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ABSTRACT: Operational forecast models are necessary for the prediction of weather events in real time. Verification of
these models must be performed to assess model skills and areas in need of improvement, particularly with different types
of weather events that may occur. Despite the devastating impacts that can be caused by tropical cyclones (TCs) that un-
dergo extratropical transition (ET) and become post-tropical cyclones (PTCs), these storms have not been extensively
studied in the context of short-term weather prediction. This study completes the first analysis of the Global Forecast Sys-
tem (GFS) and a preoperational version of the newly operational Hurricane Analysis and Forecast System (HAFS) models
in forecasting the occurrence of ET and the rainfall associated with ET storms in the North Atlantic basin. GFS’s skill ex-
ceeds that of HAFS in forecasting the occurrence of ET, but HAFS tends to have lower track and rain-rate errors in the
fully tropical phase of ET storms’ life cycles. Both models simulate rain rates that are often too high near the storm center
and fail to capture the larger area of moderate rain rates that greatly contributes to total rainfall accumulation. The discrep-
ancies in rain rates between the models and Integrated Multi-satellitE Retrievals for GPM (IMERG) could be attributed
to the models’ tendency to keep storms too intense and too compact with an overly strong warm core, even throughout the
ET process.
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1. Introduction

The prediction of tropical cyclones (TCs) is vital to protect-

ing lives and property in areas affected by these storms. TC

hazards include powerful winds, heavy rainfall, and storm

surge that can lead to both coastal and inland flooding. To

produce more accurate forecasts and effectively communicate

risks to the general public, many broadcast meteorologists

and emergency managers rely on National Weather Service

products and numerical weather prediction models (Morss

et al. 2022). These model forecasts guide decision-making and

the response to the rapidly evolving conditions in their respec-

tive regions (Morss et al. 2022). As TCs move into the midlati-

tudes, some storms undergo an extratropical transition (ET)

into post-tropical cyclones (PTCs) and lose their tropical char-

acteristics (i.e., warm core and symmetric nature; Hart 2003).

Throughout the ET process, the wind field and precipitation

associated with the TC undergo dramatic shifts and expansion

(Jones et al. 2003) as the TC interacts with midlatitude fea-

tures. This phenomenon is fairly common, with nearly 50% of

all North Atlantic (NATL) hurricanes undergoing at least

one ET during their life cycles (Hart and Evans 2001;

Zarzycki et al. 2017; Bieli et al. 2019). Furthermore, ET com-

plicates the forecasting process due to scale interactions

(Keller et al. 2011; Leonardo and Colle 2017; Balaguru et al.

2020) and precipitation shifts (Jones et al. 2003; Evans et al.

2017), especially if ET occurs during or close to landfall. An

example of this situation is Hurricane Sandy (2012), which

was responsible for 72 direct fatalities and $50 billion in damage

in the Northeast and mid-Atlantic regions (Blake et al. 2013).

Many operational forecast models are used to forecast TCs

and their impacts. Global operational models such as the Na-

tional Oceanic and Atmospheric Administration’s (NOAA)

Global Forecast System (GFS) are used by forecasters to aid

in the prediction of TC- and PTC-related events (Morss et al.

2022). Global models tend to have coarse resolution com-

pared to regional models, which can limit their ability to fore-

cast the smaller-scale processes that drive phenomena like

TCs. Regional hurricane models excel in the prediction of

storm track, intensity, and precipitation while storms are in

their fully tropical phase (Dong et al. 2020; Hazelton et al.

2021; Ko et al. 2020; Alaka et al. 2022). These models have

shown continued improvement in track and intensity forecasts

in the last 20 years (Gopalakrishnan et al. 2021). Since 2007,

the Hurricane Forecast Improvement Project (HFIP) has

been devoted to improving regional hurricane models to re-

duce track and intensity errors as well as to improve the capa-

bility of predicting rapid intensification events (Gall et al.

2013). Over the course of the project, regional hurricane mod-

els have been developed, implemented operationally, and im-

proved in their forecasts of track and intensity by as much as

20% at all lead times in the last decade (Gopalakrishnan et al.

2021).

Since 2019, NOAA has been developing and testing the

Hurricane Analysis and Forecast System (HAFS) regional
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model as a next-generation replacement for the current oper-

ational regional hurricane models}the Hurricane Weather

Research and Forecasting Model (HWRF) and the Hurri-

canes in a Multiscale Ocean-coupled Nonhydrostatic model

(HMON) (Gopalakrishnan et al. 2021). HAFS not only shares

the same finite-volume cubed-sphere (FV3) dynamical core as

the most recent GFS (versions 15 and 16) but also includes

smaller moving nests centered on active storms to simulate

hurricanes at higher resolution than their surroundings (Alaka

et al. 2022). Extensive development over the last several years

resulted in the model undergoing real-time testing during the

2021 and 2022 hurricane seasons (Hazelton et al. 2022). In the

2019 season, HAFS had slightly less skillful intensity fore-

casts compared to HWRF and HMON at early forecast

hours, falling farther behind by day 5 (Dong et al. 2020). In

the near-real-time 2020 model runs, HAFS outperformed sev-

eral other operational regional and global models until day 5,

at which point the GFS forecasts had the lowest track errors

(Hazelton et al. 2022).

Development of the model continued, leading to the cur-

rent version of HAFS}which became operational in the 2023

hurricane season}improving track and intensity errors by as

much as 10% over HWRF for NATL TCs (Gall et al. 2013;

Mehra and Zhang 2023). Though these studies examined the

performance of regional hurricane models like HAFS in the

forecasting of fully tropical systems, no previous work details

the performance of these types of models during and after the

ET process. The spatial constraints of these limited domain

regional models could increase the challenges of forecasting

ET due to the inability to simulate upstream midlatitude fea-

tures (Gall et al. 2013), allowing some global models to out-

perform the regional models at long lead times (Hazelton

et al. 2021).

Regional and global operational forecasts of PTC-related

precipitation have not been extensively studied, yet impacts

on the United States alone from PTC precipitation can be

devastating. In recent years, Hurricanes Irene (2011), Sandy

(2012), and Ida (2021) have caused a combined $140 billion in

damage in their PTC phases alone (Avila and Cangialosi

2013; Blake et al. 2013; Beven et al. 2022). While not all tran-

sitioning storms produce this level of devastation, 1–2 of these

events occur each year on average along the East Coast of the

United States (Bower et al. 2022). Despite these widespread

flooding impacts, the majority of relevant prior work focused

on the track errors that emerge during ET. Kehoe et al.

(2007) examined west North Pacific ET events, discovering

that most of the large track errors at 96 and 120 h were due to

the direct interaction between an extratropical cyclone and a

TC. Evans et al. (2006) similarly discovered that cluster fore-

cast success significantly decreased after a TC began the ET

process. Leonardo and Colle (2020) also found that along-

track errors in ensemble forecasts were greater in ET cases

than in non-ET cases at similar latitudes. Translational speed

errors tend to worsen as well when ET occurs or is possible

(Leonardo and Colle 2020). This could partly be due to timing

errors in forecasting ET, which Bieli et al. (2020) note is an is-

sue with their statistical and operational models for forecast-

ing the ET process.

The combination of track and translational speed errors

creates a challenging situation for extreme precipitation and

flash flood forecasting, yet the effects of these model biases

on precipitation forecasts have not been widely studied. Aside

from Leonardo and Colle (2020), who assessed the standard-

ized differences among models’ representation of precipita-

tion in cases where cross-track errors were excessive, most

prior work on precipitation verification has focused instead

on the tropical phase of the storms’ life cycles. TC-related

precipitation forecasts have been verified extensively, particu-

larly the predictions from regional hurricane models such as

HWRF (Ko et al. 2020; Bachmann and Torn 2021; Wang and

Pu 2021); however, most of these analyses end when a storm

begins to lose its tropical characteristics or only study landfal-

ling storms (Ko et al. 2020; Bachmann and Torn 2021; Wang

and Pu 2021; Stackhouse et al. 2023).

The present study focuses on GFS and HAFS forecasts of

the precipitation resulting from transitioning TCs at all phases

of the storm life cycle. Both of these operational forecast

models have shown some skill in forecasting TC tracks, and

GFS has demonstrated the ability to forecast ET events

(Manikin et al. 2019; Liu et al. 2020, 2021). This study also

aims to quantify the skill of GFS and HAFS in forecasting the

occurrence and timing of ET. By combining the analysis of

biases in both track and translational speed with an assess-

ment of biases in rainfall rate forecasts, causes for specific pre-

cipitation forecast errors become evident. The remainder of

the paper is structured as follows: section 2 describes the data

and methods used in this study. The results concerning ET oc-

currence and track forecasts are presented in section 3. Rain-

fall errors are discussed in section 4. Section 5 details the

large-scale environments surrounding the storms, and a discus-

sion of the results and conclusions are included in section 6.

2. Data and methods

a. Datasets

1) GFS

The global operational model examined in this study is the

GFS. Data are obtained from the University Corporation for

Atmospheric Research (UCAR) Research Data Archive

GFS Global Forecast Grid Historical Archive, which contains

the deterministic forecast fields on a 0.258 horizontal resolu-

tion grid (NCEP 2007). The first 168 h (7 days) of each GFS

forecast, available in 3-hourly temporal resolution, are evalu-

ated to limit the impact of model error growth. All four daily

model runs are utilized in the analysis, initialized at 0000,

0600, 1200, and 1800 UTC daily for the selected days in the

2019–21 seasons.

In June 2019, GFSv15 was implemented using an FV3 dy-

namical core (Harris et al. 2021) as developed by the Geo-

physical Fluid Dynamics Laboratory (GFDL) (Manikin et al.

2019, 2020). This update intended to address specific issues

with the prior operational version of the GFS, including TC

track forecasts at longer lead times, false alarms for TC gene-

sis, and other issues not related to TC activity, such as improv-

ing the representation of the diurnal cycle of warm season
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precipitation in the United States (Manikin et al. 2019). When

specifically looking at TC simulation, the NOAA Environ-

mental Modeling Center (EMC) Model Evaluation Group

(MEG) reports a low bias in precipitation for certain extreme

NATL TC cases (e.g., Hurricane Florence, 2018), a reduction

in false alarms for TC genesis, and improvements in the short-

and medium-range track errors for TCs (Manikin et al. 2019,

2020). Intensity forecasts were improved at all lead times in

this version of the GFS, but the long-range track errors for

days 6 and 7 remained problematic. The MEG notes that

GFSv15 has a tendency to simulate TCs that have a greater

vertical extent than the observed TCs, making them more sus-

ceptible to steering by the upper-level winds (Dawson et al.

2018).

An additional update to the GFS was implemented in

March 2021, making GFSv16 operational for the 2021 hurri-

cane season. GFSv16 increased the number of vertical levels

from 64 to 127 while maintaining the same horizontal resolu-

tion and continuing to use the FV3 core. Some parameteriza-

tions were updated in this version but should have minimal

impacts on the precipitation forecasts, including radiative flux

calculations, the planetary boundary layer scheme, and gravity

wave parameterizations. Most importantly, GFSv16 is one-way

coupled to theWAVEWATCH-III wave model (Manikin et al.

2021). The update to v16 had some impact on TC forecasting

as assessed by the MEG (Manikin et al. 2021); for example, po-

tential TC precursors were identified at longer lead times at

the expense of a higher false alarm rate for TC genesis. NATL

TC track forecasts were improved particularly in the medium

range, and the weak bias in intensity was mitigated as well.

Finally, MEG noted a strong right-of-track bias at longer lead

times in NATL TCs, which is especially of interest to this study

of ET cases.

While it is not specifically designed to simulate hurricanes,

GFS has many strengths, such as the ability to simulate over a

week into the future and capture the atmospheric state of the

entire globe. GFS can be skillful in situations with large-scale

dynamical forcing due to its global domain and dynamical

core. This may prove advantageous in simulating interactions

between TCs and the midlatitude flow. However, other opera-

tional forecast models are specifically designed to simulate

hurricanes.

2) HAFS

The regional model assessed in this study is the HAFS

(Liu et al. 2020, 2021). HAFS was run in real time during the

2019–22 hurricane seasons leading up to its operational imple-

mentation in 2023. The model offers high spatial and tempo-

ral resolution, with 3-km horizontal grid spacing and 91

vertical levels up to a 10-hPa model top every 3 h until fore-

cast hour 120. The model is two-way coupled to the Hybrid

Coordinate Ocean Model (HYCOM; see HYCOM Docu-

mentation, https://www.hycom.org/hycom/documentation).

The ocean model receives 10-m wind, 2-m wind and humid-

ity, air–sea momentum flux, shortwave and longwave radiative

fluxes, and precipitation data from the atmosphere model,

while the atmosphere model ingests sea surface temperature

(SST) data from the ocean model. Note that for the 2021 sea-

son, the orographic gravity wave drag (GWD) parameteriza-

tion was turned on, while it had been turned off for the 2020

season. Both seasons have the convective GWD parameteriza-

tion turned off (Liu et al. 2020, 2021).

HAFS 0.1A (2020 version) performed similarly to the

HWRF regional hurricane forecast model in the 2020 season

for North Atlantic hurricanes’ track errors but improved on

eastern North Pacific hurricane tracks. Some experiments us-

ing other versions of HAFS for the 2020 season showed that

the inclusion of a scale-aware convection scheme further im-

proved track errors over HAFS 0.1A. Furthermore, the con-

vection scheme enabled HAFS to simulate stronger and

deeper vortices than the HAFS 0.1A model used in this study

(Liu et al. 2020). The scale-aware convection scheme was in-

cluded in the 2021 season’s HAFS 0.2A experiments, which

played a role in the improvements over track forecasts from

HAFS 0.1A. The HAFS 0.2A experiment track errors were

nearly identical to the operational GFS in 2021, but HAFS in-

tensity errors consistently outperformed those of GFS. Fi-

nally, comparing HAFS 0.2A to the operational HWRF in

2021 showed that HAFS 0.2A improved central pressure fore-

casts at all lead times as well as intensity errors beyond 48 h

into the forecast (Liu et al. 2021). These two experimental

runs of HAFS became the building blocks for the moving-

nest precursor (HAFS 0.3) to the 2023 fully operational ver-

sion of HAFS (Mehra and Zhang 2023; Hazelton et al. 2023).

3) IMERG

The Integrated Multi-satellitE Retrievals for GPM (IMERG)

Final Run v06 product offers 0.18 spatial resolution and 30-min

temporal resolution precipitation data (Huffman et al. 2019,

2020). Because of its high resolution, IMERG has been used

in recent years for the analysis of TCs (Rios Gaona et al.

2018; Bower et al. 2022; Stansfield and Reed 2023). This data-

set is constructed from several satellites’ passive microwave

radiometer precipitation estimates, which are then postpro-

cessed for quality control and bias correction. Calibration is

initially completed using the GPM dual-frequency precipita-

tion radar, followed by intercalibration with the Combined

Radar–Radiometer Algorithm (CORRA) product. Additional

calibration to monthly Global Precipitation Climatology Pro-

ject (GPCP) satellite-gauge estimates is done as well, followed

by processing through two morphing algorithms to produce

the high spatial and temporal resolution final product (Huffman

et al. 2019, 2020). The IMERG product is downsampled to

6-hourly accumulation estimates to match the temporal res-

olution of the observed trajectories for this study. The spa-

tial resolution is also downsampled to match that of ERA5

(see below) for collocation of TCs and PTCs with their asso-

ciated precipitation.

4) IBTRACS

Observational TC data are obtained from the International

Best Track Archive for Climate Stewardship (IBTrACS; Knapp

et al. 2018). This study uses IBTrACS to record storm position,

central pressure, and maximum sustained winds for NATL TCs
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from 2019 through 2021. North Atlantic data are annually up-

dated from the Atlantic Hurricane Database (HURDAT2) cre-

ated by the National Hurricane Center (Landsea and Franklin

2013).

5) ERA5

IBTrACS TC trajectories include some but not all PTC tra-

jectory points, depending on how the storm was classified and

how long it was tracked after completing ET. For this reason,

we also employ the use of the Extratropical Transition Tracker

(ExTraTrack; Zarzycki et al. 2017) to standardize and objec-

tively identify the ET process and all points afterward until the

storm dissipates according to several mathematical criteria de-

scribed in section 2b(2). This program requires geopotential

height data for the full vertical column, low-level winds, and

sea level pressure fields. To enable objective ET tracking, we

match up IBTrACS trajectories with these fields in the ERA5

reanalysis dataset (Hersbach et al. 2020). This approach fol-

lows that of Bower et al. (2022). ERA5 offers global high-

resolution data at roughly 31-km spatial and hourly temporal

resolution at 37 vertical levels. This is then downsampled to a

6-hourly temporal resolution to match IBTrACS trajectory

points.

Despite its strengths, ERA5 has some limitations as well.

Bell et al. (2021) note that IBTrACS data are not assimilated

into ERA5 for the period from 1979 to the present day. This

contributes to TC intensities (using central pressure) being

underestimated in many cases (Bell et al. 2021). However,

Dulac et al. (2024) find that the errors in the central pressure

of TCs in ERA5 are much lower than those in the low-level

wind speeds. This point is further reinforced by Bourdin

et al. (2022). In this paper, the wind–pressure relationship in

IBTrACS was compared to that in ERA5, showing that at

the same central pressures, the wind speeds recorded in

ERA5 are lower than those in IBTrACS. Therefore, we use

central pressure as a measure of intensity for the remainder

of this analysis. However, it is worth noting that ERA5 central

pressures tend to be slightly higher than those of IBTrACS

(Bourdin et al. 2022).

b. Analysis tools

1) TEMPESTEXTREMES

TempestExtremes is utilized throughout the analysis meth-

ods for various tracking functions, similar to Bower et al.

(2022). The specific commands and settings used for the pre-

sent analysis can be found in the online supplemental material.

2) EXTRATRACK

ExTraTrack supplements the tracking capabilities of Tempest-

Extremes, using a cyclone phase space (CPS) as in Hart (2003)

to objectively identify the occurrence of ET in model and reanal-

ysis datasets. ExTraTrack also extends the pre-existing TC

trajectories to include post-ET points in the life cycle that are

not included in the original IBTrACS archive. A storm is

considered to have dissipated when the storm’s central pres-

sure rises above 1020 hPa or when 14 days have passed since

ET occurred. Additionally, ExTraTrack imposes directional

change limitations on the storm based on its translational speed,

with larger changes being allowed when storms are slow mov-

ing. Finally, some postprocessing is included in this software

package to construct climatologies of the ET events, types of

ET, and other calculations. Additional details are provided in

Zarzycki et al. (2017) and Bower et al. (2022).

3) MET

The Model Evaluation Tools (MET; Jensen et al. 2020) is a

software package developed by the Developmental Testbed

Center (DTC) that enables the verification of forecasts using

various methods, including point-based, object-based, or grid-

based approaches. Different functions can be configured to

the user’s needs, making the program highly versatile. In this

study, the TC-Pairs function is used for verification of the

forecast TC and PTC trajectories. The function compares TC

locations and intensities point by point, quantifying forecast

errors throughout the storm life cycle. Object-based precipita-

tion tracking is completed in TempestExtremes rather than

MET in order to implement the Z500 mask extraction method.

c. Methods

Storms to be considered in the analysis of the GFS model

are those in the 2019–21 North Atlantic hurricane seasons

that completed at least one ET during the storms’ lifetimes.

Due to data availability, only the 2020–21 North Atlantic hur-

ricane seasons are considered for the analysis of the HAFS

model. Tropical transitions are excluded due to the various

pathways of transition that could be taken (Davis and Bosart

2004), as well as the lack of consistency in proximity to the

dominant midlatitude flow. Storms that are never fully tropi-

cal (e.g., subtropical storms as recorded in IBTrACS) and

those that only retain tropical storm characteristics for less

than 24 h prior to ET as determined by ExTraTrack (short-

lived, sometimes hybrid storms) are also excluded. Hurricane

Sam was excluded due to the lack of data availability for

IMERG v06, which was no longer produced after 30 September

2021 (Huffman et al. 2020). A detailed list of the storms used in

this analysis is included in Table 1. GFS model runs are selected

to include 5 days prior to and 2 days after the storm’s observed

ET onset as determined by ExTraTrack, with four model

runs from each day, totaling 29 model runs per storm. The

same time frame is selected for the HAFS model, but only the

0000 and 1200 UTC runs are available for analysis for some of

these selected days. The number of HAFS simulations studied

for each storm is in parentheses in Table 1, as the number

varies by storm. The inclusion of 5 days prior to ET allows for

the examination of the ability of GFS to forecast ET at longer

lead times along with any track errors at the medium range

lead times. The inclusion of 2 days after the observed ET onset

retains model runs initialized while the storm may still begin

with tropical characteristics and allows for the assessment of

ETs with long durations.

First, the IBTrACS trajectories for the storms of interest

are obtained (see Fig. 1 left) based on the criteria listed

above. These trajectories are then extended to include all
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points during and after ET has occurred using ExTraTrack

[section 2b(2)]. ExTraTrack also uses the IBTrACS locations

of storms and calculates the CPS parameters from ERA5 vari-

ables at each IBTrACS point. GFS and HAFS data are then

obtained for each of the storms listed in Table 1, and all ac-

tive TCs within each model run are tracked using Tempest-

Extremes. These TC trajectories are then extended using

ExTraTrack, with the same criteria in place as for the exten-

sion of the observed trajectories. The GFS (HAFS) trajecto-

ries for simulations that successfully predicted ET occurrence

within 24 h of the observed ET onset are shown in Fig. 1 in the

center (right) in gray with the corresponding observed trajec-

tories shown in blue.

Next, all precipitation objects are tracked in both the

IMERG dataset and each model run. Sensitivity analysis was

conducted using thresholds of 0.5, 1, and 5 mm h21 rain rates

(see Figs. S1 and S2). Previous studies have used various

thresholds for extracting specific types of precipitation; for

example, 5 mm h21 can be used to study deep convection

(Zawislak 2020), or 2.33 mm h21 (Skok et al. 2009) can be

used to study generic tropical convection. Wu et al. (2015)

and Lonfat et al. (2004) determined that the mean rain rate in

the outer portions of TCs is 1 mm h21. Therefore, the 1 mm h21

rain rate threshold was selected based on the ability of this met-

ric to capture the lighter extratropical precipitation during the

PTC phase while not capturing extraneous precipitation on the

outer edges of the TC or PTC.

The storm track of interest is then isolated by comparing

TC tracks from the model run to the observational trajectory

of the storm. Then, a mask for the determination of TC- or

PTC-related precipitation is created using the 500-hPa geopo-

tential height (Z500 mask) as in Bower et al. (2022). The

Z500 mask shape can be irregular, taking on the shape of the

500-hPa geopotential height field where the value increases

by 10 m from the value at the storm center. If this value oc-

curs outside of the 58 great circle distance (GCD) search ra-

dius, then the mask defaults to the search radius size. A 18

GCD minimum mask is also imposed to ensure that intense

TCs are included in the analysis even when the 10-m geopo-

tential height change occurs at distances smaller than the grid

resolution of the dataset. This Z500 mask is overlaid with the

tracked precipitation objects, and all objects that overlap the

Z500 mask at any point are included in the analysis. This

method uses the storm center as a starting point and then

searches for precipitation objects that overlap with the area

defined by the geopotential height field. This accommodates

for slight differences in the IBTrACS and ERA5 storm loca-

tions as well as the effects of shear and interaction with the

midlatitude flow.

The timing and location of ET are determined by ExTra-

Track as an objective, standardized method of calculating

these metrics. The program, described in section 2b(2), uses

the CPS (Hart 2003) to track the ET process. The tropical

phase of the storm life cycle is defined as times at which the

storm has both a warm core nature and is thermally symmet-

ric (bottom-right quadrant of the CPS). ET begins when

one of those two criteria is no longer satisfied (top-right or

bottom-left quadrant of the CPS). Finally, ET is considered

complete (or the storm is classified as extratropical) when it is

thermally asymmetric and has a cold core (top-left quadrant

of the CPS). The analysis is broken down by storm phase: be-

fore ET onset (pre-ET), during the ET process (during-ET),

and after ET completion (post-ET), as defined using the CPS

quadrants (see Fig. 11 for an example). This breakdown ena-

bles a more targeted assessment of the model’s performance

in precipitation, track, translational speed, and timing errors

relative to the ET process. Composites of storm rainfall are

then created at 3-h intervals for GFS and HAFS and 6-h inter-

vals for IMERG and ERA5. Command settings are found in

the supplemental material. The compositing is based on the

average of a particular field on a storm-centered grid. The

HAFS fields are regridded to the ERA5 grid for verification

before composites are made. This method is used for analyz-

ing storm precipitation rate and accumulation errors along

the entire TC and PTC trajectory. Though the acronym “PTC”

in the operational community may sometimes refer to a

TABLE 1. Storms that completed at least one ET in the 2019–21 NATL hurricane seasons. Storms that were excluded either made
a tropical transition, remained subtropical throughout their entire life cycles, or only maintained tropical characteristics for less than
24 h before ET. Storms that were also included in the analysis of HAFS have the number of model runs in the HAFS analysis
included in parentheses.

2019 2020 2021

Included Excluded Included Excluded Included Excluded

Dorian Melissa Arthur Bertha Elsa (11) Bill
Erin Nestor Cristobal Edouard Ida (12) Claudette
Gabrielle Olga Isaias (12) Kyle Larry (15) Julian
Humberto Paulette (15) Odette
Lorenzo Sally (15) Sam
Sebastien Teddy (12)

Beta (9)
Delta (3)
Epsilon (15)
Zeta (11)
Eta (15)
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potential tropical cyclone, in this manuscript, it will be used

to signify post-tropical cyclones and refers to the during- and

post-ET phases combined. Throughout the results, the term

“lead time” will refer to the initialization time as the number

of days relative to the observed ET onset and will be repre-

sented by the symbol TL. The term “forecast hour” will refer

to the number of hours into a given simulation, represented

by the symbol TF.

3. ET occurrence and track errors

Before examining the rainfall predictions from GFS and

HAFS in ET scenarios, we assess the ability of each model to

predict ET occurrence. Figure 2 shows the percentage of the

model runs analyzed that successfully predicted ET as a func-

tion of initialization time, or TL. Each color line represents a

different level of accuracy in the representation of ET timing

in the model simulations. For example, 5 days before the ob-

served ET (far left of Fig. 2a; TL 5 25), 20% of the evaluated

GFS simulations were able to correctly forecast ET onset within

12 h of the observed ET onset (red line). The sample size for

each initialization time for GFS is 20 (one simulation for each

storm), but the sample size at each initialization time for HAFS

varies due to the availability of the simulations for each storm.

Only 35% of the GFS simulations initialized 5 days before

observed ET were able to correctly simulate ET for their re-

spective storms with the timing of ET being accurate to within

24 h of the observed ET (Fig. 2a). As TL decreases (initializ-

ing closer to the observed ET onset), the GFS simulations

tend to become more successful at not only predicting ET but

pinpointing the timing of the process as well (Fig. 2a). By

TL 5 21, 70% of the simulations were able to correctly fore-

cast ET with errors as low as 12 h. The HAFS simulations

were not as successful in predicting ET. At TL 5 25, only 8%

of the simulations studied were able to correctly forecast ET

occurrence (Fig. 2b), but those that did were accurate to

within 24 h of the observed ET onset. None of these simula-

tions were able to predict ET occurrence within 12 h of the

observed timing at long lead times. This percentage rises as

lead times shorten, reaching a maximum of 42% of simula-

tions correctly forecasting ET within 24 h of the observed ET

around TL 5 23 and 22. Similar to GFS (see Fig. 2a), there

is a sharp drop-off in this percentage around 12 h prior to ET

onset in observations. The deterioration in skill is likely due to

the development of hybrid characteristics in storms as the on-

set of ET approaches. In this case, the storm initialized in the

model never has fully tropical characteristics and therefore is

not identified as a candidate for ET in that specific model run.

FIG. 1. Trajectories of the storms assessed in this study for the (a),(b) 2019, (c)–(e) 2020, and (f)–(h) 2021 seasons. (left) Observational
trajectories. Black trajectories indicate storms that were excluded from the analysis. Trajectories that begin with stars belong to storms
that are included in both the GFS and HAFS analyses. (center) Observational trajectories are in blue along with the GFS trajectories
from simulations that correctly forecast ET within 24 h of the observed ET (gray). (right) As in the center panels, but for HAFS.
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In both models, most of the simulations with successful ET

predictions forecast its onset within 24 h of the observed ET

onset. For this reason, some of the following analyses include

only the model runs that correctly predict ET within 24 h of

the observed ET onset. This restriction retains a larger sample

while excluding the few model runs with high ET timing

errors (those greater than 24 h).

The errors in the simulated tracks of both models compared

to the IBTrACS observed trajectories (extended using ExTra-

Track) are shown in Fig. 3. In this figure, track errors from

the GFS (HAFS) runs that correctly simulated ET within 24 h

of the observed ET onset are included in the black (blue)

box-and-whisker diagrams, while the remaining GFS (HAFS)

runs’ track errors (poorly simulated ET timing as well as sim-

ulations that did not forecast ET at all) are included in the red

(green) boxes. Error values are shown as a function of fore-

cast hour (TF), grouping all data points from within each 24-h

forecast period of every simulation into a box-and-whisker

chart. For example, simulations initialized at 2120, 2114,

2108, and 2102 h are binned into the day 25 lead time

(TL 5 25) category, while forecast hours 0, 6, 12, and 18 are

binned into the first box-and-whisker chart at TF 5 24.

In general, track errors increase with increasing forecast

hours at all lead times (Fig. 3), as shown in previous work ex-

amining all forecast points between forecast hours 72 and 120

(Leonardo and Colle 2020). In addition to being a function of

forecast hour, ET timing plays a role in the magnitude of

track errors. It is possible both that the larger track errors

cause the ET timing errors due to different placement of the

TC, and thus different interactions with the midlatitude flow,

or vice versa, errors in ET timing lead to larger track errors

after the interaction occurs due to different translational

speeds of the observed and simulated TCs. Regardless of the

order of events, the median total track errors (TTEs; also

sometimes referred to as absolute track errors) for both

models’ simulations with poor ET timing forecasts or no ET

forecast to occur tend to be higher than the median TTEs

for simulations that forecast ET timing well. This difference

becomes more pronounced at the time that observed ET

occurs}for example, at TF 5 120 for TL 5 25 and so on. At

short lead times and long forecast hours (e.g., Fig. 3e), TTEs

cease to increase with increasing forecast hours as sample size

rapidly diminishes. It should also be noted that 69% of the

data points in the red (GFS) boxes come from simulations

that do not forecast ET at all, with the other 31% represent-

ing simulations that have ET timing forecast errors of greater

than 24 h. For all cases, both models tended to simulate ET

later than the observed (68% of GFS and 70% of HAFS sim-

ulations) and thus typically farther poleward (not shown).

To gain insight into the causes of these track errors, we also

break the TTEs down into their components: along- and

cross-track errors (ATEs and CTEs), shown in Fig. 4. The

tendency of “good timing” ET simulations to outperform the

“poor timing” simulations persists for the ATEs at all lead

times. CTEs lack a consistent and definitive pattern based on

the lead time, forecast hour, or ET timing forecast. ATEs

tend to be negative overall, indicating a slow bias in the storm

forward motion. CTEs from both models are centered, sug-

gesting that at most lead times and forecast hours, GFS and

HAFS are as likely to exhibit a right-of-track error as a left-

of-track error. HAFS does tend to have more positive CTEs

than GFS, with the largest differences at long forecast hours.

Similar to TTEs, the ATEs and CTEs at longer forecast days

in the shorter lead-time simulations tend to be noisy and lack

a consistent pattern, particularly for TL 5 22 (Fig. 4i) for the

CTEs and TL 5 21 (Fig. 4e) for the ATEs. Much larger

ATEs occur in simulations that poorly forecast ET compared

to the well-forecast ET simulations, especially at long lead

times. Translational speed errors are likely the primary driver

for the track errors that GFS and HAFS experience in these

cases, consistent with prior studies that find increased forecast

uncertainty tied to the changing forward speed of storms dur-

ing ET (Evans et al. 2017). The results for GFS and HAFS

are closely linked, partially because the initial and lateral

boundary conditions for HAFS are provided by the concur-

rent GFS simulation.

4. Rainfall forecast evaluation

Next, we investigate the skill of GFS and HAFS in simulat-

ing rainfall associated with TCs that undergo ET at all phases

of their life cycles. For reference, the total accumulated rain-

fall from the storms studied in the PTC (during and post ET)

phase of their life cycles from IMERG, GFS, and HAFS is

FIG. 2. Percentage of simulations at each lead time (TL) that
forecast ET. (top) For GFS ET cases in Table 1, the percentage of
simulations that correctly forecast ET occurrence for the correct
storm within various time frames of observed ET. (bottom) As in
the top panel, but for HAFS cases in Table 1. The sample size for
each lead time for GFS (top panel) is 20 simulations, and for
HAFS (bottom panel), the sample size varies for each lead time.
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shown in Figs. S3 and S4. The total rainfall accumulation as

predicted by both models is considerably lower than the

amounts recorded by IMERG due to the challenges in simu-

lating these storms. However, many factors contribute to dif-

ferences in the accumulated rainfall from each storm, such as

storm translational speed, rain rates at individual time steps,

and the distribution of rainfall around the storm center. To

learn more about the reasons for these patterns, we next turn

to the rain rates that are simulated by each model.

Examining composites of the rain rates at individual trajec-

tory points along the storms’ paths provides further insight

into the rainfall accumulation errors in the GFS and HAFS

simulations. Figures 5 and 6 show the composite rain rates for

storms in the pre-ET (left), during-ET (center), and post-ET

(right) phases for the IMERG values (top), GFS or HAFS

simulated storms (middle), and the statistically significant dif-

ferences between the model and IMERG average composite

rain rates (bottom). Statistical significance is determined using

a two-sample t test for the difference of means with a 95% sig-

nificance level, and only precipitating points (rain rates of at

least 1 mm h21) are included in the analysis.

In the pre-ET phase (left, Fig. 5), GFS-simulated rain rates

tend to be higher than IMERG in the inner core of the storm.

In the during-ET phase (center), this overestimation shifts to

the left side of the storm and becomes asymmetric. GFS tends

to forecast a more compact area with the highest rain rates

than IMERG shows during ET, with the IMERG dataset

spreading higher rain rates farther from the storm center.

Both GFS and IMERGmatch in their depiction of the shift of

precipitation to the north of the storm center during ET. Fi-

nally, once ET is complete, GFS predicts similar rain rates to

IMERG, with higher values not extending far enough away

from the storm center coupled with a more uniform area of

lower rain rates. Furthermore, GFS does not show the dry

southwest quadrant of the storm that is evident in IMERG.

Similar to GFS, HAFS (Fig. 6) overestimates the inner core

rain rates in the pre- and during-ET phases when compared

to IMERG. These overestimations are less severe than those

of GFS in the pre-ET phase, but both models share the ten-

dency to simulate rainfall that is too compact, symmetric, and

close to the storm center, especially in the during-ET phase.

The overestimation of rain rates near the center of storms in

the post-ET phase is more pronounced in the HAFS simula-

tions compared to GFS.

Across all phases of the storm life cycle, GFS and HAFS

tend to simulate higher rain rates than seen in IMERG but

over a smaller core area than covered by the maximum rain

rates shown in IMERG. This pattern is especially pronounced

once the ET process has begun. When examining the total

rainfall accumulation resulting from the observed and simu-

lated storms, the small area of high rain rates leads to a

FIG. 3. TTEs for the GFS and HAFS simulations used in this
study. Black boxes include track errors for all GFS simulations that
forecasted ET occurrence within 24 h of the observed ET time.
Blue boxes include the same for HAFS simulations. Red boxes in-
clude track errors from GFS simulations that had ET timing errors
of greater than 24 h or did not predict ET at all. Green boxes

$−

include the same quantity for the HAFS simulations. Each panel
includes simulations initialized at that lead time grouped into days.
For example, TL 5 25 includes simulations initialized at 2120,
2114,2108, and2102 h. Forecast time TF increases on the x axis.
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smaller total accumulation in the models than the larger area

of more moderate rain rates in IMERG. This underestimation

of the total accumulated rainfall by both models is exacer-

bated in the during- and post-ET phases, suggesting that the

structural evolution of the storm from being purely fueled by

warm core processes to being fueled by baroclinic forcing dif-

fers from the real-world evolution. This concept will be ex-

plored further in the following section.

FIG. 4. As in Fig. 3, but for (left) ATEs and (right) CTEs.
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FIG. 5. Rain rate composites from the storms included in Table 1. (left) Pre-ET phase. (center) During-ET phase. (right)
Post-ET phase. (top) Average IMERG 6-hourly rain rates across all storms. (middle) As in the top panels, but for GFS
simulations. (bottom) Statistically significant difference between the GFS simulation average and the IMERG average
rain rates at each phase of the TC life cycle. Statistical significance is determined using a two-sample t test for the differ-
ence of means.
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FIG. 6. Rain rate composites from the storms included in the HAFS analysis. As in Fig. 5, but for the HAFS simulations.
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FIG. 7. Composites of 500-hPa geopotential height (Z500; m) for (top) the ERA5 reanalysis, (middle) GFS model
runs, and (bottom) the difference between the original GFS and ERA5 average fields. ERA5 and GFS are shown as
anomalies from the average value of the 408 3 408 composite field for the (left) pre-ET, (center) during-ET, and (right)
post-ET phases.
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5. Mean state and storm structure/evolution

To shed light on the potential cause of the patterns in the

GFS and HAFS simulations of the storm rain field during and

after ET, we examine the environment surrounding the simu-

lated TC compared to the environment depicted in ERA5 rean-

alyses. To begin this investigation, we examine the geopotential

height at 500 hPa (Z500). Z500 encompasses both midlatitude

features, which are frequently identifiable at the midtropo-

spheric levels, as well as TCs, which have a warm core extend-

ing from the mid- to upper levels.

Figure 7 shows the anomaly of the Z500 average composite

from the average value of that field for ERA5 (top) and all

GFS simulations (middle) along with the difference between

the original GFS and ERA5 Z500 average composite fields in

the bottom row. The pre-ET phase is shown on the left, the

during-ET phase is shown in the center, and the post-ET is

shown on the right. The equator-to-pole gradient of Z500

anomalies and the actual Z500 values are stronger in GFS

simulations than in reanalysis in the pre- and during-ET

phases of the storms’ life cycles (Fig. 7). Once the ET process

is complete, GFS shows a more meridional orientation of the

midlatitude feature (Fig. 7f) as opposed to the more zonal pat-

tern on the poleward side of the ERA5 composite (Fig. 7c). This

indicates improper phasing of the TC and the upstream trough

in GFS simulations compared to ERA5 reanalysis. Addition-

ally, the Z500 anomaly within the storm has a higher magni-

tude in the GFS simulations as opposed to the ERA5

reanalysis. This could indicate a more intense storm or a more

resilient warm core, which may resist the deterioration of deep

convection and support the higher rain rates forecast by GFS,

as discussed in section 4. A case study of the differences in the

Z500 field between the models and the reanalysis is explored

in the supplemental material (see Fig. S5).

To further investigate, we next examine composites of

mean sea level pressure (SLP) for both the GFS simulations

and ERA5. Figure 8 is as in Fig. 7 except for SLP for ERA5,

GFS, and the difference between the two. SLP was chosen as

a measure of intensity for the observed storms due to ERA5’s

unreliability in representing accurate low-level winds, particu-

larly in TCs (Schenkel and Hart 2012; Stansfield et al. 2020;

Bourdin et al. 2022). GFS consistently shows more intense

storms than ERA5 with stronger gradients of SLP and higher

magnitude anomalies than in the reanalyses. This overestima-

tion of storm intensity could be contributing to the high rain

rates seen in GFS simulations, as previous literature has dem-

onstrated a link between TC intensity and rain rates (Jiang

and Zipser 2010; Alvey et al. 2015).

When completing the same analysis for the HAFS simula-

tions (Figs. 9 and 10), we find some marked similarities be-

tween the two models’ behaviors. Like GFS, HAFS tends to

simulate a sharper equator-to-pole gradient of Z500 than

does ERA5, especially in the pre-ET phase (Fig. 9d). The

storm center also has lower Z500 values in HAFS than in the

reanalysis. The main difference between the HAFS and GFS

Z500 fields is in the post-ET phase (Fig. 9f). While GFS simu-

lates a more meridional feature once ET is finished, HAFS

shows a zonal flow with lower amplitude than ERA5. When

examining SLP for the HAFS simulations, once again the

simulated storms have lower SLP anomalies than in ERA5

(Fig. 10), keeping the storms too intense especially before ET

begins.

The strong gradient of Z500 in both models’ simulations still

requires investigation into the strength of the simulated warm

cores of the storms of interest. A strong warm core would re-

main more resistant to the effects of the baroclinic environment

(i.e., the transition to a cold core). A CPS density chart is shown

in Fig. 11 to determine the strength of the warm core (as deter-

mined by the CPS values of 2VL
T , which represent the thermal

anomaly in the atmosphere) and the degree of asymmetry seen

in GFS and HAFS simulations compared to the ERA5 reanaly-

sis. The left panel shows the percentage of all points in the GFS

simulations used in this study within the CPS that occur in each

grid square. The middle shows the same for all ERA5 points,

and the right shows the same for all HAFS simulations. While

the storms in ERA5 tend to remain warm core and thermally

symmetric for longer, GFS storms can retain a very strong

warm core (higher2VL
T values) while simultaneously becoming

thermally asymmetric (developing fronts or remaining warm

core in the comparatively cold baroclinic zone, thus achieving

higher B values). The HAFS simulations also tend to simulate

very strong, symmetric warm cores (TCs; bottom-right quad-

rant) most often. While HAFS does simulate some instances of

asymmetric warm cores (top-right quadrant), only a small per-

centage of the storms achieve a cold core, regardless of thermal

symmetry. The retention of the strong warm core would sup-

port deep convection in the simulated storms at times when the

observed storm’s warm core is deteriorating and causing the de-

mise of deep convection at the storm center. These discrepan-

cies between the model simulations and ERA5 reanalyses as a

whole contribute to the rain rate errors seen in the simulations.

6. Discussion and conclusions

This study completed verification of GFS and HAFS in

their abilities to forecast ET occurrence and the rainfall asso-

ciated with storms that completed ET. While GFS is able to

correctly forecast ET occurrence within 24 h of the observed

ET 35% of the time at 5 days lead time, HAFS has almost no

skill in forecasting ET at medium-range lead times. At 1 day

prior to observed ET onset, the percentage of GFS simula-

tions correctly forecasting ET with accurate timing rises to

70%, but a maximum of only 42% of HAFS simulations cor-

rectly forecast ET 2 days before observed ET onset. Notewor-

thy is that both models’ ET timing, when forecast, is usually

accurate to within 24 h of the observed ET onset at any lead

time. ET occurrence and timing influence the track errors for

each model’s simulations as well. TTEs tend to be higher in

simulations that do not forecast ET for the storm of interest

or forecast ET with poor timing relative to the observed ET

onset. Track errors also rise with increasing forecast hour, as

model errors are amplified further into the simulation. TTEs

tend to be driven by ATEs, or forward speed biases, in both

models, which follow the same patterns as the TTEs. These

ATEs are driven by the model’s ability to predict ET (Fig. 4)

as well as by errors in the phasing between the TC and the
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FIG. 8. As in Fig. 7, but for mean SLP (hPa).
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FIG. 9. As in Fig. 7, but for HAFS simulations. Note that snapshots in which the storm center was located within 208 of the
domain edge were excluded.
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FIG. 10. As in Fig. 9, but for mean SLP (hPa).
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upstream midlatitude features (see Z500 field as shown in

Figs. 7 and 9). While the models do not share the same errors

in the Z500 field, they both produce errors that would alter

the overall steering flow, which again could impact either the

forecast occurrence of ET (or lack thereof) or phasing be-

tween the TC and surrounding features such as an upstream

trough. Some of the differences between the models could be

attributed to the different spatial resolutions, as grid spacing

affects the representation of convective processes and TC out-

flow and in turn the interaction between the TC and its envi-

ronment. While the poor HAFS ET forecasts indicate that

the high spatial resolution is not necessarily important for the

prediction of ET, with improved model physics, it may aid the

simulation of rain rates due to better representation of con-

vective processes.

Both GFS and HAFS underestimate the total accumulated

rainfall from the storms studied when examining individual

initialization lead times. Further investigation reveals that

both models tend to overestimate rain rates in the inner core

of the storms at individual time steps when compared to

IMERG, which can sometimes underestimate rain rates in the

inner cores of TCs as shown in Ko et al. (2020). The simulation

of high rain rates over a small area still yields less accumulated

rainfall than a larger area of more moderate rain rates, as seen

in IMERG. For both models, the highest magnitude errors in

rain rates occur in the during-ET phase, which appears to be at-

tributed to errors in the placement and shape of a rapidly evolv-

ing precipitation shield.

The overestimation of rain rates by GFS and HAFS, partic-

ularly in the pre-ET phase, can be partially attributed to the

overintensification of these storms by the model. Both the

Z500 and SLP fields simulated by both models show a stron-

ger storm in the simulations compared to the ERA5 reanaly-

sis. The high rain rates that remain close to the storm center

during and even after the ET process similarly can be partially

attributed to the higher intensity of simulated storms (Jiang

and Zipser 2010; Alvey et al. 2015). However, the tendency

of the models to maintain a strong warm core, even well into

the ET process, is likely causing the simulated storms to retain

deep convection and high rain rates near the TC’s inner core

at times when the observed storm’s rain rates are decreasing.

These common discrepancies in both models could be related

to the FV3 core model in general, as the dynamic core of

models has been shown to influence TC intensity (Reed and

Jablonowski 2011; Reed et al. 2015). Additionally, both GFS

and HAFS use the GFDL microphysics scheme and utilize a

scale-aware convection scheme. Further evaluation of the

cause of the retention of a strong warm core is needed to de-

termine any improvements that can be made to the opera-

tional models, whether involving the FV3 dynamical core or

the model physics.

This analysis of the abilities of GFS and HAFS to simulate

TCs that complete ET can be used for further model develop-

ment in the future. For HAFS, the size of the regional domain

is a primary concern; the outermost nest of the current opera-

tional HAFS could be expanded to include the entire globe.

We hypothesize that this could improve the detection of ET

potential at medium-range lead times. The high resolution of

the model must be maintained around the storm to preserve

model performance with storm intensity (as measured by

winds or central pressure) as well as its lower errors compared

to GFS in the pre-ET phase of the storm life cycle. This high

resolution also aids in the representation of the smaller-scale

processes that occur within a TC and can influence its interac-

tions with large-scale features, such as the representation of

deep convection and TC outflow (Alaka et al. 2022). In fact,

multistorm applications with multiple moving nests have

shown improvements to TC–environment interactions and,

consequently, TC intensity predictions; innovations like these

could be leveraged to study and improve ET forecasts as well.

FIG. 11. Diagram showing the distribution of samples across a CPS as a percentage. (left) GFS simulations used in this study. (center)
ERA5 values from the storms listed in Table 1. (right) HAFS simulations used in this study. The B values are sorted into bins of 10, while
2VL

T values are grouped into bins of 50.
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Despite the strengths and weaknesses of each model, addi-

tional updates to the model parameterizations are likely

needed to improve the representation of rain rates in both

models, particularly in the deep convective inner core of the

storm. The combined skills of both global and regional mod-

els would likely be ideal to simulate the proper trajectory, in-

tensity, and rainfall of a TC throughout its entire lifetime.
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