
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023 3

Reconstruction of Sets of Strings From

Prefix/Suffix Compositions

Ryan Gabrys , Member, IEEE, Srilakshmi Pattabiraman , Student Member, IEEE,

and Olgica Milenkovic , Fellow, IEEE

Abstract— The problem of reconstructing strings from sub-
string information has found many applications due to its impor-
tance in genomic data sequencing and DNA- and polymer-based
data storage. One important paradigm requires reconstructing
mixtures of strings based on the union of compositions of
their prefixes and suffixes, generated by mass spectrometry
devices. We describe new coding methods that allow for unique
joint reconstruction of subsets of strings selected from a code
and provide upper and lower bounds on the asymptotic rate
of the underlying codebooks. Our code constructions combine
properties of binary Bh and Dyck strings that can be extended to
accommodate missing substrings in the pool. As auxiliary results,
we present simple entropy upper bounds for binary Bh codes
and an improved bound for h = 4, and also describe errors that
arise during mass spectrometry.

Index Terms— Binary Bh codes, Dyck strings, polymer-based
data storage, unique string reconstruction.

I. INTRODUCTION

MODERN digital data storage systems are facing fun-

damental density limits. To address the emerging

needs for large-volume information archiving, it is of impor-

tance to identify new recording media that operate at the

nanoscale level. Recently proposed DNA-based data storage

paradigms [1], [2], [3], [4], [5], [6], [7], [8] use macromole-

cules as storage media and offer storage densities that are

orders of magnitude higher than those of flash and optical

recorders. However, these systems often come with a pro-

hibitively high cost as well as slow and error-prone read/write

platforms. To address some of these problems, several new

coding solutions that aid in string assembly, dealing with

asymmetries in the readout channel and reconciliation of

multiple string evidence sets were introduced in [9], [10], [11],

[12], [13], [14], and [15] (see also the related and follow-up

lines of work [16], [17], [18], [19], [20], [21]).

As an alternative to DNA-based data storage systems,

polymer-based data storage systems [1], [6] are particularly

Manuscript received 4 October 2021; revised 20 February 2022, 15 July
2022, 29 September 2022, and 4 November 2022; accepted 7 November 2022.
Date of publication 14 November 2022; date of current version 16 January
2023. The work was funded by the DARPA Molecular Informatics Program,
the NSF portion of funding from the SemiSynBio program and the NSF grants
CIF 2008125 and 1618366. An earlier version of this paper was presented in
part at the Information Theory Workshop (ITW) 2020, Riva del Garda, Italy
[DOI: 10.1109/ITW46852.2021.9457660]. The associate editor coordinating
the review of this article and approving it for publication was E. Rosnes.
(Corresponding author: Olgica Milenkovic.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Illinois Urbana–Champaign, Urbana, IL 61801 USA
(e-mail: ryan.gabrys@gmail.com; sp16@illinois.edu; milenkov@illinois.edu).

Digital Object Identifier 10.1109/TCOMM.2022.3222341

attractive due to their low synthesis cost [1]. In such platforms,

two molecules of significantly different masses are synthesized

to represent the bits 0 and 1, respectively. The molecules

are used as building blocks in the sequential process of

recording user-defined information. The obtained synthetic

polymers are read by tandem mass (MS/MS) spectrometers.

A mass spectrometer breaks multiple copies of the polymer

uniformly at random, thereby creating prefixes and suffixes

of the string of various lengths. The readout system outputs

masses of these prefixes and suffixes. If the masses of all

prefixes from a single string are accounted for and error-free,

reconstruction is straightforward. But if multiple strings are

read simultaneously and the masses of prefixes and suffixes

of the same length are confusable, the problem becomes

significantly more complicated. It is currently not known

which combinations of coded binary strings can be distin-

guished from each other based on prefix-sufix masses and for

which code rates it is possible to perform unique multistring

reconstruction.

In a related research direction, the problem of reconstruct-

ing a string from an abstraction of its MS/MS sequencer

output was considered in [22], under the name string recon-

struction from substring composition multisets. The com-

position of a binary string is the number of 0s and the

number of 1s in the string. For example, the composition

of 001 equals 0211, indicating that 001 contains two 0s and

one 1, without revealing the order of the bits. The substring

composition multiset C(s) of a string s is the multiset

of compositions of all possible substrings of the string s.

As an illustration, the set of all substrings of 001 equals

{0, 0, 1, 00, 01, 001}, and the substring composition multi-

set of 001 equals {01, 01, 11, 02, 0111, 0211}. Two modeling

assumptions are used for the purpose of rigorous mathematical

analysis of this reconstruction problem [22], [23], [24], [25]:

a) Based on MS/MS measurements, one can uniquely infer

the composition of a polymer substring from its mass; and

b) When a polymer is broken down for mass spectrometry

analysis, the masses of all its substrings are observed with

identical frequencies.

Under the above modeling assumptions, the authors of [22]

established that strings are uniquely reconstructable up to

reversal, provided that the length of the strings n is ≤ 7 or

one less than a prime or one less than twice a prime. The

works [23], [24], [25] demonstrated that at most logarithmic

code redundancy can ensure unique reconstruction of single

strings drawn from codebooks based on Bertrand-Catalan

strings and Reed-Solomon-like redundancy.

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4028-5309
https://orcid.org/0000-0002-1871-4912

4 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

However, the assumption that MS/MS output measurements

include masses of all substrings is not true in practice,

as breaking the string in one rather than two locations is easier

to perform. In the former case, one is presented with masses of

the prefixes and suffixes. Thus, for the string 001, one would

observe the multiset {01,��0
1, 11, 02, 0111, 0211}. Furthermore,

in practice, the contents of multiple strings are often read

simultaneously, in which case it is not known how to associate

prefixes and suffixes with their corresponding strings.

The problem addressed in this work may be formally stated

as follows. Given h ≥ 2, where h ∈ , we seek the size

of the largest code C(h) of binary strings of a fixed length n
with a property that we refer to as h-unique reconstructability.

In this setting, for any subcollection s1, s2, . . . , sh̄ of h̄ ≤ h
distinct strings from C(h), one is presented with the multiset

union M(s1) ∪ M(s2) ∪ · · · ∪ M(sh̄) of the prefix-suffix

composition multisets, M(si), i = 1, . . . , h̄, of the individual

strings si, i = 1, . . . , h̄. The prefix-suffix composition multiset

M(s) of a string s captures the weights of prefixes and suffixes

of the string s of all lengths. Unique reconstruction refers to

the property of being able to distinguish all possible h̄-unions

and nonambiguously determine the identity of the strings in

the collection. Our main result provides a construction for

C(h) that asymptotically approaches a rate of 1/h, under

certain mild parameter constraints. The proofs of our results

rely on the use of Dyck and binary Bh strings. For the latter,

constructions and bounds pertaining to h = 2 and h = n
have been investigated in-depth [26], [27], [28], [29], [30],

[31], [32], and we provide new nontrivial results for h = 4 that

improve simple entropy bounds also reported in this work (see

also [32], [33], [34], [35] for bounds corresponding to some

special parameter choices). We also introduce some simple

schemes for combating missing prefix-suffix errors in the pool.

II. PROBLEM STATEMENT AND PRELIMINARIES

All logarithms are taken with respect to base 2, unless

stated otherwise. The symbol [n] is used to denote the

set {1, 2, . . . , n}, while [[n]] is used to denote the set

{0, 1, . . . , n}. A collection of i contiguous 0s in a string is,

as already noted, represented by 0i. A similar notation is used

for 1s. We also find the following notation relevant to our

subsequent exposition.

Let s = s1 . . . sn ∈ {0, 1}n be a binary string of length

n and let M(s) denote the composition multiset of all pre-

fixes and suffixes of s. For example, if s = 01101, then,

M(s) =
{

0, 01, 012, 0212, 0213, 1, 01, 012, 013, 0213
}

. We

denote the set of prefix and suffix compositions of s by Mp(s)
and Ms(s), respectively. For the above string, Mp(s) =
{0, 01, 012, 0212, 0213} and Ms(s) = {1, 01, 012, 013, 0213}.

We seek to design a binary codebook C(n, h) ⊆ {0, 1}n

so that for any collection of distinct strings s1, s2, . . . , sh̄ ∈
C(n, h) with h̄ ≤ h, the multiset

M(s1) ∪M(s2) ∪ · · · ∪M(sh̄) (1)

uniquely determines the individual strings in the collec-

tion. We refer to a code with such a property as an

h-multicomposition code, or an h-MC code. For simplicity,

we often use M(S) to describe the multicomposition set for

S = {s1, s2, . . . , sh}. We also say that Cp(n, h) ⊆ {0, 1}n is

a h-prefix code if for any two distinct sets of size ≤ h, say

S1, S2 ⊆ Cp, Mp(S1) 6= Mp(S2).
The next claim establishes a useful connection between our

problem and the related problem of determining binary strings

based on their real-valued sum.

Claim 1: Given Mp(s1)∪Mp(s2)∪· · ·∪Mp(sh), one can

determine s1 + s2 + · · · + sh ∈ n.

Proof: We prove the result for h = 2 as the generalization

is straightforward. Suppose that s1, s2 ∈ {0, 1}n. Then, given

Mp(s1) ∪Mp(s2), let ni denote the total number of ones in

the two compositions of prefixes of length i in the multiset

(i.e., sum of their weights). It is straightforward to see that

s1 + s2 = t1t2 . . . tn, where ti = ni − ni−1, with n0 = 0.

Example 2: Consider the strings s1 = 110100 and s2 =
101010, for which we have s1 + s2 = 211110. As before,

s1+s2 denotes addition over the reals, while (s1+s2)i denotes

the ith symbol in the string. Clearly, (s1 + s2)1 = 2, which

we obtained by summing up the compositions of prefixes of

length one, i.e., 1 + 1 = 2. It is also easy to see that (s1 +
s2)2 = (s1 + s2)

2
1 − (s1 + s2)1, where (s1 + s2)

2
1 denotes the

sum of the weights of the first two symbols, or alternatively,

the sum of the weights of the prefixes of length two of the

strings s1, s2. A straightforward calculation reveals that (s1 +
s2)2 = (2 + 1) − 2 = 1. Other values can be determined

similarly. �
The above claim provides a useful connection between our

problem and the problem of designing binary Bh sequences.

A binary Bh sequence is a set Sh(n) of binary strings

of fixed length n such that for any two distinct subsets of

distinct strings in Sh(n), say S = {s1, s2, . . . , sh̄1
} 6= T =

{t1, t2, . . . , th̄2
}, where h̄1, h̄2 ≤ h, one has

h̄1
∑

i=1

si 6=
h̄2
∑

j=1

tj . (2)

Note that although Sh(n) consists only of binary strings,

addition is performed over the reals.

Binary Bh sequences are different from the better-known

Bh and Sidon sequences (sets). A Sidon (Bh) sequence is a

single sequence of integers such that the sums of two elements

(h elements) of the sequence are all distinct [36]. Addition

can be performed over the integers or over finite fields [37],

[38]. To avoid possible confusion with the naming convention,

we henceforth refer to the set Sh(n) ⊆ n as a binary

Bh code of length n. For shorthand, we also refer to any

codestring s ∈ Sh(n) as a binary Bh string.

If S is a Bh sequence over d
2, for some positive integer

d, then it is also a binary Bh code. However, the opposite is

not necessarily true; hence, arguments typically used to derive

upper bounds for Bh sequences do not carry over to binary

Bh codes.

Example 3: Consider the set S2(6) = {110100,
101010, 110010}. It is easy to verify that the sums of pairs

of strings in S2(6)⊂ 6 are distinct. Thus, S2(6) is a binary

B2 code.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 5

However, S′
2(6) = {110100, 101010, 110010, 101100} is

not a binary B2 code since 110100 + 101010 = 110010 +
101100 = 211110. �

Based on Claim 1, it is easy to identify two sufficient

conditions for a collection of binary strings to be an h-MC

code, where h̄ ≤ h.

1) Condition 1: One can recover Mp(s1)∪ · · · ∪Mp(sh̄)
from M(s1) ∪ · · · ∪M(sh̄), for any choice of distinct

codestrings s1, . . . , sh̄; and

2) Condition 2: The codestrings s1, . . . , sh̄ belong to a

binary Bh code Sh(n).

These observations will be used to construct h-MC codes in

Section III. The condition that the codestrings in an MC code

belong to a Bh-code is not necessary. For example, consider

the strings s1 = 011, s2 = 000, s3 = 001, s4 = 010. Then,

s1 + s2 = 011 = s3 + s4, but 012 ∈ M(s1) ∪ M(s2) and

012 6∈ M(s3) ∪M(s4), so that {s1, s2} and {s3, s4} are not

confusable.

We show next that for sufficiently large code lengths, the

maximum rate of an h-MC code is at least 1
h . In comparison,

the best currently known upper bound on the rate of binary

B2 codes is .5753 [39]. For related bounds and bounds for

slightly differently defined binary Bh codes, the reader is

referred to [31], [33], and [40].

III. A CONSTRUCTIVE LOWER BOUND FOR h-MC CODES

We start with a binary Bh code and introduce redundancy

into the underlying strings to ensure that given the multicom-

position set of at most h strings, one can separate the prefixes

from the suffixes. Then, given the set of prefixes, one can use

the same idea behind Claim 1 to recover the sum of the h
codestrings and hence the codestrings themselves.

Let Sh(n) ⊆ n be a binary Bh code. One way to construct

the code Sh(n) is to use the columns of a parity-check

matrix of a linear code with minimum Hamming distance

≥ 2h + 1 [41]. This follows from the simple observation that

no two distinct collections of h distinct columns of a binary

parity-check matrix of a code with dmin ≥ 2h + 1 can have

the same sum modulo 2, and consequently, cannot have the

same real-valued sum either. For such binary codes Sh(n)
of largest size, one can show that the asymptotic code rate

satisfies limn→∞
1
n log |Sh(n)| = 1

h .

For our problem and the underlying approach for solving

it, we also have to make use of Dyck strings.

Definition 4: A string s ∈ N of even length N is a Dyck

string if its weight satisfies wt(s) = N
2 , and for i ∈ [N − 1],

wt(s1s2 . . . si) ≥
⌈

i
2

⌉

.

The approach for generating the binary code C(N, h) ⊆
N is to ensure that: 1) A string s ∈ C(N, h) is a Dyck string;

2) the set C(N, h) is a binary Bh code of length N . The first

property guarantees that the mixtures of prefixes and suffixes

can be partitioned into two sets, one containing all the prefixes

and another containing all the suffixes. The second property

ensures that given the prefix set (or, alternatively, the suffix set)

one can recover the codestrings using the simple observation

that the prefixes uniquely determine the real-valued sum of the

strings in the mixture. We illustrate these observations with an

example.

Example 5: Consider the binary B2 code S2(6) =
{110100, 101010, 110010}. Clearly, all three strings are Dyck

strings as their prefixes of any length contain at least as many

ones as zeros.

Next, write s1 = 110100 and s2 = 101010,

so that M(s1) ∪ M(s2) = {1, 1, 01, 12, 012,
012, 0212, 013, 0213, 0213, 0313, 0313, 0313, 0313,
0312, 0312, 0212, 031, 021, 021, 01, 02, 0, 0}. Since s1 and

s2 are Dyck strings, each of the string prefixes must have

at least as many 1s as 0s. Similarly, each suffix must have

at least as many 0s as 1s. It follows from this observation

that one can easily recover the multiset Mp(s1) ∪Mp(s2) =
{1, 1, 01, 12, 012, 012, 0212, 013, 0213, 0213, 0313, 0313}.
Claim 1 ensures that given Mp(s1) ∪ Mp(s2), one can

determine s1 + s2 = 211110. Since S2(6) is a binary

B2 code, the sum s1 + s2 uniquely determines the strings

s1 and s2. �
The next claim establishes the formal result that if the code

C(N, h) satisfies these two properties, then it is an h-MC

code.

Claim 6: Suppose that C(N, h) is a binary Bh code where

for any s ∈ C(N, h), the defining Dyck property holds. Then,

C(N, h) is an h-MC code.

Proof: Similar to Claim 1, we prove the statement for

h = 2, since the extension for general h is straightforward.

In light of Claim 1, we need to show that the Dyck property

allows us to uniquely recover Mp(s1)∪Mp(s2) from M(s1)∪
M(s2). To see that this is indeed possible, observe that based

on the Dyck property both prefixes of length i in M(s1) ∪
M(s2) have at least d i

2e 1s whereas both suffixes of length i
in M(s1) ∪M(s2) have at most b i

2c 1s.

To maximize the rate of the coding scheme and combine

the two constraints that h-MC strings need to satisfy, we use

two ideas. First, we use Bh binary strings obtained from

appropriate parity-check matrices of binary error-correcting

codes with minimum distance ≥ 2h + 1, parsed into blocks

(substrings) that allow us to tightly control the number of ones

(weights) of the codestrings via balancing. Upon balancing

blocks in each codestring s ∈ Sh(n) we append O(
√

n) bits

of redundancy both to the beginning and to the end of s so

that the resulting string has length N = n +O(
√

n). Second,

rather than work directly with the weights of strings we use the

running digital sums (RDSs). For a binary string s, the RDS

up to coordinate i is defined as R(s)i = 2wt(s1s2 . . . si) − i.
If the subscript i is omitted, then R(s) = 2wt(s) − |s|,
where |s| denotes the length of s. Furthermore, using the

running digital sum, the Dyck constraint can be rewritten as

wt(s) = dn
2 e and R(s)i ≥ 0, i ∈ [n]. It follows that for any

� > 0 and n sufficiently large, we have 1
N log |C(N, h)| =

1
n+κ

√
n

log |Sh(n)| = 1
h − �, where κ is a constant.

The balancing procedure operates as follows: Let s ∈ Sh(n)
and for simplicity assume that

√
n is an even integer. Start

by parsing s into blocks si of length
√

n, i = 1, . . . ,
√

n,

so that s = s1s2 . . . s√n. Using s construct an auxiliary string

u = u1u2 . . .u√
n that is “approximately” balanced following

an idea similar to Knuth’s balancing [42], which operates on

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

blocks rather than individual symbols. To this end, initialize

u1 = s1; for binary strings u, we use u to denote the binary

complement of u. For j ∈ {2, 3, . . . ,
√

n}, let

uj =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sj, if R(u1 . . .uj−1) < 0, and R(sj) ≥ 0,

sj , if R(u1 . . .uj−1) < 0, and R(sj) < 0,

sj, if R(u1 . . .uj−1) ≥ 0, and R(sj) < 0,

sj , if R(u1 . . .uj−1) ≥ 0, and R(sj) ≥ 0.

(3)

Claim 7: For any j ∈ [
√

n], |R(u1 . . .uj)| ≤
√

n.
Lemma 8: For any i ∈ [n], |R(u)i| ≤ 3

2

√
n. Hence, the

RDS of any prefix of u does not exceed 3
2

√
n in absolute

value.

Proof: Suppose to the contrary that |R(u)i| > 3
√

n
2 . For

simplicity, we will only consider the case R(u)i > 3
√

n
2 ,

as the other case can be handled similarly. Next, assume that

j ∈ [n] is the smallest index for which R(u)j > 3
√

n
2 and

that R(u)j = 3
√

n
2 + 1. Now, let j = k1

√
n + k2, where 0 ≤

k2 <
√

n. According to Claim 7, since R(u)j = 3
√

n
2 +1 and

k2 <
√

n, we have
√

n
2 < R(u1 . . .uk1−1) ≤ √

n. Based

on (3), and since R(u1 . . .uk1−1) >
√

n
2 , it follows that

R(uk1) ≤ 0 so that −√
n≤R(uk1)� ≤

√
n

2 , for any ` ∈ [
√

n].
Combining the two inequalities, we arrive at R(u)k1

√
n+k2

≤
3
√

n
2 , a contradiction.

We now describe our encoder. Let u ∈ {0, 1}n be the

string which is the result of the procedure described in (3),

and suppose that r ∈ {0, 1}
√

n is such that for any j ∈ [
√

n],

rj =

{

1, if uj 6= sj ,

0, if uj = sj .
(4)

Using r, we now form a string s ∈ C(N, h), where N =
n+ 17

2

√
n, and assume for simplicity that N is an even integer.

The following claim is used in our subsequent analysis.

Claim 9: Let v = 1
5
2

√
n
ru ∈ {0, 1}n+7

2

√
n. Then, for any

i ∈ [n + 7
2

√
n], |R(v)i| ≤ 5

√
n. Furthermore, for any i ∈

[n + 7
2

√
n], R(v)i > 0.

Next, we append redundant bits to the string v described in

Claim 9 in order to get a binary string s of length N which

is a Dyck string.1 This results in the following claim.

Claim 10: Let N = n + 17
2

√
n be an even integer and let

v = 1
5
2

√
n
ru ∈ {0, 1}n+7

2

√
n be as in Claim 9. Suppose that

w = wt(v). Then, the string s = v1
N
2 −w

0
N
2 −(|v|−w) is a

Dyck string.

Now, assume that the binary code C(N, h) ⊆ N is

constructed according to the procedure outlined in Claim 10

and once again assume that N = n + 17
2

√
n is an even

integer. The next theorem establishes the correctness of our

construction.

Theorem 11: Suppose that s1, s2, . . . , sh ∈ C(N, h), where

C(N, h) is constructed according to the balancing procedure

operating on some selected codebook of binary Bh strings.

Then, given M(s1)∪M(s2)∪ · · · ∪M(sh), we can uniquely

1Splitting the string into blocks of length m and then performing the
approximate balancing task over these blocks would incur a redundancy of
n

m
+ cm, where c is a constant. The redundancy is minimized when the

summands are of the same order,
√

n, which justifies the choice for the length
of the parts.

determine {s1, . . . , sh}. Furthermore, for any � > 0, there

exists a nε > 0 such that for all N ≥ nε,
1
N log |C(N, h)| ≥

1
h − �.

Proof: We prove the result for h = 2, as the exten-

sion for general values of h is straightforward. According

to Claims 6 and 10, we can recover Mp(s1) ∪ Mp(s2)
from M(s1) ∪ M(s2) since s1, s2 are Dyck strings. From

Mp(s1) ∪ Mp(s2), we can recover s1 + s2 according to

Claim 1. Given s1 = 1
5
2

√
n
r1u11

N
2 −w10

N
2 −(|v1|−w1), s2 =

1
5
2

√
n
r2u21

N
2 −w20

N
2 −(|v2|−w2), from the first n+ 7

2

√
n coor-

dinates of s1 + s2 we can recover (r1 + r2,u1 + u2) mod 2.
Note that here we only make use of the parity information

although we are presented with real-valued sums, as we wish

to recover the binary indicator r string for block complemen-

tation and the binary blocks themselves.

For simplicity, and with a slight abuse of notation, we write

u = u1+u2 mod 2 = u1u2 . . .u√
n and r = r1+r2 mod 2 =

r1 . . . r√n. Let ũ = ũ1 . . . ũ√
n. Then, for j ∈ [

√
n],

ũj =

{

uj , if rj = 0,

uj if rj = 1.

It is straightforward to verify from (3) that ũ = s1+s2 mod 2.

Since s1, s2 ∈ S2(n) are codestrings of a binary Bh codebook

comprising columns of a binary error-correcting code of

appropriate parameters, we can recover s1 and s2 from ũ.

This concludes the proof.

In what follows, to improve our understanding of the max-

imum asymptotic rate of h-MC codes, we describe straight-

forward general entropy bounds and derive a (tighter) upper

bound for binary B4 codes that outperforms the entropy bound.

These results imply upper bounds on the rates of h-MC

codes which are not necessarily constructed using Theorem 11,

centered around binary error-correcting codes and general con-

structions of binary Bh codes. For example, it is known [39]

that the maximum rate of a binary B2 sequence is at most

0.5753 which implies that the maximum rate of any 2-MC

code using binary B2 codes is at most 0.5753. The interested

reader is referred to a selected collection of entropy and other

bounds for related notions of binary Bh strings in [31], [33],

and [40].

A. New Upper Bounds on Binary B4 Sequences (Binary B4

Codes)

We extend and generalize the idea used in [43] and [28] to

obtain an upper bound on the maximum rate of a binary Bh

code, and h = 4 in particular. We first introduce the relevant

notation before describing our main result in Theorem 14.

Let Bh(n) denote a binary Bh code of length n. Since

Bh(n) is a binary Bh code it follows that for any two distinct

sets of codestrings, say {s1, s2, . . . , sh}, {s′1, s′2, . . . , s′h} ⊆
Bh(n), we have

∑h
j=1 sj 6= ∑h

j=1 s
′
j , where addition is over

the reals.

Let H(h) denote the entropy of the Binomial distribution

with parameters (h, 1
2),

H (h) = −
h

∑

k=0

(

h

k

) (

1

2

)h

log2

(

(

h

k

) (

1

2

)h
)

. (5)

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 7

It is well-known [43] that the above entropy can be written as

H(h) =
1

2
log2

(

2πe
h

4

)

+ O
(

1

h

)

,

and that the entropy of a Binomial distribution with parameters

(h, p), 0 < p ≤ 1
2 is maximized for p = 1

2 . A straightforward

upper bound for general h follows directly from the ideas

in [43] and [28], which assert that one can impose a uniform

(probabilistic) model on the product set of codestrings in

B2 and then employ the entropy of each coordinate in the

2-sum. In our case, we use the entropy of a Binomial random

variable with parameters (h, 1
2) to bound the contribution of

each coordinate. This approach results in an asymptotic upper

bound on the rate of the form 1
hH(h), where H(h) is the

entropy of a Binomial random variable as defined in the

previous equation.

As will be discussed in more details, for h = 4, rather than

work directly with the prefixes of codestrings as suggested

in [28] for the case h = 2, we instead use the sum of prefixes

of codestrings in a binary B4 code. Then, through simple

counting argument, we arrive at Theorem 14. We outline the

argument for general even-valued h and specialize the bound

to h = 4 only in the last step, since the proposed approach

can potentially lead to improved bounds for larger h through

tighter bounds on the size of specific sets used in the proof.

Let Ah/2 denote the set of sums of any collection of

h/2 prefixes of distinct codestrings from Bh(n), where n =
a + b and a and b are the lengths of the prefixes and suffixes,

respectively:

Ah/2 = {a1 + · · · + ah/2 ∈ {0, 1, . . . , h/2}a :

(a1b1), . . . , (ah/2bh/2) ∈ Bh(n)}.
For c ∈ Ah/2, define Bc as

Bc = {b1 + · · · + bh/2 ∈ {0, 1, . . . , h/2}b :

(a1b1), . . . , (ah/2bh/2) ∈ Bh(n),a1+· · ·+ah/2 = c},
and recall that, by definition, Bh(n) has the property that any

collection of ≤ h distinct codestrings in Bh(n) has a distinct

sum. This implies that no two strings in Bc are the same.

We proceed by proving the next claim.

Claim 12: Let c1, c2 ∈ Ah/2. Then for any d1, d2 ∈ Bc1

and d3, d4 ∈ Bc2 ,

d1 − d2 6= d3 − d4, (6)

where subtraction is performed over the reals.

Proof: Suppose, to the contrary, that (6) is an equality.

Then (c1d1)+(c2d4) = (c2d3)+(c1d2). In this case, we may

write

a
(1)
1 + a

(1)
2 + · · · + a

(1)
h/2 = c1, a

(2)
1 + a

(2)
2

+ · · · + a
(2)
h/2 = c2,

b
(1)
1 + b

(1)
2 + · · · + b

(1)
h/2 = d1, b

(2)
1 + b

(2)
2

+ · · · + b
(2)
h/2 = d2,

b
(3)
1 + b

(3)
2 + · · · + b

(3)
h/2 = d3, b

(4)
1 + b

(4)
2

+ · · · + b
(4)
h/2 = d4.

If the assumption above holds, it follows that

((a
(1)
1 b

(1)
1) + · · · + (a

(1)
h/2b

(1)
h/2))

+ ((a
(2)
1 b

(4)
1) + · · · + (a

(2)
h/2b

(4)
h/2))

= ((a
(2)
1 b

(3)
1) + · · · + (a

(2)
h/2b

(3)
h/2))

+ ((a
(1)
1 b

(2)
1) + · · · + (a

(1)
h/2b

(2)
h/2)),

where (a
(1)
1 b

(1)
1), . . . , (a

(1)
h/2b

(1)
h/2), . . . , (a

(1)
h/2b

(2)
h/2) ∈ Bh(n),

a contradiction.

Based on the result of the previous claim,

we focus on the differences between elements

in the set Bc and define the multiset D =
{d1 − d2 ∈ {−h/2, . . . , 0, . . . , h/2}b : ∃c s.t. d1, d2 ∈ Bc}.

Claim 13: Any nonzero d ∈ {−h/2, . . . , 0, . . . h/2}b

appears at most once in D, while the all-zero vector appears
(|Bh(n)|

h/2

)

times.

Proof: The first statement follows immediately from

Claim 12. For the second claim, since Bh(n) is a binary Bh

code, it follows that the sum of any distinct h/2 codestrings

from Bh(n) is necessarily unique and hence d1 − d2 = 0 if

and only if d1 = d2. Since
∑

c∈Ah/2
|Bc| =

(|Bh(n)|
h/2

)

, the

result follows.

Let Ds = {d : d ∈ D} be the set containing the elements

in D except for the all-zero strings (which are removed) and

recall that b stands for the length of the strings in D and Ds.

More formally, let Ds stand for

{
(

x1 + · · · + xh/2

)

−
(

x
′
1 + · · · + x

′
h/2

)

6= 0 :

∃ c s.t. x1 + . . . + xh/2, x
′
1 + . . . + x

′
h/2 ∈ Bc},

where addition is performed over the reals.

It is straightforward to see that |Ds| ≤ (h+1)b. This bound

suffices to obtain an upper bound on the size of Bh codes for

h = 4 that outperforms the entropy bound described at the

beginning of this section. For even values of h ≥ 6, a tighter

bound on |Ds| is needed, akin to the one derived in [43]

and [28] that relies on estimating the probabilities of zero and

nonzero symbols in the individual coordinates of the sum of

codestrings.

Theorem 14: For h = 4, the maximum asymptotic rate of a

binary B4 code is bounded from above by 0.471.

Proof: Once again, we outline the argument for general

even h and specialize the proof for h = 4 at the last step when

invoking the simple bound for |Ds|. By definition,

(|Bh(n)|
h/2

)

= |Bc1
| + |Bc2

| + · · · + |Bc|Ah/2|
|.

From the previous equation and the convexity of the func-

tion x2, we have

|D| =

|Ah/2|
∑

j=1

|Bcj |2 ≥
(|Bh(n)|

h/2

)2

|Ah/2|
≈ |Bh(n)|h

|Ah/2|
,

where we ignored constants involving h. Since according to

Claim 13 the all-zero vector appears at most |Bh(n)|h/2 times

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

and all the other vectors appear at most once in D,

|Bh(a + b)|h � |D|
∣

∣Ah/2

∣

∣ = |D \ Ds||Ah/2| + |Ds||Ah/2|
≤ |Bh(a + b)|h/22a log2(h

2 +1) + 2b log2(h+1)+a log2(
h
2 +1),

where we used the facts that |Ah/2| ≤
(

h
2 + 1

)a
and |Ds| ≤

(h + 1)
b
. Let b = a

log2(
h
2 +1)

log2(h+1) . Then, the previous expression

can be rewritten as:

|Bh(a + b)|h � |Bh(a + b)|h/2
2a log2(

h
2 +1) + 22a log2(

h
2 +1).

It then follows that |Bh(a + b)|h/2 � 2a log2(h
2 +1). To see

why this bound holds, note that either (i) max
{

22a log2(h
2 +1),

|Bh(a + b)|h/2
2a log2(h

2 +1)
}

= 22a log2(
h
2 +1) or (ii)

max
{

22a log2(
h
2 +1), |Bh(a + b)|h/2

2a log2(h
2 +1)

}

=

|Bh(a + b)|h/2 2a log2(h
2 +1). Therefore, by ignoring constants,

we can write
log |Bh(a+b)|

a+b � 2
h

a log2(
h
2 +1)

a+b . Consequently, the

asymptotic rate of a binary Bh codes is at most
2/h log2(

h
2 +1)

1+
log2(h

2
+1)

log2(h+1)

.

For h = 4, this bound reduces to
1/2 log2(3)

1+
log2(3)

log2(5)

= .471.

For h = 4, the entropy bound 1
hH(h) equals .5077, whereas

the bound derived above gives the value .471.

IV. UPPER BOUNDS ON h-MC CODES

Next, we derive an upper bound on the maximum rate of an

h-MC code. To this end, recall that Cp ⊆ {0, 1}n is a h-prefix

code if for any two distinct string subsets of sizes h̄ ≤ h, say

S1,S2 ⊆ Cp, Mp(S1) 6= Mp(S2). Let C
(MC)
h (n) be the size

of the largest h-MC code of codelength n and suppose that

C
(p)
h (n) is the size of the largest h-prefix code of codelength n.

Formally, we use R
(MC)
h to denote the maximum asymptotic

rate of an h-MC code,

R
(MC)
h = lim

n→∞
sup

1

n
log |C(MC)

h (n)|.

We show next that when h is an even constant, R
(MC)
h ≤ 1−

1
2

(

1
1+ 1

h

)

. Once again, for simplicity of exposition, we focus

on the case h = 2 before considering the general result.

The next lemma states that in order to derive an upper bound

on the quantity R
(MC)
h , we can limit our attention to prefix

codes.

Lemma 15: For any � > 0, there exists an nε ≥ 1 such that

for all n ≥ nε, one has

1

n
log |C(MC)

h (n)| ≤ 1

n
log |C(p)

h (n)| + �.

Proof: To simplify the discussion, we focus on the

case h = 2; the extension to h > 2 is straightforward.

For w ∈ [n], let C
(w)
2 (n) ⊆ C

(MC)
h (n) denote the set of

codestrings of weight w in C
(MC)
2 (n). By the pigeon-hole

principle, there exists a w∗ ∈ [n] such that |C(w∗)
2 (n)| ≥

1
n |C

(MC)
2 (n)|. Given two codestrings in C

(w∗)
2 (n), say S =

{s1, s2}, we can easily determine Mp(S). Assuming that only

the prefix composition set is known, the set Ms(S) can be

derived as follows. To determine the compositions of suffixes

of length i, for i ∈ [n], we subtract from w∗ the number of

ones in each prefix of length n − i. For instance, suppose

the compositions of prefixes of length n − 1 of s1, s2 are
{

{1w∗

, 0n−w∗−1}, {1w∗−1, 0n−w∗}
}

. Then, the length-1 suf-

fixes of s1, s2 are
{

{1}, {0}
}

. This implies that n|C(p)
2 (n)| ≥

n|C(w∗)
2 (n)| ≥ |C(MC)

2 (n)|, which establishes the desired

result.

Let us first examine the case h = 2. For any s ∈ C
(p)
2 (n),

we write s as s = ab ∈ C
(p)
2 (n), where a ∈ {0, 1}αn equals

the prefix of αn symbols of s while b equals the suffix of

(1 − α)n symbols of s. We represent the codestrings in the

codebook using a bipartite graph G = (VP , VS , E) with

VP =
{

a ∈ {0, 1}αn : ∃s ∈ C
(p)
2 (n) s.t. s = ab

}

, (7)

VS =
{

b ∈ {0, 1}(1−α)n : ∃s ∈ C
(p)
2 (n) s.t. s = ab

}

.

(8)

An edge (v1, v2) ∈ E, with v1 ∈ VP and v2 ∈ VS , connects an

admissible prefix (vertex in VP) to an admissible suffix (vertex

in VS). Hence, an edge corresponds to a codestring in C
(p)
2 and

vice versa. Furthermore, let w ∈ {0, 1, . . . , αn} = [[αn + 1]].
We also find it useful to work with another bipartite graph

G(w) = (V
(w)
P , V

(w)
S , E(w)) whose edges are a subset of the

edges in E. The partition of the vertices V (w) = (V
(w)

P , V
(w)
S)

is such that v1 ∈ V
(w)
P if and only if the prefix a ∈ {0, 1}αn

represented by the vertex v1 in G has weight w, and in

addition, v2 ∈ V
(w)
S if and only if there exists a v1 ∈ V

(w)
P

such that (v1, v2) ∈ E. The set E(w) ⊆ E is such that

(v1, v2) ∈ E(w) if v1 ∈ V
(w)
P and v2 ∈ V

(w)
S .

Lemma 16: The graph G(w) cannot contain a cycle of length

four.

Proof: Suppose to the contrary that G(w) contains a

4-cycle, say (a1b1, a2b2, a1b2,a2b1). Then, Mp(a1b1) ∪
Mp(a2b2) = Mp(a2b1) ∪ Mp(a1b2). To verify the above

claim, note that all prefixes of length αn have to be the same

since Mp(a1)∪Mp(a2) = Mp(a2)∪Mp(a1). Furthermore,

since wt(a1) = wt(a2) it is straightforward to verify that the

compositions of all prefixes of length longer than αn are the

same in Mp(a1b1)∪Mp(a2b2) and Mp(a2b1)∪Mp(a1b2).
This contradicts the fact that the prefixes and suffixes involved

correspond to a 2-prefix code.

We are now ready to prove our upper bound on h-prefix

codes for h = 2.

Theorem 17: For any � > 0, there exists an nε > 0 such

that for all n ≥ nε, one has 1
n log |C(p)

2 (n)| ≤ 2
3 + �.

Proof: In order to bound the number of codestrings in

C
(p)
2 (n), we will upper bound the number of edges in the graph

G = (VP , VS , E). To this end, we consider the maximum

number of edges in the graph G(w) = (V
(w)
P , V

(w)
S , E(w)).

It follows from the pigeonhole principle that there exists

a w∗ ∈ [[αn + 1]] such that

∣

∣

∣
E(w(∗))

∣

∣

∣
≥ |E|

αn+1 . Thus,

1
n log

∣

∣

∣
E(w(∗))

∣

∣

∣
can be approximated by 1

n log
∣

∣

∣
C

(p)
2 (n)

∣

∣

∣
for

n sufficiently large.

According to Lemma 16, G(w(∗)) cannot contain a 4-cycle.

It is known [44] that the number of edges in an m1 × m2

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 9

bipartite graph without cycles of length 4 is at most

m1m
1
2
2 + m1 + m2. (9)

Letting αn = n
3 in (9) so that m1 = 2n/3 and m2 = 22n/3

gives

1

n
log

∣

∣

∣
E(w(∗))

∣

∣

∣
≤ 2

3
+ O

(

1

n

)

.

The next corollary follows from Theorem 17 and Lemma 15.

Corollary 18: A 2-prefix code must have a rate bounded as

R
(MC)
2 ≤ 2

3 .
Next, we consider the extension to the case where h > 2

based on the same approach. Let C
(p)
h (n) denote an h-prefix

code of length n. As before, we represent our codestrings using

a graph G(h) = (V
(h)
P , V

(h)
S , E(h)) as defined in (7) and (8),

except that (a,b) ∈ E(h) if and only if (a,b) ∈ C
(p)
h (n).

As before, we will also work with the bipartite graph G(w,h) =

(V
(w,h)
P , V

(w,h)
S , E(w,h)) ⊆ G(h), which is restricted to only

use prefixes of weight w. Lemma 19 is a natural generalization

of Lemma 16.

Lemma 19: The graph G(w,h) cannot contain a 2h-cycle.

Proof: Suppose to the contrary that the statement in the

lemma does not hold and that (a1,b1), (b1,a2), (a2,b2),
. . . , (ah,bh), (bh,a1) forms a 2h-cycle. Then, we have

a1b1, a2b2, a3b3, . . . , ahbh ∈ C
(p)
h (n), as well as

b1a2,b2a3,b4a5, . . . ,bha1 ∈ C
(p)
h (n). Since all the prefixes

in G(w,h) have weight w, the claim follows.

Theorem 20: For odd h, R
(MC)
h ≤ h+1

2h . For even h,

R
(MC)
h ≤ 1 − 1

2

(

1
1+ 1

h

)

.

Proof: The result follows using the same arguments as

those described in Theorem 17 and Corollary 18 by noting

that the maximum number of edges in a m1 × m2 bipartite

graph that does not contain a cycle of length 2h is at most

(m1m2)
h+1 h + m1 + m2 when h is odd [44]. For the

case when h is even, the maximum number of edges equals

m
k+2
2k

1 m
1
2
2 + m1 + m2 [44].2

As a final note, we observe that the work in [27] and [28]

also considered the case of nonbinary Bh codes for h = 2. The

main result is that for a large enough alphabet, the maximum

asymptotic rate of nonbinary B2 codes is at most 1
2 . Fur-

thermore, graph-theoretic methods have used in establishing

related bounds for separable codes, reported in [32].

V. A BRIEF DESCRIPTION OF ERROR MODELS

AND ERROR-CORRECTION

The MS/MS readout technique is error-prone, and not all

masses of prefixes and suffixes are measured or reported.

Furthermore, polymer fragmentation causes the loss of some

atoms and creates errors in the actual mass values. Another

type of error occurs when fragmentation fails, in which case

both a prefix and suffix of complementary length are missing.

A useful assumption for error-correction that we follow is that

one can actually determine the length of the prefixes/suffixes

2Note that the result in our preprint [45] contains an error on page 4. The
assertion that the lower and upper bound are asymptotically equal is incorrect.

based on their masses. This is possible if the masses of 0s and

1s differ significantly (for example, if the masses of the 1 or 0
molecules differ by at least n) or if other design criteria are

met.

If at most tp prefix compositions are erased (missing), and

at most ts suffix compositions are erased (missing), then one

needs to correct not more than 2 min {tp, ts} erasures in the

prefix (suffix) string, each occurring in a contiguous burst

of length at least two. We show next that one can employ

simple one-step or two-step error-control coding approaches

to handle missing prefixes/suffixes or instead resort to the use

of integrals of strings [11].

We start with a scheme that can correct up to t missing

prefix-suffix composition errors. Recall that the Bh codebook

Sh(n), described in Sections II and III, can be constructed

using the columns of a parity-check matrix of a code with

minimum Hamming distance d ≥ 2h + 1. The idea behind

our error-correction technique is to ensure that the real-valued

sum of every h-string subset of the code is an error-tolerant

codestring. A solution to this problem was proposed in [41]

for the purpose of designing signature codes for a noisy

MAC (i.e., codes capable of correcting errors in the syndrome

of a received word). It consists of encoding the columns

of a parity-check matrix H̃k×n, capable of correcting h
substitution errors, using a linear binary code that can correct

b t
2c substitution errors. Note that the parameter t can be

chosen independently from the parameter h as long as b t
2c ≤

k ≤ n. For encoding purposes, the authors suggest using

two binary BCH codes, so that H̃ is the parity check matrix

of a BCH code of designed distance ≥ 2h + 1, while the

parity-check matrix used to introduce error-control redundancy

to the columns of H̃ is also chosen according to a BCH code

with dimension k, length n and redundancy not exceeding

b t
2c log(n+1), capable of correcting at least b t

2c substitution

errors. Clearly, the only difference is that in our setting,

we encounter erasures in the coded strings (the augmented

columns), and wish to handle erasures. Note also that this

construction, as pointed out by the authors, does not fully

exploit the fact that addition is performed over the reals and

not over the field 2.

In [41], one starts with finding the smallest prime p > h,

and using a linear code over p (e.g., a Reed-Solomon code

of length p − 1) for the syndrome error-control redundancy.

The dimension of the latter code equals n, and it is required

that the code be able to correct t substitution errors over the

field p. Since the redundancy is nonbinary, each symbol of

the parity-check string is converted into a string of length

log(p + 1), representing the binary expansion of the symbol

over p. The binary expansions are stacked on top of each

other according to the given parity-check string. The inter-

esting observation is that, from the sum of the binary strings

over the reals, one can clearly obtain the binary expansion

of the symbols in the sum, and then generate the residues

modulo p of the elements of the string to obtain the redundancy

information needed for decoding. The obtained code is linear.

Henceforth, we use the value N to denote the length

of the uniquely reconstructable strings h-MC with added

error-control redundancy. It is not to be confused with the

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

parameter N from Section III as this particular notation is

reused to avoid clutter. Also, as before, we let Sh(n) be a

binary Bh code constructed using the parity-check matrix of

a binary code with minimum Hamming distance ≥ 2h + 1;

to add the syndrome redundancy, we use a BCH code with

appropriate parameters. The main observation is that due to our

encoding method, which uses the complementation/bit flipping

procedure, we require an unequal error-protection scheme.

Recall that the substring r used in the construction described in

Section III is the indicator vector for substring (of length
√

n
bits) flips. Errors in the r substring may clearly cause a burst

of “complementation errors” due to the fact that r indicates

if a string or its complement should be used. There are

two approaches one can follow by either encoding the string

to handle a larger number of erasures independent on their

location (the One-Step procedure) or by adding specialized

redundancy to the r string (the Two-Step procedure).

The One-Step encoding method proceeds as follows:

• Each string s ∈ Sh(n) is encoded using a BCH code

into an intermediary string s
′ of length m, capable of

correcting t(
√

m+ 1) erasures. The redundancy required

is at most d t
2e(

√
m + 1) log(m + 1).

• The intermediary string s
′ of length m is subse-

quently encoded via the balancing procedure described

in Section III. The encoded balanced string has length N
and belongs to a h-MC code capable of correcting up to

t composition erasures; here, N = m + 17
2

√
m, which is

at most n + d t
2e(

√
m + 1) log(m + 1) + 17

2

√
m; N can

be further upper-bounded by

n + d t

2
e(
√

n + 1) log n +
17

2

√
n + �n

√
n

×
(

d t

2
e log n +

17

2

)

+ d t

2
e δn,

where

�n =
d t

2e(
√

m + 1) log(m + 1)

2n

and

δn =
d t

2e(
√

m + 1) log(m + 1)

n
.

As either the partial prefix-sum or the partial suffix-sum string

has ≤ t(
√

m+1) erasures, the binary sum of the input strings

can be recovered correctly. The decoding procedure for strings

involved in the sum is identical to the one as described in

Section III.

We observed in the context of the One-Step scheme that

errors in the substring r, encoding information about which

blocks are complemented, cause blocks of errors in the global

string. Each erasure in r results in
√

m additional erasures,

where m is the length of the (approximately) balanced sub-

strings. In order to overcome this issue, one can use unequal

error-correction schemes that ensure that the binary sum of the

r substring components across the input strings can be recov-

ered independently from the rest of the string. The correctly

reconstructed binary r sum can then be used for subsequent

decoding of the complete collection of input strings.

As before, let Sh(n) be a binary Bh code constructed using

the parity-check matrix of a code with minimum Hamming

distance ≥ 2h + 1 (say, a BCH code). Furthermore, let N
denote the overall length of the h-MC codestrings with added

redundancy for mass error-correction. Encoding is performed

as follows:

• Each string s ∈ Sh(n) is encoded into an intermediary

strings s
′ of length m1 capable of correcting t erasures,

using a BCH code. The redundancy is at most t log(m1+
1), and

m1 ≤ n + d t

2
e log(m1 + 1).

• Each intermediary string s
′ of length m1 is encoded into a

Dyck string using the procedure described in Section III,

to arrive at a second intermediary string s
′′ of length m2,

where m2 = m1 + 17
2

√
m1.

• The substring r of the intermediary string s
′′ is encoded

into a codestring rr
′ of total length m3, capable of

correcting t erasures. Let m4 = m3 − √
m1 denote the

length of r
′. It is easy to see that m4 ≤ d t

2e log(m3 +1).
• Since the string has to be balanced, r

′ = r′1r
′
2 . . . r′m4

is converted into z = r′1r̄
′
1r

′
2r̄

′
2 . . . r′m4−1r̄

′
m4 , where

r̄′i = 1 − r′i.
• The balanced redundancy z is appended to the r substring

of the intermediary string s
′′. Also, a bit 1 is added to

the prefix of 1s and a bit 0 is appended to the suffix of

0s to preserve the Dyck property of the string.

The length of the coded string equals N = m1 + 17
2

√
m1 +

2(m3 −
√

m1) + 2, and upper-bounded in terms of the length

n as

n + d t

2
e(log n + µn) +

17

2

√
n(1 + νn) + d t

2
e(log n + µn)

+ 2θn + 2,

where

µn =
d t

2e log(m1 + 1) + 1

n
,

νn =
d t

2e log(m1 + 1)

2n
,

and

θn =
t log(m3 + 1) + 1

√

n + d t
2e log(m1 + 1)

.

Erasures/errors caused in one mass may result in mul-

tiple errors, thereby leading to errors in the reconstructed

real-valued sum of the strings. One simple means to mitigate

this problem is to use integrals (i.e., running sums) of bits,

in which case the errors cancel. Without loss of generality,

suppose that tp < ts. In this case, it is always possible for

the errors in the suffix string to be such that we receive

no additional information by considering both the prefix and

suffix string, and so the problem at hand becomes to recover

s from a set of at most n − tp prefix compositions.

Claim 21: Suppose that C(n, d) ⊆ n
2 is a code with

minimum Hamming distance d = min{tp, ts}+1. Let s ∈ n
2

and fix wt(s) = w0. Let M̃p(s) be the result of removing tp
compositions from Mp(s), and ts compositions from Ms(s).
Then, we can recover s = s1s2 . . . sn ∈ {0, 1}n from M̃p(s)

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: RECONSTRUCTION OF SETS OF STRINGS FROM PREFIX/SUFFIX COMPOSITIONS 11

provided that

(s1) (s1 + s2 mod 2) (s1 + s2 + s3 mod 2)

. . . (s1 + s2 + · · · + sn mod 2) ∈ C(n, d).

Proof: Without loss of generality, assume that tp =
min{tp, ts}. The result follows since for i ∈ [n] the value of

the i-th component in the string (s1) (s1 + s2 mod 2) (s1 +
s2 + s3 mod 2) . . . (s1 + s2 + · · · + sn mod 2) ∈ C(n, d)
can be recovered by summing up the number of 1s (modulo

2) in the i-th prefix composition. The claim then follows since

we know the lengths of the compositions that are missing from

the set M̃p(s) and can hence recover the string (s1) (s1 + s2

mod 2) (s1+s2+s3 mod 2) . . . (s1+s2+· · ·+sn mod 2),
where s ∈ n

2 , from which s can be then determined uniquely.

Note that for the case that ts = min{tp, ts}, since the weight

of s is known, a missing composition of a prefix of length i
can be recovered from the known composition of a suffix of

length n − i. Thus, tp + ts missing compositions in M̃p(s)
can be recovered from M̃s(s) and w0. This concludes the

proof.

Using the result of Claim 21, we can encode our mixtures

using the following approach:

• Given a string s ∈ {0, 1}n, construct I(s) = (s1) (s1+s2

mod 2) (s1 + s2 + s3 mod 2) . . . (s1 + s2 + · · ·+ sn

mod 2) = I(s)1I(s)2 . . . I(s)n.

• Encode I(s) using a BCH code such that the resulting

string I(s)R′(s), where R′(s) is the string of redundancy

bits, has length m and can correct b t
2c erasures. Observe

that I(s)R′(s) does not satisfy the condition in Claim 21.

• Given R′(s), construct I(s)R(s) as follows. First, set

R(s)1 = R′(s)1 + I(s)n (modulo 2 addition). Balance

the string by setting R(s)2 = 1 − R(s)1. Next, set

s1 + s2 + · · · + sn + R(s)1 + R(s)2 + R(s)3 = R′(s)2,
which results in R(s)3 = I(s)n+1+R′(s)2. Similarly, set

R(s)2i = 1−R(s)2i−1, and R(s)2i+1 = R′(s)i+i+I(s)n

for all i ∈ [m − n − 1], where m, n are as described in

the encoding scheme of Section III.

• Encode s as sR(s).

To apply the above procedure, we need to be able to partition

the prefix and suffix compositions of the sR(s). This is easily

achieved when sR(s) is a substring of a Dyck string such that

the composition of the prefix preceding the sR(s)-substring

in the Dyck string is known. In particular, since the substring

sR(s) occurs after the runlength of 1s in the construction of

Section III, the prefix compositions of the constructed string

sR(s) can be recovered by subtracting the weight of the

leading runlength of 1s from the corresponding compositions.

By construction, sR(s) satisfies the conditions of Claim 21.

Since each code was constructed using a BCH code, the binary

sum of multiple strings constructed using this technique also

satisfies the conditions in Claim 21.

VI. OPEN PROBLEMS

Many combinatorial and coding-theoretic problems related

to string reconstruction from prefix-suffix compositions remain

open. A sampling is listed below.

• Our techniques for converting a binary string of length

n into strings that are both Dyck and belong to a Bh

codebook have suboptimal redundancy. We seek methods

that can reduce our overhead and at the same time, offer

low encoding and decoding complexity.

• In practice, one often encounters nonbinary alphabets,

as polymers can be synthesized to have highly different

masses and chemical properties. The question remains

to generalize our approach for nonbinary alphabets. Fur-

thermore, it is of interest to investigate such coding

techniques for strings that have some form of balanced

symbol contents or masses confined to a certain interval.

• It remains an open question to characterize all the missing

mass errors that can be corrected by simply utilizing the

Dyck, Bh properties of strings and the presence of both

prefix and suffix masses.

• At this point, we have no efficient means for correcting

mass reducing (or, mass increasing) substitution errors

in our mixtures. A solution to this problem can have

interesting and important implications in the field of

polymer-based data storage.

REFERENCES

[1] A. Al Ouahabi, J.-A. Amalian, L. Charles, and J.-F. Lutz, “Mass spec-
trometry sequencing of long digital polymers facilitated by programmed
inter-byte fragmentation,” Nature Commun., vol. 8, no. 1, pp. 1–8,
Dec. 2017.

[2] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, no. 7435,
p. 77, 2013.

[3] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angew. Chem. Int. Ed., vol. 54, no. 8, pp. 2552–2555,
2015.

[4] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and
error-free DNA-based data storage,” Sci. Rep., vol. 7, no. 1, pp. 1–6,
Dec. 2017.

[5] H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable,
random-access DNA-based storage system,” Sci. Rep., vol. 5, pp. 1–10,
Sep. 2015.

[6] K. Launay et al., “Precise alkoxyamine design to enable automated
tandem mass spectrometry sequencing of digital poly(phosphodiester)s,”
Angew. Chem. Int. Ed., vol. 60, no. 2, pp. 917–926, Jan. 2021.

[7] S. K. Tabatabaei et al., “DNA punch cards for storing data on native
DNA sequences via enzymatic nicking,” Nature Commun., vol. 11, no. 1,
pp. 1–10, Dec. 2020.

[8] C. Pan, S. K. Tabatabaei, S. M. H. Tabatabaei Yazdi, A. G. Hernandez,
C. M. Schroeder, and O. Milenkovic, “Rewritable two-dimensional
DNA-based data storage with machine learning reconstruction,” Nature

Commun., vol. 13, no. 1, Dec. 2022.

[9] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146,
Jun. 2016.

[10] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” IEEE Trans. Inf. Theory, vol. 63, no. 8,
pp. 4982–4995, Aug. 2017.

[11] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for deletion and adjacent transposition correction,” IEEE Trans.

Inf. Theory, vol. 64, no. 4, pp. 2550–2570, Apr. 2018.

[12] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Trans. Inf. Theory, vol. 65, no. 12,
pp. 7682–7696, Dec. 2019.

[13] R. Gabrys, H. S. Dau, C. J. Colbourn, and O. Milenkovic, “Set-codes
with small intersections and small discrepancies,” SIAM J. Discrete

Math., vol. 34, no. 2, pp. 1148–1171, Jan. 2020.

[14] A. Agarwal, O. Milenkovic, S. Pattabiraman, and J. Ribeiro, “Group
testing with runlength constraints for topological molecular storage,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 132–137.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 1, JANUARY 2023

[15] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace
reconstruction,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6084–6103,
May 2020.

[16] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms,” IEEE Trans.

Inf. Theory, vol. 63, no. 8, pp. 4996–5010, Aug. 2017.
[17] N. Raviv, M. Schwartz, and E. Yaakobi, “Rank-modulation codes for

DNA storage with shotgun sequencing,” IEEE Trans. Inf. Theory,
vol. 65, no. 1, pp. 50–64, Jan. 2019.

[18] M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. I. Fabregas,
“Coding for deletion channels with multiple traces,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1372–1376.
[19] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based

correction of substitutions in indexed sets,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2019, pp. 757–761.

[20] Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of DNA
sequence profiles for practical values of read lengths,” IEEE Trans. Inf.
Theory, vol. 63, no. 11, pp. 7166–7177, Nov. 2017.

[21] I. Shomorony and R. Heckel, “DNA-based storage: Models and funda-
mental limits,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3675–3689,
Jun. 2021.

[22] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” 2014, arXiv:1403.2439.

[23] S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Reconstruction and
error-correction codes for polymer-based data storage,” in Proc. IEEE

Inf. Theory Workshop (ITW), Visby, Sweden, Aug. 2019, pp. 1–5.
[24] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction

codes for polymer-based data storage,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 25–30.

[25] S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Coding for polymer-
based data storage,” 2020, arXiv:2003.02121.

[26] B. Lindstrom, “Determining subsets by unramified experiments,” in
A Survey of Statistical Design and Linear Models. Amsterdam, The
Netherlands: North Holland, 1975.

[27] B. Lindström, “Determination of two vectors from the sum,” J. Combi-
natory Theory, vol. 6, no. 4, pp. 402–407, 1969.

[28] B. Lindström, “On B2-sequences of vectors,” J. Number Theory, vol. 4,
no. 3, pp. 261–265, Jun. 1972.

[29] H. V. Tilborg, “An upper bound for codes in a two-access binary
erasure channel (corresp.),” IEEE Trans. Inf. Theory, vol. IT-24, no. 1,
pp. 112–116, Jan. 1978.

[30] A. G. D’yachkov and V. V. Rykov, “Bounds on the length of disjunctive
codes,” Problemy Peredachi Inf., vol. 18, no. 3, pp. 7–13, 1982.

[31] A. G. D’yachkov, “Lectures on designing screening experiments,” 2014,
arXiv:1401.7505.

[32] A. D’yachkov, N. Polyanskii, V. Shchukin, and I. Vorobyev, “Separable
codes for the symmetric multiple-access channel,” IEEE Trans. Inf.

Theory, vol. 65, no. 6, pp. 3738–3750, Jun. 2019.
[33] A. D’yachkov and V. Rykov, “On a lower bound to the length of B4-

codes,” Problems Control Inf. Theory, vol. 10, no. 5, pp. 301–307, 1981.
[34] S. I. Bross and I. F. Blake, “Upper bound for uniquely decodable codes

in a binary input N-user adder channel,” IEEE Trans. Inf. Theory, vol. 44,
no. 1, pp. 334–340, Jan. 1998.

[35] Y. Gu, “Zero-error communication over adder MAC,” 2018,
arXiv:1809.07364.

[36] H. Halberstam and K. F. Roth, Sequences. Berlin, Germany: Springer,
2012.

[37] K. O’Bryant, “A complete annotated bibliography of work related to
Sidon sequences,” 2004, arXiv:math/0407117.

[38] J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377–385,
May 1938.

[39] G. Cohen, S. Litsyn, and G. Zémor, “Binary B2-sequences : A new upper
bound,” J. Combinat. Theory A, vol. 94, no. 1, pp. 152–155, Apr. 2001.

[40] V. Grebinski and G. Kucherov, “Optimal reconstruction of graphs
under the additive model,” Algorithmica, vol. 28, no. 1, pp. 104–124,
Sep. 2000.

[41] V. Gritsenko, G. Kabatiansky, V. Lebedev, and A. Maevskiy, “On codes
for multiple access adder channel with noise and feedback,” in Proc.

9th Int. Workshop Coding Cryptogr., 2015, pp. 1–8.
[42] D. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory, vol. IT-

32, no. 1, pp. 51–53, Jan. 1986.
[43] B. Lindström, “On a combinatory detection problem I,” I. Magyar Tud.

Akad. Mat. Kutató Int. Közl, vol. 9, pp. 195–207, Sep. 1964.
[44] A. Naor and J. Verstraëte, “A note on bipartite graphs without 2K-

cycles,” Combinatorics Probab. Comput., vol. 14, no. 5, pp. 845–849,
2005.

[45] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstructing mix-
tures of coded strings from prefix and suffix compositions,” in Proc.

IEEE Inf. Theory Workshop (ITW), Apr. 2021, pp. 1–5.

Ryan Gabrys (Member, IEEE) received the B.S. degree in mathematics and
computer science from the University of Illinois at Urbana–Champaing in
2005, and the Ph.D. degree in electrical engineering from the University of
California, Los Angeles, in 2014. He is currently a Scientist jointly affiliated
with the Naval Information Warfare Center and the California Institute for
Telecommunications and Information Technology (Calit2) at the University
of California, San Diego. His research interests include theoretical computer
science and electrical engineering, including coding theory, combinatorics,
and communication theory.

Srilakshmi Pattabiraman (Student Member, IEEE) received the B.Tech.
degree in instrumentation and control engineering from the National Institute
of Technology, Trichy, India, in 2015, the master’s degree in electrical and
computer engineering from The University of Texas at Austin in December
2017, and the Ph.D. degree in electrical and computer engineering from
the University of Illinois Urbana–Champaign, in December 2021. She is
drawn toward mathematical challenges in combinatorics and coding theory,
information theory, detection and estimation theory, and statistical learning
theory.

Olgica Milenkovic (Fellow, IEEE) received the M.Sc. degree in mathemat-
ics and the Ph.D. degree in electrical engineering from the University of
Michigan, Ann Arbor, in 2001 and 2002, respectively. She is the Franklin
W. Woeltge Professor of electrical and computer engineering with the Uni-
versity of Illinois Urbana–Champaign (UIUC). Her scholarly contributions
have been recognized by multiple awards, including the NSF Faculty Early
Career Development (CAREER) Award, the DARPA Young Faculty Award,
the Deans Excellence in Research Award, and several Best Paper Awards.
In 2013, she was elected a UIUC Center for Advanced Study Associate and
a Willett Scholar, while in 2015, she was a elected Distinguished Lecturer
of the Information Theory Society. She was an Associate Editor of the
IEEE TRANSACTIONS OF COMMUNICATIONS, the IEEE TRANSACTIONS

ON SIGNAL PROCESSING, the IEEE TRANSACTIONS ON INFORMATION

THEORY, and the IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL

AND MULTI-SCALE COMMUNICATIONS. In 2009 and 2020, she was the
Guest Editor in Chief of special issues of the IEEE TRANSACTIONS ON

INFORMATION THEORY.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:15:16 UTC from IEEE Xplore. Restrictions apply.

