXiv:math/0407117.

J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377-385,
May 1938.

G. Cohen, S. Litsyn, and G. Zémor, “Binary B2-sequences : A new upper
bound,” J. Combinat. Theory A, vol. 94, no. 1, pp. 152-155, Apr. 2001.

over adder MAC,” 2018,

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

[40] V. Grebinski and G. Kucherov, “Optimal reconstruction of graphs
under the additive model,” Algorithmica, vol. 28, no. 1, pp. 104-124,
Sep. 2000.

V. Gritsenko, G. Kabatiansky, V. Lebedev, and A. Maevskiy, “On codes
for multiple access adder channel with noise and feedback,” in Proc.
9th Int. Workshop Coding Cryptogr., 2015, pp. 1-8.

D. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory, vol. IT-
32, no. 1, pp. 51-53, Jan. 1986.

B. Lindstrom, “On a combinatory detection problem 1,” 1. Magyar Tud.
Akad. Mat. Kutaté Int. Kozl, vol. 9, pp. 195-207, Sep. 1964.

A. Naor and J. Verstraéte, “A note on bipartite graphs without 2K-
cycles,” Combinatorics Probab. Comput., vol. 14, no. 5, pp. 845-849,
2005.

R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstructing mix-
tures of coded strings from prefix and suffix compositions,” in Proc.
IEEE Inf. Theory Workshop (ITW), Apr. 2021, pp. 1-5.

[41]

[42]
[43]

[44]

[45]

Ryan Gabrys (Member, IEEE) received the B.S. degree in mathematics and
computer science from the University of Illinois at Urbana—Champaing in
2005, and the Ph.D. degree in electrical engineering from the University of
California, Los Angeles, in 2014. He is currently a Scientist jointly affiliated
with the Naval Information Warfare Center and the California Institute for
Telecommunications and Information Technology (Calit2) at the University
of California, San Diego. His research interests include theoretical computer
science and electrical engineering, including coding theory, combinatorics,
and communication theory.

Srilakshmi Pattabiraman (Student Member, IEEE) received the B.Tech.
degree in instrumentation and control engineering from the National Institute
of Technology, Trichy, India, in 2015, the master’s degree in electrical and
computer engineering from The University of Texas at Austin in December
2017, and the Ph.D. degree in electrical and computer engineering from
the University of Illinois Urbana—Champaign, in December 2021. She is
drawn toward mathematical challenges in combinatorics and coding theory,
information theory, detection and estimation theory, and statistical learning
theory.

Olgica Milenkovic (Fellow, IEEE) received the M.Sc. degree in mathemat-
ics and the Ph.D. degree in electrical engineering from the University of
Michigan, Ann Arbor, in 2001 and 2002, respectively. She is the Franklin
W. Woeltge Professor of electrical and computer engineering with the Uni-
versity of Illinois Urbana—Champaign (UIUC). Her scholarly contributions
have been recognized by multiple awards, including the NSF Faculty Early
Career Development (CAREER) Award, the DARPA Young Faculty Award,
the Deans Excellence in Research Award, and several Best Paper Awards.
In 2013, she was elected a UIUC Center for Advanced Study Associate and
a Willett Scholar, while in 2015, she was a elected Distinguished Lecturer
of the Information Theory Society. She was an Associate Editor of the
IEEE TRANSACTIONS OF COMMUNICATIONS, the IEEE TRANSACTIONS
ON SIGNAL PROCESSING, the IEEE TRANSACTIONS ON INFORMATION
THEORY, and the IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL
AND MULTI-SCALE COMMUNICATIONS. In 2009 and 2020, she was the
Guest Editor in Chief of special issues of the IEEE TRANSACTIONS ON
INFORMATION THEORY.

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

