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Abstract— This invited review paper has the aim to acquaint
the communication theory community with the emerging topic
of molecular data storage. The exposition includes an overview
of basic concepts in synthetic and computational biology and a
discussion of diverse approaches used to implement such systems.
It also describes new problems in communication and coding
theory, and discusses some relevant results pertaining to DNA
sequence profiles, coded trace reconstruction, coding for DNA
punchcard systems and coding for unique reconstruction.

Index Terms— Coded trace reconstruction, coding for DNA
profiles, DNA-based data storage, string reconstruction.

I. INTRODUCTION AND MOTIVATION

ESPITE numerous advancements in traditional data

recording techniques, the emergence of Big Data
platforms and the growing concern for energy conservation
have presented challenges for the storage community to
develop new nonvolatile, durable storage media that can handle
ultrahigh volumes of data.

The potential use of macromolecules for data storage
was recognized as far back as the 1960s when Richard
Feynman outlined his nanotechnology vision in the talk
“There is plenty of room at the bottom” [33]. Among the
various macromolecules that can potentially serve as storage
media, DNA molecules hold particular promise due to their
unique properties such as durability, ultra-large information
density, ease of amplification, readout compatibility and ability
to perform computing via simple hybridization reactions.
Under proper environmental conditions, DNA can preserve
its contents for thousands of years, as demonstrated by
the recovery of DNA from 30,000 years old Neanderthal
and 700,000 years old horse bones [99]. In addition, DNA
offers extremely high storage capacities, with a single human
cell containing DNA strands that encode 6.4 gigabits of
information within a mass of only approximately 3 picograms.
The technologies for DNA amplification and synthesis
have also reached unprecedented levels of efficiency and
accuracy [103], while DNA sequencing has been a standard
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procedure for nearly two decades. DNA has also been
successfully used as a building block for small-scale self-
assembly based computers [102].

Building on the progress of DNA synthesis and sequencing
technologies, two laboratories described the first architectures
for archival DNA-based storage in 2012 and 2013 [25], [43].
The first architecture achieved a density of 700 TB/gram,
while the second approach improved the density to 2 PB/gram.
The improved results of the second approach may be
attributed in part to the use of basic coding schemes such
as Huffman coding, runlength coding, single parity-check
coding, and repetition coding. Subsequent works [45] extended
the coding approach of the second architecture to account
for missing information-bearing DNA fragments via Reed-
Solomon codes [95].

Further milestones in DNA-based data storage were reached
through several innovations. The first innovation was the
introduction of random-access and rewriting platforms enabled
by controlled polymerase chain reaction (PCR) and/or overlap-
extension PCR reactions [125]. The design of DNA PCR
primers (addresses) from a coding-theoretic perspective, which
initiated with [127], also played a crucial role in scaling
up this approach for larger file sizes. The second innovation
was the design of portable DNA-based data storage platforms
that utilize long readout sequences and are accompanied by
specialized pilot sequencing, multiple sequencing alignment,
and constrained homopolymer (i.e., runlengths of the same
symbol) coding approaches [124]. This development has given
rise to new challenges such as coded trace reconstruction [24]
and various forms of synchronization error-correction. The
third milestone involved an expansion of the molecular
alphabet to include modified DNA bases [114] that can be read
using commercially available nanopore devices coupled with
deep learning solutions for base classification. Simultaneously,
theoretical models for DNA “storage channels” have been
proposed to rigorously analyze the above-described architec-
tures [58], involving overlapping DNA fragments akin to those
used in the original storage architectures of [25] and [43],
and nonoverlapping information-bearing blocks which model
pools without address sequences (see [49], [63] and references
therein). These models have been the basis for further research
on the fundamental aspects and capacity of DNA storage
channels.

Despite this early success in developing DNA-based data
storage systems, many issues remain unresolved, with the
most important one being the high error rates resulting
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from associated synthesis, access, and readout processes [34],
[77], [96] and the extremely high cost of DNA synthesis.
Additionally, known designs still lack the computational
capabilities required to support operations on data stored in
molecular media.

Sequencing errors have largely been mitigated through the
use of existing [59], [67], [68], [117] and the design of
specialized coding approaches [36], [45], [58], [62], [79].
These approaches can handle missing DNA fragments, in-
fragment sequencing errors, and asymmetric errors caused by
the specific molecular topologies of DNA bases. Handling
other types of errors in molecular storage has been made
possible through a combination of constrained coding, which
avoids DNA patterns prone to synthesis or sequencing errors,
prefix synchronized coding, which allows accurate access to
blocks of DNA without disturbing other blocks in the DNA
pool, and low-density parity-check (LDPC) codes [42], which
provide redundancy for combating classical substitution errors.

A satisfactory solution to the problem of high-cost synthesis
is still missing since synthesis is a sequential process that can
currently only be made faster through parallel synthesis of
shorter sequence blocks and subsequent ligation/attachment
(an approach used by Catalog, www.catalogdna.com). The
DNA Punchcard paradigm was introduced in [115] as a
partial solution to the problem of sequential DNA synthesis
and for the purpose of joint storage and computing. In this
paradigm, native DNA (i.e., DNA retrieved from common
bacterial species such as E. coli) is used as the storage media.
Binary or ternary information is imprinted on the DNA by
creating controlled nicks (i.e., holes) at specific locations of
the molecular backbone. Since the sequence content of the
DNA strings is known, retrieving the stored information is
straightforward and close to error-free.

Although the DNA Punchcard system experiences a moder-
ate density loss compared to traditional sequence encodings,
it offers highly efficient parallel writing and unique massively
parallel in-memory computing features [22], [122]. The in-
memory computing model, known as SIMDNA, relies on
carefully shifting and recreating nicks in multiple information-
bearing DNA registers using specialized strand displacement
reactions and combinatorial design rules. SIMDNA’s most
appealing feature is its ability to use the same instruction DNA
strands to update all registers, regardless of their content.

Additionally, nicks can be overlaid on DNA strands
that carry information to include rewritable data, such as
metadata. This rewriting process involves sealing the nicks
using native ligases [89] and then repunching the helix.
The Punchcard method and its recent extension, known as
DNA Typewriters [80], which operate in vivo, present new
challenges related to constrained coding and error correction
due to their unique information storage approach. In Punchcard
systems, for instance, it is possible to choose nick locations
that have significant differences in sequence content to
avoid errors during punching. Nonetheless, the placement
of nicks must still satisfy certain requirements regarding
their distribution on the two DNA strands. Essentially, the
placement of nicks should ensure the overall stability of the
double-helix. These constraints lead to a new coding paradigm
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for sets and introduce intriguing questions related to set
discrepancy analysis [35].

The aim of this overview article is to provide an accessible
introduction to the key components of the previously
described DNA-based storage systems. These components
include DNA synthesis, PCR protocols for random access,
synthetic biology concepts like gene editing using CRISPR
complexes, sequencing techniques such as shotgun, nanopore
(e.g., Oxford Nanotechnologies (ONT)) or Pacific Biosciences
(PacBio) sequencing, as well as strand displacement molecular
computation paradigms.

Additionally, the article will describe the fundamental
concepts behind current DNA-based data storage architectures.
It will explain how real biological challenges have influenced
the design of coding solutions that are necessary to ensure
reliable scaling and operation of these systems. Moreover,
it will highlight the importance of expertise in coding theory
to inspire new system designs and tackle practical challenges
in system implementation. Special attention will be placed
on reviewing the recent contribution to the field made by
the author and her collaborators. For a summary of relevant
concepts and terminology in synthetic and molecular biology,
the interested reader is also referred to the earlier review [126]
and the more recent monograph [105].

The manuscript is organized as follows. Section II contains
a a review of basic properties of DNA molecules and
a gentle introduction to relevant concepts from synthetic
biology. Section III describes a collection of conceptually
different approaches to DNA-based data storage system design
and provides a short review of DNA strand displacement
computational paradigms. Section IV presents a review of
coding-theoretic results that were developed to deal with
reliability and implementation issues encountered in DNA-
based data storage systems. Selected open problems in coding
theory are described in Section V.

II. SYNTHETIC BIOLOGY PRELIMINARIES

Deoxyribonucleic acid (DNA) is a macromolecule — a
molecule made up of a large number of atoms. It is found
in single-cell organisms (e.g., bacteria and viruses) as well
as in the mitochondria and cell nucleus of higher organisms
(eukaryotes), where the latter is a compartment within the cell
of width 5 — 10pum.

In eukaryotes, DNA takes the form of a right-handed
double-helix. It consists of two periodic linear molecules
that twist around each other, forming the sugar-phosphate
backbone (see Figure 1). The sugar-phosphate backbone has
a deterministic structure, alternating between a deoxyribose
sugar molecule and a phosphate group. It does not carry
useful information. Useful information is contained in the
“space” between the linear molecules, where four different
molecular structures, called bases, bind together in pairs
through hydrogen bonds. The bases are adenine (A), guanine
(G), cytosine (C), and thymine (T). Bases A and G, which
have two carbon rings, are purine bases (depicted in Figure 1
by a hexagon-pentagon structure), while bases C and T,
which have one carbon ring, are pyrimidine bases (depicted in
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Figure 1 by a hexagon). A molecular unit comprising one base,
one sugar and one phosphate group is termed a nucleotide, and
often used interchangeably with the term base.

There are two important observations to make about DNA
bases. First, not all pairings are possible. According to the
Watson-Crick rule, A only binds with T through two hydrogen
bonds, and vice versa. Similarly, G only binds with C through
three hydrogen bonds, and vice versa. While there are some
rare exceptions, the Watson-Crick rule is generally considered
a fundamental constraint for DNA molecules. As a result, the
information-bearing sequence attached to one linear molecule
is the (Watson-Crick) complement of the information-bearing
sequence attached to the other linear molecule. For example,
the complement of ATTCG is TAAGC.

Second, since bases are asymmetric molecules, we can
orient DNA strings based on the numbering of the terminal
carbon atom at the end of the string. Only the 3rd and 5th
carbon can appear at the terminus of the deoxyribose sugar
ring, and a string can be read from either the 3’ carbon
end or the 5’ carbon end. The symbol ’ is used to denote
the carbon atoms in the sugar and is part of a standard
chemistry vocabulary. For example, the string ATTCG used
in the previous example may be read from the 3’ to 5’ end,
written as 3’ — ATTCG — 5’. This string is different from its
reversal, which is written as 5 — ATTCG — 3’. If both base
strings of a DNA molecule are read in the same direction, they
represent reverse Watson-Crick complements. For the running
example, if both strings are read from the 3’ to 5’ end, they
would equal ATTCG and CGAAT. Alternatively, they can
be written as 3’ — ATTCG — 5’ and 5" — TAAGC — 3’. The
strand running in the 5’ — 3’ direction will be referred to
as the sense strand, while the string running in the 3’ — 5’
direction will be referred to as the antisense strand. These
terms are borrowed from genetics and are based on the reading
directions of protein-coding genes. Here, they are only used
to refer to the orientation of the strands since no genes are
involved.

The process of binding a sense and antisense strand
to form a double-helix is called hybridization, and the
process of separating the sense and antisense strand is called
denaturation. Denaturation is typically achieved by heating
up the DNA since thermal energy breaks down the hydrogen
bonds and leads to the disassociation of the strands.

3805

G mmm C

“Antisense”

\
7

“Sense”

Structure of the DNA macromolecule. The spacing between pairs of bases is a fraction of a nanometer (nm), andthis dense packing is responsible

While not immediately evident, the aforementioned prop-
erties of DNA molecules are of significant importance in the
context of DNA-based data storage system implementations.

For instance, consider the two purine bases, A and G, which
each possess two carbon rings, resulting in a more similar
chemical structure when compared to pyramidines. This
similarity implies a higher likelihood of confusing them during
sequencing (in contrast to, say, A and T). This observation
also extends to the pyramidine bases. To address this issue
of higher confusability between the pairs of pyrimidine and
purine bases and the relatively lower confusability between
purines and pyramidines, specialized data encoding protocols
have to be used (as suggested for asymmetric Lee distance
codes described in [36]).

Furthermore, the disparity in the number of hydrogen bonds
formed between A and T versus G and C in the Watson-
Crick pairings underscores the necessity of maintaining what is
known as “balanced GC content” in information-bearing DNA
strings. A small number of GC pairs may lead to instability
in the DNA duplex while a large number may hinder efficient
DNA synthesis and denaturation, as elaborated in the following
section.

The significance of reverse Watson-Crick strings is evident
in DNA replication, a process that involves creating two
copies of DNA from a single template. During replication,
the double helix gradually unravels, allowing each constituent
string to serve as a template for generating a complementary
strand. Outside the cell, replication is performed through a
process called Polymerase Chain Reaction (PCR), which is
also employed in the testing of viral diseases like Covid-19
(see Figure 2) and plays a crucial role in the unique approach
to random access in DNA-based data storage [125].

DNA replication cannot commence without a specialized
class of molecules known as “primers.” Primers are short
DNA fragments, roughly 20 bases in length, which are single-
stranded. Primers facilitate the binding of enzymes (functional
proteins) essential for replication of the DNA strands.
To enable DNA content amplification and, consequently,
random access, primers must adhere to several constraints.
First, their “melting temperature,” defined as the temperature
at which 50% of the DNA in a solution exists in a double-
stranded form and 50% in a single-stranded form, must closely
match the range of temperatures 55 — 70°C. Maintaining an
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Fig. 2.

Illustration of primer binding on denatured DNA. Two primers are required, one for the sense strand and another for the antisense strand. In each

cycle of PCR amplification, utilizing Watson-Crick complementarity, two identical copies of the same strand are generated, ideally resulting in exponential
growth in the concentration of the DNA product. The first random access protocol, described in [125], relies on the use of primers to amplify only a desired
collection of DNA sequences. After performing PCR amplification on these DNA sequences for a sufficient number of cycles, there is an overwhelming
probability that only the intended sequences are present in the pool. For information on microfluidic and self-rolled membrane random access systems that

do not require PCR amplification, the interested reader is referred to [57].

appropriate melting temperature and binding stability hinges
on a constant, balanced GC content. Numerous online plat-
forms, such as http://insilico.ehu.es/tm.php ?formula=basic,
can be used to estimate melting temperatures of DNA strands.

Second, it is crucial to meet the “no-folding” and “no
primer-dimer” constraints. Folding refers to the formation
of a partially hybridized molecule through pairings of
complementary bases on the same strand. Primer-dimer
constraints, on the other hand, prevent two distinct single-
stranded primers from hybridizing or partially hybridizing
with each other. For a comprehensive exploration of the
coding challenges associated with primer design constraints,
interested readers are referred to [127].

The linear distance between two adjacent bases on DNA
strings is approximately 0.34 nanometers, which implies that
DNA can store 2 bits within this length. Consequently, the
linear storage density of DNA is approximately 6 x 10° bits/m.
More commonly, storage density is expressed in terms of
bit-mass density, taking into account that the average mass
of a nucleotide is 330 Daltons, with one Dalton equal to
1.66 x 10~>* grams. This translates to the ability to store
2 bits in a mass of 5.48 x 1072 grams, or 3.6 x 10*!
bits/gram. It is important to note that this represents the
physical storage density, which is typically higher than the
information storage density due to latter taking into account
overheads for address, error-correction, and constraint coding.
The reported information densities currently surpass by orders
of magnitude those achievable by any other existing storage
technology.

DNA can maintain its integrity for tens to hundreds of
thousands of years when stored in a low-humidity, radiation-
free environment. Given the ongoing drive for performance
enhancements and cost reductions in DNA writing (synthesis)
and reading (sequencing) technologies, especially in the fields
of medical and fundamental molecular biology research,

molecular storage platforms hold a unique promise among
their competitors regarding future system compatibility.

A. DNA Synthesis and Sequencing: Building a DNA-Based
Data Storage System

Building a basic DNA-based data storage system is
indeed feasible, but it entails several essential components:
sufficiently large financial resources, reliable synthetic DNA
suppliers, and access to sequencing platforms such as Illumina
or third-generation alternatives including ONT and PacBio.
Such sequencers are readily used in genomic research
laboratories, but with the exception of ONT systems, they are
too expensive and bulky to be part of commercial readout
systems.

The availability of sufficient funds is paramount, given that
the DNA synthesis process is costly. This financial requirement
stands as the primary impediment to the widespread adoption
of molecular storage systems at scale. In the ensuing
discussion, we elucidate the principles underpinning DNA
synthesis and sequencing while also shedding light on
potential errors that can arise during these intricate processes.

1) Synthesis: To synthesize user information into DNA,
the first step involves introducing controlled redundancy into
the original binary data string. This redundancy serves two
purposes: facilitating various functionalities (including random
access and content replication) and ensuring robustness
(address redundancy is discussed in [126], while error-control
coding is discussed in the sections to follow). Subsequently,
the original binary information string is transformed (mapped)
into a string over the DNA alphabet comprising four letters,
A, T, G, C. Advancements in chemically modified DNA-based
data storage have also paved the way for conversions into
larger molecular alphabets, ranging from 8 to 11 letters [114].

In the next step, the quaternary data string is segmented
into either overlapping or nonoverlapping substrings. These
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digital substrings are converted into actual DNA strings
harboring identical content. While overlapping substrings were
initially employed in the early prototypes of DNA-based data
storage [25], [43], they have been mostly abandoned due
to their high coding redundancy and inefficiency of random
access.

When synthesizing the DNA content, it is important to
consider two factors: the lengths of the substrings and the
format in which they are delivered, which is constrained by
the synthesis technology used. For instance, when procuring
products from Integrated DNA Technologies (IDT), customers
can opt for what are referred to as gBlocks. gBlocks are
double-stranded DNA strings with lengths of approximately
up to 3,000 base pairs (bps). They are primarily used for
gene construction and play a pivotal role in genome editing
(see https://www.idtdna.com/pages/products/genes-and-gene-
[fragments/double-stranded-dna-fragments/). Each gBlock is
provided as an individual string, and users have the flexibility
to choose the molar concentration of the product. Typically,
gBlocks require the inclusion of prefix and suffix primer
sequences to enable subsequent amplification of the relatively
small volume of purchased synthetic DNA. The same primers
are used in the PCR-based random access protocol. The
advantages of gBlocks include their long length, which ensures
a smaller proportion of the content dedicated to primer
substrings, stable double-helix structure, as well as their ease
of reading via ONT and PacBio devices. Additionally, each
fragment is provided in a separate storage tube or well.
However, it is important to note that gBlocks are associated
with a higher synthesis cost per nucleotide when compared to
their shorter single-stranded counterparts, described next.

As an alternative, one can opt for “DNA oligo pools”
(https://www.idtdna.com/
pages/products/custom-dna-rna/. These pools consist of
unordered collections of numerous short, single-stranded
DNA strings, referred to as oligos. For instance, IDT oPools
are available in formats that encompass anywhere from 2 to
384 oligos per pool, with oligo lengths ranging from 4 to
350 nucleotides. It is guaranteed that each oligo is present
at a concentration of 50 pmols. The most cost-effective
package offers oPools with a per-base cost of approximately
$0.011. This cost, while significantly higher than that of
traditional recording media, still represents a more budget-
friendly alternative compared to that of gBlocks.

oPools come with their own set of advantages and
disadvantages. Advantages of oPools include the previously
mentioned cost-effectiveness and ease of handling. However,
they also exhibit several drawbacks. Typically, oPools have a
lower average synthesis fidelity, reduced stability, a propensity
of oligos to hybridize with each other. Additionally, they are
burdened by substantial primer overheads. Furthermore, if not
synthesized to full lengths ranging from 150 to 300 bases,
they cannot be directly read using third-generation sequencing
devices. Detrimental for the underlying molecular storage sys-
tems is the problem of missing oligos, referring to the absence
of one or more oligos requested for synthesis. Missing oligo
errors arise due to many factors such as placement of the oligo
to be synthesized on a microarray (or other type of) grid, their
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base content and others. It is also worth noting that the primers
required for content amplification need to be purchased sep-
arately  (https://www.idtdna.com/pages/products/custom-dna-
rna/dna-oligos/custom-dna-oligos).

A simplified diagram of the steps used in commercial
phosphoramidite chemistry DNA synthesis is depicted in 3.
Specialized forms of all four types of nucleotides that can
be attached to a growing DNA strand are kept in four
separate repositories and retrieved according to the string
being synthesized. The nucleotides contain special protective
groups, depicted as triangles. When initially incorporated, the
nucleotides’ protective groups prohibit the attachment of other
nucleotides, thereby ensuring that only one symbol is added at
each incorporation time. Once the nucleotides of the current
symbol are washes of, the protective groups are deactivated to
allow for the incorporation of the next symbol.

To more precisely explain the sequencing process, assume
next that the string ATTCGATGCC has already been
synthesized and that we want to add the symbol A. In this
case, we would flush the synthesis well of array containing the
partially synthesized string with protected A nucleotides and
the enzymes (including polymerases) necessary for synthesis.
The protective group prevents unintentional incorporation
of multiple DNA symbols in one round/cycle of synthesis.
Specifically, it disables access to other nucleotides on the
strand once it is added as part of the newly included
nucleotide. After the nucleotide is incorporated, any unused
A symbols need to be washed off to avoid contaminating the
new pool of symbols (which may be different from A) in the
next cycle of DNA string extension. Washing is not entirely
precise, so some unused nucleotides from previous cycles may
remain. However, due to extensive chemical error-correction
of the strands, this imprecision does not result in a very likely
error event (i.e., in practice, no errors involving repeated
symbols are observed in gBlock DNA products, and only a
small fraction of errors are typically observed in sequenced
oPools, where the errors may have actually been introduced
during sequencing). Nonetheless, in theory, simultaneous
incorporation of multiple bases could lead to sticky insertion
errors [81]. Once the washing process is completed, and in
preparation for the next cycle of growth for the extended
strand ATTCGATGCCA, the protective group is removed or
deactivated using lasers light or other means. However, the
deactivation process is also prone to errors, which may result
in some strands being permanently “deactivated”. In this
case, one ends up with incompletely synthesized DNA oligos,
which are usually removed by the vendor before delivering the
product. In some cases, temporary deactivation or premature
activation lead to oligos with burst deletions or insertions,
respectively. Oligos with bursty deletions can be identified
through their shorter length and removed. IDT products have
a very low likelihood of containing synthesis errors of the
aforementioned types, but the company may report synthesis
issues related to unbalanced GC-content, short repeats, i.e.,
repeats of short DNA substrings, and long homopolymers (see
also https://www.twistbioscience.com/fag/gene-synthesis/are-
there-any-sequence-limitationsdesign-guidelines-genes-which-
i-should-follow and [101]). The most significant errors are
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Fig. 3. High-level description of the synthesis process. One may think of using four types of different beads (nucleotides) which have to be stitched together
sequentially to create the desired user content. The process is inherently sequential and involves multiple steps of nucleotide incorporation, washing and
protective group deactivation that can lead to long synthesis latency (most providers report times of 1 — 10 seconds/nucleotide).

typically missing or low-coverage oligos, where certain
fragments were not synthesized to acceptable lengths or were
synthesized inefficiently. These errors can be corrected using
Reed-Solomon coding schemes described in [45] or through
machine learning techniques used in 2DDNA systems [89].
Lastly, it is worth mentioning that the efficiency of synthesis
schedules can be addressed analytically, as outlined in [53],
[62] and [70].

2) Sequencing: There are currently many different tech-
nologies available for reading the content stored in DNA.
One example is the sequencing-by-synthesis approach used by
[lumina platforms, as shown on the left of Figure 4. Illumina
devices, such as MiSeq, NovaSeq, and HiSeq, have a limitation
in terms of the length of strands they can read, which is
usually not more than 400 nucleotides. This technology is
commonly used for reading pools of DNA oligos because the
oligo lengths match the required sequencing lengths. The DNA
fragments generated by Illumina and other sequencers are
referred to as reads and are summarized in raw data files with
the.fast or .fastq extension. The .fastq files not only contain
read sequences but also information about quality scores of the
symbols, allowing for assessment of the quality of the results.
Ilumina systems have high sequencing accuracy, although
still not accurate enough for demanding storage applications
(most systems currently operate with an error rate of less than
0.1 — 1%). Additionally, since multiple copies of the DNA
strands are read simultaneously, consensus sequences can be
easily formed by using majority counts for each position in the
reads, as Illumina sequencing errors are mainly substitutions.

Third generation sequencers are capable of reading long
gBlock data formats and are commonly known as long
read technologies. One important long-read sequencing
technology utilizes nanopores, which can provide single-
molecule readouts of lengths ranging from 15,000 to
20,000 bases, or even longer. Nanopores are pores or holes
embedded in membranes, with one or multiple pores on the
same membrane. In the case of ONT nanopores, the pores are
“biological” pores, such as proteins, and only double-stranded
DNA is used for sequencing in order to control the speed at

which it translocates through the pore. This control is achieved
through biological motors, often helicases, which unwind the
DNA and slow down the passage of one of the strands through
the pore.

By applying a voltage current across the membrane, an ion
current is maintained within the pore. In the absence of any
molecules to be sensed, this current is referred to as the base
current. When single-stranded DNA translocates through the
pore, short DNA subfragments (approximately 3 — 5 bases in
length, referred to as k-mers, with k = 3,4,5) that fit into
the pore cause a drop in the ion current as they block the
movement of ions. The DNA is moves through the hole one
base at a time, and the observation duration (dwell time) for
the specific 3/4/5-mer and the recorded current drop are used
to estimate the sequenced DNA. The drop in current depends
on the A, T, G, C content of the sequenced DNA. Generally,
the current drop is influenced by the charge, 3D structure/shape
of the nucleotides, and many other factors.

Similar to what is done with other sequencing technologies,
each DNA fragment is replicated before sequencing to
obtain multiple reads for reconstructing the original content.
The reads corresponding to the same information string
are generated via passage through different pores and/or at
different times through the same pore. As a result, the reads
may exhibit varying levels of sequencing noise. Typically, the
process of deciphering the current readouts using multiple
reads, known as “nanopore base calling,” is facilitated by deep
learning approaches involving convolutional and recurrent
neural networks (CNNs and RNNs), described in more detail
in [123].

Based on the previous discussion about the similarity of
nucleotide chemical structures and the impact of k-mers on
the ion current drop, it is evident that the accuracy of base
calling in nanopores is expected to be lower compared to
that of Illumina platforms. However, recent reports from ONT
indicate significant progress in improving read reliability.
According to ONT reports for R10.4 sequencing flowcells,
the error rate for single molecule consensus is estimated at
> 0.1%. In academic labs, the observed error rates appear
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broken into overlapping fragments that are stitched together during the assembly process (which can be thought off as finding fragments with long matching
suffix-prefix strings). This approach is also the basic idea of the approach used in Illumina sequencing, along with the unique idea of bridge amplification;
(right) a fundamentally different approach used in third generation ONT devices, termed nanopore sequencers. There, DNA strands are translocated (passed)
through pores (holes), interrupting the flows of ions across the pore. The resulting drop in the ion current is indicative of the charge and structure of nucleotides

within the pore.

to be significantly higher than 0.1%, with contributions from
substitution, deletion, and insertion symbol errors.

The formation of consensus reads in nanopore sequencing
is similar to the corresponding process in short-read
technologies, but aligning ONT reads is computationally
more challenging due to the presence of indel errors — see
the description of multiple sequence alignment algorithms
reported in the context of DNA-based data storage in [124],
including Muscle, Coffee, Clustal Omega and others. The
work [124] also introduced a specialized approach for
error-correction from base-called reads using symbol-level
redundancy, treating the problem as an instance of trace
reconstruction. Trace reconstruction was initially described
in the context of phylogenetic tree analysis [10] and is
discussed in the context of coded trace reconstruction [24]
in Section IV. We also remark that nanopore error-correcting
codes that directly operate on raw current readouts without
requiring intermediate basecalling are discussed in [17]. Some
additional interesting results on reconstructing strings based
on traces and modeling the nanopore channel can be found
in [69], [71], and [75].

Although current DNA-based data storage systems do not
broadly utilize PacBio HiFi technologies [60], it is important
to highlight some notable features of this technology. HiFi
sequencers produce long reads, ranging from 10,000 to
20,000 bases, and exhibit high reliability, comparable to that
of Sanger sequencers. This increased accuracy in base calling
can be attributed to various factors, including the reduction
of polymerase bleaching effects and the implementation of
subread consensus protocols. In the HiFi sequencing process,
the same DNA molecule is read approximately 200 times,
generating an equal number of subreads that are subsequently
aligned and denoised. Unlike nanopores, HiFi devices capture
the kinetics of the reading process, where the bases are
characterized by distinguishable random pulse widths, and

each pair of bases corresponds to different random interpulse
widths. These pulse width and interpulse duration signals
reflect the speed at which a polymerase incorporates a specific
base into the subread. Our focus in subsequent discussions
is exclusively on long-read nanopore-based DNA storage
systems.

B. DNA Editing

DNA editing is an emerging interdisciplinary field with
applications in chemistry, biology, medical sciences and
synthetic biology, concerned with altering the content and
structure of genomic and other -omic sequences. One of the
major breakthrough discoveries in the area is the CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats)
system which was recently recognized by a Nobel prize
in Chemistry awarded to its co-discoverers, Charpentier and
Doudna [55]. CRISPR is a system native to some archaea
and bacteria which use it as a form of immune and antiviral
defense mechanism. The system involves repeat sequences
of certain genetic sequences interleaved (interspersed) with
spacer sequences that represent identifiers of invasive species
encountered in the past. Upon detection of a recurrent
invading unit through recognition of its characterizing genetic
sequence, CRISPR’s constituent Cas9 proteins guided by RNA
recognition sequences cut the viral genomes at the position of
the recognized content. Simply put, CRISPR stores snippets
of genetic information of prior invasive species and uses this
“genetic memory” to detect and disable present hostile viruses
by cutting their genetic material (see Figure 5).

An advantage of CRISPR is that it is a complex that
already involves enzymes such as Cas9 and relevant guide
RNA sequences needed for disabling invasive species. Also,
the complex performs cutting of single-stranded and double-
stranded substrates in different manners. When cutting
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The CRISPR system and its constituent Cas9 protein and guide RNA components. CRISPR memorizes genetic information of past invasive species

and uses it to identify their renewed presence. Upon detection, it performs cutting of the genetic content of the infective agents in order to disable their
replication. Outside of this native context, the complex can be used to cut arbitrary DNA strings through a careful design of the RNA guides.

double-stranded DNA, either both strands or only one of the
two strands is cut. The latter process is usually referred to
“nicking,” and it does not lead to disassociation of the DNA
duplex. There are also CRISPR complexes involving other
enzymes, such as Casl3, which have the capability to edit
RNA sequences.

For DNA-based data storage applications, and in particular,
the subsequently discussed DNA Punchcards platforms, Cas9
can be matched with arbitrary synthesized guide RNA strings.
These “lead” the enzymes to selected target positions, so that
nicking may be performed in a massively parallel fashion
involving multiple DNA sites. This is an especially important
feature for molecular storage as it circumvents the problems
associated with inherently sequential DNA synthesis: if nicks
are to be introduced at multiple sufficiently distant locations
in a double-stranded DNA substrate, the Cas9 enzymes can
perform nicking without co-interference. One drawback of
Cas9 is that it is what is known as a single turnover molecule
— once the enzyme creates a nick it becomes inactive. This
problem can be resolved by using multiple turnover enzymes
(e.g., Pfago [115]) which, in principle, can make close to
hundreds of cuts or nicks before becoming inactive.

C. Strand Displacement

Strand displacement in DNA is one of the most frequently
used molecular and DNA computing paradigms. DNA strand
displacement, as its name suggests, corresponds to replacing
(part of) a single-stranded DNA section of a double-stranded
DNA formation by another strand. There are two approaches
to displacement: polymerase-based and foehold-mediated.
We focus on toehold-mediated strand displacement as it is used
more frequently, does not require specialized enzymes and
lends itself to a wide variety of computations suitable for data
stored in DNA Punchcards described in the next section [93].

The double-stranded DNA may be seen as encoding the state
of a computational system or serve as a proxy for a logical
gate. It comes with one or multiple single-stranded regions
termed toeholds, which are usually of length 5 — 10 bases.
In Figure 6, there is one toehold in the right-most position of
the double-stranded DNA that allows for hybridization of a

a)

\ Current DNA strand state \\
Toehold d)
e

Input (instruction) DNA strand Displacement I1I

New DNA strand state

LI

oy (LTI ., °)

Displacement |

C——

Output (instruction) DNA strand

Displacement Il

Fig. 6. Toehold-mediated strand displacement (with the displacement steps
a), b) ¢), d) and e)). The input DNA strand hybridizes to the single-stranded
toehold region and forces the competing strand to peel-off from the duplex,
as governed by the laws of thermodynamics. Note that the green and red string
are, by design, distinct, since they correspond to Watson-Crick complements
of different parts of the string in blue. The reactions take milliseconds or less.

Watson-Crick-complementary single-stranded DNA, referred
to as the instruction strand. Once the instruction strand
hybridizes to the toehold it starts pushing out (i.e., displacing)
the already present single-stranded part of the duplex to the
left of the toehold until it completely disassociates. This
strand then becomes the “output” of the computing unit. In a
nutshell, the input strand may be seen as an instruction that
changes the state and releases an output strand in its stead.
Displacement reactions can be performed in a cascade, thereby
allowing for multiple changes of states and released output
strands which broadens the computational repertoire of strand
displacement. As an example of the computations possible
via strand displacement, the interested reader is referred to a
neural network implementation based on cascades of toehold-
mediated displacements [94]).

Although in theory many different computations, including
universal ones, can be implemented via strand displacement,
a major practical challenge is to control leakage in the
cascades [116]. Leakage refers to unintended displacements
that lead to the release of incorrect output strands and reduce
the efficiency of the reactions. Leakage is the key impediment

Authorized licensed use limited to: University of lllinois. Downloaded on February 23,2025 at 20:28:19 UTC from IEEE Xplore. Restrictions apply.



MILENKOVIC AND PAN: DNA-BASED DATA STORAGE SYSTEMS

3811

| User information string: 0001010111010011101011000101110011110000... |

Conversion into DNA alphabet {A,T,G,C} strings without
differential encoding (e.g., 00-A,01-T,10-G,11-C)

| DNA string: ATTTCTA

CGGCATTCACCAA... |

Parsing of DNA strings into overlapping substrings of
length L (e.g., L=8) and overlap 3L/4 (e.g., 6)

[AT(TTCTAC), (TT(CTAC)GG), (CT(ACGG)CA), (AC(GGCA)TT), (GG(CATT)CA), (CA(TTCA)CC),... |

| Indexing and parity-check coding: ATTTCTAC(Index1), TTCTACGG(IndexZ),...l

| Synthesis |

| Sequencing |

Fig. 7.
parity-check coding.

to accurate execution of more than 6 — 7 consecutive
displacement reactions, due to an excessive number of
undesired byproducts. Recent methods for correcting leakage
errors via controlled redundancy were described in [121].

III. AN OVERVIEW OF EXISTING DNA-BASED DATA
STORAGE PLATFORMS

The first successful implementations of DNA-based storage
systems with read and write capabilities were described in [25]
and [43]. These works outlined similar procedures, which
involved the following steps.

a) Conversion of compressed binary data, such as text
or images, into a ternary or quaternary alphabet. The
process included elementary coding approaches such as
GC-balancing, runlength coding, and single-parity check
coding. Ternary encoding was employed to limit the
runlengths of the same symbol (i.e., the lengths of
homopolymers) to one. It effectively reduced the alphabet
size from 4 to 3.

b) Parsing the encoded information strings into over-
lapping substrings with controlled overlap length. The
overlap was set to 75%, ensuring 4-fold coverage of the
content (with the exception of the two boundaries).

¢) Addition of substring identifiers that encoded the index
of each substring within the longer string. Note that such
identifiers do not represent addresses since they were not
designed to enable random access.

¢) Synthesis of the overlapping substrings in the form of
oligo pools.

d) Sequencing of the substrings and reconstructing the
original message (refer to Figure 7).

The system was designed with several main considerations
in mind. First, the overlapping oligo approach was used to
facilitate easy reassembly of the original message through
identification of overlapping suffixes and prefixes. As a
side-effect, it effectively reduced the code rate to roughly
1/4. Second, a balanced GC was ensured to reduce both
synthesis and sequencing challenges. Third, since sequencing
platforms in use at the time of the publication, such as
Roche 454, were known to introduce errors in the presence

The first two DNA-based data storage systems used nearly-identical data encoding protocols, involving runlength coding, indexing and single

of long homopolymer contents, the latter were severely
constrained in length. However, it is important to note that
current Next Generation sequencing platforms do not have
severe homopolymer-related limitations, making it undesirable
to compromise storage density through such a restrictive
encoding protocol [113].

The DNA storage systems described above were unable to
accurately reconstruct the original sequence, despite reducing
the size of the alphabet and ensuring long overlaps between
adjacent oligos. Furthermore, in order to access the encoded
content in a specific section of the sequence, the user had to
sequence and assemble the entire content, leading to significant
implementation expenses.

The PCR-based random access approach was introduced
and experimentally tested in [125], with its scalability further
confirmed by Microsoft Research on a file size close to 200
MBs. The idea behind PCR-based random access is simple
when analogies to classical storage systems are drawn: one
needs to endow each information block (oligo) with an address
sequence. The main challenge was to devise a method to
efficiently search for the block with the required address
when no “search circuits” are available. The obvious idea
is to use hybridization, since the presence of a particular
address sequence can be detected via targeted hybridization
with its reverse complement sequence. This detection approach
requires the desired strands to be isolated and sequenced.
“Isolation” is achieved via amplification, i.e., PCR reactions.
More precisely, the protocol for random access involves
extracting a small subsample of the oligo mixture and
running sufficiently many cycles of PCR reactions with primer
combinations corresponding to the encoded information blocks
to be retrieved. The amplified subsample in this case contains,
with overwhelming probability, only the desired oligo content
which can then be sequenced to complete the random access
process.

The combinatorial design protocol for random access
primers includes balancing the GC content, adding error-
correcting redundancy, preventing self-folding of the primers,
ensuring that pairs of distinct primers do not hybridize to
each (i.e., preventing primer-dimers). Importantly, in addition
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to all these constraints having to be met simultaneously, one
more constraint has to be accounted for — zero cross and
autocorrelation [46] of the primers. The autocorrelation of
a binary string $;Sy...Sn is another binary string which
indicates the overlap between prefixes and suffixes of the
strings of lengths 1,2,...,n — 1. Clearly, zero correlation
prevents matching prefixes and suffixes of primers and
thereby ensures some control over primer-dimer formations
and self-folding. The concept is best illustrated by an
example.

Example 1: Let s18y...s5 = 10101. Then, the autocorre-
lation of the string is the binary string 0101 indicating that
the prefix and suffix of the string of lengths 3 and 1 are the
same (the second bit, equal to 1, indicates a match of length
3, while the fourth bit, again equal to 1, indicates a match of
length 1.

Cross-correlation can be defined similarly, by recording the
prefix/suffix overlaps of two distinct strings. For more details,
see [127] and the review article [126].

With regards to questions related to the enumeration of
possible single-stranded DNA folds and related nonfolding
constraints, the interested reader is referred to [78] and [87].
The latter work used the notion of Motzkin paths [88], which
represent Dyck lattice paths augmented by flat (constant)
platoes. A Dyck lattice path is a string of even length n over
the alphabet (, ) containing exactly n/2 symbols of each type
and satisfying the property that no prefix of the string contains
more ) than ( symbols. A Motzkin path is a string of even
length . over the alphabet (, ), — containing the same number
of ( and ) symbols, and satisfying the property that no prefix
of the string contains more ) than ( symbols (and with no
restrictions on the placement of the symbols —). An example
Dyck path of length 8 is (()()()), while an example Motzkin
path of length 8 is (—() — ()—). The matched bracket symbols
( and ) can be used to represented paired bases within a
string, while the dash — symbol can be used to denote an
unpaired basis. Restricted Motzkin paths described in [78]
ensure that no short collection of consecutive unpaired bases
(forming a loop) is followed by a long stem (a pair of reverse-
complementary substrings on the string) which would lead to
a stable secondary structure that renders the strings unusable
as primers.

In addition to reporting the first PCR random access, the
work reported in [125] also included a text rewriting scheme
that is based on overlap-extension PCR; it also examined,
from the theoretical point of view, how to perform information
encoding so as to avoid substrings that are identical to the
oligo primers used for addressing. In the context of rewriting,
specialized encoding techniques were used to ensure that
complete word phrases, likely to be edited together, are part
of the same block that can be replaced by another block via
overlap-extension PCR reactions. In the latter setting, a prefix-
synchronized coding scheme adapted from [82] was used to
ensure that the primer strings do not appear as substrings inside
the information-bearing content, as that would lead to PCR
amplification of substrands and not the whole oligo or gBlock.
Sequencing was performed using Sanger methods, with no
reported errors in the PCR-retrieved information.
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Another important direction in DNA-based data storage
was pursued in [124], where, for the first time, nanopore
sequencing was used for data retrieval. The work also
described how to combine the ideas of pilot signaling (from
communication theory) and trace reconstruction [10] (from
theoretical computer science) in DNA-based data storage.
At the time the work was published (2015-2016), nanopore
sequencers were the only low-cost and portable option for
sequencing long blocks of DNA, such as gBlocks. Cost and
portability are important issues given that Illumina platforms
are bulky and expensive, and designed for lab use in mind.
Despite their desirable properties, ONT MinION sequencers
available in 2016 had the serious drawback of excessively
high rates of indel errors, often exceeding 15% (this rate has
been significantly reduced during the past decade, and is now
closer to 5% for academic labs like the one used to perform
the experiments in [124]).

A common approach to reduce the error rate is to form
a consensus of all the nanopore readouts corresponding to
different copies of the same input sequence. This naturally
leads to the problem of sequence alignment, for which
software suites such as Clustal Omega [106] or ONT in-
house learning-based methods such as Nanopolish [123] are
readily available. Still, for indel error-rates as high as 15%,
the resulting consensus provided only a low-quality estimate
for the actual user information string.

A straightforward solution to the problem was to treat the
addresses as pilot sequences used to estimate the nanopore
channel (see Figure 8). This approach proved successful
since the addresses/pilots are indicative of “malfunctioning”
or “tired” pores. For such pores, all traces or the most recently
read traces contain a large number of errors. Given that
the address sequences are known to both the encoder and
decoder, the quality of the pore can be assessed through
the number of errors in the addresses. By only using reads
whose addresses have no errors, or by iteratively recruiting
reads with low-error-rate-addresses to improve some local
alignments, the reconstruction error rate dropped significantly,
below 1 —2%. The remaining errors were completely removed
by GC-balancing the content of the blocks and by applying
asymmetric homopolymer codes. The former allow one to
identify potential synchronization or substitution errors by
counting the symbols in each subblock; the latter allowed
for fixing asymmetric deletion errors that affect one or two
bases only, and do not completely erase a homopolymer. Such
errors were found to occur in the ONT data generated by the
experiments in [124]. Note that more recent ONT platforms,
such as R10.4, are designed to accommodate 9 — 10 bases
in the pore in order to resolve the problem of homopolymer
sequencing errors.

Two unconventional approaches to DNA-based data storage
were explored in the recent studies [104], [115].

In the first approach, synthetic data was incorporated into
the DNA of living organisms, such as bacteria. This in vivo
(inside the cell) approach offers several advantages. First, user-
defined information can naturally replicate itself through the
growth of bacterial communities. Additionally, this population
encoding strategy provides inherent error protection.
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Fig. 8. The content of replicas of the same DNA string is read by different
pores or by the same pore at different times. Each readout is modeled as a trace
(which, unlike most traces used for mathematical proofs of reconstruction
performance, also include insertions and substitution errors). The traces/reads
can be aligned using one of the many existing DNA sequence alignment
algorithms, but the results are of poor quality when even a small number of
traces contains an excessive number of errors (see Extended Data Figure 3
in the Supplementary Information of [124]). Since the address sequences of
the strings are known, the quality of the “nanopore channel” can be estimated
by counting the number of errors present in the address string. In the given
example, the address portion of the strings is boxed and the third trace contains
three errors in the boxed region. This is indicative of a defective or tired pore
and hence the third trace is not used for sequence alignment. As a result, the
consensus sequence obtained via alignment of “good reads” is error-free or
almost error-free.

However, this scheme has several drawbacks. The storage
density is low compared to other methods due to the need
to carefully place synthetic DNA in specific regions of
bacterial genomes, so as not to disrupt normal cellular
functions. Furthermore, the ratio between the information-
bearing mass and the overall cell mass is significantly reduced
as well, further decreasing the effective storage density. Most
detrimentally, the process of recording and retrieving data
is highly complex. Not only does one need to synthesize
user DNA information, but must also insert it into desired
locations within the bacterial genome. Data retrieval involves
extracting bacterial DNA, isolating the desired content, and
subsequently sequencing it. It remains uncertain whether this
approach can be made cost-efficient enough to complete with
purely synthetic in vitro (outside of the cell) methods.

In contrast, the DNA Punchcard system, introduced in [115],
aims to address the issue of synthesizing DNA in the first
place. The concept behind this approach is illustrated in
Figure 9. In this storage context, “native DNA” refers to DNA
extracted directly from bacteria, such as E. coli, without any
synthetic modifications, and subsequently used and processed
in vitro. Native DNA is readily available and can be obtained
in large volumes at low cost. However, since native DNA has a
composition determined by Nature, it cannot be easily altered
to store user-defined data. Instead of modifying the content,
one can instead choose altering the fopology of the sugar-
phosphate backbone at specific positions, termed “nicking
positions.” These positions are located between a pair of
bases and indicate where the backbone strings are allowed
to be nicked. Enzymes such as Cas9 or PfAgo, described in
Section II, can be used for the recording process via nicking.
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Fig. 9. In DNA Punchcard systems, data is recorded on native DNA
fragments termed orthogonal registers. Each register has nicking locations
whose sequence contexts are highly dissimilar, captured by the different colors
of the stars indicating the nicking positions, thereby allowing for parallel
nicking/recording of information on all orthogonal strands. The same nicking
enzyme-guide unit can be used to nick hundreds of copies of the same register,
which makes the system scalable.

The absence of a nick represents the value 0, while a nick
on the sense strand represents 1, and the same nick on the
antisense strand represents 2. Therefore, the recoding alphabet
in this system is ternary. It is important to note that cutting
both strands at the same location is not allowed as it would
cause the DNA to dissociate.

Storing information through nicking offers several advan-
tages. First, there is no need to synthesize the information
content in DNA, as topological changes are utilized to
represent the data. Second, nicking can be performed in a
highly parallel fashion. Third, writing the symbol 0 does not
require any specific action, which is a characteristic shared
by other existing storage technologies. Fourth, erasing and
rewriting data is remarkably straightforward through the use
of ligases, which can seal off the nicks. Since ligases remove
nicks regardless of their position on the DNA, selective erasing
and rewriting of data requires storing it in physically separated
fragments of DNA.

The process of reading information stored in nicks is
conceptually simple and highly robust to errors due to the
existence of the bacterial genome reference. In a nutshell,
the nicked DNA is denatured, i.e., the constituent strands
are separated, and the obtained fragments PCR-amplified and
sequenced using [llumina platforms. The sequenced reads are
then aligned to the bacterial reference sequence to determine
the locations were one fragment ended and another one started,
corresponding to the positions that were nicked. To detect the
nicks using nanopores requires reverting from ONT to solid-
state nanopores, since the former do not require unwinding
the strands [5].

Another important observation is that it is not necessary
to use long native DNA fragments to encode information.
This is because using long fragments can lead to undesired
and off-targeted nicking. Instead, one can selectively isolate
nonoverlapping fragments of native DNA that have low
sequence similarity. These fragments are referred to as
“orthogonal registers.” By insisting on low sequence similarity,
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measured in terms of the Levenshtein distance, the probability
of nontargeted nicking is reduced while maintaining recording
parallelism. Additionally, since the registers are substrings of
a real bacterial genome, their order is determined by their
occurrence in the genome. Therefore, there is no need for
positional encoding.

Similarly to other current molecular recording systems,
DNA Punchcards cannot avoid certain functional impairments.
The most important drawback is reduced storage density,
which is a consequence of both the decrease of the alphabet
size from a 4-letter base alphabet to a 3-letter nicking alphabet,
as well as the nicking site placement constraint. The latter
requires nicking locations to be separated by roughly 10 bases
apart in order to ensure stability of the DNA duplex and avoid
having to read very short genomic fragments.

Note that the guides used in conjunction with the nicking
enzymes still need to be synthesized unless they can be
extracted directly from the native DNA itself without the
use of other guides (which remains challenging). However,
guides are typically very short RNA or DNA strings, of length
< 20 nucleotides. Furthermore, as already mentioned, the
guides are multi-use entities when combined with enzymes
like PfAgo.

Nick-based storage allows for in-memory computations to
be performed directly and in parallel on the data recorded
in all registers through strand displacement operations [22],
[122]. In this computing approach, the symbols 0 and 1 are
represented by two different blocks of bases, nicked at
different locations. For example, if 5 nucleotides are used,
0 could be represented as 2 — nick — 3 while 1 could be
represented as 4 — nick — 1, indicating that for the former,
the nick is placed between the second and the third base,
while in the latter, it is placed between the fourth and the
fifth base. Since strand replacement terminates when the
instruction string encounters a nick (as the nick prevents
further “peeling-off” of a DNA substrate) and since nicks
encode the bit values themselves, one can move the positions
of the nicks around, thereby changing the register content.
Roughly speaking, these nick-displacement operations involve
sealing a nick in one position while creating a new nick in
another position. Operations such as incrementing all registers,
sorting their contents, and operations behind the universal
Rule 110 automata have been successfully implemented and
executed on data stored in DNA nicks via multistage strand
displacement [22], [122].

Nick-based recording also enables the creation of 2D
storage systems, as the nicks do not have to be necessarily
superimposed on native DNA. The 2DDNA model of [89]
superimposed nick-encoded data on synthetic DNA strands.
Such an approach caters to the need of high-volume storage
by encoding information in the DNA content and low-volume
rewritable data storage by encoding it in the topological
domain. Since the most prevalent data format is image data, the
method was specialized to encode images into DNA content
and image metadata (ownership information, date of access,
steganographic messages) in the form of nicks. Another novel
feature of this 2DDNA system is the use of machine learning
methods to reconstruct the image in the presence of synthesis
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and missing oligo errors through a combination of automatic
discoloration detection, image inpainting and smoothing (see
Figure 10).

We conclude this review of different directions in DNA-
based and molecular data storage by describing emerging
approaches that aim to increase the size of the DNA alphabet
through the use of chemical modifications [114] and employ
synthetic polymers instead of synthetic DNA [61], [66].

In the former work, the DNA alphabet — A, T, G, C - is
augmented by chemically modified native bases. A chemical
modification is a small group of atoms added to a base
so that it does not change its Watson-Crick binding affinity
(or, at worst, does not significantly compromise it). The
idea is to create “variants” of the symbol, say Aj, Ay,
Ty, T, T3, etc, that expand the alphabet size but remain
distinguishable when sequenced. The main challenge of this
approach is to adapt existing sequencing technologies —
[lumina, ONT or PacBio — to efficiently discriminate all
native and chemically modified symbols. The most promising
approaches include learning to classify the bases using raw ion
current signals from nanopores and kinetic information from
PacBio SMRT (single-molecule, real-time) HiFi devices.!
Another potential drawback of using chemically modified
DNA is that PCR random access methods cannot preserve
the information encoded in modification unless both strands
contain “matching” chemical modifications. This problem can
be remedied through the use of grids of self-rolled nanotubes
that use the negative charge of the DNA sugar-phosphate
backbone to control its movement via electronic circuits [57].

In the latter line of work, collections of synthetic polymers
(usually two polymers, each assigned to one of the two bit
values) of predetermined and largely different masses are
connected to form bytes. Chemical bonds are introduced
between the bytes to form one information-bearing string
which, when broken, enables separate reading of each byte.
Synthetic polymers offer the advantage of lower synthesis
costs, although the synthesis process remains sequential.
However, there are drawbacks, such as the absence of
a PCR-type amplification process and a limited range of
natural enzymes capable of working with the polymers.
Initially, data retrieval from polymers relied on tandem mass
spectrometry [66], but recent advancements have focused on
the development and utilization of specialized nanopores [16].

IV. CODING-THEORETIC QUESTIONS

As pointed out throughout the previous text, all components
of different DNA storage systems introduce errors. For
example, synthesis errors mostly manifest themselves in the
form of substitution errors, while errors introduced during
nanopore sequencing are standardly modeled as combinations
of substitution and indel errors. In addition to these well-
studied error models, many previously unexplored research

The platforms operate by reading the same molecule 100 — 200 times
via synthesis and forming a consensus of the subreads to estimate the
content of the molecule. Unlike nanopore sequencers that report ionic current
signals, PacBio systems provide information about so-called pulse widths and
inter-pulse durations, capturing the times taken by the polymerase to add a
nucleotide and to prepare for adding the next one.
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Fig. 10. An innovative component of the 2DDNA system is the use of automatic discoloration detection in images caused by synthesis and missing oligo
errors. A specialized encoding scheme for image data separates the R,G, and B content of the images and places it on different oligos (top row). This allows
for treating the three channels as a form of replication coding. Smoothness irregularities in one but not in the other two channels are indicative of oligo errors
in the former (second row). These are detected by looking at the difference in values of pairs of color channels (as shown in the three histograms in the
middle of the figure). The resulting discoloration is treated as missing pixels, whitened-out and then “imputed” using deep neural network inpainting methods.
Further subjective image quality improvements are ensured via enhancement and smoothing (third row). Note that this approach is tailor-made for image data
and it mitigates the use of costly error-correcting redundancy. For images with fine facial details, unequal error-protection low-density parity-codes can be
used in addition to machine learning approaches to improve the reconstruction, with a redundancy of < 7% for the facial data alone.

directions in coding theory came into existence solely
motivated by molecular storage. Some of these problems and
their solutions were described in the review paper [126].
To avoid overlaps with the topics covered in [126], we choose
to focus on a sampling of more recent analytic questions
pertaining to modeling the DNA storage channel, decoding
information via trace reconstruction and designing codes for
DNA Punchcard systems.

The DNA storage model is an abstraction of a DNA-
based data storage system that uses microarrays for DNA
synthesis and Illumina and other short-read sequencing tech-
nologies, along with specialized graph-theoretic approaches
for sequence reconstruction. Coded trace reconstruction is a
new problem motivated by long-read nanopore sequencing
approaches which require specialized alignment methods for
data recovery. For DNA Punchcard storage systems which use
known reference sequences and consequently have negligible
readout errors, we choose to discuss coding problems related
to duplex stability, rather than reconstruction errors. Finally,
we also describe several problems in the area of coding for
unique reconstruction, initiated by the works in [2], [38],
and [58], which require constrained coding approaches that
ensure unambiguous string recovery.

A. Coding for DNA Data Storage Systems With Short-Read
Technologies

Our discussion to follow pertains to the first model of
a DNA storage channel, described in [58]. It provides
a simplified, yet conceptually accurate, abstraction of
microarray-based synthesis and shotgun-type sequencing.

To facilitate the mathematical exposition, we start with some
relevant terminology.

Let n be a positive integer, [q] = {0,1,...,q— 1}, and
x € [q]™. Choose a constant integer 0 < (. The {-profile
vector of x, denoted by 7, (x), is a vector of length q* whose
coordinates are indexed by all possible g-ary strings of length
{, in lexicographic order. The i-th entry of 7t;(x) equals the
number of substrings of x that match the i-th string in the
lexicographical order of strings in [q]*. Note that the entries of
the profile vector are nonnegative integers whose sum equals
n—~{+1.

Example 2: If @ = 2, n =5 { = 2, and x = 11011,
then my(x) = 0112, and O+ 1 +1+2 =4 =5—-2+1.
The lexicographical ordering used is (00,01,10,11), and
the profile of x reveals that it contains no 00 substrings,
that it includes exactly one substring 01 and 10, and two
substrings 11.

For simplicity of notation, we henceforth drop the subscript
{ as it will be made clear from the context.

Next, we say that 7t() is a valid (string) profile if there
exists a string with that given profile. Otherwise, we say that
the profile is not valid.

Example 3: For the parameters in the above example,
7 = 2002 is not a valid profile, since there is no binary
vector of length n = 5 that contains 2 substrings 00 and 2
substrings 11.

Observe that two different string can share the same profile,
as illustrated by the example that follows.

Example 4: Consider the following collection of strings

{0000, 0010,0100,0110, 1001, 1011, 1101, 1111}
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Synthesis channel: substitution errors

Fig. 11.
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Sequencing channel: coverage errors (left) and read errors (right)

A DNA-based data storage channel model. The input into the channel is a string of length n over the DNA alphabet {A, T, G, C}. The output
of the channel comprises a collection of noisy substrings of the input string.

Noise is introduced at three different stages of the write-read process. During

synthesis (leftmost panel), one encounters synthesis substitution errors. In the particular example in the figure, such errors are marked in red, and they include
the bases C and A. Note that synthesis errors propagate through the channel as they are “imprinted” into the string that is to be sequenced. Once the string
is synthesized, it is read by first fragmenting it into £-mers (in the example, 3-mers), some of which may be missing due to coverage errors (marked in gray).
The substrings are then read through sequencing-by-synthesis, and the reading process itself can lead to the introduction of additional sequencing substitution
errors within the substrings. Therefore, the input of the channel is a string, while the output of the channel is an incomplete, noisy collection of substrings

of the input string.

The £ = 2-mer equivalence classes of the strings, with two
strings being equivalent if their { = 2-mer profile vectors are
the same, are

{00001, {0010, 0100, 1001},{0110, 1011, 1101}, {1111}.

Clearly, the profile vectors of the four equivalence classes are
(3,0,0,0), (1,1,1,0), (0,1,1,1) and (0,0,0, 3), respectively.

Next, for profile vectors of two g-ary strings x and y, let
us define their asymmetric profile distance according to

A(x,y) = max{9(x,y), 0(y, x)},

qt—1
i=0
denotes

max{7t(x); — 7t(y)i, 0}, and where
the 1i-th coordinate of the

where 9(x,y) =
the subscript 1
vector.

The question of interest is to design the largest possible
codebook €qn,ea of g-ary vectors of length n such that
the minimum pairwise asymmetric distance of their {-profile
vectors is at least d. For d > 1, one has to automatically
preclude simultaneous inclusion of two strings from the same
equivalence class in Cq ¢ q, since in that case, the profiles of
the strings are the same.

The motivation for studying the previously introduced
problem comes directly from the models of DNA-based data
storage depicted in Figure 11. When sequencing DNA, the
input to the sequencer is a string, while the output is a
collection of substrings (reads) generated (for this model)
by Illumina sequencers. The asymmetric distance allows one
to account for three types of errors, synthesis substitution
errors, whose number is assumed to be upper-bounded by s;
coverage errors, modeled as missing substrings, the number
of which does not exceed c; and, sequencing substitution
errors, which manifest themselves as individual substitution
errors within the substrings (reads), and the number of which
does not exceed o. If the minimum asymmetric distance of
the profiles of the codestrings satisfies dimin = 2s + ¢ + 0,

then the code can correct the corresponding number of
synthesis, coverage and sequencing errors. Several abstractions
are made to make the analysis of this model tractable. First,
it is assumed that one can perfectly count distinct oligos.
In the example with x = 11011 and 7t(x) = 0112, it is
assumed that one can determine that there were two distinct
substrings 11 in the original string. In practice, Illumina
systems do actually report all sequenced oligos, but without the
information if these oligos are replicas of the same substring
or replicas of multiple identical substrings. This issue can be
mitigated through the use of long-read technologies which are
known to resolve problems associated with repeats. Second,
synthesis errors are usually context dependent, and repeats
make the process difficult or outright impossible. To make
the model more realistic, we would require the codestrings to
be repeat-free, but this would make the subsequent analysis
very hard. Third, since multiple replicas of the same string
may be generated during sample preparation, and each of
these strings can be subject to different error-patterns, one
substring can give rise to multiple erroneous substrings. How
many replicas are present depends on the coverage depth
(i.e., the average number of times a symbol is covered by
the reads).

Given that the DNA storage channel accepts strings at
the input and produces profiles at the output, it is not
immediately clear how to ensure that minimum asymmetric
distance constraints are met in the substring domain while
working with the global input strings. The key ideas for
solving this problem rely on the use of de Bruijn graphs [12],
[15] and are described next.

A directed graph (digraph) D is a pair of sets (V, E), where
V is the set of nodes (also referred to as vertices) and E is a
set of ordered pairs of V, termed arcs. If e = (v,v’) is an arc,
we call v the initial node (tail) and v’ the terminal (head) node.
We allow loops (i.e., we allow v = v’) as well as multiple arcs
between nodes.
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The incidence matrix of a digraph D is a matrix B(D) €
{—1,0,1}V*E, where

1, if e is not a loop and v is its terminal node,

B(D),..=< —1, if e is not a loop and v is its initial node,

0, otherwise.

Given q and {, the (standard) de Bruijn graph is defined
on the node set [q]*~!, where we recall that [q] = {1,...,q).
For v,v' € [q]*", an ordered pair (v,v’) € E if and only if
vi =v] |, for 2 <1< £— 1. We label the arc (v,v’) with the
length-{ string vv;_,, and without loss of generality, equate
arcs with their labels.

Example 5: Let @ = 2 and { = 4 and consider the de
Bruijn graph shown Figure 12. The nodes v = 101 and
v/ =010 are connected by the arc 1010 which originates from
v and terminates in v'. The suffix of v of length {—2 = 2 equals
01, which is also the prefix of length { — 2 of v'. The label of
the arc equals vv;_, = 1010.

The notion of de Bruijn graphs can be extended to prohibit
the presence of certain {-mer arc labels or (£ — 1)-mer vertex
labels [98]. For such restricted de Bruijn graphs, the set of
allowed (¢ — 1)-mers is denoted by S. The corresponding
restricted de Bruijn graph is denoted by D(S). The importance
of restricted de Bruijn graphs for DNA-based storage systems
lies in the fact that S may be chosen to satisfy additional
sequence constraints, such as balanced GC constraint (e.g.,
balanced { — 1-mers). For q = 2, “balanced” refers to the
substrings containing the same number of Os and 1s, while
for larger values of q, it refers to balanced or nearly balanced
GC content.

A walk of length n in a digraph is an ordered collection of
nodes, VoV - - - Vn, with (vi,viy) € E for all 1 € [n]. A walk
is closed provided that vo = v,. A cycle is a closed walk with
no repeated nodes, i.e., vi #vj, for 0 <1 <j < n. A cycle
of length one is referred to as a loop. Given a subset A of the
arc set, let a € {0, 1)'¥l be its incidence vector, so that a.= 1 if
e € A and a.= 0 otherwise. For the incidence vector a of a
closed walk in D, we have B(D)a = 0.

The de Bruijn digraphs of interest to our problem have arcs
weighted by nonnegative integers that reflect the properties
of a chosen sequence that they represent. More precisely, the
weight of an arc indicates the count of the substring label
within the sequence. As an example, in Figure 12, only three
arcs have integer labels marked in black. All arcs without
integer labels are assumed to have weight zero. Since the label
of each arc is uniquely determined by the source and terminal
vertex, one can omit the sequence label and only retain the arc
weights. The weights in the figure describe how many times
an arc has to be traversed and simultaneously, they capture
the number of times the substring appeared in the string (i.e.,
they capture the profile of a string).

Example 6: One of the possible strings whose profile is
shown in the de Bruijn graph example equals 1001001,
since it contains the following substrings of length { = 4:
{1001, 0010,0100, 1001}. Hence, to recover the string, the arc
labeled 1001 has to be traversed twice, while the arcs labeled
{0010,0100} have to be traversed once. All other arc have to
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be ignored. The length of the string isn =4+{+1 =17,
since there are 4 substrings in total. The length of the walk in
the graph equals the sum of the arc labels or the number of
substrings of the string, which equals n —{+1=4.

A constrained walk from some node v to another node v’ in
D(S) describes a string that starts with v and ends with v’ and
whose {-mers are restricted to belong to S. Closed strings are
strings that start and end with the same ({ — 1)-mer and they
correspond with closed walks in D(S). Strings corresponding
to walks of length n — € + 1 in D(S) (and, consequently,
profiles of strings of length n) are denoted by Q(n;S). At the
same time, the set of closed strings is denoted by Q(n:S),
and clearly, one has Q(n;S) C Q(n;S). The set of profile
vectors of closed strings is denoted by pQ(n;S). The reason
for introducing closed strings is that for such strings, several
counting problems simplify substantially, while the restriction
has barely any bearing on the code rate for constant {.

Suppose that u € pQ(n;S). Then, the flow conservation
equations below hold.

B(D(S))u=0. (1)

Furthermore, let 1 denote the all-ones vector. Since the number
of {-mers in a string of length n equals n—{+1, we also have

2

where T denotes the transpose. Let A(S) be B(D(S))
augmented with a top row 17; also, let b be a vector of length
[V(S)] + 1 with a one as its first entry, and zeros elsewhere.
Equations (1) and (2) may then be jointly rewritten as

lTu=n—€+1,

A(Slu=(n—{0+1)b.
Consider next the following two sets of integer points.

Fmn;S) 2 {ueZ : A(Su=(n—~C+1)b, u> 0},

3)
Em;S) 2 {ueZP  A(S)ju=(m—{(+1)b, u> 0.

4)

It is straightforward to see that the profile vector of any
closed string must belong to F(n;S). Conversely, any vector
in &(n; S) is a profile vector of some closed string.

The above formulation can be used to establish a count of
the number of profile equivalence classes as follows. Suppose
that D(S) is strongly connected. Then, under certain mild
constraints and for a constant values of {, it can be shown that
|€(M; S)| ~ nISI=IVESIand [F(m; S)| ~ nISI=IVISI ag a result,
IpQ(n;S)| ~ n!SI=IV(S)I Here, the symbol ~ is used to indicate
that for sufficiently large n, the sizes of the sets scale as the
term on the right.> In a nutshell, the result follows by counting
the solutions of the defining conditions for points in F(n;S)
and &(n; S) via lattice point enumeration techniques and what
is known as Erhart-McDonald’s reciprocity theory. The Erhart-
McDonald’s reciprocity theory is a broad generalization of a
simpler result known as Pick’s theorem, which expresses the

2 A rigorous statement of the results involves the definition of quasipolyno-
mials and is therefore omitted.
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Fig. 12. The de Bruijn graph for q =2, £ = 4. Vertex labels are binary vectors of length £ — 1, while arc labels are binary vectors of length £. The nonnegative
integer weight of arcs describe the £ = 4-mer profile vector of the string x = 1001001, 7t(x) = 00101000002000000. Unweighted arcs are assumed to have

weight 0.

area of a polygon in terms of the number of lattice points in
its interior [92].

For unrestricted de Bruijn graphs, which are strongly
connected, we have n!SI=IV(S)I = na‘=a~" This expression
is the asymptotic for the number of distinct {-gram profiles
of g-ary strings of length n. The result also establishes that
Cqmn.t.ast| ~ma—a

To determine [Cqn¢ql for d > 1, we need to ensure
that the profiles are not only distinct but at a asymmetric
distance > d from each other. This can be ensured by
adding more constraints to the profile vectors (i.e., in addition
to the flow- and sum-constraints) that also take the form
of linear equations. The solution involves using Varshamov
codes [120], designed specifically for asymmetric channels.
For convenience, we describe these codes below.

Fix a positive integer d, and let p be a prime such that
p > max{d, N} (where, for notational convenience, we used
N to denote |S|). Next, choose N distinct nonzero elements

x1, X2,..., 0N in Z/pZ and let
X1 %) XN
2 2 2
HA Xy % XN
d d d
xp % XN

Pick any vector B € (Z/pZ)? and define a code according
to

C(H,B) 2 {u:Hu=p modp}. 5)

Then, C(H, 3) is an asymmetric error-correcting codes of
length N with (designed) minimum asymmetric distance d+1.
Hence, all the codestrings of a Varshamov code that are
valid profile vectors are also d-asymmetric-error-correcting
codestrings. More precisely, we can construct profile codes
with [Cqn.eal ~ IC(H, B) NpQ(n;S)|, for all B € (Z/pZ)“.
By invoking the pigeon-hole principle, we can show that there
exists a B such that |C(H, ) N pQ(n;S)| > [pQ(n;S)|/pd.
The choice of 3 that maximizes the code size is not known

in general, but this is not a significant practical issue.
Furthermore, [CNpQ(n; S)| is typically strictly smaller than |C|,
and deriving analytical bounds for the code size is nontrivial
(see [58] for details).

Suppose next that C is a Varshamov asymmetric distance
error-correcting code with parameters N, d. We construct DNA
profile codes from € as follows.

1) When N = |S|, we use the intersection of € and pQ(n; S)
as our {-gram asymmetric error-correcting code. Simply
put, we choose the codestrings in the Varshamov code
C that are also profile vectors.

2) When N < [S|, we extend codestrings in C to profile
vector of length |S| in pQ(n;S). Note that one may not
always be able to extend an arbitrary string to a profile
vector.

Example 7: Let ( = 2, { = 3, S =
{001,010,011,100, 101,110} so that N = 6. Note that
the strings in S are as closed to balanced as possible, since
S does not include 000 nor 111. Let d = 3 and choose p =7,
so that

1 2 3 4 5 6 0
H_(1 4 2 2 4 1),andlet[3—<0>.

Then, C(H, B) contains the following strings.

(0,0,2,0,2,2) < 01101101 (0,1,1,4,0,0)
(2,2,0,2,0,0) < 00100100 (0,1,0,0,4,1)
(1,4,0,0,1,0) (0,0,4,1,1,0)
(1,1,1,1,1,1) < 00101100 (4,0,0,1,0,1)
(1,0,1,0,0,4)

Of these Varshamov codestrings, only three (marked in
boldface letters) are valid profile vectors from pQ(8;S).
Hence, for the chosen set of parameter values, our
codebook would include three allowed profile codestrings, and
consequently, three input codestrings (where we are allowed
to select one string representative from each allowed profile
class).
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Two final observations are in place.

First, counting the codestrings in a Varshamov-type profile
code once again, like in the equivalence class counting
framework, reduces to computing the lattice point enumerator
of the intersection of the lattices defined by A(S) and
C(H, B). Finding lattice point enumerators is a fundamental
problem in discrete optimization and high-quality software
suites for solving the problem are available. One such
software, LattE, reported in [7], is based on an elegant
algorithm described in [9] that triangulates the supporting
cones of the vertices of a polytope to obtain simplicial
cones which are then recursively decomposed into unimodular
cones. The algorithm performs enumeration of lattice points
in polynomial time whenever the dimension of the polytope is
fixed.

Second, as already pointed out, the asymmetric code
construction procedure is implemented to produce profile
vectors, which are actual outputs of the channel and not
the desired input codestrings. We hence need to convert
the profiles back into strings, with exactly one string
corresponding to one profile. This can be accomplished by
once again using de Bruijn graphs that capture both the
substrings and their multiplicities: all that is needed is to
find a path in the graph that traverses each arc a number
of times indicated by its weight multiplicity. This is akin
to the process of sequence assembly that is widely used
in computational biology [84]. For related results which
accommodate a larger range of parameter values, please refer
to [18].

B. Coded Trace Reconstruction

The problem of trace reconstruction was introduced in [10],
motivated by sequence analysis problems first considered by
Levenshtein [64], as well as practical sequence alignment
questions in phylogeny and computational biology. The
relevance of the problem to DNA-based data storage comes
through its connection to sequence alignment, which is
necessary when reading the information content via nanopore
sequencers. In Section III, we discussed various sequence
alignment algorithms that originated from computational
biology that can be used to create consensus sequences from
multiple noisy reads. Most of these methods rely on dynamic
programming approaches, and are therefore hard to analyze.
Trace reconstruction, on the other hand, is an abstraction
that is conceptually simple to state and understand, and
which comes with a cohort of straightforward reconstruction
algorithms. Nevertheless, trace reconstruction is also coupled
with nontrivial, but tractable, analytical challenges (see
also [110]).

In a nutshell, the trace reconstruction problem asks how
many noisy copies (reads) are needed to reconstruct a string
with high probability. More formally, the assumption is that
there exists an unknown string x € {0, 1}", and that one is
given access to traces of x, which are generated by passing
x through a deletion channel (e.g., a nanopore modeled as a
deletion channel [124]). The deletion channel independently
deletes bits of x with a given deletion probability &, and
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each pass through the channel produces a trace which is
independent from all other traces. Clearly, traces represent
subsequences of x of varied length formed in a probabilistic,
i.i.d manner. The formal goal is to minimize the number of
traces, i.e., the number of reads, that need to be acquired in
order to reconstruct x with high probability.

Note that a solution for the binary trace reconstruction
problem automatically leads to solutions for nonbinary
settings. The precise statement is provided below, as stated
in [76].

If T traces suffice to reconstruct a random string in {0, 1}"
with probability at least 1 — <y, then T traces also suffice to
reconstruct a random string in {1,...,q}" with probability at
least 1 — O(y log q).

This is the reason why we mostly focus on results for binary
strings. Towards the end of the section, we explain in more
detail how coded binary strings can be translated into coded
quaternary strings.

The focus of the trace reconstruction research area has
been mostly on two types of approaches: worst-case [29],
[86], where the requirement is for the reconstruction
procedure to work for all strings in {0, 1}", and average-
case [48], [50], [91], where the reconstruction algorithm is
only required to work with high probability for a string
selected uniformly at random. Formally, worst-case trace
reconstruction is concerned with designing a reconstruction
algorithm, R, such that for every x <€ {0,1}" one
has

Pr.1 [R(T,....T)=x] > 1—1/n,

where T;, i € [t], stands for traces of x which are i.i.d. with
respect to the output distribution of a deletion channel with
deletion probability 6. The goal is to make t = t(n) as small
as possible. Note that we use the lower bound 1 —1/n on the
reconstruction probability following [24], as this bound allows
one to avoid notational clutter and simplify the expressions for
our main results. In the second part of the section, we extend
this definition by replacing n with an arbitrary polynomial
in n. For average-case reconstruction, we require that R
satisfy

L) =x[>21-1/n,  (6)
xe{0,1}™

where we would once again like to make t = t(n) as small
as possible, and where the traces Ti, i € [t], have the same
properties as stated for the worst-case problem. It is clear
that the number of traces required for average-case trace
reconstruction is smaller than that required for worst-case trace
reconstruction.

The state-of-the-art results for average-case reconstruc-
tion [50] established that exp(O(log'/3n)) traces suffice to
reconstruct a random m-bit string under arbitrary constant
deletion probability 6. Handling the worst-case setting is
significantly more challenging. The currently best upper
bound [19] equals exp(O(n'/?)), improving the exp(O(n!/3))
result of [29] and [86] based on an algorithm that exploits
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single-bit statistics of the traces.” The gap between the upper
and lower bound is still prohibitively large. The state-of-the-art
lower bounds [20] are roughly log>/? nloglog™’ n traces for
average-case trace reconstruction and n3/?log™’'n traces for
the worst-case setting. For some more recent results regarding
k-mer statistics approaches, please refer to [23] and [74].

Unlike other applications, DNA-based data storage allows
choosing a subset of strings with desirable properties to be
used for trace reconstruction-based alignment. For example,
one can focus on fixed weight strings, strings that satisfy
bounded runlength (homopolymer) properties, balanced GC
contents and others. This more restricted sequence selection
process naturally leads to the question of coded trace
reconstruction [24]. Here, the goal is to design codes with
asymptotic rate equal to or close to 1 that are also efficiently
encodable and decodable using significantly fewer traces
than needed for the unrestricted (uncoded) setting. As in all
other works, the assumption is that we work with constant
channel deletion probabilities. A simple yet significantly more
parameter-restricted line of work addressed the coded trace
reconstruction problem for a constant number of deletions,
using concatenations of Varshamov-Tenengolts codes [1].
Another line of work [14] built upon the techniques of [24]
and provided improvements on the number of traces required
as a function of the rate. A small drawback of the latter method
is the need for preprocessing, which requires superpolynomial
time.

To better understand our approach to coded trace recon-
struction, let us revisit the ideas from [124] which for
the first time modeled the nanopore sequencing process as
trace reconstruction. The codestrings were designed to satisfy
block-wise GC-balancing constraints, with each block of
8 symbols over the alphabet {A, T, G, C} perfectly balanced.
Balancing constraints were used to ensure correct synthesis,
but somewhat serendipitously proved useful for trace recon-
struction. The utility of balancing for string reconstruction
is in part due to the related runlength constraints. Block-
based balancing also allows symbol runlength (homopolymer)
constraints to be automatically satisfied. The traces obtained
via nanopore sequencing in [124] were used to form a
consensus sequence, which was then updated in several
iterations by checking if the block-level balancing constraints
are met. For simplicity, we will illustrate the underlying ideas
through a simple adaptation of the Bitwise Majority Alignment
(BMA) algorithm [10], although this algorithm does not
perform as well as the actual algorithm used in [124] due to not
being able to handle context-dependent indels and substitution
errors.

Example 8: Let
nanopores equal

the codestring to be sequenced by

s =AATGGCGA TTCCGGAA GGGAATCA,

comprising three blocks of length 8, each with a perfectly
balanced (50%) GC content (note that the string is parsed
into blocks for ease of visualization). Now, assume that the
sequencer produced 5 reads/traces based for the input string

3The latter upper bound is tight for single-bit statistics algorithms.
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s, as listed below.

ATGGCGTTCGGAAGGATCA
AATGGTTCCGGAAGGAAT
AATGGCGATTCCGGGGGAAA
GCGATTCCGGGGAATA
ATGGATCGAGGATCA.

The algorithm proceeds by constructing the consensus
sequence by focusing on one position at the time, finding the
majority symbol and calling it the consensus symbol, and then
shifting the mismatched symbols one position to the right. The
first three steps of the approach applied to the above DNA
strings are presented below, along with the final consensus
result. Ties are broken arbitrary but recorded for subsequent
re-examination. Majority symbols are written in boldfaced
letters, while minority symbols are replaced by “-” and moved
to the right. Note that in Step 2, the tie is broken in favor of
A, but both symbols A and T are recorded for subsequent
consideration.
Step 1:
ATGGCGTTCGGAAGGATCA
AATGGTTCCGGAAGGAAT
AATGGCGATTCCGGGGGAAA
-GCGATTCCGGGGAATA
ATGGATCGAGGATCA

A.
Step 2:

A-TGGCGTTCGGAAGGATCA
AATGGTTCCGGAAGGAAT
AATGGCGATTCCGGGGGAAA
-GCGATTCCGGGGAATA
A-TGGATCGAGGATCA

AA

A(A/T).

Step 3:

A-TGGCGTTCGGAAGGATCA
AATGGTTCCGGAAGGAAT
AATGGCGATTCCGGGGGAAA
—-GCGATTCCGGGGAATA
A-TGGATCGAGGATCA
AAT
A(A/T)T.
The original sequence, the consensus sequence, and the
consensus with ties are summarized below, respectively.
Mismatches are indicated in red, and the sequences parsed
into groups of 8 symbols for future analysis.
AATGGCGA
AATGGCGA

TTCCGGAA GGGAATCA
TTCCGGAG GAGGATACAT
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A(A/T)TGGCGA TTCCGGAG (A/G)AGGATACAT.

Next, we examine the consensus sequence in the middle row.
Clearly, the consensus is longer than the original string, which
is a consequence of the deletion errors and the right-shifting
process for minority symbols. Furthermore, the second block
is disbalanced, as there is one more GC symbol than allowed,
but there were no tie-breaks at that particular location that
can help resolve the problem. Furthermore, since the previous
block of 8 symbols was balanced, it is reasonable to assume
that the “boundary” of the second and third blocks have
shifted due to alignment errors. Looking ahead for the first
appearance of an AT symbol in the consensus, we can try
to ignore all symbols between the last symbol that causes
a disbalance and the first occurrence of a symbol of the
correct type. Note that since we had a tie for the first
symbol in the first block (A versus G), it is advisable to
change the break of tie to avoid excluding one extra symbol.
This leads to the following modification of the consensus
string.

AATGGCGA
AATGGCGA

TTCCGGAA GGGAATCA
TTCCGGAA AGGATACAT.

The last block of 9 symbols in the consensus is obviously
erroneous since there is one more AT symbol present then
as expected and the block is of length 9 rather than 8. This
issue prevents us from further updating the consensus. But
as described in [124], we can proceed with recruiting new
traces that have not been previously used for alignment due
to possible address errors to resolve issues such as the ones
encountered with the third block of symbols above.

The example motivates the ideas to be pursued for code
constructions which offer provable performance guarantees for
trace reconstruction algorithms, which for the best results need
to be more sophisticated than simple BMA-type methods. The
key insight is to group symbols into blocks with constraints
such as balanced content (or runlength constraints) such as
the one described above, and ensure that the boundaries of
the blocks can be determined with high probability (since
we saw in the example that imbalances may be indicative
of boundary shifts). An additional layer of protection can be
added to correct errors in the blocks whenever the deletion
probability is sufficiently high. The construction, as well as
the main results for coded trace reconstruction, are formally
described next.

Given a code G C {0,1}", we say that C can be efficiently
reconstructed from t(n) traces if there exists a polynomial
p(n) = Q(n) and a polynomial-time algorithm R such that
for every ¢ € C one has

PT] ..... T [:R(Tl"-"Tt):c] 2 ]_l/p(n)v

where the traces Ty, 1 € [t], are i.i.d. according to the output
distribution of the deletion channel with deletion probability &
when presented with the input ¢. This definition corresponds
to the worst-case trace reconstruction problem restricted to
codestrings of C. The goal of coded trace reconstruction is
to design efficiently encodable codes C that can be efficiently
reconstructed from t(n) traces for t(n) as small as possible.
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As a remark, we require a reconstruction success probability
1—1/p(n) in order to be able to compare the results of coded
reconstruction with those of unrestricted trace reconstruction.

At a high level, the simplest construction splits an m-bit
message into shorter blocks of length O(log® n), encodes each
block with an inner code satisfying a certain constraint (such
as a runlength/balaning and/or more general error-correcting
constraints), and adds markers of length O(logn) between the
blocks. Markers are of the form 08 ™[€log ™ where ¢ is a
constant, i.e., markers are concatenations of sufficiently long
runs of Os and 1s that are prohibited from occurring within
the blocks. The structure of the markers and the property of
the code used for the blocks ensure that with high probability,
one can split the traces into shorter blocks associated with
substrings of length O(log’n), and then run some worst-
case trace reconstruction algorithm on the blocks individually.
As a result, for every constant deletion probability & < 1,
one can ensure the existence of an efficiently encodable code
€ C {0, 1}™" with redundancy v = O(n/logn) that can be
efficiently reconstructed from exp(O(log>/?n)) traces. Note
that reconstruction only requires identifying the markers and
reconstructing (in parallel) multiple short-length blocks.

This construction can be further improved while preserving
the efficiency of encoding and reconstruction by repeating
the process, i.e., making the approach nested. More precisely,
we can perform a further partition of all blocks into even
shorter subblocks and add a second level of markers: each
block of length log?n can be partitioned into blocks of
length (loglogmn)?, with markers of length O(loglogn)
added between them. The reconstruction procedure is almost
identical to the one already described, except for the fact that
a small fraction of blocks will very likely not be reconstructed
properly. This issue can be resolved by adding error-correction
redundancy to the string to be encoded, resulting in the
following claim. For every constant deletion probability & <
1, there exists an efficiently encodable code ¢ C {0, 1}™"
with redundancy r = O(n/loglogn) that can be efficiently
reconstructed from exp(O(loglogn)?/3) traces.

Even this result can be further improved provided that the
deletion probability is a sufficiently small constant, in which
case modified average-case trace reconstruction algorithms can
be used to substantially reduce the number of traces required.
This can be achieved with a negligible rate loss. The key idea
is that one can efficiently encode n-bit messages into strings
that are almost subsequence-unique via constructions based on
almost k-wise independent random variables [3]. The enabling
result for this type of trace reconstruction is the average-case
algorithm from [51] which is specifically designed to operate
on subsequence-unique strings.

A random vector X € {0, 1}"™ is said to be e-almost k-wise
independent if for all sets of k distinct indices iy,1;,...,1« €
{1,...,m}, one has

[PIXi, =%x1,.... X, =xd —27 5[ <€,

for all (xp,...,x«) € {0,1}*. In words, we require that
every possible k-subsequence has probability close to 27 —
the probability distribution induced by any collection of
k coordinates of the random vector is close to uniform.
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Interestingly, such random vectors have explicit constructions
based on expander graphs or duals of BCH codes [3], [85].
The trace reconstruction algorithm that exploits the structure
of almost subsequence-unique strings relies on an interesting
voting strategy that does not treat every trace equally, but
weighs them according to their reliability. Since analyzing
the reconstruction method using probability measures that
capture the reliability of traces is difficult, the authors of [51]
suggest to only use traces that match the last O(logn) already
reconstructed bits (as this gives high confidence that the trace
is “synchronized” with the current estimate). Note that the idea
behind this approach is somewhat reminiscent of the one used
in [124], where the accuracy of traces was estimated based
on the accuracy of the address strings that are known to both
the information reader and writer. Furthermore, In addition to
combining constructions of almost subsequence-unique strings
with the corresponding average-case reconstruction algorithm,
one also needs to carefully adapt the marker-based approach
since the bootstrapping approach used in [51] fails for the
concatenated runs case.

With these considerations in mind, one can prove the
following results, stated in [24]. First, there exists an absolute
constant 0* > 0 such that for all 6 < &* there exists an
efficiently encodable code € C {0, 1}™" with redundancy T =
O(logn) that can be efficiently reconstructed from poly(n)
traces with deletion probability . Second, there exists another
absolute constant 6* > 0 (to avoid notational clutter, we used
the same notation although the constants are different) such
that for all & < &* there exists an efficiently encodable code
€ C {0,1}™" with redundancy r = O(n/logn) that can be
efficiently reconstructed from poly(logn) traces with deletion
probability 8.

Next, we describe how to convert results pertaining to binary
codes to codes over larger alphabets. The main claim is that
the existence of a binary trace-reconstruction code C of length
n with rate R that can be efficiently encoded and reconstructed
from t traces with error probability € implies the existence of
a g-ary code €', where q = 2K of the same rate R. The latter
can also be efficiently encoded and reconstructed from t traces
with error probability at most ke.

To see this, consider a code whose codestrings are
concatenations of binary codestrings from C of the form shown
below.

' ={(c", 2 ...,c") :

Clearly, the code G’ can be viewed as a g-ary code of
length n and rate R by considering an encoding of the g-
ary symbols using the k binary coordinates of the strings
ct,i € [k]. Next, suppose that T’ is a trace of some codestring
¢’ =(c',c?,...,ck) € @'. Observe that the trace T; is obtained
by replacing each g-ary symbol in T’ by the i-th bit of its
binary expansion (which is probabilistically equivalent to a
trace of ct). As a result, applying the transformation T +— T*
to each of the t traces of ¢’ and running the reconstruction
algorithm associated with € allows us to recover c' with error
probability at most €.

Since this holds for every i =1,...,k, a simple application
of the union bound over all indices i shows that we can

cteCi=1,...,k} {0, 1}*™
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simultaneously recover cl,c?, ..., c¥k from t traces of ¢’ with
an error probability that satisfies < ke. If the above described
constituent binary codes are efficiently encodable, then the g-
ary codes are efficiently encodable as well. The codes can
also be designed to ensure balanced GC-content. To satisfy
the balancing constraint, one has to use different markers and
a specialized code over the blocks. More precisely, within
the blocks, balanced markers of the form (AC)'(TG)! with
{ =25logn are used instead of the binary runlength markers,
where n as before denotes the codelength.

Consequently, we have the following results for g-ary
codes. For every constant deletion probability & < 1, there
exists an efficiently encodable code ¢ C {A,C,G,T™"
with redundancy v = O(n/logn) and balanced GC-content
that can be efficiently reconstructed from exp(O(log?/*n))
traces. For every constant deletion probability & < 1, there
exists an efficiently encodable code € C {A, C, G, T}™*" with
redundancy r = O(n/loglogn) and balanced GC-content
that can be efficiently reconstructed from exp(O(loglogn)?/3)
traces. A summary of the coded trace reconstruction results is
available in Table I.

We conclude this exposition by referring the interested
reader to a hybrid coded trace reconstruction approach [37],
which in addition to traces uses combinatorial families known
as k-decks, i.e., collections of all subsequences of length k of
a given string of length n.

C. Set-Codes With Small Discrepancy for DNA Punchcards

Code designs for DNA Punchcards are fundamentally
different from those used in other molecular storage systems.
DNA Punchcards have readily available native sequences that
serve as references for alignment of the fragments created via
nicking. In all experiments performed on this system (which
were of moderate scale), no alignment or readout errors were
observed. Consequently, no error-correction was needed to
ensure correct reading of the nicking information. However,
this type of native DNA-based storage platform suffers from
duplex stability issues. Stability problems arise when nicks are
placed in close proximity of each other, causing disassociation
of the DNA fragment straddled by the nicks. Since a nick can
be placed either on the 3’ — 5" or 5/ — 3’ strand, distributing
the nicks in a nearly balanced fashion across the strands
is expected to increase duplex stability. Furthermore, if the
number of sites actually nicked is small compared to the
total number of available nicking sites, the disassociation
problem is reduced further. The only conceivable way in which
an error could occur is to either have defective guides that
fail to recognize the correct locations to be nicked or off-
target nicking activities. Therefore, requiring further that the
combinations of nicked locations of different codestrings differ
substantially would resolve these issues as well.

To construct balanced and nonconfusable nick-based code-
strings, we will use the notion of set discrepancy, introduced
in [11]. Set discrepancy theory has been studied in a number
of works [31], [65], [83], and has found applications in pseu-
dorandomness and independent permutation generation [4],
[100], e-approximations and geometry [73], bin packing,
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TABLE I

SUMMARY OF THE PROPERTIES OF TRACE RECONSTRUCTION CODES. TO AVOID NOTATIONAL CLUTTER,
CONSTANTS IN THE EXPRESSIONS FOR THE REDUNDANCY AND NUMBER OF TRACES ARE OMITTED

Code redundancy | Number of traces t Parameter values & Sequence properties
logn exp(log?/® n) Arbitrary constant deletion probability, balanced GC-content
w exp((loglogm)?/3) | Arbitrary constant deletion probability, balanced GC-content
% poly (logm) Sufficiently small constant deletion probability

lattice approximations and graph spectral analysis [30], [97],
[109].

Informally, the discrepancy of a finite family of subsets over
a finite ground set equals the smallest integer d for which the
elements in the ground set may be labeled by one of the labels
+1 so that the absolute value of sums of labels within each
subset is at most d (note that the notation d for discrepancy
used in this section is not to be confused with the notion of
minimum asymmetric distance from the previous sections).
In a sense, discrepancy measures how difficult it is to find a
labeling of elements that would keep all subsets of the family
as close to being balanced as possible.

The formal definition for our storage problem is as follows.
A family of subsets over n], F, = {Fi,...,Fs}, s > 2,
is termed k-regular if for all 1 < j < s, \FJI = k. Let
L: [n] — {+1,—1} be a labeling of the elements in [n]. The
discrepancy of a set F; € J;, under the labeling L is defined

as Di(F;) = ‘ZleF L(i ‘ The discrepancy of the family
of sets is defined as

D(F,) = m1n max ZL

1<i<s i

Although we focus on regular families J,,, there is no inherent
reason why one cannot use irregular families as well.

For the particular problem of code design for Punchcard
systems, we are interested in families of sets J,, that have
small intersections, since the sets in the family JF,, are to
represent “codesets” (i.e., we choose to represent codestrings
as sets indicating the locations of nonzero/nicked symbols)
whose every coordinate is a potential nicking site. By using
codesets to represent combinations of nicking sites, it is
natural to require that the codesets have small intersections
(i.e., the codestrings to have largely mismatched locations of
nonzero/nicked symbols). The codeset formalism also allows
for simpler formulations of the coding problems in terms of
set discrepancy and set intersection constraints.

Next, we say that the sets in &, have b-bounded
intersections if for all pairs of distinct integers i,j € [s],
[Fi N Fj| < b. Clearly, for a k-regular family F,,, b < Xk,
since we do not allow repeated sets. For fixed values of n
and b, our goal is to find the largest size of a b-bounded
intersection family F;, for which there exists a labeling L such
that D (F;) € {—1,0,+1} for all 1 <j < 's. We refer to such
a set system as an extremal balanced family.

A line of work addressing a similar balanced set-family
question in the context of combinatorial designs appeared
in [27]. The problem studied is that of bi-coloring of
Steiner triple systems (STSs). Roughly speaking, Steiner triple

systems are set systems in which the subsets of interest
satisfy intersection constraints that ensure that each pair of
distinct elements of the ground set appears in exactly one
subset (block) of the system. The key finding is that STSs
are not perfectly bi-colorable, i.e., that there will always exist
a monochromatic triple in the STS.

To design extremal balanced families, one can start with
known families of sets with small intersections, such as the
Bose-Bush and Babai-Frankl families [6], [13]. In this case,
one can achieve the smallest possible discrepancy (d = 0 for
even-sized sets and d = 1 for odd-sized sets) in a natural
manner, by using only the defining properties of the sets.

Let q be a prime power such that 1 < b < k < g, and
let n = kq. Furthermore, let & be a primitive element of the
finite field Fq. Let A ={0,1,¢,..., &k=21 so that |A| = k. For
each polynomial f € Fy[x], define a set of ordered pairs of
elements from the underlying finite field according to

Af ={(a,f(a)): a € A).
Clearly, |A¢| = k since |A|
C(k,q) = {A¢: f € Fylx], deg(f)

Then C(k, q) is a family of q® k-subsets of the set X S A xFq
such that every two sets intersect in at most b — 1 elements.
This follows because two distinct polynomials of degree < b—
1 cannot intersect in more than b—1 points. The Ray-Chauduri
and Wilson Theorem [6] asserts that the size of any family
Fn of k-regular sets with k > b whose pairwise intersection
cardinalities lie in some set of cardinality b satisfies |F| <
(%). As an example, the set of all b-subsets of [n] forms
a (b — 1)-intersection bounded b-regular family of subsets.
Under certain mild parameter constraints, the aforementioned
result can be strengthened when the set of allowed cardinalities
equals {0, 1,...,b — 1}. The size of the family is roughly ’]Z—:

Given the simple definition in (7), one can easily devise a
labelling L of the pairs of points (a, f(a)) such that every set
in the family C(k, g, s) has discrepancy = 0, for even k, and
discrepancy = +1, for odd k. For completeness, we present
the very simple proof of this claim from our work [35].

The first step consists in disposing of the representation of a
point in terms of a pair of symbols from the underlying finite
field. To this end, we use a map M that operates on Fy and
is such that M(0) = 0 and M() = m+ 1 if o« = E™ # 0.
It is easy to see that M(«) € [0,k — 1], V& € A and that
M(B) €[0,q—1], VB € Fq. A pair («, ) € X =A x Fq is
mapped to o(x, B) = gM(x) + M(B) € [0,n— 1], and M is
a bijection.

Assume that k is even. Then, for every set A¢, one half of
the elements are mapped to [0,n/2 — 1] while the other half

= k. Furthermore, let

<b-—1h )
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of the elements are mapped to [n/2,n — 1]. To see why this
claim holds, note that for « € {0,1,&,...,E%/272} ¢ A and
B =f(x) € Fy, the pair («, 3) is mapped to

o(a, B) =ar(a) +r(B) < q(k/2—1)+(qg—1)=n/2—- L

In a similar manner, for o« € {E%/271 ... &£« 2) ¢ A and
B =f(x), we have

o(e, B) =qgr(a) +r(B) = gk/2+0=n/2.

Based on this result, one can construct the labeling L as
follows: assign —1 to («, B) if o(, ) < n/2, and assign
+1 to (o, B) if o(e, B) = n/2. Then, every set in the family
has half of the elements mapped to —1 and half mapped to
+1. Equivalently, the discrepancy of every set equals 0. The
case when k is odd can be handled in the same way.

Three remarks are in place. First, the balancing property
directly follows from the simple partition of the set A. Second,
the construction of the sets is reminiscent of the ubiquitous
Reed-Solomon construction. Third, the already mentioned
connection of the coding problem to combinatorial design
theory suggests other constructions; throughout the remainder
of the subsection, we focus on discussing one such approach
based on transversal designs.

A transversal design [26] TD(t,k,Vv) consists of a set V of
kv elements, called points, and a partition of V into sets {G; :
1 € [K]}, called groups. All groups Gi,1i € [k], contain exactly
v points. In addition, we have a set B of k-subsets called
blocks. A block and a group obey intersection constraints that
can be summarizes as follows: every b-subset of V is either
contained in exactly one block or in exactly one group, but not
both. Because no b-subset of elements can appear in two or
more blocks, any two distinct blocks of a TD (b, k, V) intersect
in at most b — 1 elements. Therefore, whenever a TD(b, k, v)
exists, one can use it to construct a family of sets with small
intersections that are simultaneously balanced by mimicking
the proof described above. To summarize, we assign +1 labels
to the points in half of the groups and —1 labels to the points
in the other half of the groups when k is even (and follow a
similar approach for odd k). It is straightforward to see that
the Bose-Bush/Babai-Frankl construction actually represent
a transversal design, which was first pointed out in [112].
Furthermore, it is not difficult to add k-blocks to the design
and still retain the balancing and intersection constraints.

For simplicity, assume that k is even and that b >
3. There has to exist one group in the design that is
properly contained within the set of positively labeled elements
(which we henceforth denote by P.), and one group that
is properly contained within the set of negatively labeled
elements (which we henceforth denote by P_). A simple
counting argument reveals that there are (5)2 such pairs of
groups. By construction, any k-subset with 3 points from the
first group and % points from the second group intersects
each block of the transversal design in at most two points.
Furthermore, each pair of blocks of the type above intersects
in at most (%] points. Hence, if b > max{¥,2}, the blocks
used to augment the design are both balanced and satisfy
the required intersection constraint. This construction easily
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extends to larger selections of groups: as long as b >
max{%,s}, where s is the size of the collection of groups,
the new blocks satisfy the required constraints provided that
any two collections of s groups share less than kl/s groups.
An important conclusion that arises from this argument is that
transversal designs and related combinatorial designs may not
directly lend themselves to constructions of extremal balanced
families of sets with small intersections. Instead, one may need
to use combinations of designs, and several such constructions
based on mutually orthogonal Latin squares and derivatives of
orthogonal arrays and packings have been reported in [35]. For
recent extensions of the above results, please refer to [130].

D. Coding for Unique Reconstruction

The three different coding-theoretic problems pertaining to
DNA error-correction and constrained coding for shotgun and
nanopore sequencing, as well as DNA Punchcard systems,
do not deal with another fundamental class of problems termed
unique string reconstruction. With the constraints imposed by
individual sequencing devices on the type of outputs produced,
one of the most important outcomes is to ensure that even in
the ideal case of no sequencing errors, a DNA string can be
uniquely reconstructed from the available output data of the
sequencer.

Example 9: To illustrate this requirement, consider the
following example of two distinct binary strings, X =
10010 and y = 00100. Let S¢(z) denote the set of all
substrings of the string z of length {. Then, S;(x) = S3(y) =
{100,001, 010}, and based on the substring information alone,
one cannot distinguish the strings x and y. Increasing { from
3 10 4 leads to S4(x) = {1001,0010} # S4(y) = {0010, 0100}.
Therefore, based on the two substrings of length 4, one can
discriminate the two possible (input) strings.

A general result regarding uniqueness of string reconstruc-
tion based on substrings of length £ was derived in [118],
where it was shown that a string is uniquely {-substring
reconstructable if all its { — 1-substrings occur at most
once (i.e., if there are no repeats). Other important result
in the area [72], [108] established that unique ({-substring
reconstruction is impossible for strings with period p < ¢
(a string x is said to have period p if x; = Xi4p, for all
1 < i< n—p). Otherwise, { > [n/2| + 1 suffices for unique
reconstruction. For example, S4(0111011) = S4(1110111) =
{0111,1110,1011, 1101}, since p =4 and £ =4.

Native (mamalian) DNA usually contains a large numbers of
repeats [54] and as a result, modern sequencing technologies
are being redesigned to produce long reads [52] that can use
the context of the repeats to ensure unique reconstruction.
Adapting the sequence content for ease of reconstruction is,
in this case, obviously impossible. But once again, that is
not the case for DNA-based data storage applications, since
one can encode the strings to avoid repeats, as first suggested
in [38]. The problem addressed in [38] can be summarized as
follows. Let C; be a set of binary codestrings x of length
n, each of which can be uniquely reconstructed based on
Se(x). What is the largest size of C; for a given { and
can the code(s) be efficiently encoded and decoded? The
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question was addressed affirmatively, establishing that codes
C¢ of asymptotic rate equal to 1 (more precisely, including
only a constant number of redundant bits) exist whenever the
substrings are long enough, i.e., £ > 2log(n). These codes
can be encoded using a specialized repeat-removal procedure,
which replaces repeats with pointers to the locations of their
first occurrence, reminiscent of but significantly more involved
than a related procedure for runlength coding [119]. Related
problems and generalizations thereof are also discussed in [32]
and [129].

Other relevant coding methods for unique string recon-
struction include [2], [39], [90], and [40]. There, strings
are reconstructed based on masses (i.e., weights) of their
substrings, or prefixes and suffixes only, without knowing
the actual substrings themselves. This subsequence-weight
reconstruction problem is motivated by mass spectrometry
sequencing [21] and its application to data storage in synthetic
polymers [61]. The interested reader is referred to the original
manuscripts for an in-depth coverage of the topics, with
solutions including mixtures of ideas from the area of the turn-
pike reconstruction problem [28], code constructions based on
Catalan strings and modifications thereof [111] and binary By
sequences [40] and constant-weight codes [107]. Recent exten-
sions and generalizations are available in [8], [47], and [128].

As a concluding remark, despite the superficial similarity
to lossless universal compression methods such as Lempel-
Ziv encoding [131], [132], the approaches used for unique
reconstruction are substantially different. For example, with
repeat removal, one only eliminate redundancy in the form of
exactly repeated substrings of a predetermined length (or range
of lengths), without trying to build a dictionary that can be
used to compress the string. Furthermore, for polymer-based
coding, one is allowed to only use information about weights
of substrings to perform reconstruction, since polymer read-
outs are frequently performed via mass spectrometry analysis.

V. OPEN PROBLEMS
Many open coding-theoretic problems in the area remain
and new arise due to constant changes and improvements in the
synthesis and sequencing protocols used for DNA-based data
storage. We list some of the problems below, grouped accord-
ing to the four topics outlined in the previous subsections.

o Sequence reconstruction and error-correction for paired-
end DNA sequencing reads. Current Illumina platforms
allow for reading long DNA fragment from two ends
simultaneously, thereby providing information about a
pair of substrings as well as the distance between them.
Paired reads can resolve issues with repeats and also help
detect genomic rearrangements which are due to DNA
breakage [41]. The questions of interest in this context
are to repeat the analysis of DNA sequence profiles with
additional distance information for the paired substrings,
both in the presence of missing pairs of substrings or
errors in the paired readout content.

e Coded trace reconstruction for combinations of indel and
substitution errors. Instead of using trace reconstruction
models for nanopore sequencers that solely account for
deletion errors, one can use more realistic abstractions
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that can handle insertions as well as other types of
errors [56]. In addition, the problem of coded trace
reconstruction for strings that satisfy additional constrains
(such as bounded maximum repeat length) remains open.
Coded gapped k-decks and trace reconstruction prob-
lems. In [44], the authors proposed the study of gapped
k-deck reconstruction. As already pointed out, the k-
deck of a sequence is the multiset of all subsequences
of the sequence of length k. Gapped k-decks restrict the
available subsequences to not include adjacent symbols
of the original sequence and they can be used to model
“skip” events in the readout process. To the best of the
author’s knowledge, nothing is known about gapped trace
reconstruction or other forms of trace reconstruction in
which the deletions do not follow an i.i.d model.
Unique sequence reconstruction for hybrid sequencing
technologies. This problem has been discussed in a very
basic setting in [37], with the goal to describe how
long and short read technologies can be combined to
reconstruct strings. The approach uses combinations of
k-decks and long traces, but does not truly combine
information provided by long traces (subsequences) and
short reads (substrings). This is challenging analytical
problem whose solution can potentially lead to significant
and low-cost improvements of the readout channel.
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