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ABSTRACT

In this paper, we study the complex bounded component analysis
(BCA) problem, under the novel scenario that the magnitudes of the
latent sources are bounded. This is opposed to the existing models
that assume separate bounds on the real and imaginary parts, in which
case the problem can be transformed into a real BCA problem, but
loses the point of introducing complex numbers into the model in the
first place. Unlike in the real case, it is hard to visualize a geometric
interpretation for the complex BCA model. Nevertheless, we draw
algebraic insights from prior work and propose a new formulation
that uses the determinant of the mixing matrix as the identification
criterion, and show that complex BCA is identifiable if the disked
hull of the sources is sufficiently scattered in the complex hypercube.
This result significantly extends the prior knowledge on BCA, and
in a broader sense is perhaps the first identifiable unmixing model
with parts of the sources being quadratically dependent (since the
magnitude of the complex sources are bounded). We also present a
new learning algorithm to solve the proposed complex BCA formu-
lation based on linearized ADMM, and show numerically that the
performance is surprisingly effective.

1. INTRODUCTION

Bounded component analysis (BCA) is an important type of method
for blind source separation. As an unsupervised learning method, it
makes the minimal assumption that the support of the latent com-
ponents is element-wise bounded [1, 2]. In a lot of applications, it
is used as an alternative to the well-knwon independent component
analysis (ICA) [3] since the identifiability of ICA is based on the
assumption that the latent sources are statistically independent, which
may be hard to verify in practice. BCA, on the other hand, has re-
cently been proven to be identifiable under the sufficiently scattered
condition with a finite amount of data [4, 5], making it potentially
more applicable than what most people realize.

In this paper we study BCA in the complex domain, i.e., when
both the latent sources and the mixing matrix can take complex values.
It is a problem that has not been well-studied in the literature. Among
the few papers that considered the complex BCA problem, they all
essentially transform it into a real BCA problem by assuming that the
real and imaginary parts of the sources are independently bounded
[6, 7]. However, when it is necessary to introduce complex numbers
into the model, it is generally more suitable that the magnitude of the
complex sources are bounded. This is a model that has never been
studied before, yet we petition that this should be the correct problem
formulation for complex BCA, which we elaborate in detail next.

Notations. Vectors and matrices are denoted with boldface italic
lowercase and uppercase letters, e.g., 𝒙 and 𝑿 . Superscripts ⊤, ⊢⊣,
−1, and † denote transpose, Hermitian (conjugate transpose), inverse,
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and (Moore-Penrose) pseudo-inverse, respectively. We overload the
absolute value | · | ≤ 1 with a vector or matrix argument to denote that
the magnitude of its complex values are element-wise ≤ 1. Since we
study the identifiability of an unsupervised learning model, we use
superscript ♮ to denote the groundtruth latent factors that generates the
data, and superscript ★ to denote the output of a learning algorithm
to see if they are (essentially) the same. We use 𝜕 in front of a set to
denote its boundary. Finally, disk(·) denotes the disked hull of a set,
which is officially defined in Definition 3.

1.1. The complex BCA model

Consider the classical blind source separation (BSS) model of a set
of 𝑛 data points generated as:

𝒙 𝑖 = 𝑨𝒔 𝑖 , 𝑖 = 1, . . . , 𝑛, (1)

where 𝒙 𝑖 ∈ C𝑑 are the observations, 𝑨 ∈ C𝑑×𝑘 is the unknown mix-
ing matrix, and 𝒔 𝑖 ∈ C𝑘 are the latent sources that one is interested
in recovering. Stacking all 𝒙 𝑖 as columns of the 𝑑 × 𝑛 matrix 𝑿 and
𝒔 𝑖 as columns of the 𝑘 × 𝑛 matrix 𝑺 gives the matrix factorization
model 𝑿 = 𝑨𝑺 . Without additional assumptions on the latent fac-
tors, it is impossible to uniquely identify the mixing matrix 𝑨 and
the latent components 𝑺 , since we can always “insert” an invertible
matrix 𝑸 and 𝑸 −1 as 𝑿 = 𝑨̃𝑺̃ where 𝑨̃ = 𝑨𝑸 and 𝑺̃ = 𝑸 −1𝑺 , and
one cannot distinguish whether 𝑺 or 𝑺̃ are the groundtruth sources.
Such rotation ambiguity cannot be resolved by the well-known prin-
cipal component analysis (PCA) [8]. However, by imposing various
structures onto the latent sources 𝑺 , identifiability can be established,
such as independent component analysis (ICA) [3], nonnegative ma-
trix factorization [9, 10], simplex structures [11–13], and dictionary
learning [14].

Bounded component analysis (BCA) is another such model that
assumes each component of 𝒔 is bounded [1, 2]. In the real case, it is
recently proven that BCA is identifiable if the source matrix satisfies
a so-called “sufficiently scattered” condition in the hypercube [4],
and by allowing an additional shift ambiguity the groundtruth bound
can even be unknown and assymetric around zero [5]. However,
when the sources are complex, the only existing methods assume that
the real and imaginary parts are independently bounded, thus any
real BCA approach can be applied [7]. We argue that this is not the
proper extension to the complex domain as it goes against the need
to introduce complex sources in the first place. It intuitively makes
more sense to assume that the magnitude of the sources are bounded,
i.e., there exists a nonnegative vector 𝒖 such that |𝒔 𝑖 | ≤ 𝒖 for all
𝑖 = 1, . . . , 𝑛, where the absolute value (magnitude) | · | and inequality
≤ are both taken element-wise.

Our proposed complex BCA model, while being more intuitive
and much more applicable in practice, introduces additional hurdles
in terms of both identifiability and algorithm. Unlike real BCA,
our assumption on the bounded magnitude is inherently quadratic,
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making the identifiability of complex BCA seemingly impossible as
all other identifiable unmixing models all assume some variant of a
linear structure on the latent sources, such as a simplex (NMF), a
hypercube (real BCA), or an orthoplex (dictionary learning), while a
quadratic structure of uncorrelatedness is not identifiable (PCA). To
much of our surprise, in this case with bounded magnitude, the model
is still identifiable under the complex sufficiently scattered condition.

1.2. Proposed formulation

Most BSS models allow scaling and permutation ambiguity, i.e., a
permutation matrix 𝜫 and a diagonal matrix𝑫 such that the recovered
mixing matrix is 𝑨𝑫𝜫 and the recovered sources are 𝜫⊤𝑫−1𝑺 . For
complex BCA, one can always scale the latent sources to lie in the
unit circle, so without loss of generality, we assume that |𝑺 | ≤ 1. The
identifiability of BCA is formally defined as follows:

Definition 1. Consider the generative model 𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮

is the groundtruth mixing matrix and |𝒔 𝑖 | ≤ 𝒖 are the groundtruth
latent components with element-wise bounded magnitude, where
𝒔 ♮1, . . . , 𝒔

♮
𝑛 are columns of 𝑺 ♮ and the 𝒖 is the element-wise unknown

bounds. Let (𝑨★,𝑺★) be optimal for an identification criterion 𝑞

(𝑨★,𝑺★) = arg min
𝑿 =𝑨𝑺 , |𝑺 | ≤1

𝑞 (𝑨,𝑺 ).

If 𝑨♮ and/or 𝑺 ♮ satisfy some condition such that for any (𝑨★,𝑺★),
there exist a permutation matrix 𝜫 and a complex diagonal matrix 𝑫
with

𝑨♮ = 𝑨★𝑫𝜫 and 𝑺 ♮ = 𝜫⊤𝑫−1𝑺★,

then we say that the complex BCA model is essentially identifiable,
up to permutation and complex scaling, under that condition.

So far the complex BCA model with bounded magnitude has
not been studied before, to the best of our knowledge, let alone its
identifiability issue. When all the elements are restricted to be real,
then the bounded constraint is essentially equivalent to an arbitrary but
symmetric bound −𝒖 ≤ 𝒔 𝑖 ≤ 𝒖 , and recently it has been shown that
such a model is identifiable if the convex hull of 𝑺 ♮, after rescaling it
to be between [−1, 1]𝑘×𝑛 , satisfies a so-called sufficiently scattered
condition [4]. It is later extended to allow the sources to be bounded
in an assymetric box 𝒍 ≤ 𝒔 𝑖 ≤ 𝒖 , and the model is still identifiable
by allowing an additional shift-ambiguity [5]. Neither results can be
applied to the complex BCA model unless the bounds to the latent
sources are on the real and imaginary parts separately, which makes
little sense for a model that involves complex numbers in the first
place.

Nevertheless, inspired by novel formulations of real BCA pro-
posed in [5], we propose the following problem formulation for
complex BCA:

minimize
𝑨,𝑺

det𝑨⊢⊣𝑨

subject to 𝑿 = 𝑨𝑺 , |𝑺 | ≤ 1.
(2)

Formulation (2) falls into the framework introduced in Definition 1,
with the identifiability criterion being specifically det𝑨⊢⊣𝑨. In the
rest of this paper, we will show that complex BCA is identifiable via
solving (2) under some conditions, and we propose a highly efficient
algorithm to solve it approximately, with surprising effectiveness.

x

x

x

x

x

x

x

x

x

x

x

x

Fig. 1: An example of sufficiently scattered in the hypercube of R3.

2. IDENTIFIABILITY

Problem (2) provides an intuitive identification criterion for BCA.
In the real case, the same identification criterion has been applied
in various models, such as NMF [10], dictionary learning [14], and,
above all else, real BCA [5], each having an intuitive geometric
interpretation of finding the minimum-volume enclosing polytope for
a set of points. In the complex domain, it does not seem immediately
obvious how those geometric interpretation could provide insight.
Nevertheless, we will continue with the algebraic representations of
the concepts that could be otherwise visualized in the real domain,
and show mathematically that similar results still hold even though
they may not be geometrically interpreted with ease.

Definition 2 (Disked set). A set S ∈ C𝑘 is said to be disked if for
any 𝒙1, 𝒙2 ∈ S and 𝜃1, 𝜃2 ∈ C such that |𝜃1 | + |𝜃2 | = 1, we have
𝜃1𝒙1 + 𝜃2𝒙2 ∈ S.

In the real Euclidean space, a disked set is also said to be abso-
lutely convex [15], as the definition differs from a convex set only by
allowing the coefficients of the linear combination to be absolutely
sum to one.

Definition 3 (Disked hull). The disked hull of a set S, denoted as
diskS, is the smallest disked set that contains S. When S is a finite
set of vectors {𝒔1, . . . , 𝒔𝑛 }, then its disked hull is

diskS =

{
𝑛∑︁
𝑖=1

𝜃𝑖 𝒔 𝑖

���� 𝑛∑︁
𝑖=1
|𝜃𝑖 | ≤ 1

}
.

Assumption 1 (Sufficiently scattered in the complex hypercube). Let
B denote the complex Euclidean ball B = {𝒙 ∈ C𝑘 | ∥𝒙 ∥ ≤ 1} and
C denote the complex hypercube C = {𝒙 ∈ C𝑘 | ∥𝒙 ∥∞ ≤ 1}. A set
S is sufficiently scattered in the complex hypercube if:

1. B ⊆ S ⊆ C;

2. 𝜕B ∩ 𝜕S = {𝛼𝒆 𝑖 | |𝛼 | = 1, 𝑖 = 1, . . . , 𝑘 }, where 𝜕 denotes the
boundary of the set, and 𝒆1, . . . , 𝒆𝑘 are the 𝑘 unit vectors in
R𝑘 .

If we restrict ourselves in the real domain, then a geometric illus-
tration of a polytope that satisfies the sufficiently scattered condition
is shown in Figure 1. The term “sufficiently scattered” first appeared
in [16] to characterize the identifiability condition for nonnegative
matrix factorization that has already appeared in [9]. The difference
is that in [9, 10, 16], the condition is defined over the conic hull of a
set of points in the nonnegative orthant containing a specific hyper-
bolic cone. It has also been defined over the convex hull of a set of
points in the probability simplex [11–13]. The most related case is
the sufficiently scattered condition defined for the standard hypercube
(𝐿∞-norm ball) [4], as well as the standard orthoplex (𝐿1-norm ball).
In this paper, we further extend this important notion into the complex
domain.
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Our main result on the identifiability of complex BCA is pre-
sented as follows:

Theorem 1. Consider the complex BCA model 𝑿 = 𝑨♮𝑺 ♮, where
𝑨♮ ∈ C𝑑×𝑘 is the groundtruth mixing matrix and |𝑺 ♮ | ≤ 1 are the
groundtruth latent complex components with element-wise bounded
magnitude. If rank(𝑨♮) = 𝑘 and disk(𝑺 ♮) is sufficiently scattered in
the complex hypercube as in Assumption 1, then for any solution of
(2), denoted as (𝑨★,𝑺★), there exist a permutation matrix 𝜫 and a
complex diagonal matrix 𝑫 with unimodular values on the diagonal
such that

𝑨♮ = 𝑨★𝑫𝜫 and 𝑺 ♮ = 𝜫⊤𝑫−1𝑺★.

In other words, complex BCA is identifiable if the groundtruth 𝑨♮ has
full column rank and the disked hull of 𝑺 ♮ is sufficiently scattered.

Due to space limitation, we provide a sketch of the proof. The
full proof is relegated to the journal version.

Proof sketch. Since both (𝑨♮,𝑺 ♮) and (𝑨★,𝑺★) are feasible for (2),
we immediately have that det𝑨★⊢⊣𝑨★ ≤ det𝑨♮⊢⊣𝑨♮. Define 𝑴 =

(𝑨★)†𝑨♮, then

| det𝑴 | =
√︃

det(𝑨★⊢⊣𝑨★)−1𝑨♮⊢⊣𝑨♮ ≥ 1. (3)

On the other hand, since 𝑴𝑺 ♮ = (𝑨★)†𝑨♮𝑺 ♮ = 𝑺★, we also have
that |𝑴𝑺 ♮ | ≤ 1. Let𝒎⊢⊣ be any row of 𝑴 , then |𝒎⊢⊣𝒔 ♮

𝑖
| ≤ 1 for all 𝑖 =

1, . . . , 𝑛. Now we invoke the assumption that disk(𝑺 ♮) is sufficiently
scattered, then for any 𝒗 with unit norm ∥𝒗 ∥ = 1, there must exist
𝜃1, . . . , 𝜃𝑛 with |𝜃1 | + · · · + |𝜃𝑛 | = 1 such that 𝒗 = 𝜃1𝒔

♮

1 + · · · + 𝜃𝑛𝒔
♮
𝑛 .

Therefore ��𝒎⊢⊣𝒗 �� = ����� 𝑛∑︁
𝑖=1

𝜃𝑖𝒎
⊢⊣𝒔 ♮

𝑖

����� ≤ 𝑛∑︁
𝑖=1
|𝜃𝑖 |

���𝒎⊢⊣𝒔 ♮𝑖 ��� ≤ 1. (4)

Since (4) holds for every 𝒗 with unit norm, we must have ∥𝒎 ∥ ≤ 1
as well (otherwise we would let 𝒗 =𝒎/∥𝒎 ∥ and have that |𝒎⊢⊣𝒗 | =
∥𝒎 ∥ > 1, contradicting (4)), which means every row of 𝑴 has norm
no greater than 1. This gives us

| det𝑴 | ≤
𝑘∏
𝑗=1
∥𝒎 𝑗 ∥ ≤ 1, (5)

where the first inequality is due to the Hadamard inequality. Combin-
ing (3) and (5) shows that (𝑨♮,𝑺 ♮) or any of their column permutation
and unimodular scaling is in the set of optimal solutions of (2). In the
journal version of this paper, we will complete the proof by showing
that if the second requirement of the sufficiently scattered condition
(c.f. Assumption 1) is satisfied, then column permutation and unimod-
ular scaling of (𝑨♮,𝑺 ♮) are the only optimal solutions of (2), which
leads to the identifiability of complex BCA. □

Remark. Although the overall steps of showing identifiability of
complex BCA seems somewhat similar to that of the real case in [4,5],
we would like to reemphasize that the implication is highly nontrivial
and very significant, as it is the first identifiable unmixing model
with parts of the sources being quadratically dependent with each
other, in this case the real and imaginary parts of each individual
sources. What is more, the introduction of the concept of the disked
hull provides new insights to the real BCA model, as it effortlessly
shows that real BCA is identifiable if disk(𝑺 ♮) is sufficiently scattered,

which is a more relaxed condition than that of [4] that conv(𝑺 ♮) is
sufficiently scattered, since we always have conv(𝑺 ♮) ⊂ disk(𝑺 ♮).

Similar to the real case, one may show that a bounded source
matrix is more likely to be sufficiently scattered if many of its entries
lie on the boundary of the complex hypercube, i.e., with magnitudes
exactly equal to 1. We will use this intuition to synthetically generate
bounded complex sources that are identifiable as per Theorem 1.

3. ALGORITHM

In this section, we propose an algorithm based on the linearized
alternating direction method of multipliers (L-ADMM) with well-
defined and low-complexity iterations.

Note that in problem (2), since we assume that the columns of 𝑨
are linearly independent, we can define 𝑷 = 𝑨† and apply a change
of variable to problem (2). Then, it becomes an equivalent object
of minimizing 1/det𝑷𝑷 ⊢⊣, after we apply the log function and make
it − log det𝑷𝑷 ⊢⊣, and in the constraints we can now eliminate the 𝑺
variables by simply requiring |𝑷𝑿 | ≤ 1. This leads to the following
reformulation

minimize
𝑷

− log det𝑷𝑷 ⊢⊣

subject to |𝑷𝑿 | ≤ 1.
(6)

Problem (6) now has a convex, or more specifically linear, constraint
set, although the objective is still not convex.

We further modify the formulation (6) by introducing an auxiliary
variable 𝑺 :

minimize
𝑷 ,𝑺

− log det𝑷𝑷 ⊢⊣

subject to 𝑷𝑿 = 𝑺 , |𝑺 | ≤ 1.
(7)

Formulation (7) consists of two sets of variables (𝑷 and 𝑺 ) over
two separable functions (one of them being an indicator function of 𝑺
that the ℓ∞ norms of its rows are no bigger than 1) and linear equality
constraints. It is easy to derive the alternating direction method of
multipliers (ADMM) [17] for (7):


𝑷 (𝑡+1) ← arg min

𝑷
− log det𝑷𝑷 ⊢⊣ + 𝜌 ∥𝑷𝑿 − 𝑺(𝑡) +𝑼(𝑡)∥2,

𝑺 (𝑡+1) ← arg min
𝑺

1 | · | ≤1 (𝑺 ) + 𝜌 ∥𝑷(𝑡+1)𝑿 − 𝑺 +𝑼(𝑡)∥2,

𝑼 (𝑡+1) ←𝑼 (𝑡 ) + 𝑷 (𝑡+1)𝑿 − 𝑺 (𝑡+1) .

(8a)

(8b)

(8c)

The second step (8b) is well-defined, as it projects each element
of the complex matrix 𝑷 (𝑡+1)𝑿 +𝑼 (𝑡 ) to the unit circle, which boils
down to rescaling the elements with magnitude bigger than 1 to be
unimodular. The first step (8a), however, is not clear how to compute.
One popular method to mitigate this issue, which is prevalent in
ADMM, is to take a linear approximation of the loss function of
𝑷 at the previous iterate 𝑷 (𝑡 ) [18]. The gradient of log det𝑷𝑷 ⊢⊣ is
2(𝑷 †)⊢⊣, therefore the linear approximation of − log det𝑷𝑷 ⊢⊣ at 𝑷 (𝑡 )
is − log det𝑷 (𝑡 )𝑷 ⊢⊣(𝑡 ) − 2 Tr𝑷 †(𝑡 ) (𝑷 − 𝑷 (𝑡 ) ). The overall update of
𝑷 (𝑡+1) becomes minimizing a convex quadratic function, which can
be done in closed-form. The derived linearized ADMM (L-ADMM)
iterates are


𝑷 (𝑡+1) ← ((𝑺 (𝑡 ) −𝑼 (𝑡 ) )𝑿 ⊢⊣ + (1/𝜌) (𝑷 †(𝑡 ) )

⊢⊣) (𝑿 𝑿 ⊢⊣)−1,

𝑺 (𝑡+1) ← Proj | · | ≤1 (𝑷 (𝑡+1)𝑿 +𝑼 (𝑡 ) ),
𝑼 (𝑡+1) ←𝑼 (𝑡 ) + 𝑷 (𝑡+1)𝑿 − 𝑺 (𝑡+1) .

(9a)

(9b)

(9c)
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Algorithm 1 Solving (6) with L-ADMM

1: take the QR factorization of 𝑿 ⊢⊣ = 𝑸𝑹
2: set 𝜌 = 𝑛𝑘 and initialize 𝑷 (0)
3: for 𝑡 = 0, 1, 2, . . . until convergence do
4: 𝑷 (𝑡+1) ← (𝑺 (𝑡 ) −𝑼 (𝑡 ) )𝑸 + (1/𝜌)𝑷 −⊢⊣(𝑡 )
5: 𝑺 (𝑡+1) ← Proj | · | ≤1 (𝑷 (𝑡+1)𝑸 ⊢⊣ +𝑼 (𝑡 ) )
6: 𝑼 (𝑡+1) ←𝑼 (𝑡 ) + 𝑷 (𝑡+1)𝑸 ⊢⊣ − 𝑺 (𝑡+1)
7: end for

Finally, we notice that when 𝑘 = 𝑑 , i.e., when the mixing matrix
𝑨 is square, formulation (7) and the derived L-ADMM algorithm are
invariant under linear transformation of columns of 𝑿 , meaning if we
replace 𝑿 with 𝑿 = 𝑮𝑿 in (7), where 𝑮 is a 𝑘 × 𝑘 invertible matrix,
then every iterate 𝑷 (𝑡 ) is uniquely mapped to 𝑷 (𝑡 )𝑮

−1 (while 𝑺 (𝑡 )
and𝑼 (𝑡 ) are exactly the same), and the objective value has a constant
difference − log | det𝑷 (𝑡 )𝑮 −1 | = − log | det𝑷 (𝑡 ) | + log | det𝑮 |. This
observation allows us to preprocess the data matrix 𝑿 by orthog-
onalizing its rows, so that the update for 𝑷 in (9a) can be further
simplified. The overall algorithm is summarized in Algorithm 1. We
empirically found that setting 𝜌 = 1 works very well in practice. We
would like to emphasize that the affine invariance does not hold in
general when the mixing matrix 𝑨 is tall, as log det𝑷𝑮 −1𝑮 −⊤𝑷⊤ is
not in general a constant difference from log det𝑷𝑷⊤; moreover, if 𝑷
is wide, we generally do not have that (𝑷𝑮 −1)† = 𝑮𝑷 †. Therefore,
in the over-determined case one should still stick to the updates given
in (9). Computations can still be made more efficient by caching
the Cholesky factorization and perform only the forward/backward
substitutions in every iteration, as suggested in [17].

4. NUMERICAL VALIDATION

We conclude the proposed theoretical result by providing some nu-
merical validation. We fix 𝑛 = 1000 and 𝑑 = 𝑘 = 20. To evaluate the
identifiability result, we generate the mixing matrix 𝑨♮ with elements
(real and imaginary parts) drawn from i.i.d. normal distributions; with
respect to the source matrix 𝑺 ♮, we generate it elementwise with each
entry’s phase uniformly distributed in [0, 2𝜋], while its magnitude
equals to 1 with probability 𝑝 or uniformly distributed in [0, 1] with
probability 1 − 𝑝 . As we explained earlier, the higher the 𝑝 , the more
likely the disked hull of the generated source matrix satisfies the com-
plex sufficiently scattered condition, thus can be uniquely identified
via solving (2). We will refer to this factor 𝑝 as the “scattering level”
in the sequel.

4.1. Convergence of Algorithm 1

We start by evaluating the performance of Algorithm 1. Since Prob-
lem (6) is nonconvex, one would expect that the algorithm may some-
times stuck at a local optimum. Much to our surprise, Algorithm 1
seems to always find the optimal solution when the BCA model is
identifiable, meaning it always recovers the groundtruth factors up to
column permutation and sign ambiguities as we know they are the
optimal solution as per our identifiability result given in Theorem 1.

The convergence of Algorithm 1 on 10 random instances are
shown in Fig. 2. In order to guarantee that the model is identifiable,
we fix the scattering level 𝑝 = 0.5. Since we know 𝑨♮ is optimal
for (2), then the optimal value of (6) must be −2 log | det𝑨♮ |. On
the other hand, since L-ADMM directly tackles formulation 7, it is
not guaranteed that 𝑷 (𝑡 ) is feasible in every iteration, which makes
little sense to check the difference − log | det𝑷 (𝑡 ) | + log | det𝑷★ |. We

Fig. 2: The convergence of Algorithm 1 on 10 random instances.

instead check the optimality gap of the Lagrangian function values,
using the optimal dual variable 𝜦, since we have

− log | det𝑷 | + Tr(𝑷𝑿 − 𝑺 )𝜦★ ≥ − log | det𝑷★ |,

for any 𝑷 and a feasible 𝑺 . Obviously, the gap equals to zero when
𝑷 = 𝑷★ and 𝑺 = 𝑺★, in which case 𝑷★𝑿 − 𝑺★ = 0. Furthermore, it
is easy to show that an optimal 𝜦 is (𝑺 ♮)†. In this simulation with
known groundtruth factors, we will use this to measure the optimality
gap shown on the vertical axis of Fig. 2. As we can see, in all 10
instances a global optimum is attained. The surprising effectiveness
is well-worth further investigation.

4.2. Identifiability performance

Finally, we showcase how the “scattered level” of the latent sources
affect the identifiability performance. As we explained in the previous
subsection, a source matrix is more likely to be sufficiently scattered if
a lot of its entries are unimodular. Therefore, we define the “scattered
level” of a complex matrix 𝑺 ∈ C𝑘×𝑛 as the percentage of entries
whose magnitude equals to either 1: the more unimodular entries in 𝑺 ,
the higher the “scattered level” and thus more likely to be identifiable.
For various scattered levels 𝑝 , we fix 𝑛 = 1000 and 𝑘 = 20, then
use Algorithm 1 to try to exactly recover the mixing matrix, and
equivalently the latent sources. It is easy to see that their optimal are
dual to each other once we can exactly recover any of them. If after
resolving the permutation and sign ambiguities, the estimation error
is less than 10−5, then we declare success. The results are shown in
Fig. 3. The transition threshold seems to be around 40–50%.

average success rate for different scatter level
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Fig. 3: Probability of exact recovery of the latent factors as we vary
the “scattered level” of the latent sources.

5. CONCLUSION

We studied complex BCA problem with the novel scenario that the
magnitudes of the complex sources are bounded, which has never
in the literature possibly due to its challenging nature. We showed
that it is still possible to uniquely identify the latent sources (up to
permutation and complex scaling) if their disked hull is sufficiently
scattered in the complex hypercube. We also present a new learning
algorithm to based on linearized ADMM, and show numerically that
the performance is surprisingly effective.
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