
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024 3803

DNA-Based Data Storage Systems: A Review of
Implementations and Code Constructions

Olgica Milenkovic , Fellow, IEEE, and Chao Pan

Abstract— This invited review paper has the aim to acquaint
the communication theory community with the emerging topic
of molecular data storage. The exposition includes an overview
of basic concepts in synthetic and computational biology and a
discussion of diverse approaches used to implement such systems.
It also describes new problems in communication and coding
theory, and discusses some relevant results pertaining to DNA
sequence profiles, coded trace reconstruction, coding for DNA
punchcard systems and coding for unique reconstruction.

Index Terms— Coded trace reconstruction, coding for DNA
profiles, DNA-based data storage, string reconstruction.

I. INTRODUCTION AND MOTIVATION

D
ESPITE numerous advancements in traditional data

recording techniques, the emergence of Big Data

platforms and the growing concern for energy conservation

have presented challenges for the storage community to

develop new nonvolatile, durable storage media that can handle

ultrahigh volumes of data.

The potential use of macromolecules for data storage

was recognized as far back as the 1960s when Richard

Feynman outlined his nanotechnology vision in the talk

“There is plenty of room at the bottom” [33]. Among the

various macromolecules that can potentially serve as storage

media, DNA molecules hold particular promise due to their

unique properties such as durability, ultra-large information

density, ease of amplification, readout compatibility and ability

to perform computing via simple hybridization reactions.

Under proper environmental conditions, DNA can preserve

its contents for thousands of years, as demonstrated by

the recovery of DNA from 30, 000 years old Neanderthal

and 700, 000 years old horse bones [99]. In addition, DNA

offers extremely high storage capacities, with a single human

cell containing DNA strands that encode 6.4 gigabits of

information within a mass of only approximately 3 picograms.

The technologies for DNA amplification and synthesis

have also reached unprecedented levels of efficiency and

accuracy [103], while DNA sequencing has been a standard

Manuscript received 6 October 2023; revised 10 January 2024; accepted
9 February 2024. Date of publication 20 February 2024; date of current version
19 July 2024. This work was supported by the NSF Grant 2008125. The
associate editor coordinating the review of this article and approving it for
publication was E. Rosnes. (Corresponding author: Olgica Milenkovic.)

The authors are with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–Champaign, Urbana,
IL 61801 USA (e-mail: milenkov@illinois.edu; chaopan2@illinois.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2024.3367748.

Digital Object Identifier 10.1109/TCOMM.2024.3367748

procedure for nearly two decades. DNA has also been

successfully used as a building block for small-scale self-

assembly based computers [102].

Building on the progress of DNA synthesis and sequencing

technologies, two laboratories described the first architectures

for archival DNA-based storage in 2012 and 2013 [25], [43].

The first architecture achieved a density of 700 TB/gram,

while the second approach improved the density to 2 PB/gram.

The improved results of the second approach may be

attributed in part to the use of basic coding schemes such

as Huffman coding, runlength coding, single parity-check

coding, and repetition coding. Subsequent works [45] extended

the coding approach of the second architecture to account

for missing information-bearing DNA fragments via Reed-

Solomon codes [95].

Further milestones in DNA-based data storage were reached

through several innovations. The first innovation was the

introduction of random-access and rewriting platforms enabled

by controlled polymerase chain reaction (PCR) and/or overlap-

extension PCR reactions [125]. The design of DNA PCR

primers (addresses) from a coding-theoretic perspective, which

initiated with [127], also played a crucial role in scaling

up this approach for larger file sizes. The second innovation

was the design of portable DNA-based data storage platforms

that utilize long readout sequences and are accompanied by

specialized pilot sequencing, multiple sequencing alignment,

and constrained homopolymer (i.e., runlengths of the same

symbol) coding approaches [124]. This development has given

rise to new challenges such as coded trace reconstruction [24]

and various forms of synchronization error-correction. The

third milestone involved an expansion of the molecular

alphabet to include modified DNA bases [114] that can be read

using commercially available nanopore devices coupled with

deep learning solutions for base classification. Simultaneously,

theoretical models for DNA “storage channels” have been

proposed to rigorously analyze the above-described architec-

tures [58], involving overlapping DNA fragments akin to those

used in the original storage architectures of [25] and [43],

and nonoverlapping information-bearing blocks which model

pools without address sequences (see [49], [63] and references

therein). These models have been the basis for further research

on the fundamental aspects and capacity of DNA storage

channels.

Despite this early success in developing DNA-based data

storage systems, many issues remain unresolved, with the

most important one being the high error rates resulting

0090-6778 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3804 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

from associated synthesis, access, and readout processes [34],

[77], [96] and the extremely high cost of DNA synthesis.

Additionally, known designs still lack the computational

capabilities required to support operations on data stored in

molecular media.

Sequencing errors have largely been mitigated through the

use of existing [59], [67], [68], [117] and the design of

specialized coding approaches [36], [45], [58], [62], [79].

These approaches can handle missing DNA fragments, in-

fragment sequencing errors, and asymmetric errors caused by

the specific molecular topologies of DNA bases. Handling

other types of errors in molecular storage has been made

possible through a combination of constrained coding, which

avoids DNA patterns prone to synthesis or sequencing errors,

prefix synchronized coding, which allows accurate access to

blocks of DNA without disturbing other blocks in the DNA

pool, and low-density parity-check (LDPC) codes [42], which

provide redundancy for combating classical substitution errors.

A satisfactory solution to the problem of high-cost synthesis

is still missing since synthesis is a sequential process that can

currently only be made faster through parallel synthesis of

shorter sequence blocks and subsequent ligation/attachment

(an approach used by Catalog, www.catalogdna.com). The

DNA Punchcard paradigm was introduced in [115] as a

partial solution to the problem of sequential DNA synthesis

and for the purpose of joint storage and computing. In this

paradigm, native DNA (i.e., DNA retrieved from common

bacterial species such as E. coli) is used as the storage media.

Binary or ternary information is imprinted on the DNA by

creating controlled nicks (i.e., holes) at specific locations of

the molecular backbone. Since the sequence content of the

DNA strings is known, retrieving the stored information is

straightforward and close to error-free.

Although the DNA Punchcard system experiences a moder-

ate density loss compared to traditional sequence encodings,

it offers highly efficient parallel writing and unique massively

parallel in-memory computing features [22], [122]. The in-

memory computing model, known as SIMDNA, relies on

carefully shifting and recreating nicks in multiple information-

bearing DNA registers using specialized strand displacement

reactions and combinatorial design rules. SIMDNA’s most

appealing feature is its ability to use the same instruction DNA

strands to update all registers, regardless of their content.

Additionally, nicks can be overlaid on DNA strands

that carry information to include rewritable data, such as

metadata. This rewriting process involves sealing the nicks

using native ligases [89] and then repunching the helix.

The Punchcard method and its recent extension, known as

DNA Typewriters [80], which operate in vivo, present new

challenges related to constrained coding and error correction

due to their unique information storage approach. In Punchcard

systems, for instance, it is possible to choose nick locations

that have significant differences in sequence content to

avoid errors during punching. Nonetheless, the placement

of nicks must still satisfy certain requirements regarding

their distribution on the two DNA strands. Essentially, the

placement of nicks should ensure the overall stability of the

double-helix. These constraints lead to a new coding paradigm

for sets and introduce intriguing questions related to set

discrepancy analysis [35].

The aim of this overview article is to provide an accessible

introduction to the key components of the previously

described DNA-based storage systems. These components

include DNA synthesis, PCR protocols for random access,

synthetic biology concepts like gene editing using CRISPR

complexes, sequencing techniques such as shotgun, nanopore

(e.g., Oxford Nanotechnologies (ONT)) or Pacific Biosciences

(PacBio) sequencing, as well as strand displacement molecular

computation paradigms.

Additionally, the article will describe the fundamental

concepts behind current DNA-based data storage architectures.

It will explain how real biological challenges have influenced

the design of coding solutions that are necessary to ensure

reliable scaling and operation of these systems. Moreover,

it will highlight the importance of expertise in coding theory

to inspire new system designs and tackle practical challenges

in system implementation. Special attention will be placed

on reviewing the recent contribution to the field made by

the author and her collaborators. For a summary of relevant

concepts and terminology in synthetic and molecular biology,

the interested reader is also referred to the earlier review [126]

and the more recent monograph [105].

The manuscript is organized as follows. Section II contains

a a review of basic properties of DNA molecules and

a gentle introduction to relevant concepts from synthetic

biology. Section III describes a collection of conceptually

different approaches to DNA-based data storage system design

and provides a short review of DNA strand displacement

computational paradigms. Section IV presents a review of

coding-theoretic results that were developed to deal with

reliability and implementation issues encountered in DNA-

based data storage systems. Selected open problems in coding

theory are described in Section V.

II. SYNTHETIC BIOLOGY PRELIMINARIES

Deoxyribonucleic acid (DNA) is a macromolecule – a

molecule made up of a large number of atoms. It is found

in single-cell organisms (e.g., bacteria and viruses) as well

as in the mitochondria and cell nucleus of higher organisms

(eukaryotes), where the latter is a compartment within the cell

of width 5 − 10µm.

In eukaryotes, DNA takes the form of a right-handed

double-helix. It consists of two periodic linear molecules

that twist around each other, forming the sugar-phosphate

backbone (see Figure 1). The sugar-phosphate backbone has

a deterministic structure, alternating between a deoxyribose

sugar molecule and a phosphate group. It does not carry

useful information. Useful information is contained in the

“space” between the linear molecules, where four different

molecular structures, called bases, bind together in pairs

through hydrogen bonds. The bases are adenine (A), guanine

(G), cytosine (C), and thymine (T). Bases A and G, which

have two carbon rings, are purine bases (depicted in Figure 1

by a hexagon-pentagon structure), while bases C and T ,

which have one carbon ring, are pyrimidine bases (depicted in

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3805

Fig. 1. Structure of the DNA macromolecule. The spacing between pairs of bases is a fraction of a nanometer (nm), andthis dense packing is responsible
for the large storage capacity of the molecule.

Figure 1 by a hexagon). A molecular unit comprising one base,

one sugar and one phosphate group is termed a nucleotide, and

often used interchangeably with the term base.

There are two important observations to make about DNA

bases. First, not all pairings are possible. According to the

Watson-Crick rule, A only binds with T through two hydrogen

bonds, and vice versa. Similarly, G only binds with C through

three hydrogen bonds, and vice versa. While there are some

rare exceptions, the Watson-Crick rule is generally considered

a fundamental constraint for DNA molecules. As a result, the

information-bearing sequence attached to one linear molecule

is the (Watson-Crick) complement of the information-bearing

sequence attached to the other linear molecule. For example,

the complement of ATTCG is TAAGC.

Second, since bases are asymmetric molecules, we can

orient DNA strings based on the numbering of the terminal

carbon atom at the end of the string. Only the 3rd and 5th

carbon can appear at the terminus of the deoxyribose sugar

ring, and a string can be read from either the 3 ′ carbon

end or the 5 ′ carbon end. The symbol ′ is used to denote

the carbon atoms in the sugar and is part of a standard

chemistry vocabulary. For example, the string ATTCG used

in the previous example may be read from the 3 ′ to 5 ′ end,

written as 3 ′ − ATTCG − 5 ′. This string is different from its

reversal, which is written as 5 ′ − ATTCG − 3 ′. If both base

strings of a DNA molecule are read in the same direction, they

represent reverse Watson-Crick complements. For the running

example, if both strings are read from the 3 ′ to 5 ′ end, they

would equal ATTCG and CGAAT . Alternatively, they can

be written as 3 ′ − ATTCG − 5 ′ and 5 ′ − TAAGC − 3 ′. The

strand running in the 5 ′ − 3 ′ direction will be referred to

as the sense strand, while the string running in the 3 ′ − 5 ′

direction will be referred to as the antisense strand. These

terms are borrowed from genetics and are based on the reading

directions of protein-coding genes. Here, they are only used

to refer to the orientation of the strands since no genes are

involved.

The process of binding a sense and antisense strand

to form a double-helix is called hybridization, and the

process of separating the sense and antisense strand is called

denaturation. Denaturation is typically achieved by heating

up the DNA since thermal energy breaks down the hydrogen

bonds and leads to the disassociation of the strands.

While not immediately evident, the aforementioned prop-

erties of DNA molecules are of significant importance in the

context of DNA-based data storage system implementations.

For instance, consider the two purine bases, A and G, which

each possess two carbon rings, resulting in a more similar

chemical structure when compared to pyramidines. This

similarity implies a higher likelihood of confusing them during

sequencing (in contrast to, say, A and T). This observation

also extends to the pyramidine bases. To address this issue

of higher confusability between the pairs of pyrimidine and

purine bases and the relatively lower confusability between

purines and pyramidines, specialized data encoding protocols

have to be used (as suggested for asymmetric Lee distance

codes described in [36]).

Furthermore, the disparity in the number of hydrogen bonds

formed between A and T versus G and C in the Watson-

Crick pairings underscores the necessity of maintaining what is

known as “balanced GC content” in information-bearing DNA

strings. A small number of GC pairs may lead to instability

in the DNA duplex while a large number may hinder efficient

DNA synthesis and denaturation, as elaborated in the following

section.

The significance of reverse Watson-Crick strings is evident

in DNA replication, a process that involves creating two

copies of DNA from a single template. During replication,

the double helix gradually unravels, allowing each constituent

string to serve as a template for generating a complementary

strand. Outside the cell, replication is performed through a

process called Polymerase Chain Reaction (PCR), which is

also employed in the testing of viral diseases like Covid-19

(see Figure 2) and plays a crucial role in the unique approach

to random access in DNA-based data storage [125].

DNA replication cannot commence without a specialized

class of molecules known as “primers.” Primers are short

DNA fragments, roughly 20 bases in length, which are single-

stranded. Primers facilitate the binding of enzymes (functional

proteins) essential for replication of the DNA strands.

To enable DNA content amplification and, consequently,

random access, primers must adhere to several constraints.

First, their “melting temperature,” defined as the temperature

at which 50% of the DNA in a solution exists in a double-

stranded form and 50% in a single-stranded form, must closely

match the range of temperatures 55 − 70◦C. Maintaining an

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3806 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

Fig. 2. Illustration of primer binding on denatured DNA. Two primers are required, one for the sense strand and another for the antisense strand. In each
cycle of PCR amplification, utilizing Watson-Crick complementarity, two identical copies of the same strand are generated, ideally resulting in exponential
growth in the concentration of the DNA product. The first random access protocol, described in [125], relies on the use of primers to amplify only a desired
collection of DNA sequences. After performing PCR amplification on these DNA sequences for a sufficient number of cycles, there is an overwhelming
probability that only the intended sequences are present in the pool. For information on microfluidic and self-rolled membrane random access systems that

do not require PCR amplification, the interested reader is referred to [57].

appropriate melting temperature and binding stability hinges

on a constant, balanced GC content. Numerous online plat-

forms, such as http://insilico.ehu.es/tm.php?formula=basic,

can be used to estimate melting temperatures of DNA strands.

Second, it is crucial to meet the “no-folding” and “no

primer-dimer” constraints. Folding refers to the formation

of a partially hybridized molecule through pairings of

complementary bases on the same strand. Primer-dimer

constraints, on the other hand, prevent two distinct single-

stranded primers from hybridizing or partially hybridizing

with each other. For a comprehensive exploration of the

coding challenges associated with primer design constraints,

interested readers are referred to [127].

The linear distance between two adjacent bases on DNA

strings is approximately 0.34 nanometers, which implies that

DNA can store 2 bits within this length. Consequently, the

linear storage density of DNA is approximately 6×109 bits/m.

More commonly, storage density is expressed in terms of

bit-mass density, taking into account that the average mass

of a nucleotide is 330 Daltons, with one Dalton equal to

1.66 × 10−24 grams. This translates to the ability to store

2 bits in a mass of 5.48 × 10−22 grams, or 3.6 × 1021

bits/gram. It is important to note that this represents the

physical storage density, which is typically higher than the

information storage density due to latter taking into account

overheads for address, error-correction, and constraint coding.

The reported information densities currently surpass by orders

of magnitude those achievable by any other existing storage

technology.

DNA can maintain its integrity for tens to hundreds of

thousands of years when stored in a low-humidity, radiation-

free environment. Given the ongoing drive for performance

enhancements and cost reductions in DNA writing (synthesis)

and reading (sequencing) technologies, especially in the fields

of medical and fundamental molecular biology research,

molecular storage platforms hold a unique promise among

their competitors regarding future system compatibility.

A. DNA Synthesis and Sequencing: Building a DNA-Based

Data Storage System

Building a basic DNA-based data storage system is

indeed feasible, but it entails several essential components:

sufficiently large financial resources, reliable synthetic DNA

suppliers, and access to sequencing platforms such as Illumina

or third-generation alternatives including ONT and PacBio.

Such sequencers are readily used in genomic research

laboratories, but with the exception of ONT systems, they are

too expensive and bulky to be part of commercial readout

systems.

The availability of sufficient funds is paramount, given that

the DNA synthesis process is costly. This financial requirement

stands as the primary impediment to the widespread adoption

of molecular storage systems at scale. In the ensuing

discussion, we elucidate the principles underpinning DNA

synthesis and sequencing while also shedding light on

potential errors that can arise during these intricate processes.
1) Synthesis: To synthesize user information into DNA,

the first step involves introducing controlled redundancy into

the original binary data string. This redundancy serves two

purposes: facilitating various functionalities (including random

access and content replication) and ensuring robustness

(address redundancy is discussed in [126], while error-control

coding is discussed in the sections to follow). Subsequently,

the original binary information string is transformed (mapped)

into a string over the DNA alphabet comprising four letters,

A, T , G, C. Advancements in chemically modified DNA-based

data storage have also paved the way for conversions into

larger molecular alphabets, ranging from 8 to 11 letters [114].

In the next step, the quaternary data string is segmented

into either overlapping or nonoverlapping substrings. These

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3807

digital substrings are converted into actual DNA strings

harboring identical content. While overlapping substrings were

initially employed in the early prototypes of DNA-based data

storage [25], [43], they have been mostly abandoned due

to their high coding redundancy and inefficiency of random

access.

When synthesizing the DNA content, it is important to

consider two factors: the lengths of the substrings and the

format in which they are delivered, which is constrained by

the synthesis technology used. For instance, when procuring

products from Integrated DNA Technologies (IDT), customers

can opt for what are referred to as gBlocks. gBlocks are

double-stranded DNA strings with lengths of approximately

up to 3, 000 base pairs (bps). They are primarily used for

gene construction and play a pivotal role in genome editing

(see https://www.idtdna.com/pages/products/genes-and-gene-

fragments/double-stranded-dna-fragments/). Each gBlock is

provided as an individual string, and users have the flexibility

to choose the molar concentration of the product. Typically,

gBlocks require the inclusion of prefix and suffix primer

sequences to enable subsequent amplification of the relatively

small volume of purchased synthetic DNA. The same primers

are used in the PCR-based random access protocol. The

advantages of gBlocks include their long length, which ensures

a smaller proportion of the content dedicated to primer

substrings, stable double-helix structure, as well as their ease

of reading via ONT and PacBio devices. Additionally, each

fragment is provided in a separate storage tube or well.

However, it is important to note that gBlocks are associated

with a higher synthesis cost per nucleotide when compared to

their shorter single-stranded counterparts, described next.

As an alternative, one can opt for “DNA oligo pools”

(https://www.idtdna.com/

pages/products/custom-dna-rna/. These pools consist of

unordered collections of numerous short, single-stranded

DNA strings, referred to as oligos. For instance, IDT oPools

are available in formats that encompass anywhere from 2 to

384 oligos per pool, with oligo lengths ranging from 4 to

350 nucleotides. It is guaranteed that each oligo is present

at a concentration of 50 pmols. The most cost-effective

package offers oPools with a per-base cost of approximately

$0.011. This cost, while significantly higher than that of

traditional recording media, still represents a more budget-

friendly alternative compared to that of gBlocks.

oPools come with their own set of advantages and

disadvantages. Advantages of oPools include the previously

mentioned cost-effectiveness and ease of handling. However,

they also exhibit several drawbacks. Typically, oPools have a

lower average synthesis fidelity, reduced stability, a propensity

of oligos to hybridize with each other. Additionally, they are

burdened by substantial primer overheads. Furthermore, if not

synthesized to full lengths ranging from 150 to 300 bases,

they cannot be directly read using third-generation sequencing

devices. Detrimental for the underlying molecular storage sys-

tems is the problem of missing oligos, referring to the absence

of one or more oligos requested for synthesis. Missing oligo

errors arise due to many factors such as placement of the oligo

to be synthesized on a microarray (or other type of) grid, their

base content and others. It is also worth noting that the primers

required for content amplification need to be purchased sep-

arately (https://www.idtdna.com/pages/products/custom-dna-

rna/dna-oligos/custom-dna-oligos).

A simplified diagram of the steps used in commercial

phosphoramidite chemistry DNA synthesis is depicted in 3.

Specialized forms of all four types of nucleotides that can

be attached to a growing DNA strand are kept in four

separate repositories and retrieved according to the string

being synthesized. The nucleotides contain special protective

groups, depicted as triangles. When initially incorporated, the

nucleotides’ protective groups prohibit the attachment of other

nucleotides, thereby ensuring that only one symbol is added at

each incorporation time. Once the nucleotides of the current

symbol are washes of, the protective groups are deactivated to

allow for the incorporation of the next symbol.

To more precisely explain the sequencing process, assume

next that the string ATTCGATGCC has already been

synthesized and that we want to add the symbol A. In this

case, we would flush the synthesis well of array containing the

partially synthesized string with protected A nucleotides and

the enzymes (including polymerases) necessary for synthesis.

The protective group prevents unintentional incorporation

of multiple DNA symbols in one round/cycle of synthesis.

Specifically, it disables access to other nucleotides on the

strand once it is added as part of the newly included

nucleotide. After the nucleotide is incorporated, any unused

A symbols need to be washed off to avoid contaminating the

new pool of symbols (which may be different from A) in the

next cycle of DNA string extension. Washing is not entirely

precise, so some unused nucleotides from previous cycles may

remain. However, due to extensive chemical error-correction

of the strands, this imprecision does not result in a very likely

error event (i.e., in practice, no errors involving repeated

symbols are observed in gBlock DNA products, and only a

small fraction of errors are typically observed in sequenced

oPools, where the errors may have actually been introduced

during sequencing). Nonetheless, in theory, simultaneous

incorporation of multiple bases could lead to sticky insertion

errors [81]. Once the washing process is completed, and in

preparation for the next cycle of growth for the extended

strand ATTCGATGCCA, the protective group is removed or

deactivated using lasers light or other means. However, the

deactivation process is also prone to errors, which may result

in some strands being permanently “deactivated”. In this

case, one ends up with incompletely synthesized DNA oligos,

which are usually removed by the vendor before delivering the

product. In some cases, temporary deactivation or premature

activation lead to oligos with burst deletions or insertions,

respectively. Oligos with bursty deletions can be identified

through their shorter length and removed. IDT products have

a very low likelihood of containing synthesis errors of the

aforementioned types, but the company may report synthesis

issues related to unbalanced GC-content, short repeats, i.e.,

repeats of short DNA substrings, and long homopolymers (see

also https://www.twistbioscience.com/faq/gene-synthesis/are-

there-any-sequence-limitationsdesign-guidelines-genes-which-

i-should-follow and [101]). The most significant errors are

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3808 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

Fig. 3. High-level description of the synthesis process. One may think of using four types of different beads (nucleotides) which have to be stitched together
sequentially to create the desired user content. The process is inherently sequential and involves multiple steps of nucleotide incorporation, washing and
protective group deactivation that can lead to long synthesis latency (most providers report times of 1 − 10 seconds/nucleotide).

typically missing or low-coverage oligos, where certain

fragments were not synthesized to acceptable lengths or were

synthesized inefficiently. These errors can be corrected using

Reed-Solomon coding schemes described in [45] or through

machine learning techniques used in 2DDNA systems [89].

Lastly, it is worth mentioning that the efficiency of synthesis

schedules can be addressed analytically, as outlined in [53],

[62] and [70].

2) Sequencing: There are currently many different tech-

nologies available for reading the content stored in DNA.

One example is the sequencing-by-synthesis approach used by

Illumina platforms, as shown on the left of Figure 4. Illumina

devices, such as MiSeq, NovaSeq, and HiSeq, have a limitation

in terms of the length of strands they can read, which is

usually not more than 400 nucleotides. This technology is

commonly used for reading pools of DNA oligos because the

oligo lengths match the required sequencing lengths. The DNA

fragments generated by Illumina and other sequencers are

referred to as reads and are summarized in raw data files with

the.fast or .fastq extension. The .fastq files not only contain

read sequences but also information about quality scores of the

symbols, allowing for assessment of the quality of the results.

Illumina systems have high sequencing accuracy, although

still not accurate enough for demanding storage applications

(most systems currently operate with an error rate of less than

0.1 − 1%). Additionally, since multiple copies of the DNA

strands are read simultaneously, consensus sequences can be

easily formed by using majority counts for each position in the

reads, as Illumina sequencing errors are mainly substitutions.

Third generation sequencers are capable of reading long

gBlock data formats and are commonly known as long

read technologies. One important long-read sequencing

technology utilizes nanopores, which can provide single-

molecule readouts of lengths ranging from 15, 000 to

20, 000 bases, or even longer. Nanopores are pores or holes

embedded in membranes, with one or multiple pores on the

same membrane. In the case of ONT nanopores, the pores are

“biological” pores, such as proteins, and only double-stranded

DNA is used for sequencing in order to control the speed at

which it translocates through the pore. This control is achieved

through biological motors, often helicases, which unwind the

DNA and slow down the passage of one of the strands through

the pore.

By applying a voltage current across the membrane, an ion

current is maintained within the pore. In the absence of any

molecules to be sensed, this current is referred to as the base

current. When single-stranded DNA translocates through the

pore, short DNA subfragments (approximately 3 − 5 bases in

length, referred to as k-mers, with k = 3, 4, 5) that fit into

the pore cause a drop in the ion current as they block the

movement of ions. The DNA is moves through the hole one

base at a time, and the observation duration (dwell time) for

the specific 3/4/5-mer and the recorded current drop are used

to estimate the sequenced DNA. The drop in current depends

on the A, T , G, C content of the sequenced DNA. Generally,

the current drop is influenced by the charge, 3D structure/shape

of the nucleotides, and many other factors.

Similar to what is done with other sequencing technologies,

each DNA fragment is replicated before sequencing to

obtain multiple reads for reconstructing the original content.

The reads corresponding to the same information string

are generated via passage through different pores and/or at

different times through the same pore. As a result, the reads

may exhibit varying levels of sequencing noise. Typically, the

process of deciphering the current readouts using multiple

reads, known as “nanopore base calling,” is facilitated by deep

learning approaches involving convolutional and recurrent

neural networks (CNNs and RNNs), described in more detail

in [123].

Based on the previous discussion about the similarity of

nucleotide chemical structures and the impact of k-mers on

the ion current drop, it is evident that the accuracy of base

calling in nanopores is expected to be lower compared to

that of Illumina platforms. However, recent reports from ONT

indicate significant progress in improving read reliability.

According to ONT reports for R10.4 sequencing flowcells,

the error rate for single molecule consensus is estimated at

> 0.1%. In academic labs, the observed error rates appear

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3809

Fig. 4. Principles underlying next and third generation sequencing platforms: (left) shotgun sequencing, the idea behind sequencing long DNA strands
broken into overlapping fragments that are stitched together during the assembly process (which can be thought off as finding fragments with long matching
suffix-prefix strings). This approach is also the basic idea of the approach used in Illumina sequencing, along with the unique idea of bridge amplification;
(right) a fundamentally different approach used in third generation ONT devices, termed nanopore sequencers. There, DNA strands are translocated (passed)
through pores (holes), interrupting the flows of ions across the pore. The resulting drop in the ion current is indicative of the charge and structure of nucleotides
within the pore.

to be significantly higher than 0.1%, with contributions from

substitution, deletion, and insertion symbol errors.

The formation of consensus reads in nanopore sequencing

is similar to the corresponding process in short-read

technologies, but aligning ONT reads is computationally

more challenging due to the presence of indel errors – see

the description of multiple sequence alignment algorithms

reported in the context of DNA-based data storage in [124],

including Muscle, Coffee, Clustal Omega and others. The

work [124] also introduced a specialized approach for

error-correction from base-called reads using symbol-level

redundancy, treating the problem as an instance of trace

reconstruction. Trace reconstruction was initially described

in the context of phylogenetic tree analysis [10] and is

discussed in the context of coded trace reconstruction [24]

in Section IV. We also remark that nanopore error-correcting

codes that directly operate on raw current readouts without

requiring intermediate basecalling are discussed in [17]. Some

additional interesting results on reconstructing strings based

on traces and modeling the nanopore channel can be found

in [69], [71], and [75].

Although current DNA-based data storage systems do not

broadly utilize PacBio HiFi technologies [60], it is important

to highlight some notable features of this technology. HiFi

sequencers produce long reads, ranging from 10, 000 to

20, 000 bases, and exhibit high reliability, comparable to that

of Sanger sequencers. This increased accuracy in base calling

can be attributed to various factors, including the reduction

of polymerase bleaching effects and the implementation of

subread consensus protocols. In the HiFi sequencing process,

the same DNA molecule is read approximately 200 times,

generating an equal number of subreads that are subsequently

aligned and denoised. Unlike nanopores, HiFi devices capture

the kinetics of the reading process, where the bases are

characterized by distinguishable random pulse widths, and

each pair of bases corresponds to different random interpulse

widths. These pulse width and interpulse duration signals

reflect the speed at which a polymerase incorporates a specific

base into the subread. Our focus in subsequent discussions

is exclusively on long-read nanopore-based DNA storage

systems.

B. DNA Editing

DNA editing is an emerging interdisciplinary field with

applications in chemistry, biology, medical sciences and

synthetic biology, concerned with altering the content and

structure of genomic and other -omic sequences. One of the

major breakthrough discoveries in the area is the CRISPR

(Clustered Regularly Interspaced Short Palindromic Repeats)

system which was recently recognized by a Nobel prize

in Chemistry awarded to its co-discoverers, Charpentier and

Doudna [55]. CRISPR is a system native to some archaea

and bacteria which use it as a form of immune and antiviral

defense mechanism. The system involves repeat sequences

of certain genetic sequences interleaved (interspersed) with

spacer sequences that represent identifiers of invasive species

encountered in the past. Upon detection of a recurrent

invading unit through recognition of its characterizing genetic

sequence, CRISPR’s constituent Cas9 proteins guided by RNA

recognition sequences cut the viral genomes at the position of

the recognized content. Simply put, CRISPR stores snippets

of genetic information of prior invasive species and uses this

“genetic memory” to detect and disable present hostile viruses

by cutting their genetic material (see Figure 5).

An advantage of CRISPR is that it is a complex that

already involves enzymes such as Cas9 and relevant guide

RNA sequences needed for disabling invasive species. Also,

the complex performs cutting of single-stranded and double-

stranded substrates in different manners. When cutting

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3810 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

Fig. 5. The CRISPR system and its constituent Cas9 protein and guide RNA components. CRISPR memorizes genetic information of past invasive species
and uses it to identify their renewed presence. Upon detection, it performs cutting of the genetic content of the infective agents in order to disable their
replication. Outside of this native context, the complex can be used to cut arbitrary DNA strings through a careful design of the RNA guides.

double-stranded DNA, either both strands or only one of the

two strands is cut. The latter process is usually referred to

“nicking,” and it does not lead to disassociation of the DNA

duplex. There are also CRISPR complexes involving other

enzymes, such as Cas13, which have the capability to edit

RNA sequences.

For DNA-based data storage applications, and in particular,

the subsequently discussed DNA Punchcards platforms, Cas9

can be matched with arbitrary synthesized guide RNA strings.

These “lead” the enzymes to selected target positions, so that

nicking may be performed in a massively parallel fashion

involving multiple DNA sites. This is an especially important

feature for molecular storage as it circumvents the problems

associated with inherently sequential DNA synthesis: if nicks

are to be introduced at multiple sufficiently distant locations

in a double-stranded DNA substrate, the Cas9 enzymes can

perform nicking without co-interference. One drawback of

Cas9 is that it is what is known as a single turnover molecule

– once the enzyme creates a nick it becomes inactive. This

problem can be resolved by using multiple turnover enzymes

(e.g., Pfago [115]) which, in principle, can make close to

hundreds of cuts or nicks before becoming inactive.

C. Strand Displacement

Strand displacement in DNA is one of the most frequently

used molecular and DNA computing paradigms. DNA strand

displacement, as its name suggests, corresponds to replacing

(part of) a single-stranded DNA section of a double-stranded

DNA formation by another strand. There are two approaches

to displacement: polymerase-based and toehold-mediated.

We focus on toehold-mediated strand displacement as it is used

more frequently, does not require specialized enzymes and

lends itself to a wide variety of computations suitable for data

stored in DNA Punchcards described in the next section [93].

The double-stranded DNA may be seen as encoding the state

of a computational system or serve as a proxy for a logical

gate. It comes with one or multiple single-stranded regions

termed toeholds, which are usually of length 5 − 10 bases.

In Figure 6, there is one toehold in the right-most position of

the double-stranded DNA that allows for hybridization of a

Fig. 6. Toehold-mediated strand displacement (with the displacement steps
a), b) c), d) and e)). The input DNA strand hybridizes to the single-stranded
toehold region and forces the competing strand to peel-off from the duplex,
as governed by the laws of thermodynamics. Note that the green and red string
are, by design, distinct, since they correspond to Watson-Crick complements
of different parts of the string in blue. The reactions take milliseconds or less.

Watson-Crick-complementary single-stranded DNA, referred

to as the instruction strand. Once the instruction strand

hybridizes to the toehold it starts pushing out (i.e., displacing)

the already present single-stranded part of the duplex to the

left of the toehold until it completely disassociates. This

strand then becomes the “output” of the computing unit. In a

nutshell, the input strand may be seen as an instruction that

changes the state and releases an output strand in its stead.

Displacement reactions can be performed in a cascade, thereby

allowing for multiple changes of states and released output

strands which broadens the computational repertoire of strand

displacement. As an example of the computations possible

via strand displacement, the interested reader is referred to a

neural network implementation based on cascades of toehold-

mediated displacements [94]).

Although in theory many different computations, including

universal ones, can be implemented via strand displacement,

a major practical challenge is to control leakage in the

cascades [116]. Leakage refers to unintended displacements

that lead to the release of incorrect output strands and reduce

the efficiency of the reactions. Leakage is the key impediment

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3811

Fig. 7. The first two DNA-based data storage systems used nearly-identical data encoding protocols, involving runlength coding, indexing and single
parity-check coding.

to accurate execution of more than 6 − 7 consecutive

displacement reactions, due to an excessive number of

undesired byproducts. Recent methods for correcting leakage

errors via controlled redundancy were described in [121].

III. AN OVERVIEW OF EXISTING DNA-BASED DATA

STORAGE PLATFORMS

The first successful implementations of DNA-based storage

systems with read and write capabilities were described in [25]

and [43]. These works outlined similar procedures, which

involved the following steps.
a) Conversion of compressed binary data, such as text

or images, into a ternary or quaternary alphabet. The

process included elementary coding approaches such as

GC-balancing, runlength coding, and single-parity check

coding. Ternary encoding was employed to limit the

runlengths of the same symbol (i.e., the lengths of

homopolymers) to one. It effectively reduced the alphabet

size from 4 to 3.

b) Parsing the encoded information strings into over-

lapping substrings with controlled overlap length. The

overlap was set to 75%, ensuring 4-fold coverage of the

content (with the exception of the two boundaries).

c) Addition of substring identifiers that encoded the index

of each substring within the longer string. Note that such

identifiers do not represent addresses since they were not

designed to enable random access.

c) Synthesis of the overlapping substrings in the form of

oligo pools.

d) Sequencing of the substrings and reconstructing the

original message (refer to Figure 7).
The system was designed with several main considerations

in mind. First, the overlapping oligo approach was used to

facilitate easy reassembly of the original message through

identification of overlapping suffixes and prefixes. As a

side-effect, it effectively reduced the code rate to roughly

1/4. Second, a balanced GC was ensured to reduce both

synthesis and sequencing challenges. Third, since sequencing

platforms in use at the time of the publication, such as

Roche 454, were known to introduce errors in the presence

of long homopolymer contents, the latter were severely

constrained in length. However, it is important to note that

current Next Generation sequencing platforms do not have

severe homopolymer-related limitations, making it undesirable

to compromise storage density through such a restrictive

encoding protocol [113].

The DNA storage systems described above were unable to

accurately reconstruct the original sequence, despite reducing

the size of the alphabet and ensuring long overlaps between

adjacent oligos. Furthermore, in order to access the encoded

content in a specific section of the sequence, the user had to

sequence and assemble the entire content, leading to significant

implementation expenses.

The PCR-based random access approach was introduced

and experimentally tested in [125], with its scalability further

confirmed by Microsoft Research on a file size close to 200

MBs. The idea behind PCR-based random access is simple

when analogies to classical storage systems are drawn: one

needs to endow each information block (oligo) with an address

sequence. The main challenge was to devise a method to

efficiently search for the block with the required address

when no “search circuits” are available. The obvious idea

is to use hybridization, since the presence of a particular

address sequence can be detected via targeted hybridization

with its reverse complement sequence. This detection approach

requires the desired strands to be isolated and sequenced.

“Isolation” is achieved via amplification, i.e., PCR reactions.

More precisely, the protocol for random access involves

extracting a small subsample of the oligo mixture and

running sufficiently many cycles of PCR reactions with primer

combinations corresponding to the encoded information blocks

to be retrieved. The amplified subsample in this case contains,

with overwhelming probability, only the desired oligo content

which can then be sequenced to complete the random access

process.

The combinatorial design protocol for random access

primers includes balancing the GC content, adding error-

correcting redundancy, preventing self-folding of the primers,

ensuring that pairs of distinct primers do not hybridize to

each (i.e., preventing primer-dimers). Importantly, in addition

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3812 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

to all these constraints having to be met simultaneously, one

more constraint has to be accounted for – zero cross and

autocorrelation [46] of the primers. The autocorrelation of

a binary string s1s2 . . . sn is another binary string which

indicates the overlap between prefixes and suffixes of the

strings of lengths 1, 2, . . . , n − 1. Clearly, zero correlation

prevents matching prefixes and suffixes of primers and

thereby ensures some control over primer-dimer formations

and self-folding. The concept is best illustrated by an

example.

Example 1: Let s1s2 . . . s5 = 10101. Then, the autocorre-

lation of the string is the binary string 0101 indicating that

the prefix and suffix of the string of lengths 3 and 1 are the

same (the second bit, equal to 1, indicates a match of length

3, while the fourth bit, again equal to 1, indicates a match of

length 1.

Cross-correlation can be defined similarly, by recording the

prefix/suffix overlaps of two distinct strings. For more details,

see [127] and the review article [126].

With regards to questions related to the enumeration of

possible single-stranded DNA folds and related nonfolding

constraints, the interested reader is referred to [78] and [87].

The latter work used the notion of Motzkin paths [88], which

represent Dyck lattice paths augmented by flat (constant)

platoes. A Dyck lattice path is a string of even length n over

the alphabet (,) containing exactly n/2 symbols of each type

and satisfying the property that no prefix of the string contains

more) than (symbols. A Motzkin path is a string of even

length n over the alphabet (,), − containing the same number

of (and) symbols, and satisfying the property that no prefix

of the string contains more) than (symbols (and with no

restrictions on the placement of the symbols −). An example

Dyck path of length 8 is (()()()), while an example Motzkin

path of length 8 is (−()−()−). The matched bracket symbols

(and) can be used to represented paired bases within a

string, while the dash − symbol can be used to denote an

unpaired basis. Restricted Motzkin paths described in [78]

ensure that no short collection of consecutive unpaired bases

(forming a loop) is followed by a long stem (a pair of reverse-

complementary substrings on the string) which would lead to

a stable secondary structure that renders the strings unusable

as primers.
In addition to reporting the first PCR random access, the

work reported in [125] also included a text rewriting scheme

that is based on overlap-extension PCR; it also examined,

from the theoretical point of view, how to perform information

encoding so as to avoid substrings that are identical to the

oligo primers used for addressing. In the context of rewriting,

specialized encoding techniques were used to ensure that

complete word phrases, likely to be edited together, are part

of the same block that can be replaced by another block via

overlap-extension PCR reactions. In the latter setting, a prefix-

synchronized coding scheme adapted from [82] was used to

ensure that the primer strings do not appear as substrings inside

the information-bearing content, as that would lead to PCR

amplification of substrands and not the whole oligo or gBlock.

Sequencing was performed using Sanger methods, with no

reported errors in the PCR-retrieved information.

Another important direction in DNA-based data storage

was pursued in [124], where, for the first time, nanopore

sequencing was used for data retrieval. The work also

described how to combine the ideas of pilot signaling (from

communication theory) and trace reconstruction [10] (from

theoretical computer science) in DNA-based data storage.

At the time the work was published (2015-2016), nanopore

sequencers were the only low-cost and portable option for

sequencing long blocks of DNA, such as gBlocks. Cost and

portability are important issues given that Illumina platforms

are bulky and expensive, and designed for lab use in mind.

Despite their desirable properties, ONT MinION sequencers

available in 2016 had the serious drawback of excessively

high rates of indel errors, often exceeding 15% (this rate has

been significantly reduced during the past decade, and is now

closer to 5% for academic labs like the one used to perform

the experiments in [124]).

A common approach to reduce the error rate is to form

a consensus of all the nanopore readouts corresponding to

different copies of the same input sequence. This naturally

leads to the problem of sequence alignment, for which

software suites such as Clustal Omega [106] or ONT in-

house learning-based methods such as Nanopolish [123] are

readily available. Still, for indel error-rates as high as 15%,

the resulting consensus provided only a low-quality estimate

for the actual user information string.

A straightforward solution to the problem was to treat the

addresses as pilot sequences used to estimate the nanopore

channel (see Figure 8). This approach proved successful

since the addresses/pilots are indicative of “malfunctioning”

or “tired” pores. For such pores, all traces or the most recently

read traces contain a large number of errors. Given that

the address sequences are known to both the encoder and

decoder, the quality of the pore can be assessed through

the number of errors in the addresses. By only using reads

whose addresses have no errors, or by iteratively recruiting

reads with low-error-rate-addresses to improve some local

alignments, the reconstruction error rate dropped significantly,

below 1−2%. The remaining errors were completely removed

by GC-balancing the content of the blocks and by applying

asymmetric homopolymer codes. The former allow one to

identify potential synchronization or substitution errors by

counting the symbols in each subblock; the latter allowed

for fixing asymmetric deletion errors that affect one or two

bases only, and do not completely erase a homopolymer. Such

errors were found to occur in the ONT data generated by the

experiments in [124]. Note that more recent ONT platforms,

such as R10.4, are designed to accommodate 9 − 10 bases

in the pore in order to resolve the problem of homopolymer

sequencing errors.

Two unconventional approaches to DNA-based data storage

were explored in the recent studies [104], [115].

In the first approach, synthetic data was incorporated into

the DNA of living organisms, such as bacteria. This in vivo

(inside the cell) approach offers several advantages. First, user-

defined information can naturally replicate itself through the

growth of bacterial communities. Additionally, this population

encoding strategy provides inherent error protection.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3813

Fig. 8. The content of replicas of the same DNA string is read by different
pores or by the same pore at different times. Each readout is modeled as a trace

(which, unlike most traces used for mathematical proofs of reconstruction
performance, also include insertions and substitution errors). The traces/reads
can be aligned using one of the many existing DNA sequence alignment
algorithms, but the results are of poor quality when even a small number of
traces contains an excessive number of errors (see Extended Data Figure 3
in the Supplementary Information of [124]). Since the address sequences of
the strings are known, the quality of the “nanopore channel” can be estimated
by counting the number of errors present in the address string. In the given
example, the address portion of the strings is boxed and the third trace contains
three errors in the boxed region. This is indicative of a defective or tired pore
and hence the third trace is not used for sequence alignment. As a result, the
consensus sequence obtained via alignment of “good reads” is error-free or
almost error-free.

However, this scheme has several drawbacks. The storage

density is low compared to other methods due to the need

to carefully place synthetic DNA in specific regions of

bacterial genomes, so as not to disrupt normal cellular

functions. Furthermore, the ratio between the information-

bearing mass and the overall cell mass is significantly reduced

as well, further decreasing the effective storage density. Most

detrimentally, the process of recording and retrieving data

is highly complex. Not only does one need to synthesize

user DNA information, but must also insert it into desired

locations within the bacterial genome. Data retrieval involves

extracting bacterial DNA, isolating the desired content, and

subsequently sequencing it. It remains uncertain whether this

approach can be made cost-efficient enough to complete with

purely synthetic in vitro (outside of the cell) methods.

In contrast, the DNA Punchcard system, introduced in [115],

aims to address the issue of synthesizing DNA in the first

place. The concept behind this approach is illustrated in

Figure 9. In this storage context, “native DNA” refers to DNA

extracted directly from bacteria, such as E. coli, without any

synthetic modifications, and subsequently used and processed

in vitro. Native DNA is readily available and can be obtained

in large volumes at low cost. However, since native DNA has a

composition determined by Nature, it cannot be easily altered

to store user-defined data. Instead of modifying the content,

one can instead choose altering the topology of the sugar-

phosphate backbone at specific positions, termed “nicking

positions.” These positions are located between a pair of

bases and indicate where the backbone strings are allowed

to be nicked. Enzymes such as Cas9 or PfAgo, described in

Section II, can be used for the recording process via nicking.

Fig. 9. In DNA Punchcard systems, data is recorded on native DNA
fragments termed orthogonal registers. Each register has nicking locations
whose sequence contexts are highly dissimilar, captured by the different colors
of the stars indicating the nicking positions, thereby allowing for parallel
nicking/recording of information on all orthogonal strands. The same nicking
enzyme-guide unit can be used to nick hundreds of copies of the same register,
which makes the system scalable.

The absence of a nick represents the value 0, while a nick

on the sense strand represents 1, and the same nick on the

antisense strand represents 2. Therefore, the recoding alphabet

in this system is ternary. It is important to note that cutting

both strands at the same location is not allowed as it would

cause the DNA to dissociate.

Storing information through nicking offers several advan-

tages. First, there is no need to synthesize the information

content in DNA, as topological changes are utilized to

represent the data. Second, nicking can be performed in a

highly parallel fashion. Third, writing the symbol 0 does not

require any specific action, which is a characteristic shared

by other existing storage technologies. Fourth, erasing and

rewriting data is remarkably straightforward through the use

of ligases, which can seal off the nicks. Since ligases remove

nicks regardless of their position on the DNA, selective erasing

and rewriting of data requires storing it in physically separated

fragments of DNA.

The process of reading information stored in nicks is

conceptually simple and highly robust to errors due to the

existence of the bacterial genome reference. In a nutshell,

the nicked DNA is denatured, i.e., the constituent strands

are separated, and the obtained fragments PCR-amplified and

sequenced using Illumina platforms. The sequenced reads are

then aligned to the bacterial reference sequence to determine

the locations were one fragment ended and another one started,

corresponding to the positions that were nicked. To detect the

nicks using nanopores requires reverting from ONT to solid-

state nanopores, since the former do not require unwinding

the strands [5].

Another important observation is that it is not necessary

to use long native DNA fragments to encode information.

This is because using long fragments can lead to undesired

and off-targeted nicking. Instead, one can selectively isolate

nonoverlapping fragments of native DNA that have low

sequence similarity. These fragments are referred to as

“orthogonal registers.” By insisting on low sequence similarity,

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3814 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

measured in terms of the Levenshtein distance, the probability

of nontargeted nicking is reduced while maintaining recording

parallelism. Additionally, since the registers are substrings of

a real bacterial genome, their order is determined by their

occurrence in the genome. Therefore, there is no need for

positional encoding.

Similarly to other current molecular recording systems,

DNA Punchcards cannot avoid certain functional impairments.

The most important drawback is reduced storage density,

which is a consequence of both the decrease of the alphabet

size from a 4-letter base alphabet to a 3-letter nicking alphabet,

as well as the nicking site placement constraint. The latter

requires nicking locations to be separated by roughly 10 bases

apart in order to ensure stability of the DNA duplex and avoid

having to read very short genomic fragments.

Note that the guides used in conjunction with the nicking

enzymes still need to be synthesized unless they can be

extracted directly from the native DNA itself without the

use of other guides (which remains challenging). However,

guides are typically very short RNA or DNA strings, of length

⩽ 20 nucleotides. Furthermore, as already mentioned, the

guides are multi-use entities when combined with enzymes

like PfAgo.

Nick-based storage allows for in-memory computations to

be performed directly and in parallel on the data recorded

in all registers through strand displacement operations [22],

[122]. In this computing approach, the symbols 0 and 1 are

represented by two different blocks of bases, nicked at

different locations. For example, if 5 nucleotides are used,

0 could be represented as 2 − nick − 3 while 1 could be

represented as 4 − nick − 1, indicating that for the former,

the nick is placed between the second and the third base,

while in the latter, it is placed between the fourth and the

fifth base. Since strand replacement terminates when the

instruction string encounters a nick (as the nick prevents

further “peeling-off” of a DNA substrate) and since nicks

encode the bit values themselves, one can move the positions

of the nicks around, thereby changing the register content.

Roughly speaking, these nick-displacement operations involve

sealing a nick in one position while creating a new nick in

another position. Operations such as incrementing all registers,

sorting their contents, and operations behind the universal

Rule 110 automata have been successfully implemented and

executed on data stored in DNA nicks via multistage strand

displacement [22], [122].

Nick-based recording also enables the creation of 2D

storage systems, as the nicks do not have to be necessarily

superimposed on native DNA. The 2DDNA model of [89]

superimposed nick-encoded data on synthetic DNA strands.

Such an approach caters to the need of high-volume storage

by encoding information in the DNA content and low-volume

rewritable data storage by encoding it in the topological

domain. Since the most prevalent data format is image data, the

method was specialized to encode images into DNA content

and image metadata (ownership information, date of access,

steganographic messages) in the form of nicks. Another novel

feature of this 2DDNA system is the use of machine learning

methods to reconstruct the image in the presence of synthesis

and missing oligo errors through a combination of automatic

discoloration detection, image inpainting and smoothing (see

Figure 10).

We conclude this review of different directions in DNA-

based and molecular data storage by describing emerging

approaches that aim to increase the size of the DNA alphabet

through the use of chemical modifications [114] and employ

synthetic polymers instead of synthetic DNA [61], [66].

In the former work, the DNA alphabet – A, T , G, C – is

augmented by chemically modified native bases. A chemical

modification is a small group of atoms added to a base

so that it does not change its Watson-Crick binding affinity

(or, at worst, does not significantly compromise it). The

idea is to create “variants” of the symbol, say A1, A2,

T1, T2, T3, etc, that expand the alphabet size but remain

distinguishable when sequenced. The main challenge of this

approach is to adapt existing sequencing technologies –

Illumina, ONT or PacBio – to efficiently discriminate all

native and chemically modified symbols. The most promising

approaches include learning to classify the bases using raw ion

current signals from nanopores and kinetic information from

PacBio SMRT (single-molecule, real-time) HiFi devices.1

Another potential drawback of using chemically modified

DNA is that PCR random access methods cannot preserve

the information encoded in modification unless both strands

contain “matching” chemical modifications. This problem can

be remedied through the use of grids of self-rolled nanotubes

that use the negative charge of the DNA sugar-phosphate

backbone to control its movement via electronic circuits [57].

In the latter line of work, collections of synthetic polymers

(usually two polymers, each assigned to one of the two bit

values) of predetermined and largely different masses are

connected to form bytes. Chemical bonds are introduced

between the bytes to form one information-bearing string

which, when broken, enables separate reading of each byte.

Synthetic polymers offer the advantage of lower synthesis

costs, although the synthesis process remains sequential.

However, there are drawbacks, such as the absence of

a PCR-type amplification process and a limited range of

natural enzymes capable of working with the polymers.

Initially, data retrieval from polymers relied on tandem mass

spectrometry [66], but recent advancements have focused on

the development and utilization of specialized nanopores [16].

IV. CODING-THEORETIC QUESTIONS

As pointed out throughout the previous text, all components

of different DNA storage systems introduce errors. For

example, synthesis errors mostly manifest themselves in the

form of substitution errors, while errors introduced during

nanopore sequencing are standardly modeled as combinations

of substitution and indel errors. In addition to these well-

studied error models, many previously unexplored research

1The platforms operate by reading the same molecule 100 − 200 times
via synthesis and forming a consensus of the subreads to estimate the
content of the molecule. Unlike nanopore sequencers that report ionic current
signals, PacBio systems provide information about so-called pulse widths and
inter-pulse durations, capturing the times taken by the polymerase to add a
nucleotide and to prepare for adding the next one.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3815

Fig. 10. An innovative component of the 2DDNA system is the use of automatic discoloration detection in images caused by synthesis and missing oligo
errors. A specialized encoding scheme for image data separates the R,G, and B content of the images and places it on different oligos (top row). This allows
for treating the three channels as a form of replication coding. Smoothness irregularities in one but not in the other two channels are indicative of oligo errors
in the former (second row). These are detected by looking at the difference in values of pairs of color channels (as shown in the three histograms in the
middle of the figure). The resulting discoloration is treated as missing pixels, whitened-out and then “imputed” using deep neural network inpainting methods.
Further subjective image quality improvements are ensured via enhancement and smoothing (third row). Note that this approach is tailor-made for image data
and it mitigates the use of costly error-correcting redundancy. For images with fine facial details, unequal error-protection low-density parity-codes can be
used in addition to machine learning approaches to improve the reconstruction, with a redundancy of < 7% for the facial data alone.

directions in coding theory came into existence solely

motivated by molecular storage. Some of these problems and

their solutions were described in the review paper [126].

To avoid overlaps with the topics covered in [126], we choose

to focus on a sampling of more recent analytic questions

pertaining to modeling the DNA storage channel, decoding

information via trace reconstruction and designing codes for

DNA Punchcard systems.

The DNA storage model is an abstraction of a DNA-

based data storage system that uses microarrays for DNA

synthesis and Illumina and other short-read sequencing tech-

nologies, along with specialized graph-theoretic approaches

for sequence reconstruction. Coded trace reconstruction is a

new problem motivated by long-read nanopore sequencing

approaches which require specialized alignment methods for

data recovery. For DNA Punchcard storage systems which use

known reference sequences and consequently have negligible

readout errors, we choose to discuss coding problems related

to duplex stability, rather than reconstruction errors. Finally,

we also describe several problems in the area of coding for

unique reconstruction, initiated by the works in [2], [38],

and [58], which require constrained coding approaches that

ensure unambiguous string recovery.

A. Coding for DNA Data Storage Systems With Short-Read

Technologies

Our discussion to follow pertains to the first model of

a DNA storage channel, described in [58]. It provides

a simplified, yet conceptually accurate, abstraction of

microarray-based synthesis and shotgun-type sequencing.

To facilitate the mathematical exposition, we start with some

relevant terminology.

Let n be a positive integer, [q] = {0, 1, . . . , q − 1}, and

x ∈ [q]n. Choose a constant integer 0 < ℓ. The ℓ-profile

vector of x, denoted by Ãℓ(x), is a vector of length qℓ whose

coordinates are indexed by all possible q-ary strings of length

ℓ, in lexicographic order. The i-th entry of Ãℓ(x) equals the

number of substrings of x that match the i-th string in the

lexicographical order of strings in [q]ℓ. Note that the entries of

the profile vector are nonnegative integers whose sum equals

n − ℓ + 1.

Example 2: If q = 2, n = 5, ℓ = 2, and x = 11011,

then Ã2(x) = 0112, and 0 + 1 + 1 + 2 = 4 = 5 − 2 + 1.

The lexicographical ordering used is (00, 01, 10, 11), and

the profile of x reveals that it contains no 00 substrings,

that it includes exactly one substring 01 and 10, and two

substrings 11.

For simplicity of notation, we henceforth drop the subscript

ℓ as it will be made clear from the context.

Next, we say that Ã() is a valid (string) profile if there

exists a string with that given profile. Otherwise, we say that

the profile is not valid.

Example 3: For the parameters in the above example,

Ã = 2002 is not a valid profile, since there is no binary

vector of length n = 5 that contains 2 substrings 00 and 2

substrings 11.

Observe that two different string can share the same profile,

as illustrated by the example that follows.

Example 4: Consider the following collection of strings

{0000, 0010, 0100, 0110, 1001, 1011, 1101, 1111}.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3816 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

Fig. 11. A DNA-based data storage channel model. The input into the channel is a string of length n over the DNA alphabet {A, T , G, C}. The output
of the channel comprises a collection of noisy substrings of the input string. Noise is introduced at three different stages of the write-read process. During
synthesis (leftmost panel), one encounters synthesis substitution errors. In the particular example in the figure, such errors are marked in red, and they include
the bases C and A. Note that synthesis errors propagate through the channel as they are “imprinted” into the string that is to be sequenced. Once the string
is synthesized, it is read by first fragmenting it into ℓ-mers (in the example, 3-mers), some of which may be missing due to coverage errors (marked in gray).
The substrings are then read through sequencing-by-synthesis, and the reading process itself can lead to the introduction of additional sequencing substitution

errors within the substrings. Therefore, the input of the channel is a string, while the output of the channel is an incomplete, noisy collection of substrings
of the input string.

The ℓ = 2-mer equivalence classes of the strings, with two

strings being equivalent if their ℓ = 2-mer profile vectors are

the same, are

{0000}, {0010, 0100, 1001}, {0110, 1011, 1101}, {1111}.

Clearly, the profile vectors of the four equivalence classes are

(3, 0, 0, 0), (1, 1, 1, 0), (0, 1, 1, 1) and (0, 0, 0, 3), respectively.

Next, for profile vectors of two q-ary strings x and y, let

us define their asymmetric profile distance according to

∆(x, y) = max{∂(x, y), ∂(y, x)},

where ∂(x, y) =
∑qℓ−1

i=0 max{Ã(x)i − Ã(y)i, 0}, and where

the subscript i denotes the i-th coordinate of the

vector.

The question of interest is to design the largest possible

codebook Cq,n,ℓ,d of q-ary vectors of length n such that

the minimum pairwise asymmetric distance of their ℓ-profile

vectors is at least d. For d ⩾ 1, one has to automatically

preclude simultaneous inclusion of two strings from the same

equivalence class in Cq,n,ℓ,d, since in that case, the profiles of

the strings are the same.

The motivation for studying the previously introduced

problem comes directly from the models of DNA-based data

storage depicted in Figure 11. When sequencing DNA, the

input to the sequencer is a string, while the output is a

collection of substrings (reads) generated (for this model)

by Illumina sequencers. The asymmetric distance allows one

to account for three types of errors, synthesis substitution

errors, whose number is assumed to be upper-bounded by s;

coverage errors, modeled as missing substrings, the number

of which does not exceed c; and, sequencing substitution

errors, which manifest themselves as individual substitution

errors within the substrings (reads), and the number of which

does not exceed o. If the minimum asymmetric distance of

the profiles of the codestrings satisfies dmin ⩾ 2s + c + o,

then the code can correct the corresponding number of

synthesis, coverage and sequencing errors. Several abstractions

are made to make the analysis of this model tractable. First,

it is assumed that one can perfectly count distinct oligos.

In the example with x = 11011 and Ã(x) = 0112, it is

assumed that one can determine that there were two distinct

substrings 11 in the original string. In practice, Illumina

systems do actually report all sequenced oligos, but without the

information if these oligos are replicas of the same substring

or replicas of multiple identical substrings. This issue can be

mitigated through the use of long-read technologies which are

known to resolve problems associated with repeats. Second,

synthesis errors are usually context dependent, and repeats

make the process difficult or outright impossible. To make

the model more realistic, we would require the codestrings to

be repeat-free, but this would make the subsequent analysis

very hard. Third, since multiple replicas of the same string

may be generated during sample preparation, and each of

these strings can be subject to different error-patterns, one

substring can give rise to multiple erroneous substrings. How

many replicas are present depends on the coverage depth

(i.e., the average number of times a symbol is covered by

the reads).

Given that the DNA storage channel accepts strings at

the input and produces profiles at the output, it is not

immediately clear how to ensure that minimum asymmetric

distance constraints are met in the substring domain while

working with the global input strings. The key ideas for

solving this problem rely on the use of de Bruijn graphs [12],

[15] and are described next.

A directed graph (digraph) D is a pair of sets (V , E), where

V is the set of nodes (also referred to as vertices) and E is a

set of ordered pairs of V , termed arcs. If e = (v, v ′) is an arc,

we call v the initial node (tail) and v ′ the terminal (head) node.

We allow loops (i.e., we allow v = v ′) as well as multiple arcs

between nodes.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3817

The incidence matrix of a digraph D is a matrix B(D) ∈
{−1, 0, 1}V×E, where

B(D)v,e =











1, if e is not a loop and v is its terminal node,

−1, if e is not a loop and v is its initial node,

0, otherwise.

Given q and ℓ, the (standard) de Bruijn graph is defined

on the node set [q]ℓ−1, where we recall that [q] = {1, . . . , q}.

For v, v ′ ∈ JqKℓ−1
, an ordered pair (v, v ′) ∈ E if and only if

vi = v ′

i−1, for 2 ⩽ i ⩽ ℓ − 1. We label the arc (v, v ′) with the

length-ℓ string vv ′

ℓ−1, and without loss of generality, equate

arcs with their labels.

Example 5: Let q = 2 and ℓ = 4 and consider the de

Bruijn graph shown Figure 12. The nodes v = 101 and

v ′ = 010 are connected by the arc 1010 which originates from

v and terminates in v ′. The suffix of v of length ℓ−2 = 2 equals

01, which is also the prefix of length ℓ − 2 of v ′. The label of

the arc equals vv ′

ℓ−1 = 1010.

The notion of de Bruijn graphs can be extended to prohibit

the presence of certain ℓ-mer arc labels or (ℓ − 1)-mer vertex

labels [98]. For such restricted de Bruijn graphs, the set of

allowed (ℓ − 1)-mers is denoted by S. The corresponding

restricted de Bruijn graph is denoted by D(S). The importance

of restricted de Bruijn graphs for DNA-based storage systems

lies in the fact that S may be chosen to satisfy additional

sequence constraints, such as balanced GC constraint (e.g.,

balanced ℓ − 1-mers). For q = 2, “balanced” refers to the

substrings containing the same number of 0s and 1s, while

for larger values of q, it refers to balanced or nearly balanced

GC content.

A walk of length n in a digraph is an ordered collection of

nodes, v0v1 · · · vn, with (vi, vi+1) ∈ E for all i ∈ JnK. A walk

is closed provided that v0 = vn. A cycle is a closed walk with

no repeated nodes, i.e., vi ̸= vj, for 0 ⩽ i < j < n. A cycle

of length one is referred to as a loop. Given a subset A of the

arc set, let a ∈ {0, 1}|E| be its incidence vector, so that ae= 1 if

e ∈ A and ae= 0 otherwise. For the incidence vector a of a

closed walk in D, we have B(D)a = 0.

The de Bruijn digraphs of interest to our problem have arcs

weighted by nonnegative integers that reflect the properties

of a chosen sequence that they represent. More precisely, the

weight of an arc indicates the count of the substring label

within the sequence. As an example, in Figure 12, only three

arcs have integer labels marked in black. All arcs without

integer labels are assumed to have weight zero. Since the label

of each arc is uniquely determined by the source and terminal

vertex, one can omit the sequence label and only retain the arc

weights. The weights in the figure describe how many times

an arc has to be traversed and simultaneously, they capture

the number of times the substring appeared in the string (i.e.,

they capture the profile of a string).

Example 6: One of the possible strings whose profile is

shown in the de Bruijn graph example equals 1001001,

since it contains the following substrings of length ℓ = 4:

{1001, 0010, 0100, 1001}. Hence, to recover the string, the arc

labeled 1001 has to be traversed twice, while the arcs labeled

{0010, 0100} have to be traversed once. All other arc have to

be ignored. The length of the string is n = 4 + ℓ + 1 = 7,

since there are 4 substrings in total. The length of the walk in

the graph equals the sum of the arc labels or the number of

substrings of the string, which equals n − ℓ + 1 = 4.

A constrained walk from some node v to another node v ′ in

D(S) describes a string that starts with v and ends with v ′ and

whose ℓ-mers are restricted to belong to S. Closed strings are

strings that start and end with the same (ℓ − 1)-mer and they

correspond with closed walks in D(S). Strings corresponding

to walks of length n − ℓ + 1 in D(S) (and, consequently,

profiles of strings of length n) are denoted by Q(n; S). At the

same time, the set of closed strings is denoted by Q̄(n; S),

and clearly, one has Q̄(n; S) ¦ Q(n; S). The set of profile

vectors of closed strings is denoted by pQ̄(n; S). The reason

for introducing closed strings is that for such strings, several

counting problems simplify substantially, while the restriction

has barely any bearing on the code rate for constant ℓ.

Suppose that u ∈ pQ̄(n; S). Then, the flow conservation

equations below hold.

B(D(S))u = 0. (1)

Furthermore, let 1 denote the all-ones vector. Since the number

of ℓ-mers in a string of length n equals n−ℓ+1, we also have

1T u = n − ℓ + 1, (2)

where T denotes the transpose. Let A(S) be B(D(S))

augmented with a top row 1T ; also, let b be a vector of length

|V(S)| + 1 with a one as its first entry, and zeros elsewhere.

Equations (1) and (2) may then be jointly rewritten as

A(S)u = (n − ℓ + 1)b.

Consider next the following two sets of integer points.

F(n; S) ≜ {u ∈ Z
|S| : A(S)u = (n − ℓ + 1)b, u ⩾ 0},

(3)

E(n; S) ≜ {u ∈ Z
|S| : A(S)u = (n − ℓ + 1)b, u > 0}.

(4)

It is straightforward to see that the profile vector of any

closed string must belong to F(n; S). Conversely, any vector

in E(n; S) is a profile vector of some closed string.

The above formulation can be used to establish a count of

the number of profile equivalence classes as follows. Suppose

that D(S) is strongly connected. Then, under certain mild

constraints and for a constant values of ℓ, it can be shown that

|E(n; S)| ∼ n|S|−|V(S)| and |F(n; S)| ∼ n|S|−|V(S)|; as a result,

|pQ̄(n; S)| ∼ n|S|−|V(S)|. Here, the symbol ∼ is used to indicate

that for sufficiently large n, the sizes of the sets scale as the

term on the right.2 In a nutshell, the result follows by counting

the solutions of the defining conditions for points in F(n; S)

and E(n; S) via lattice point enumeration techniques and what

is known as Erhart-McDonald’s reciprocity theory. The Erhart-

McDonald’s reciprocity theory is a broad generalization of a

simpler result known as Pick’s theorem, which expresses the

2A rigorous statement of the results involves the definition of quasipolyno-
mials and is therefore omitted.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3818 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

Fig. 12. The de Bruijn graph for q = 2, ℓ = 4. Vertex labels are binary vectors of length ℓ−1, while arc labels are binary vectors of length ℓ. The nonnegative
integer weight of arcs describe the ℓ = 4-mer profile vector of the string x = 1001001, Ã(x) = 00101000002000000. Unweighted arcs are assumed to have
weight 0.

area of a polygon in terms of the number of lattice points in

its interior [92].

For unrestricted de Bruijn graphs, which are strongly

connected, we have n|S|−|V(S)| = nqℓ−qℓ−1

. This expression

is the asymptotic for the number of distinct ℓ-gram profiles

of q-ary strings of length n. The result also establishes that

|Cq,n,ℓ,d=1| ∼ nqℓ−qℓ−1

.

To determine |Cq,n,ℓ,d| for d > 1, we need to ensure

that the profiles are not only distinct but at a asymmetric

distance ⩾ d from each other. This can be ensured by

adding more constraints to the profile vectors (i.e., in addition

to the flow- and sum-constraints) that also take the form

of linear equations. The solution involves using Varshamov

codes [120], designed specifically for asymmetric channels.

For convenience, we describe these codes below.

Fix a positive integer d, and let p be a prime such that

p > max{d, N} (where, for notational convenience, we used

N to denote |S|). Next, choose N distinct nonzero elements

³1, ³2, . . . , ³N in Z/pZ and let

H ≜











³1 ³2 · · · ³N

³2
1 ³2

2 · · · ³2
N

...
...

. . .
...

³d
1 ³d

2 · · · ³d
N











.

Pick any vector β ∈ (Z/pZ)d and define a code according

to

C(H, β) ≜ {u : Hu ≡ β mod p}. (5)

Then, C(H, β) is an asymmetric error-correcting codes of

length N with (designed) minimum asymmetric distance d+1.

Hence, all the codestrings of a Varshamov code that are

valid profile vectors are also d-asymmetric-error-correcting

codestrings. More precisely, we can construct profile codes

with |Cq,n,ℓ,d| ∼ |C(H, β) ∩ pQ(n; S)|, for all β ∈ (Z/pZ)d.

By invoking the pigeon-hole principle, we can show that there

exists a β such that |C(H, β) ∩ pQ(n; S)| ⩾ |pQ(n; S)|/pd.

The choice of β that maximizes the code size is not known

in general, but this is not a significant practical issue.

Furthermore, |C∩pQ(n; S)| is typically strictly smaller than |C|,

and deriving analytical bounds for the code size is nontrivial

(see [58] for details).

Suppose next that C is a Varshamov asymmetric distance

error-correcting code with parameters N, d. We construct DNA

profile codes from C as follows.
1) When N = |S|, we use the intersection of C and pQ(n; S)

as our ℓ-gram asymmetric error-correcting code. Simply

put, we choose the codestrings in the Varshamov code

C that are also profile vectors.

2) When N < |S|, we extend codestrings in C to profile

vector of length |S| in pQ(n; S). Note that one may not

always be able to extend an arbitrary string to a profile

vector.
Example 7: Let q = 2, ℓ = 3, S =

{001, 010, 011, 100, 101, 110} so that N = 6. Note that

the strings in S are as closed to balanced as possible, since

S does not include 000 nor 111. Let d = 3 and choose p = 7,

so that

H =

(

1 2 3 4 5 6

1 4 2 2 4 1

)

, and let β =

(

0

0

)

.

Then, C(H, β) contains the following strings.

(0, 0, 2, 0, 2, 2) ´ 01101101 (0, 1, 1, 4, 0, 0)

(2, 2, 0, 2, 0, 0) ´ 00100100 (0, 1, 0, 0, 4, 1)

(1, 4, 0, 0, 1, 0) (0, 0, 4, 1, 1, 0)

(1, 1, 1, 1, 1, 1) ´ 00101100 (4, 0, 0, 1, 0, 1)

(1, 0, 1, 0, 0, 4)

Of these Varshamov codestrings, only three (marked in

boldface letters) are valid profile vectors from pQ(8; S).

Hence, for the chosen set of parameter values, our

codebook would include three allowed profile codestrings, and

consequently, three input codestrings (where we are allowed

to select one string representative from each allowed profile

class).

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3819

Two final observations are in place.

First, counting the codestrings in a Varshamov-type profile

code once again, like in the equivalence class counting

framework, reduces to computing the lattice point enumerator

of the intersection of the lattices defined by A(S) and

C(H, β). Finding lattice point enumerators is a fundamental

problem in discrete optimization and high-quality software

suites for solving the problem are available. One such

software, LattE, reported in [7], is based on an elegant

algorithm described in [9] that triangulates the supporting

cones of the vertices of a polytope to obtain simplicial

cones which are then recursively decomposed into unimodular

cones. The algorithm performs enumeration of lattice points

in polynomial time whenever the dimension of the polytope is

fixed.

Second, as already pointed out, the asymmetric code

construction procedure is implemented to produce profile

vectors, which are actual outputs of the channel and not

the desired input codestrings. We hence need to convert

the profiles back into strings, with exactly one string

corresponding to one profile. This can be accomplished by

once again using de Bruijn graphs that capture both the

substrings and their multiplicities: all that is needed is to

find a path in the graph that traverses each arc a number

of times indicated by its weight multiplicity. This is akin

to the process of sequence assembly that is widely used

in computational biology [84]. For related results which

accommodate a larger range of parameter values, please refer

to [18].

B. Coded Trace Reconstruction

The problem of trace reconstruction was introduced in [10],

motivated by sequence analysis problems first considered by

Levenshtein [64], as well as practical sequence alignment

questions in phylogeny and computational biology. The

relevance of the problem to DNA-based data storage comes

through its connection to sequence alignment, which is

necessary when reading the information content via nanopore

sequencers. In Section III, we discussed various sequence

alignment algorithms that originated from computational

biology that can be used to create consensus sequences from

multiple noisy reads. Most of these methods rely on dynamic

programming approaches, and are therefore hard to analyze.

Trace reconstruction, on the other hand, is an abstraction

that is conceptually simple to state and understand, and

which comes with a cohort of straightforward reconstruction

algorithms. Nevertheless, trace reconstruction is also coupled

with nontrivial, but tractable, analytical challenges (see

also [110]).

In a nutshell, the trace reconstruction problem asks how

many noisy copies (reads) are needed to reconstruct a string

with high probability. More formally, the assumption is that

there exists an unknown string x ∈ {0, 1}n, and that one is

given access to traces of x, which are generated by passing

x through a deletion channel (e.g., a nanopore modeled as a

deletion channel [124]). The deletion channel independently

deletes bits of x with a given deletion probability ¶, and

each pass through the channel produces a trace which is

independent from all other traces. Clearly, traces represent

subsequences of x of varied length formed in a probabilistic,

i.i.d manner. The formal goal is to minimize the number of

traces, i.e., the number of reads, that need to be acquired in

order to reconstruct x with high probability.

Note that a solution for the binary trace reconstruction

problem automatically leads to solutions for nonbinary

settings. The precise statement is provided below, as stated

in [76].

If T traces suffice to reconstruct a random string in {0, 1}
n

with probability at least 1 − µ, then T traces also suffice to

reconstruct a random string in {1, . . . , q}
n

with probability at

least 1 − O(µ log q).

This is the reason why we mostly focus on results for binary

strings. Towards the end of the section, we explain in more

detail how coded binary strings can be translated into coded

quaternary strings.

The focus of the trace reconstruction research area has

been mostly on two types of approaches: worst-case [29],

[86], where the requirement is for the reconstruction

procedure to work for all strings in {0, 1}n, and average-

case [48], [50], [91], where the reconstruction algorithm is

only required to work with high probability for a string

selected uniformly at random. Formally, worst-case trace

reconstruction is concerned with designing a reconstruction

algorithm, R, such that for every x ∈ {0, 1}
n

one

has

PT1,...,Tt
[R(T1, . . . , Tt) = x] ⩾ 1 − 1/n,

where Ti, i ∈ [t], stands for traces of x which are i.i.d. with

respect to the output distribution of a deletion channel with

deletion probability ¶. The goal is to make t = t(n) as small

as possible. Note that we use the lower bound 1 − 1/n on the

reconstruction probability following [24], as this bound allows

one to avoid notational clutter and simplify the expressions for

our main results. In the second part of the section, we extend

this definition by replacing n with an arbitrary polynomial

in n. For average-case reconstruction, we require that R

satisfy

2−n
∑

x∈{0,1}
n

PT1,...,Tt
[R(T1, . . . , Tt) = x] ⩾ 1 − 1/n, (6)

where we would once again like to make t = t(n) as small

as possible, and where the traces Ti, i ∈ [t], have the same

properties as stated for the worst-case problem. It is clear

that the number of traces required for average-case trace

reconstruction is smaller than that required for worst-case trace

reconstruction.

The state-of-the-art results for average-case reconstruc-

tion [50] established that exp(O(log1/3 n)) traces suffice to

reconstruct a random n-bit string under arbitrary constant

deletion probability ¶. Handling the worst-case setting is

significantly more challenging. The currently best upper

bound [19] equals exp(O(n1/5)), improving the exp(O(n1/3))

result of [29] and [86] based on an algorithm that exploits

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3820 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

single-bit statistics of the traces.3 The gap between the upper

and lower bound is still prohibitively large. The state-of-the-art

lower bounds [20] are roughly log5/2 n log log−7 n traces for

average-case trace reconstruction and n3/2 log−7 n traces for

the worst-case setting. For some more recent results regarding

k-mer statistics approaches, please refer to [23] and [74].

Unlike other applications, DNA-based data storage allows

choosing a subset of strings with desirable properties to be

used for trace reconstruction-based alignment. For example,

one can focus on fixed weight strings, strings that satisfy

bounded runlength (homopolymer) properties, balanced GC

contents and others. This more restricted sequence selection

process naturally leads to the question of coded trace

reconstruction [24]. Here, the goal is to design codes with

asymptotic rate equal to or close to 1 that are also efficiently

encodable and decodable using significantly fewer traces

than needed for the unrestricted (uncoded) setting. As in all

other works, the assumption is that we work with constant

channel deletion probabilities. A simple yet significantly more

parameter-restricted line of work addressed the coded trace

reconstruction problem for a constant number of deletions,

using concatenations of Varshamov-Tenengolts codes [1].

Another line of work [14] built upon the techniques of [24]

and provided improvements on the number of traces required

as a function of the rate. A small drawback of the latter method

is the need for preprocessing, which requires superpolynomial

time.

To better understand our approach to coded trace recon-

struction, let us revisit the ideas from [124] which for

the first time modeled the nanopore sequencing process as

trace reconstruction. The codestrings were designed to satisfy

block-wise GC-balancing constraints, with each block of

8 symbols over the alphabet {A, T , G, C} perfectly balanced.

Balancing constraints were used to ensure correct synthesis,

but somewhat serendipitously proved useful for trace recon-

struction. The utility of balancing for string reconstruction

is in part due to the related runlength constraints. Block-

based balancing also allows symbol runlength (homopolymer)

constraints to be automatically satisfied. The traces obtained

via nanopore sequencing in [124] were used to form a

consensus sequence, which was then updated in several

iterations by checking if the block-level balancing constraints

are met. For simplicity, we will illustrate the underlying ideas

through a simple adaptation of the Bitwise Majority Alignment

(BMA) algorithm [10], although this algorithm does not

perform as well as the actual algorithm used in [124] due to not

being able to handle context-dependent indels and substitution

errors.

Example 8: Let the codestring to be sequenced by

nanopores equal

s = AATGGCGA TTCCGGAA GGGAATCA,

comprising three blocks of length 8, each with a perfectly

balanced (50%) GC content (note that the string is parsed

into blocks for ease of visualization). Now, assume that the

sequencer produced 5 reads/traces based for the input string

3The latter upper bound is tight for single-bit statistics algorithms.

s, as listed below.

ATGGCGTTCGGAAGGATCA

AATGGTTCCGGAAGGAAT

AATGGCGATTCCGGGGGAAA

GCGATTCCGGGGAATA

ATGGATCGAGGATCA.

The algorithm proceeds by constructing the consensus

sequence by focusing on one position at the time, finding the

majority symbol and calling it the consensus symbol, and then

shifting the mismatched symbols one position to the right. The

first three steps of the approach applied to the above DNA

strings are presented below, along with the final consensus

result. Ties are broken arbitrary but recorded for subsequent

re-examination. Majority symbols are written in boldfaced

letters, while minority symbols are replaced by “-” and moved

to the right. Note that in Step 2, the tie is broken in favor of

A, but both symbols A and T are recorded for subsequent

consideration.

Step 1:

ATGGCGTTCGGAAGGATCA

AATGGTTCCGGAAGGAAT

AATGGCGATTCCGGGGGAAA

-GCGATTCCGGGGAATA

ATGGATCGAGGATCA

A.

Step 2:

A-TGGCGTTCGGAAGGATCA

AATGGTTCCGGAAGGAAT

AATGGCGATTCCGGGGGAAA

–GCGATTCCGGGGAATA

A-TGGATCGAGGATCA

AA

A(A/T).

Step 3:

A-TGGCGTTCGGAAGGATCA

AATGGTTCCGGAAGGAAT

AATGGCGATTCCGGGGGAAA

–-GCGATTCCGGGGAATA

A-TGGATCGAGGATCA

AAT

A(A/T)T.

The original sequence, the consensus sequence, and the

consensus with ties are summarized below, respectively.

Mismatches are indicated in red, and the sequences parsed

into groups of 8 symbols for future analysis.

AATGGCGA TTCCGGAA GGGAATCA

AATGGCGA TTCCGGAG GAGGATACAT

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3821

A(A/T)TGGCGA TTCCGGAG (A/G)AGGATACAT .

Next, we examine the consensus sequence in the middle row.

Clearly, the consensus is longer than the original string, which

is a consequence of the deletion errors and the right-shifting

process for minority symbols. Furthermore, the second block

is disbalanced, as there is one more GC symbol than allowed,

but there were no tie-breaks at that particular location that

can help resolve the problem. Furthermore, since the previous

block of 8 symbols was balanced, it is reasonable to assume

that the “boundary” of the second and third blocks have

shifted due to alignment errors. Looking ahead for the first

appearance of an AT symbol in the consensus, we can try

to ignore all symbols between the last symbol that causes

a disbalance and the first occurrence of a symbol of the

correct type. Note that since we had a tie for the first

symbol in the first block (A versus G), it is advisable to

change the break of tie to avoid excluding one extra symbol.

This leads to the following modification of the consensus

string.

AATGGCGA TTCCGGAA GGGAATCA

AATGGCGA TTCCGGAA AGGATACAT .

The last block of 9 symbols in the consensus is obviously

erroneous since there is one more AT symbol present then

as expected and the block is of length 9 rather than 8. This

issue prevents us from further updating the consensus. But

as described in [124], we can proceed with recruiting new

traces that have not been previously used for alignment due

to possible address errors to resolve issues such as the ones

encountered with the third block of symbols above.

The example motivates the ideas to be pursued for code

constructions which offer provable performance guarantees for

trace reconstruction algorithms, which for the best results need

to be more sophisticated than simple BMA-type methods. The

key insight is to group symbols into blocks with constraints

such as balanced content (or runlength constraints) such as

the one described above, and ensure that the boundaries of

the blocks can be determined with high probability (since

we saw in the example that imbalances may be indicative

of boundary shifts). An additional layer of protection can be

added to correct errors in the blocks whenever the deletion

probability is sufficiently high. The construction, as well as

the main results for coded trace reconstruction, are formally

described next.

Given a code C ¦ {0, 1}
n

, we say that C can be efficiently

reconstructed from t(n) traces if there exists a polynomial

p(n) = Ω(n) and a polynomial-time algorithm R such that

for every c ∈ C one has

PT1,...,Tt
[R(T1, . . . , Tt) = c] ⩾ 1 − 1/p(n),

where the traces Ti, i ∈ [t], are i.i.d. according to the output

distribution of the deletion channel with deletion probability ¶

when presented with the input c. This definition corresponds

to the worst-case trace reconstruction problem restricted to

codestrings of C. The goal of coded trace reconstruction is

to design efficiently encodable codes C that can be efficiently

reconstructed from t(n) traces for t(n) as small as possible.

As a remark, we require a reconstruction success probability

1−1/p(n) in order to be able to compare the results of coded

reconstruction with those of unrestricted trace reconstruction.

At a high level, the simplest construction splits an n-bit

message into shorter blocks of length O(log2 n), encodes each

block with an inner code satisfying a certain constraint (such

as a runlength/balaning and/or more general error-correcting

constraints), and adds markers of length O(log n) between the

blocks. Markers are of the form 0c log n1c log n, where c is a

constant, i.e., markers are concatenations of sufficiently long

runs of 0s and 1s that are prohibited from occurring within

the blocks. The structure of the markers and the property of

the code used for the blocks ensure that with high probability,

one can split the traces into shorter blocks associated with

substrings of length O(log2 n), and then run some worst-

case trace reconstruction algorithm on the blocks individually.

As a result, for every constant deletion probability ¶ < 1,

one can ensure the existence of an efficiently encodable code

C ¦ {0, 1}
n+r

with redundancy r = O(n/ log n) that can be

efficiently reconstructed from exp(O(log2/3 n)) traces. Note

that reconstruction only requires identifying the markers and

reconstructing (in parallel) multiple short-length blocks.

This construction can be further improved while preserving

the efficiency of encoding and reconstruction by repeating

the process, i.e., making the approach nested. More precisely,

we can perform a further partition of all blocks into even

shorter subblocks and add a second level of markers: each

block of length log2 n can be partitioned into blocks of

length (log log n)2, with markers of length O(log log n)

added between them. The reconstruction procedure is almost

identical to the one already described, except for the fact that

a small fraction of blocks will very likely not be reconstructed

properly. This issue can be resolved by adding error-correction

redundancy to the string to be encoded, resulting in the

following claim. For every constant deletion probability ¶ <

1, there exists an efficiently encodable code C ¦ {0, 1}
n+r

with redundancy r = O(n/ log log n) that can be efficiently

reconstructed from exp(O(log log n)2/3) traces.

Even this result can be further improved provided that the

deletion probability is a sufficiently small constant, in which

case modified average-case trace reconstruction algorithms can

be used to substantially reduce the number of traces required.

This can be achieved with a negligible rate loss. The key idea

is that one can efficiently encode n-bit messages into strings

that are almost subsequence-unique via constructions based on

almost »-wise independent random variables [3]. The enabling

result for this type of trace reconstruction is the average-case

algorithm from [51] which is specifically designed to operate

on subsequence-unique strings.

A random vector X ∈ {0, 1}
m

is said to be ϵ-almost »-wise

independent if for all sets of » distinct indices i1, i2, . . . , i» ∈
{1, . . . , m}, one has

|P[Xi1
= x1, . . . , Xi»

= x»] − 2−»| ⩽ ϵ,

for all (x1, . . . , x») ∈ {0, 1}». In words, we require that

every possible »-subsequence has probability close to 2−» –

the probability distribution induced by any collection of

» coordinates of the random vector is close to uniform.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3822 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

Interestingly, such random vectors have explicit constructions

based on expander graphs or duals of BCH codes [3], [85].

The trace reconstruction algorithm that exploits the structure

of almost subsequence-unique strings relies on an interesting

voting strategy that does not treat every trace equally, but

weighs them according to their reliability. Since analyzing

the reconstruction method using probability measures that

capture the reliability of traces is difficult, the authors of [51]

suggest to only use traces that match the last O(logn) already

reconstructed bits (as this gives high confidence that the trace

is “synchronized” with the current estimate). Note that the idea

behind this approach is somewhat reminiscent of the one used

in [124], where the accuracy of traces was estimated based

on the accuracy of the address strings that are known to both

the information reader and writer. Furthermore, In addition to

combining constructions of almost subsequence-unique strings

with the corresponding average-case reconstruction algorithm,

one also needs to carefully adapt the marker-based approach

since the bootstrapping approach used in [51] fails for the

concatenated runs case.

With these considerations in mind, one can prove the

following results, stated in [24]. First, there exists an absolute

constant ¶⋆ > 0 such that for all ¶ ⩽ ¶⋆ there exists an

efficiently encodable code C ¦ {0, 1}
n+r

with redundancy r =

O(log n) that can be efficiently reconstructed from poly(n)

traces with deletion probability ¶. Second, there exists another

absolute constant ¶⋆ > 0 (to avoid notational clutter, we used

the same notation although the constants are different) such

that for all ¶ ⩽ ¶⋆ there exists an efficiently encodable code

C ¦ {0, 1}
n+r

with redundancy r = O(n/ log n) that can be

efficiently reconstructed from poly(log n) traces with deletion

probability ¶.

Next, we describe how to convert results pertaining to binary

codes to codes over larger alphabets. The main claim is that

the existence of a binary trace-reconstruction code C of length

n with rate R that can be efficiently encoded and reconstructed

from t traces with error probability ϵ implies the existence of

a q-ary code C ′, where q = 2k, of the same rate R. The latter

can also be efficiently encoded and reconstructed from t traces

with error probability at most kϵ.

To see this, consider a code whose codestrings are

concatenations of binary codestrings from C of the form shown

below.

C ′ = {(c1, c2, . . . , ck) : ci ∈ C, i = 1, . . . , k} ¦ {0, 1}
k·n

.

Clearly, the code C ′ can be viewed as a q-ary code of

length n and rate R by considering an encoding of the q-

ary symbols using the k binary coordinates of the strings

ci, i ∈ [k]. Next, suppose that T ′ is a trace of some codestring

c ′ = (c1, c2, . . . , ck) ∈ C ′. Observe that the trace Ti is obtained

by replacing each q-ary symbol in T ′ by the i-th bit of its

binary expansion (which is probabilistically equivalent to a

trace of ci). As a result, applying the transformation T 7→ T i

to each of the t traces of c ′ and running the reconstruction

algorithm associated with C allows us to recover ci with error

probability at most ϵ.

Since this holds for every i = 1, . . . , k, a simple application

of the union bound over all indices i shows that we can

simultaneously recover c1, c2, . . . , ck from t traces of c ′ with

an error probability that satisfies ⩽ kϵ. If the above described

constituent binary codes are efficiently encodable, then the q-

ary codes are efficiently encodable as well. The codes can

also be designed to ensure balanced GC-content. To satisfy

the balancing constraint, one has to use different markers and

a specialized code over the blocks. More precisely, within

the blocks, balanced markers of the form (AC)ℓ (TG)ℓ with

ℓ = 25 log n are used instead of the binary runlength markers,

where n as before denotes the codelength.

Consequently, we have the following results for q-ary

codes. For every constant deletion probability ¶ < 1, there

exists an efficiently encodable code C ¦ {A, C, G, T }n+r

with redundancy r = O(n/ log n) and balanced GC-content

that can be efficiently reconstructed from exp(O(log2/3 n))

traces. For every constant deletion probability ¶ < 1, there

exists an efficiently encodable code C ¦ {A, C, G, T }n+r with

redundancy r = O(n/ log log n) and balanced GC-content

that can be efficiently reconstructed from exp(O(log log n)2/3)

traces. A summary of the coded trace reconstruction results is

available in Table I.

We conclude this exposition by referring the interested

reader to a hybrid coded trace reconstruction approach [37],

which in addition to traces uses combinatorial families known

as k-decks, i.e., collections of all subsequences of length k of

a given string of length n.

C. Set-Codes With Small Discrepancy for DNA Punchcards

Code designs for DNA Punchcards are fundamentally

different from those used in other molecular storage systems.

DNA Punchcards have readily available native sequences that

serve as references for alignment of the fragments created via

nicking. In all experiments performed on this system (which

were of moderate scale), no alignment or readout errors were

observed. Consequently, no error-correction was needed to

ensure correct reading of the nicking information. However,

this type of native DNA-based storage platform suffers from

duplex stability issues. Stability problems arise when nicks are

placed in close proximity of each other, causing disassociation

of the DNA fragment straddled by the nicks. Since a nick can

be placed either on the 3 ′ − 5 ′ or 5 ′ − 3 ′ strand, distributing

the nicks in a nearly balanced fashion across the strands

is expected to increase duplex stability. Furthermore, if the

number of sites actually nicked is small compared to the

total number of available nicking sites, the disassociation

problem is reduced further. The only conceivable way in which

an error could occur is to either have defective guides that

fail to recognize the correct locations to be nicked or off-

target nicking activities. Therefore, requiring further that the

combinations of nicked locations of different codestrings differ

substantially would resolve these issues as well.

To construct balanced and nonconfusable nick-based code-

strings, we will use the notion of set discrepancy, introduced

in [11]. Set discrepancy theory has been studied in a number

of works [31], [65], [83], and has found applications in pseu-

dorandomness and independent permutation generation [4],

[100], ϵ-approximations and geometry [73], bin packing,

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3823

TABLE I

SUMMARY OF THE PROPERTIES OF TRACE RECONSTRUCTION CODES. TO AVOID NOTATIONAL CLUTTER,
CONSTANTS IN THE EXPRESSIONS FOR THE REDUNDANCY AND NUMBER OF TRACES ARE OMITTED

lattice approximations and graph spectral analysis [30], [97],

[109].

Informally, the discrepancy of a finite family of subsets over

a finite ground set equals the smallest integer d for which the

elements in the ground set may be labeled by one of the labels

±1 so that the absolute value of sums of labels within each

subset is at most d (note that the notation d for discrepancy

used in this section is not to be confused with the notion of

minimum asymmetric distance from the previous sections).

In a sense, discrepancy measures how difficult it is to find a

labeling of elements that would keep all subsets of the family

as close to being balanced as possible.

The formal definition for our storage problem is as follows.

A family of subsets over [n], Fn = {F1, . . . , Fs}, s ⩾ 2,

is termed k-regular if for all 1 ⩽ j ⩽ s, |Fj| = k. Let

L : [n] → {+1, −1} be a labeling of the elements in [n]. The

discrepancy of a set Fj ∈ Fn under the labeling L is defined

as DL(Fj) =
∣

∣

∣

∑

i∈Fj
L(i)

∣

∣

∣
. The discrepancy of the family Fn

of sets is defined as

D(Fn) = min
L

max
1⩽j⩽s

∣

∣

∣

∣

∣

∣

∑

i∈Fj

L(i)

∣

∣

∣

∣

∣

∣

.

Although we focus on regular families Fn, there is no inherent

reason why one cannot use irregular families as well.

For the particular problem of code design for Punchcard

systems, we are interested in families of sets Fn that have

small intersections, since the sets in the family Fn are to

represent “codesets” (i.e., we choose to represent codestrings

as sets indicating the locations of nonzero/nicked symbols)

whose every coordinate is a potential nicking site. By using

codesets to represent combinations of nicking sites, it is

natural to require that the codesets have small intersections

(i.e., the codestrings to have largely mismatched locations of

nonzero/nicked symbols). The codeset formalism also allows

for simpler formulations of the coding problems in terms of

set discrepancy and set intersection constraints.

Next, we say that the sets in Fn have b-bounded

intersections if for all pairs of distinct integers i, j ∈ [s],

|Fi ∩ Fj| < b. Clearly, for a k-regular family Fn, b < k,

since we do not allow repeated sets. For fixed values of n

and b, our goal is to find the largest size of a b-bounded

intersection family Fn for which there exists a labeling L such

that DL(Fj) ∈ {−1, 0, +1} for all 1 ⩽ j ⩽ s. We refer to such

a set system as an extremal balanced family.

A line of work addressing a similar balanced set-family

question in the context of combinatorial designs appeared

in [27]. The problem studied is that of bi-coloring of

Steiner triple systems (STSs). Roughly speaking, Steiner triple

systems are set systems in which the subsets of interest

satisfy intersection constraints that ensure that each pair of

distinct elements of the ground set appears in exactly one

subset (block) of the system. The key finding is that STSs

are not perfectly bi-colorable, i.e., that there will always exist

a monochromatic triple in the STS.

To design extremal balanced families, one can start with

known families of sets with small intersections, such as the

Bose-Bush and Babai-Frankl families [6], [13]. In this case,

one can achieve the smallest possible discrepancy (d = 0 for

even-sized sets and d = 1 for odd-sized sets) in a natural

manner, by using only the defining properties of the sets.

Let q be a prime power such that 1 ⩽ b ⩽ k ⩽ q, and

let n = kq. Furthermore, let À be a primitive element of the

finite field Fq. Let A = {0, 1, À, . . . , Àk−2}, so that |A| = k. For

each polynomial f ∈ Fq[x], define a set of ordered pairs of

elements from the underlying finite field according to

Af
△

= {(a, f(a)) : a ∈ A}.

Clearly, |Af| = k since |A| = k. Furthermore, let

C(k, q)
△

= {Af : f ∈ Fq[x], deg(f) ⩽ b − 1}. (7)

Then C(k, q) is a family of qb k-subsets of the set X
△

= A×Fq

such that every two sets intersect in at most b − 1 elements.

This follows because two distinct polynomials of degree ⩽ b−

1 cannot intersect in more than b−1 points. The Ray-Chauduri

and Wilson Theorem [6] asserts that the size of any family

Fn of k-regular sets with k ⩾ b whose pairwise intersection

cardinalities lie in some set of cardinality b satisfies |Fn| ⩽
(

n
b

)

. As an example, the set of all b-subsets of [n] forms

a (b − 1)-intersection bounded b-regular family of subsets.

Under certain mild parameter constraints, the aforementioned

result can be strengthened when the set of allowed cardinalities

equals {0, 1, . . . , b − 1}. The size of the family is roughly nb

kb .

Given the simple definition in (7), one can easily devise a

labelling L of the pairs of points (a, f(a)) such that every set

in the family C(k, q, s) has discrepancy = 0, for even k, and

discrepancy = ±1, for odd k. For completeness, we present

the very simple proof of this claim from our work [35].

The first step consists in disposing of the representation of a

point in terms of a pair of symbols from the underlying finite

field. To this end, we use a map M that operates on Fq and

is such that M(0) = 0 and M(³) = m + 1 if ³ = Àm ̸= 0.

It is easy to see that M(³) ∈ [0, k − 1], ∀³ ∈ A and that

M(´) ∈ [0, q − 1], ∀´ ∈ Fq. A pair (³, ´) ∈ X = A × Fq is

mapped to Ã(³, ´) = qM(³) + M(´) ∈ [0, n − 1], and M is

a bijection.

Assume that k is even. Then, for every set Af, one half of

the elements are mapped to [0, n/2 − 1] while the other half

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3824 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

of the elements are mapped to [n/2, n − 1]. To see why this

claim holds, note that for ³ ∈ {0, 1, À, . . . , Àk/2−2} ¢ A and

´ = f(³) ∈ Fq, the pair (³, ´) is mapped to

Ã(³, ´) = qr(³) + r(´) ⩽ q(k/2 − 1) + (q − 1) = n/2 − 1.

In a similar manner, for ³ ∈ {Àk/2−1, . . . , Àk−2} ¢ A and

´ = f(³), we have

Ã(³, ´) = qr(³) + r(´) ⩾ qk/2 + 0 = n/2.

Based on this result, one can construct the labeling L as

follows: assign −1 to (³, ´) if Ã(³, ´) < n/2, and assign

+1 to (³, ´) if Ã(³, ´) ⩾ n/2. Then, every set in the family

has half of the elements mapped to −1 and half mapped to

+1. Equivalently, the discrepancy of every set equals 0. The

case when k is odd can be handled in the same way.

Three remarks are in place. First, the balancing property

directly follows from the simple partition of the set A. Second,

the construction of the sets is reminiscent of the ubiquitous

Reed-Solomon construction. Third, the already mentioned

connection of the coding problem to combinatorial design

theory suggests other constructions; throughout the remainder

of the subsection, we focus on discussing one such approach

based on transversal designs.

A transversal design [26] TD(t, k, v) consists of a set V of

kv elements, called points, and a partition of V into sets {Gi :

i ∈ [k]}, called groups. All groups Gi, i ∈ [k], contain exactly

v points. In addition, we have a set B of k-subsets called

blocks. A block and a group obey intersection constraints that

can be summarizes as follows: every b-subset of V is either

contained in exactly one block or in exactly one group, but not

both. Because no b-subset of elements can appear in two or

more blocks, any two distinct blocks of a TD(b, k, v) intersect

in at most b − 1 elements. Therefore, whenever a TD(b, k, v)

exists, one can use it to construct a family of sets with small

intersections that are simultaneously balanced by mimicking

the proof described above. To summarize, we assign +1 labels

to the points in half of the groups and −1 labels to the points

in the other half of the groups when k is even (and follow a

similar approach for odd k). It is straightforward to see that

the Bose-Bush/Babai-Frankl construction actually represent

a transversal design, which was first pointed out in [112].

Furthermore, it is not difficult to add k-blocks to the design

and still retain the balancing and intersection constraints.

For simplicity, assume that k is even and that b ⩾
3. There has to exist one group in the design that is

properly contained within the set of positively labeled elements

(which we henceforth denote by P+), and one group that

is properly contained within the set of negatively labeled

elements (which we henceforth denote by P−). A simple

counting argument reveals that there are
(

k
2

)2
such pairs of

groups. By construction, any k-subset with k
2

points from the

first group and k
2

points from the second group intersects

each block of the transversal design in at most two points.

Furthermore, each pair of blocks of the type above intersects

in at most +k
2
, points. Hence, if b > max{k

2
, 2}, the blocks

used to augment the design are both balanced and satisfy

the required intersection constraint. This construction easily

extends to larger selections of groups: as long as b >

max{k
s

, s}, where s is the size of the collection of groups,

the new blocks satisfy the required constraints provided that

any two collections of s groups share less than b
k/s

groups.

An important conclusion that arises from this argument is that

transversal designs and related combinatorial designs may not

directly lend themselves to constructions of extremal balanced

families of sets with small intersections. Instead, one may need

to use combinations of designs, and several such constructions

based on mutually orthogonal Latin squares and derivatives of

orthogonal arrays and packings have been reported in [35]. For

recent extensions of the above results, please refer to [130].

D. Coding for Unique Reconstruction

The three different coding-theoretic problems pertaining to

DNA error-correction and constrained coding for shotgun and

nanopore sequencing, as well as DNA Punchcard systems,

do not deal with another fundamental class of problems termed

unique string reconstruction. With the constraints imposed by

individual sequencing devices on the type of outputs produced,

one of the most important outcomes is to ensure that even in

the ideal case of no sequencing errors, a DNA string can be

uniquely reconstructed from the available output data of the

sequencer.

Example 9: To illustrate this requirement, consider the

following example of two distinct binary strings, x =

10010 and y = 00100. Let Sℓ(z) denote the set of all

substrings of the string z of length ℓ. Then, S3(x) = S3(y) =

{100, 001, 010}, and based on the substring information alone,

one cannot distinguish the strings x and y. Increasing ℓ from

3 to 4 leads to S4(x) = {1001, 0010} ̸= S4(y) = {0010, 0100}.

Therefore, based on the two substrings of length 4, one can

discriminate the two possible (input) strings.

A general result regarding uniqueness of string reconstruc-

tion based on substrings of length ℓ was derived in [118],

where it was shown that a string is uniquely ℓ-substring

reconstructable if all its ℓ − 1-substrings occur at most

once (i.e., if there are no repeats). Other important result

in the area [72], [108] established that unique ℓ-substring

reconstruction is impossible for strings with period Ä ⩽ ℓ

(a string x is said to have period Ä if xi = xi+Ä, for all

1 ⩽ i ⩽ n − Ä). Otherwise, ℓ ⩾ +n/2, + 1 suffices for unique

reconstruction. For example, S4(0111011) = S4(1110111) =

{0111, 1110, 1011, 1101}, since Ä = 4 and ℓ = 4.

Native (mamalian) DNA usually contains a large numbers of

repeats [54] and as a result, modern sequencing technologies

are being redesigned to produce long reads [52] that can use

the context of the repeats to ensure unique reconstruction.

Adapting the sequence content for ease of reconstruction is,

in this case, obviously impossible. But once again, that is

not the case for DNA-based data storage applications, since

one can encode the strings to avoid repeats, as first suggested

in [38]. The problem addressed in [38] can be summarized as

follows. Let Cℓ be a set of binary codestrings x of length

n, each of which can be uniquely reconstructed based on

Sℓ(x). What is the largest size of Cℓ for a given ℓ and

can the code(s) be efficiently encoded and decoded? The

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3825

question was addressed affirmatively, establishing that codes

Cℓ of asymptotic rate equal to 1 (more precisely, including

only a constant number of redundant bits) exist whenever the

substrings are long enough, i.e., ℓ > 2 log(n). These codes

can be encoded using a specialized repeat-removal procedure,

which replaces repeats with pointers to the locations of their

first occurrence, reminiscent of but significantly more involved

than a related procedure for runlength coding [119]. Related

problems and generalizations thereof are also discussed in [32]

and [129].

Other relevant coding methods for unique string recon-

struction include [2], [39], [90], and [40]. There, strings

are reconstructed based on masses (i.e., weights) of their

substrings, or prefixes and suffixes only, without knowing

the actual substrings themselves. This subsequence-weight

reconstruction problem is motivated by mass spectrometry

sequencing [21] and its application to data storage in synthetic

polymers [61]. The interested reader is referred to the original

manuscripts for an in-depth coverage of the topics, with

solutions including mixtures of ideas from the area of the turn-

pike reconstruction problem [28], code constructions based on

Catalan strings and modifications thereof [111] and binary Bh

sequences [40] and constant-weight codes [107]. Recent exten-

sions and generalizations are available in [8], [47], and [128].

As a concluding remark, despite the superficial similarity

to lossless universal compression methods such as Lempel-

Ziv encoding [131], [132], the approaches used for unique

reconstruction are substantially different. For example, with

repeat removal, one only eliminate redundancy in the form of

exactly repeated substrings of a predetermined length (or range

of lengths), without trying to build a dictionary that can be

used to compress the string. Furthermore, for polymer-based

coding, one is allowed to only use information about weights

of substrings to perform reconstruction, since polymer read-

outs are frequently performed via mass spectrometry analysis.

V. OPEN PROBLEMS

Many open coding-theoretic problems in the area remain

and new arise due to constant changes and improvements in the

synthesis and sequencing protocols used for DNA-based data

storage. We list some of the problems below, grouped accord-

ing to the four topics outlined in the previous subsections.
• Sequence reconstruction and error-correction for paired-

end DNA sequencing reads. Current Illumina platforms

allow for reading long DNA fragment from two ends

simultaneously, thereby providing information about a

pair of substrings as well as the distance between them.

Paired reads can resolve issues with repeats and also help

detect genomic rearrangements which are due to DNA

breakage [41]. The questions of interest in this context

are to repeat the analysis of DNA sequence profiles with

additional distance information for the paired substrings,

both in the presence of missing pairs of substrings or

errors in the paired readout content.

• Coded trace reconstruction for combinations of indel and

substitution errors. Instead of using trace reconstruction

models for nanopore sequencers that solely account for

deletion errors, one can use more realistic abstractions

that can handle insertions as well as other types of

errors [56]. In addition, the problem of coded trace

reconstruction for strings that satisfy additional constrains

(such as bounded maximum repeat length) remains open.

• Coded gapped k-decks and trace reconstruction prob-

lems. In [44], the authors proposed the study of gapped

k-deck reconstruction. As already pointed out, the k-

deck of a sequence is the multiset of all subsequences

of the sequence of length k. Gapped k-decks restrict the

available subsequences to not include adjacent symbols

of the original sequence and they can be used to model

“skip” events in the readout process. To the best of the

author’s knowledge, nothing is known about gapped trace

reconstruction or other forms of trace reconstruction in

which the deletions do not follow an i.i.d model.

• Unique sequence reconstruction for hybrid sequencing

technologies. This problem has been discussed in a very

basic setting in [37], with the goal to describe how

long and short read technologies can be combined to

reconstruct strings. The approach uses combinations of

k-decks and long traces, but does not truly combine

information provided by long traces (subsequences) and

short reads (substrings). This is challenging analytical

problem whose solution can potentially lead to significant

and low-cost improvements of the readout channel.

REFERENCES

[1] M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. I. Fabregas,
“Coding for deletion channels with multiple traces,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1372–1376.

[2] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” SIAM J. Discrete Math.,
vol. 29, no. 3, pp. 1340–1371, 2015.

[3] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple constructions
of almost k-wise independent random variables,” Random Struct.

Algorithms, vol. 3, no. 3, pp. 289–304, 1992.

[4] R. Armoni, M. Saks, A. Wigderson, and S. Zhou, “Discrepancy sets
and pseudorandom generators for combinatorial rectangles,” in Proc.

37th Conf. Found. Comput. Sci., 1996, pp. 412–421.

[5] N. Athreya, O. Milenkovic, and J.-P. Leburton, “Interaction dynamics
and site-specific electronic recognition of DNA-nicks with 2D solid-
state nanopores,” Npj 2D Mater. Appl., vol. 4, no. 1, p. 32, Sep. 2020.

[6] L. Babai and P. Frankl, “Linear algebra methods in combinatorics: With
applications to geometry and computer science,” Dept. Comput. Sci.,
Univ. Chicag, Chicago, IL, USA, Tech. Rep., p. 216, 1992.

[7] V. Baldoni et al., “A user’s guide for LattE integrale v1.
7.2,” Optimization, vol. 22, p. 2, 2014. [Online]. Available:
http://www.math.ucdavis.edu/~latte/

[8] A. Banerjee, A. Wachter-Zeh, and E. Yaakobi, “Insertion and deletion
correction in polymer-based data storage,” IEEE Trans. Inf. Theory,
vol. 69, no. 7, pp. 4384–4406, Jul. 2023.

[9] A. Barvinok and J. E. Pommersheim, “An algorithmic theory of lattice
points in polyhedra,” New Perspect. Algebr. Combinatorics, vol. 38,
pp. 91–147, Aug. 1999.

[10] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing
strings from random traces,” in Proc. 15th Annu. ACM-SIAM Symp.

Discrete Algorithms (SODA), 2004, pp. 910–918.

[11] J. Beck, “Balanced two-colorings of finite sets in the square I,”
Combinatorica, vol. 1, no. 4, pp. 327–335, Dec. 1981.

[12] B. Bollobás, Modern Graph Theory, vol. 184. Berlin, Germany:
Springer, 1998.

[13] R. C. Bose and K. A. Bush, “Orthogonal arrays of strength two and
three,” Ann. Math. Statist., vol. 23, no. 4, pp. 508–524, Dec. 1952.

[14] J. Brakensiek, R. Li, and B. Spang, “Coded trace reconstruction in a
constant number of traces,” in Proc. Annu. Symp. Found. Comput. Sci.

(FOCS), Nov. 2020, pp. 482–493.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3826 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

[15] N. G. Bruijn, “Acknowledgement of priority to C. Flye Sainte-Marie
on the counting of circular arrangements of 2n zeros and ones that
show each n-letter word exactly once,” Dept. Math., Eindhoven Univ.
Technol., Eindhoven, The Netherlands, Tech. Rep., p. 16, 1975.

[16] C. Cao, L. Krapp, A. Ouahabi, A. Radenovic, J.-F. Lutz, and
M. D. Peraro, “Decoding digital information stored in polymer by
nanopore,” Biophysical J., vol. 120, no. 3, p. 98a, Feb. 2021.

[17] S. Chandak et al., “Overcoming high nanopore basecaller error rates
for DNA storage via basecaller-decoder integration and convolutional
codes,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.

(ICASSP), May 2020, pp. 8822–8826.

[18] Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of DNA
sequence profiles for practical values of read lengths,” IEEE Trans. Inf.

Theory, vol. 63, no. 11, pp. 7166–7177, Nov. 2017.

[19] Z. Chase, “New upper bounds for trace reconstruction,” 2020,
arXiv:2009.03296.

[20] Z. Chase, “New lower bounds for trace reconstruction,” Annales

de l’institut Henri Poincare (B) Probab. Statist., vol. 57, no. 2,
pp. 627–643, 2021.

[21] C. Chen, J. Hou, J. J. Tanner, and J. Cheng, “Bioinformatics methods
for mass spectrometry-based proteomics data analysis,” Int. J. Mol.

Sci., vol. 21, no. 8, p. 2873, Apr. 2020.

[22] T. Chen, A. Solanki, and M. Riedel, “Parallel pairwise operations on
data stored in DNA: Sorting, shifting, and searching,” in Proc. 27th

Int. Conf. DNA Comput. Mol. Program., 2021, pp. 1–21.

[23] K. Cheng, E. Grigorescu, X. Li, M. Sudan, and M. Zhu, “On k-
mer-based and maximum likelihood estimation algorithms for trace
reconstruction,” 2023, arXiv:2308.14993.

[24] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded
trace reconstruction,” IEEE Trans. Inf. Theory, vol. 66, no. 10,
pp. 6084–6103, May 2020.

[25] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6102, p. 1628,
Sep. 2012.

[26] C. J. Colbourn, CRC Handbook of Combinatorial Designs. Boca Raton,
FL, USA: CRC Press, 2010.

[27] C. J. Colbourn, J. H. Dinitz, and A. Rosa, “Bicoloring Steiner triple
systems,” Electron. J. Combinatorics, vol. 6, no. 1, p. 25, May 1999.

[28] T. Dakic, “On the turnpike problem,” Ph.D. dissertation, Dept. Comput.
Sci., Simon Fraser Univ. BC, Canada, 2000.

[29] A. De, R. O’Donnell, and R. A. Servedio, “Optimal mean-based
algorithms for trace reconstruction,” in Proc. 49th Annu. ACM SIGACT

Symp. Theory Comput., Jun. 2017, pp. 1047–1056.

[30] B. Doerr, “Lattice approximation and linear discrepancy of totally
unimodular matrices—Extended abstract,” in Proc. SIAM-ACM Symp.

Discrete Algorithms, 2001, pp. 119–125.

[31] B. Doerr and A. Srivastav, “Multicolour discrepancies,” Combinatorics,

Probab. Comput., vol. 12, no. 4, pp. 365–399, Jul. 2003.

[32] O. Elishco, R. Gabrys, E. Yaakobi, and M. Médard, “Repeat-free
codes,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 5749–5764,
Sep. 2021.

[33] R. P. Feynman, “There’s plenty of room at the bottom,” Eng. Sci.,
vol. 23, no. 5, pp. 22–36, 1960.

[34] E. C. Friedberg, “Dna damage and repair,” Nature, vol. 421, no. 6921,
pp. 436–440, 2003.

[35] R. Gabrys, H. S. Dau, C. J. Colbourn, and O. Milenkovic, “Set-codes
with small intersections and small discrepancies,” SIAM J. Discrete

Math., vol. 34, no. 2, pp. 1148–1171, Jan. 2020.

[36] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” IEEE Trans. Inf. Theory, vol. 63, no. 8,
pp. 4982–4995, Aug. 2017.

[37] R. Gabrys and O. Milenkovic, “The hybrid k-deck problem:
Reconstructing sequences from short and long traces,” in Proc. IEEE

Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 1306–1310.

[38] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Trans. Inf. Theory, vol. 65,
no. 12, pp. 7682–7696, Dec. 2019.

[39] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction
codes for polymer-based data storage,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Jun. 2020, pp. 25–30.

[40] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstruction of
sets of strings from prefix/suffix compositions,” IEEE Trans. Commun.,
vol. 71, no. 1, pp. 3–12, Jan. 2023.

[41] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for deletion and adjacent transposition correction,” IEEE

Trans. Inf. Theory, vol. 64, no. 4, pp. 2550–2570, Apr. 2018.

[42] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.

Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[43] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA,” Nature, vol. 494, no. 7435,
pp. 77–80, Feb. 2013.

[44] R. Golm, M. Nahvi, R. Gabrys, and O. Milenkovic, “The gapped k-
deck problem,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2022,
pp. 49–54.

[45] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark,
“Robust chemical preservation of digital information on DNA in silica
with error-correcting codes,” Angew. Chem. Int. Ed., vol. 54, no. 8,
pp. 2552–2555, Feb. 2015.

[46] L. J. Guibas and A. M. Odlyzko, “String overlaps, pattern matching,
and nontransitive games,” J. Combinat. Theory A, vol. 30, no. 2,
pp. 183–208, Mar. 1981.

[47] U. Gupta and H. Mahdavifar, “A new algebraic approach for string
reconstruction from substring compositions,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jun. 2022, pp. 354–359.

[48] L. Hartung, N. Holden, and Y. Peres, “Trace reconstruction with
varying deletion probabilities,” in Proc. 15th Workshop Analytic

Algorithmics Combinatorics (ANALCO), 2018, pp. 54–61.

[49] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse,
“Fundamental limits of DNA storage systems,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jun. 2017, pp. 3130–3134.

[50] N. Holden, R. Pemantle, and Y. Peres, “Subpolynomial trace
reconstruction for random strings and arbitrary deletion probability,”
in Proc. Conf. Learn. Theory (COLT), Jul. 2018, pp. 1799–1840.

[51] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results,”
in Proc. ACM-SIAM Symp. Discrete Algorithms (SODA), Jan. 2008,
pp. 389–398.

[52] J. Huddleston et al., “Reconstructing complex regions of genomes
using long-read sequencing technology,” Genome Res., vol. 24, no. 4,
pp. 688–696, Apr. 2014.

[53] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized
writing rate in DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Jun. 2020, pp. 711–716.

[54] W. R. Jelinek et al., “Ubiquitous, interspersed repeated sequences in
mammalian genomes,” Proc. Nat. Acad. Sci. USA, vol. 77, no. 3,
pp. 1398–1402, 1980.

[55] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and
E. Charpentier, “A programmable dual-RNA-guided DNA endonucle-
ase in adaptive bacterial immunity,” Science, vol. 337, no. 6096,
pp. 816–821, Aug. 2012.

[56] S. Kannan and A. McGregor, “More on reconstructing strings from
random traces: Insertions and deletions,” in Proc. Int. Symp. Inf.

Theory, 2005, pp. 297–301.

[57] A. Khandelwal et al., “Self-assembled microtubular electrodes for
on-chip low-voltage electrophoretic manipulation of charged particles
and macromolecules,” Microsyst. Nanoeng., vol. 8, no. 1, pp. 1–12,
Feb. 2022.

[58] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146,
Jun. 2016.

[59] S. Kosuri and G. M. Church, “Large-scale de novo DNA synthesis:
Technologies and applications,” Nature Methods, vol. 11, no. 5,
pp. 499–507, May 2014.

[60] D. Lang et al., “Comparison of the two up-to-date sequencing
technologies for genome assembly: HiFi reads of Pacific Biosciences
Sequel II system and ultralong reads of Oxford Nanopore,”
GigaScience, vol. 9, no. 12, pp. 1–7, 2020.

[61] C. Laure, D. Karamessini, O. Milenkovic, L. Charles, and J.-F. Lutz,
“Coding in 2D: Using intentional dispersity to enhance the information
capacity of sequence-coded polymer barcodes,” Angew. Chem. Int. Ed.,
vol. 55, no. 36, pp. 10722–10725, 2016.

[62] A. Lenz et al., “Codes for cost-efficient DNA synthesis,” in
Proc. Non-Volantile Memories Workshop (NVMW), 2021. [Online].
Available: http://nvmw.ucsd.edu/nvmw2021-program/nvmw2021-data/
nvmw2021-paper54-presentation_slides.pdf

[63] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “The noisy
drawing channel: Reliable data storage in DNA sequences,” IEEE

Trans. Inf. Theory, vol. 69, no. 5, pp. 2757–2778, May 2023.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS 3827

[64] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.

Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[65] L. Lovász, J. Spencer, and K. Vesztergombi, “Discrepancy of
set-systems and matrices,” Eur. J. Combinatorics, vol. 7, no. 2,
pp. 151–160, Apr. 1986.

[66] J.-F. Lutz, “Coding macromolecules: Inputting information in polymers
using monomer-based alphabets,” Macromolecules, vol. 48, no. 14,
pp. 4759–4767, Jul. 2015.

[67] S. Ma, I. Saaem, and J. Tian, “Error correction in gene synthesis
technology,” Trends Biotechnol., vol. 30, no. 3, pp. 147–154,
Mar. 2012.

[68] S. Ma, N. Tang, and J. Tian, “DNA synthesis, assembly and
applications in synthetic biology,” Current Opinion Chem. Biol.,
vol. 16, nos. 3–4, pp. 260–267, Aug. 2012.

[69] A. Magner, J. Duda, W. Szpankowski, and A. Grama, “Fundamental
bounds for sequence reconstruction from nanopore sequencers,” IEEE

Trans. Mol., Biol. Multi-Scale Commun., vol. 2, no. 1, pp. 92–106,
Jun. 2016.

[70] K. Makarychev, M. Z. Rácz, C. Rashtchian, and S. Yekhanin, “Batch
optimization for DNA synthesis,” IEEE Trans. Inf. Theory, vol. 68,
no. 11, pp. 7454–7470, Nov. 2022.

[71] W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-
theoretic bounds for nanopore sequencing,” IEEE Trans. Inf. Theory,
vol. 64, no. 4, pp. 3216–3236, Apr. 2018.

[72] D. Margaritis and S. S. Skiena, “Reconstructing strings from substrings
in rounds,” in Proc. IEEE 36th Annu. Found. Comput. Sci., Oct. 1995,
pp. 613–620.

[73] J. Matoušek, E. Welzl, and L. Wernisch, “Discrepancy and approxi-
mations for bounded VC-dimension,” Combinatorica, vol. 13, no. 4,
pp. 455–466, Dec. 1993.

[74] K. Mazooji and I. Shomorony, “Substring density estimation from
traces,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2023,
pp. 803–808.

[75] B. McBain, E. Viterbo, and J. Saunderson, “Finite-state semi-Markov
channels for nanopore sequencing,” 2022, arXiv:2205.04187.

[76] A. McGregor, E. Price, and S. Vorotnikova, “Trace reconstruction
revisited,” in Proc. 22nd Annu. Eur. Symp. Algorithms (ESA), vol. 8737,
2014, pp. 689–700.

[77] A. S. Mikheyev and M. M. Y. Tin, “A first look at the Oxford Nanopore
MinION sequencer,” Mol. Ecol. Resour., vol. 14, no. 6, pp. 1097–1102,
Nov. 2014.

[78] O. Milenkovic, “Constrained coding for context-free languages with
applications to genetic sequence modelling,” in Proc. IEEE Int. Symp.

Inf. Theory, Jun. 2007, pp. 1686–1690.

[79] O. Milenkovic and N. Kashyap, “On the design of codes for DNA
computing,” in Proc. Int. Workshop Coding Cryptogr. Berlin, Germany:
Springer, 2006, pp. 100–119.

[80] K. Minton, “DNA typewriter,” Nature Rev. Genet., vol. 23, no. 9,
p. 521, Sep. 2022.

[81] M. Mitzenmacher, “Capacity bounds for sticky channels,” IEEE Trans.

Inf. Theory, vol. 54, no. 1, pp. 72–77, Jan. 2008.

[82] H. Morita, A. J. van Wijngaarden, and A. J. Han Vinck, “On the
construction of maximal prefix-synchronized codes,” IEEE Trans. Inf.

Theory, vol. 42, no. 6, pp. 2158–2166, 1996.

[83] S. Muthukrishnan and A. Nikolov, “Optimal private halfspace counting
via discrepancy,” in Proc. 44th Annu. ACM Symp. Theory Comput.,
May 2012, pp. 1285–1292.

[84] N. Nagarajan and M. Pop, “Sequence assembly demystified,” Nature

Rev. Genet., vol. 14, no. 3, pp. 157–167, Mar. 2013.

[85] J. Naor and M. Naor, “Small-bias probability spaces: Efficient
constructions and applications,” in Proc. 22nd Annu. ACM Symp.

Theory Comput., 1990, pp. 213–223.

[86] F. Nazarov and Y. Peres, “Trace reconstruction with exp(O(n1/3))
samples,” in Proc. 49th Annu. ACM SIGACT Symp. Theory Comput.,
Jun. 2017, pp. 1042–1046.

[87] A. Orlitsky and S. S. Venkatesh, “On edge-colored interior planar
graphs on a circle and the expected number of RNA secondary
structures,” Discrete Appl. Math., vol. 64, no. 2, pp. 151–178,
Jan. 1996.

[88] R. Oste and J. Van der Jeugt, “Motzkin paths, Motzkin polynomials
and recurrence relations,” Electron. J. Combinatorics, vol. 22, no. 2,
pp. 2–8, Apr. 2015.

[89] C. Pan, S. K. Tabatabaei, S. M. H. Tabatabaei Yazdi, A. G. Hernandez,
C. M. Schroeder, and O. Milenkovic, “Rewritable two-dimensional
DNA-based data storage with machine learning reconstruction,” Nature

Commun., vol. 13, no. 1, pp. 1–12, May 2022.

[90] S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Coding for polymer-
based data storage,” IEEE Trans. Inf. Theory, vol. 69, no. 8,
pp. 4812–4836, Aug. 2023.

[91] Y. Peres and A. Zhai, “Average-case reconstruction for the deletion
channel: Subpolynomially many traces suffice,” in Proc. IEEE 58th

Annu. Symp. Found. Comput. Sci. (FOCS), Oct. 2017, pp. 228–239.
[92] G. Pick, “Geometrisches zur zahlenlehre,” Sitzenber. Lotos (Prague),

vol. 19, pp. 311–319, Jan. 1899.
[93] L. Qian and E. Winfree, “Scaling up digital circuit computation with

DNA strand displacement cascades,” Science, vol. 332, no. 6034,
pp. 1196–1201, Jun. 2011.

[94] L. Qian, E. Winfree, and J. Bruck, “Neural network computation with
DNA strand displacement cascades,” Nature, vol. 475, pp. 368–372,
Jul. 2011.

[95] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[96] M. G. Ross et al., “Characterizing and measuring bias in sequence
data,” Genome Biol., vol. 14, no. 5, p. R51, 2013.

[97] T. Rothvoss, “Approximating bin packing within
O(logOPT·loglogOPT) bins,” in Proc. IEEE 54th Annu. Symp.

Found. Comput. Sci., Oct. 2013, pp. 20–29.
[98] F. Ruskey, J. Sawada, and A. Williams, “De Bruijn sequences for

fixed-weight binary strings,” SIAM J. Discrete Math., vol. 26, no. 2,
pp. 605–617, Jan. 2012.

[99] T. H. Saey, “Story one: Ancient horse’s DNA fills in picture of
equine evolution: A 700,000-year-old fossil proves astoundingly well
preserved,” Sci. News, vol. 184, no. 2, pp. 5–6, Jul. 2013.

[100] M. Saks, A. Srinivasan, S. Zhou, and D. Zuckerman, “Low discrepancy
sets yield approximate min-wise independent permutation families,”
Inf. Process. Lett., vol. 73, nos. 1–2, pp. 29–32, Jan. 2000.

[101] M. Schwarz, M. Welzel, T. Kabdullayeva, A. Becker, B. Freisleben, and
D. Heider, “MESA: Automated assessment of synthetic DNA fragments
and simulation of DNA synthesis, storage, sequencing and PCR errors,”
Bioinformatics, vol. 36, no. 11, pp. 3322–3326, Jun. 2020.

[102] N. C. Seeman, “An overview of structural DNA nanotechnology,” Mol.

Biotechnol., vol. 37, no. 3, pp. 246–257, Oct. 2007.
[103] J. Shendure and E. L. Aiden, “The expanding scope of DNA

sequencing,” Nature Biotechnol., vol. 30, no. 11, pp. 1084–1094,
Nov. 2012.

[104] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “CRISPR–
Cas encoding of a digital movie into the genomes of a population of
living bacteria,” Nature, vol. 547, no. 7663, pp. 345–349, Jul. 2017.

[105] I. Shomorony and R. Heckel, “Information-theoretic foundations of
DNA data storage,” Found. Trends Commun. Inf. Theory, vol. 19, no. 1,
pp. 1–106, 2022.

[106] F. Sievers and D. G. Higgins, “Clustal omega, accurate alignment of
very large numbers of sequences,” in Multiple Sequence Alignment

Method, 2014, pp. 105–116.
[107] J. Sima, Y.-H. Li, I. Shomorony, and O. Milenkovic, “On constant-

weight binary B2-sequences,” 2023, arXiv:2303.12990.
[108] S. S. Skiena and G. Sundaram, “Reconstructing strings from

substrings,” J. Comput. Biol., vol. 2, no. 2, pp. 333–353, Jan. 1995.
[109] J. Solymosi, “Incidences and the spectra of graphs,” in Combinatorial

Number Theory and Additive Group Theory, 2009, pp. 299–314.
[110] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin,

“Trellis BMA: Coded trace reconstruction on IDS channels for DNA
storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 2453–2458.

[111] R. P. Stanley, “Exercises on Catalan and related numbers,” Enumerative

Combinatorics, vol. 2, pp. 221–247, Jan. 1999.
[112] D. R. Stinson, “A general construction for group-divisible designs,”

Discrete Math., vol. 33, no. 1, pp. 89–94, 1981.
[113] N. Stoler and A. Nekrutenko, “Sequencing error profiles of Illumina

sequencing instruments,” NAR Genomics Bioinf., vol. 3, no. 1,
Jan. 2021, Art. no. lqab019.

[114] S. K. Tabatabaei et al., “Expanding the molecular alphabet of DNA-
based data storage systems with neural network nanopore readout
processing,” Nano Lett., vol. 22, no. 5, pp. 1905–1914, Mar. 2022.

[115] S. K. Tabatabaei et al., “DNA punch cards for storing data on native
DNA sequences via enzymatic nicking,” Nature Commun., vol. 11,
no. 1, pp. 1–10, Apr. 2020.

[116] C. Thachuk, E. Winfree, and D. Soloveichik, “Leakless DNA strand
displacement systems,” in Proc. 21st Int. Conf. DNA Comput. Mol.

Program., vol. 9211. Springer-Verlag, 2015, pp. 133–153.
[117] J. Tian, K. Ma, and I. Saaem, “Advancing high-throughput gene

synthesis technology,” Mol. BioSystems, vol. 5, no. 7, pp. 714–722,
2009.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

3828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 7, JULY 2024

[118] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theor. Comput. Sci., vol. 92, no. 1, pp. 191–211, Jan. 1992.

[119] A. Van Wijngaarden and K. Schouhamer Immink, “Construction
of maximum run-length limited codes using sequence replacement
techniques,” IEEE J. Sel. Areas Commun., vol. 28, no. 2, pp. 200–207,
Feb. 2010.

[120] R. Varshamov, “A class of codes for asymmetric channels and a
problem from the additive theory of numbers,” IEEE Trans. Inf. Theory,
vol. IT-19, no. 1, pp. 92–95, Jan. 1973.

[121] B. Wang, C. Thachuk, A. D. Ellington, E. Winfree, and D. Soloveichik,
“Effective design principles for leakless strand displacement systems,”
Proc. Nat. Acad. Sci. USA, vol. 115, no. 52, pp. 12182–12191,
Dec. 2018.

[122] B. Wang, S. S. Wang, C. Chalk, A. D. Ellington, and D. Soloveichik,
“Parallel molecular computation on digital data stored in DNA,” Proc.

Nat. Acad. Sci. USA, vol. 120, no. 37, pp. 1–10, 2023.
[123] R. R. Wick, L. M. Judd, and K. E. Holt, “Performance of neural

network basecalling tools for Oxford Nanopore sequencing,” Genome

Biol., vol. 20, pp. 1–10, Dec. 2019.
[124] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and

error-free DNA-based data storage,” Sci. Rep., vol. 7, no. 1, pp. 1–6,
Jul. 2017.

[125] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic,
“A rewritable, random-access DNA-based storage system,” Sci. Rep.,
vol. 5, no. 1, pp. 1–10, 2015.

[126] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao,
and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE

Trans. Mol., Biol. Multi-Scale Commun., vol. 1, no. 3, pp. 230–248,
Sep. 2015.

[127] S. T. Yazdi, H. M. Kiah, R. Gabrys, and O. Milenkovic, “Mutually
uncorrelated primers for DNA-based data storage,” IEEE Trans. Inf.

Theory, vol. 64, no. 9, pp. 6283–6296, Sep. 2018.
[128] Z. Ye and O. Elishco, “Reconstruction of a single string from a part

of its composition multiset,” IEEE Trans. Inf. Theory, early access,
Sep. 15, 2023, doi: 10.1109/TIT.2023.3315784.

[129] Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi,
“Generalized unique reconstruction from substrings,” IEEE Trans. Inf.

Theory, vol. 69, no. 9, pp. 5648–5659, Sep. 2023.
[130] W. Yu, Y. Xi, X. Wei, and G. Ge, “Balanced set codes with small

intersections,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 147–156,
Jan. 2023.

[131] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343,
May 1977.

[132] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inf. Theory, vol. IT-24, no. 5,
pp. 530–536, Sep. 1978.

Olgica Milenkovic (Fellow, IEEE) received the master’s degree in
mathematics and the Ph.D. degree in electrical engineering from the University
of Michigan, Ann Arbor, in 2001 and 2002, respectively. She is currently the
Franklin W. Woeltge Professor in electrical and computer engineering with the
University of Illinois at Urbana–Champaign (UIUC) and a Research Professor
with the Coordinated Science Laboratory. She is also the Co-Founder of the
Center for Artificial Intelligence and Modeling, Institute of Genomic Biology,
UIUC. She heads a group focused on addressing unique interdisciplinary
research challenges spanning the areas of algorithm design and computing,
bioinformatics, coding theory, machine learning, and signal processing. Her
scholarly contributions have been recognized by multiple awards, including
the NSF Faculty Early Career Development (CAREER) Award, the DARPA
Young Faculty Award, the Dean’s Excellence in Research Award, and several
best paper awards. In 2013, she was elected as a UIUC Center for Advanced
Study Associate and a Willett Scholar, while in 2015, she was elected as
a Distinguished Lecturer of the Information Theory Society. She has served
as an Associate Editor for IEEE TRANSACTIONS ON COMMUNICATIONS,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE TRANSACTIONS

ON INFORMATION THEORY, and IEEE TRANSACTIONS ON MOLECULAR,
BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS. In 2009, she was
the Guest-Editor-in-Chief of a special issue of IEEE TRANSACTIONS ON

INFORMATION THEORY on Molecular Biology and Neuroscience, while
in 2020, she was the Guest-Editor-in-Chief of a special issue of IEEE
TRANSACTIONS ON INFORMATION THEORY In Memory of V. I. Levenshtein.

Chao Pan received the B.S. degree from Tsinghua
University in 2017, and the M.S. and Ph.D. degrees
from the University of Illinois Urbana-Champaign,
in 2019 and 2022, respectively. He was a Post-
Doctoral Research Associate with the Department
of Electrical and Computer Engineering during the
preparation of the manuscript. His research interests
include applied machine learning, such as geometric
deep learning and graph neural networks, and their
applications in biology, such as learning-based DNA
data storage systems.

Authorized licensed use limited to: University of Illinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.

