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Abstract—It has been recently shown that dictionary learning is
identifiable with a complete dictionary, with relatively loose assumptions
that the dictionary is invertible and that a geometric body obtained from
the sparse coefficient matrix is sufficiently scattered in the hypercube.
In addition, if the sparse coefficients are generated from the Bernoulli-
Gaussian model, then the number of samples required to guarantee
identifiability is O(klog(k)). In this paper, we further improve the
identifiability results in two-folds. First, we extend the deterministic
identifiability results from the real domain in the previous work to the
complex domain, hence significantly expand its applications. Second,
we consider the generative model for the sparse coefficients from the
more specific (also widely adopted) Bernoulli-Gaussian to a much wider
class where the nonzero entries can be drawn from any subexponential
distributions, and show that the same sample complexity results still holds.
The recovery performance is confirmed in a Monte-Carlo simulation
where the sparse coefficients are drawn from Bernoulli-Laplacian model.

Index Terms—dictionary learning, sufficiently scattered, Bernoulli-
subexponential.

I. INTRODUCTION

Dictionary learning (DL) amounts to factor a data matrix as X = AS
where S is sparse [1]. Treating X € REX1 or CkX1 a5 a collection
of data samples as its columns, this factorization means that each
sample is a sparse combination of the columns of A, or in other
words atoms of the dictionary. Unlike the task of compressive sensing
or sparse vector recovery, in which case the dictionary matrix A is
given, dictionary learning tries to find both A and S, therefore the
problem is a lot more challenging. Depending on the shape of the
dictionary matrix A, we may seek to find a complete dictionary if A
is square or an overcomplete dictionary if A is wide. In this paper
we focus on complete dictionary learning, therefore A € R¥*K and
§ € RkX1 (or CF*K and CK*7 | respectively).

Identifiability of dictionary learning has been an open question ever
since the problem was posed. As an instance of matrix factorization,
inherent ambiguities of permutation and scaling of the columns of A
(and in turn same permutation and counter-scaling of the rows of §)
are unavoidable and inconsequential in practice, and the factorization
is essentially unique or identifiable if all admissible factorization are
permutation and scaling of each other. Earlier works focus on directly
enforcing sparsity constraints on S, which show that over-complete
DL is identifiable if n > O((k + 1)(136)) [2], [3] and complete DL
is identifiable with O(k3/(k — s)2) samples. Notice that these work
require all columns of S to be strictly s-sparse—no dense outliers
is allowed for the analysis to work. More recently, there have been
work on identifiability of DL with £; norm as the regularization to
promote sparsity, although they are only able to show identifiability
in a local region [4]-[6] if the dictionary A is incoherent and the
sparse coefficients S follows some sparse generative model such as
the Bernoulli-Gaussian model. The benefit is not only that algorithm
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design is easier with €; norm regularization, but also that the number
of samples n required is usually O(klogk), while a few outlying
dense columns of S are allowed.

The best known result regarding the identifiability of DL is in [7],
which shows that complete dictionary learning is globally identifiable
if: 1) the complete dictionary A € R¥*K is invertible (hence no
incoherence is necessary for complete dictionaries), and 2) the sparse
coefficients § € RK*™ satisfies some sufficiently scattered condition,
which we will elaborate in the next section. It was also shown that
if § is generated from the Bernoulli-Gaussian model, it will satisfy
the sufficiently scattered condition with overwhelming probability
as long as the sample size n is larger than O(klog(k)), which
confirms the sample complexity analysis in [4]-[6] but identifiability
is guaranteed globally, not just in a local region near the groundtruth
factors. This new framework for identifiable DL is based on a new
problem formulation by constraining the ¢; norm of each row of §
while minimizing the matrix volume of the dictionary, i.e., | det A|.

In this paper, we aim at further improving the identifiability result
for complete dictionary learning. First, noticing that all the results in
[7] applies only to real dictionary learning, we extend the identifiability
result from the real case to the complex case, i.e., allowing both the
dictionary matrix A and the sparse coefficients matrix § to have
complex values. A complex matrix § is sparse if a significant portion
of its values are equal to zero, but for its nonzero values we do
not care if their real or imaginary parts are zero—they are simply
treated as nonzeros. Second and more importantly, we extend the
sample analyses to a much wider class of generative models for §
called Bernoulli-subexponential models; compared to the Bernoulli-
Gaussian model that is widely adopted in DL research, we now
allow the nonzero values of § to be drawn from any subexponential
distributions, which includes not only Gaussian but also a large variety
of distributions such as Laplacian, Cauchy, chi, and any bounded ones

8].

II. IDENTIFIABILITY OF DICTIONARY LEARNING

We denote the groundtruth factorization of the DL model as X =
AySy. Suppose the rows of X are linearly independent, which is a
valid assumption since k > n, then the row space of X is the same
as that of Sy. Consider another factorization X = AS, then the same
rule applies, which means that there exists an invertible matrix W
such that § = WSh. Furthermore, both § and Sh are right-invertible,
and they are related as ST = S;W‘l; multiplying it from the right

on both sides of AS = A;S; shows that A = AhW’]. This shows
that matrix factorization in general is not identifiable without any
structural constraints. On the other hand, people have discovered a
plethora of structural constraints that do guarantee identifiability, i.e.,
restricting the choice of W to be the product of a permutation matrix
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and a diagonal matrix, such as nonnegative [9]-[11], simplicial [12],
[13], or bounded [14]-[16].
A breakthrough result regarding identifiability of DL has been
shown in [7] using the following formulation:
minimize |detA]|
A4S (1)
subject to X =AS, ||l <1,j=1,...,k,
In the remainder of this section, we present the identifiability result
in the complex domain, although the original result in [7] was in
the real domain, and show that similar identifiability result can be
obtained in a much more general complex case.
First we introduce some definitions.

Definition 1 (Cellular hull). The cellular hull of a finite set of vectors
{$1,...,8n}, stacked as the columns of the matrix S, is

cell(S) = {SO

1]l < 1}.

Notice that the definition works in both real and complex cases: in
the real domain, it restricts the absolute values of the coefficients 6;,
and in the complex domain, it restricts the magnitudes of the complex
coefficients 6;.

Assumption 1 (Sufficiently scattered in the complex hypercube). Let
B denote the complex Euclidean ball 8 = {x € C¥ | ||x|| < 1} and
C denote the complex hypercube C = {x € Ck | Ixlloo < 1}. A set
S is sufficiently scattered in the complex hypercube if:

1) BCSCC;
2) 0BNAS = {ae; | |a| =1,i =1,...,k}, where 0 denotes the
boundary of the set, and ey, ..., e are the k unit vectors in RX.

Our main result on the identifiability of complex DL is presented
as follows:

Theorem 1. Consider the complex DL model X = Ahsh’ where
Ay € CA%k s the groundtruth mixing matrix and Sy, is the groundtruth
sparse coefficient matrix. Let §h denote the matrix obtained from
rescaling the rows of Sy to have unit €1 norms. If rank(A4,) = k
and Cell(gu) is sufficiently scattered in the complex hypercube as in
Assumption 1, then for any solution of (1), denoted as (Ax, Sx), there
exist a permutation matrix Il and a complex diagonal matrix D such
that

S,=1'D's,.

Ah =A,DII and

In other words, complex DL is identifiable if the groundtruth Ay has
Jull column rank and the cellular hull of Sy is sufficiently scattered.

Proof. Let §b denote the matrix obtained from rescaling the rows of
§y to hfve unit €1 norms, jll’ld counter-scale the columns of Ay to
obtain Ay, Since both (Ah' Sh) and (A, S«) are feasible for (1), we
immediately have that | det A,| < |det71h|. Define W = A;lﬁh, then

|detW| = | det Ay ' Ay| = | det Ay|/| det Ax| > 1. )

On the other hand, since Wgh = A;]Zhgh =S4, we also have that
[[WS];.Il < 1. Let w™ be any row of W, then |[w"Sy[|; < 1. This
is equivalent to a set of linear inequalities

w"S,0 <1, V0w < 1.

Now we invoke the assumption that cell(gh) is sufficiently scattered,
then for any v with unit norm |[v|| = 1, there must exist 8 with
|0]lo < 1 such that v = Sy 6. Therefore

jw"o] = |w"S,6] < 1. 3)

Since (3) holds for every v with unit norm, we must have ||w|| < 1
as well (otherwise we would let v = w/||w|| and have that |w"v| =
[lw|| > 1, contradicting (3)), which means every row of W has norm
no greater than 1. This gives us

k
|detw| < [ [llw;ll <1, 4)

j=1
where the first inequality is due to the Hadamard inequality. Combining
(2) and (4) shows that (Ah, Sh) or any of their column permutation
and unimodular scaling is in the set of optimal solutions of (1). The
second requirement of Assumption 1 further ensures that they are
the only possible solutions. This shows the identifiability of complete
dictionary learning in the complex domain. O

III. IMPROVED SAMPLE COMPLEXITY ANALYSIS

The analysis given in the previous section gives an exact character-
ization of when dictionary learning is identifiable using the proposed
formulation (1) with a matrix volume identification criterion. The
analysis is inspired by the line of work from nonnegative matrix
factorization and simplicial component analysis [9], [11], [13] using
geometric interpretations, but with the introduction of cellular hulls in
the complex domain, the geometric interpretation becomes harder to vi-
sualize. Nevertheless, there is a simple algebraic representation: cell(g)
is sufficiently scattered in the complex hypercube if the solution set of
the following optimization problem is {ae; | la|=1,j=1,...,k}:

maximize ||w||2
w B )
subject to ||S wl|; < 1.
Solving (5) exactly is NP-hard. In this section, we assume that the
sparse coefficient matrix § is generated from a probabilistic generative
model and show that it would satisfy guarantee identifiability with high
probability, provided that the number of data points n is O(k log k).
What differs from the previous work [7] as well as several earlier
work on local identifiability is that here we consider a much broader
class of generative model called Bernoulli-Subexponential model as
introduced here.

Assumption 2 (Bernoulli-Subexponential model). The matrix S €
RKX1 or CK*7 i5 generated from a Bernoulli-Subexponential model
with parameter p € (0, 1), denoted as § ~ BE(p), if its elements are
iid. with S;j = b;;g;j, where b;; € {0, 1} are i.i.d. Bernoulli random
variables with Pr[b;; = 1] = p (thus Pr[b;; =0] = 1 -p) and g;; are
i.i.d. random variables drawn from a subexponential distribution with
subexponential norm v.

First let us review the definition of subexponential distributions. As
the name suggests, a random variable is called subexponential if its tail
distribution can be upperbounded by an exponential function. There
are several equivalent characterizations of subexponential distributions
[8]. One of the more explicit definitions, which involves the notion
of subexponential norms in Assumption 2, is as follows:

Definition 2 (Subexponential random variables). A random variable
Z € R or C is called a sub-exponential random variable if the moment-
generating function of |Z| satisfies E[exp(]Z|/t)] < 2 for some ¢ > 0.
The smallest ¢ that satisfies such inequality is called the subexponential
norm of Z, denoted as v in Assumption 2, i.e.,

v =inf{t > 0: E[exp(|Z]|/1)] < 2}.

A wide variety of random variables can be categorized as subex-
ponential, including not only common ones such as Gaussian and
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bounded, but also heavy-tailed ones such as Laplacian, Cauchy, and
chi. By allowing the nonzero entries of S to be drawn from any
subexponential distribution, we greatly expand the applicability of the
sample complexity analysis given in [7].

One of the nice properties of subexponential random variables is
that sums of independent ones are concentrated around their mean,
as shown in Bernstein’s inequality:

Theorem 2 (Bernstein’s inequality [8]). Let Zi,...,Z, be i.i.d.
subexponential random variables with mean p and subexponential
norm v. Then, for any t > 0, we have

(€ €
< 2exp [—cnmin Ik
v

where ¢ > 0 is an absolute constant.

n

%Zzi—l»l

i=1

Pr > €

We are now ready to present the main theorem about improved
sample complexity for identifiable dictionary learning:

Theorem 3. Suppose S € RKX o Ckxn _is generated from the
Bernoulli-Subexponential model BE(p), and S is obtained by scaling
its rows to have unit €1 norm. Then

Pr [lw] > 1| < 4exp (klog(SN/E) - cn(,u/v)zp(l - p)) ,

(6)
where |1 and v are parameters of the subexponential distribution, and
¢ is an absolute constant (c.f. Theorem 2).

sup
™Sl <1

Proof. We assume that § ~ BE(p), and the first thing we do is
rescaling its rows to have unit £; norms and use it for the problem (5).
To simplify the analysis, we can instead directly maximize ||w/||>
subject to ||[w'S||; < 1, and compare it with the largest £; norm of
the rows of S. The complement of the intended probability can be
bounded as

Pri sup [w||<1f2Pr| sup [w]<anmax|S;| = a],
LS| <1 [ lwTS]l <1 J
with arbitrary choice of a. Conversely,
Pr sup |lw| >1| <Pr sup |lw|l > aUmax||§;.[l) < a
LIlw™8]li <1 lwTS]li <1 Y
<Pr sup |lw]| > a|+Pr{max||S;.|l; <a )
lw's|i <1 J

where the second inequality is obtained from the union bound.

a) Bounding the second term in (7): Let s = (s1,...,5,)
be generated from BG(p), i.e., each s; = b;g; with b; Bernoulli
with probability p and g; subexponential with norm v, we will use
Bernstein’s inequality with Z; = b;|g;|. If E|gi| = p, then E Z; = pp,
and Z; is also subexponential with norm pv. Therefore

> 716}

< 2exp [—cnmin e €
< 2exp 202 by

This puts a bound on the probability that one row of S has bounded
¢; norm. The second term in (7) requires all k rows to be bounded,
which clearly has an even smaller probability, therefore

n

> (Zi-ElZi)

i=1

Prlislly <n(pp—e)] <Pr

2
€ €
Pr(max||S;.|| <a| <2exp|—-cnmin|——, —]]. 8
[j 1811 ] p( (pzvz pv)) ®)

b) Bounding the first term in (7): First we note the following
equivalence:

Pr sup =Pr

lwTs||i <1

lw| > a

®

inf ||STw|; <1/a
llw =1

We are also going to use the following notion of §-cover from convex
geometry [17] that holds for all £, norm balls, but we are only to
instantiate the Euclidean ball:

Lemma 1 (d-cover). A finite 6-cover of the unit sphere in R is a
finite set Cg of points with unit €, norm such that any point on the
unit sphere is within € away from an element in Cg, i.e.

min ||w—-w;|| <8, V|w]| =1.

w;eCys
For 6 € (0,1) there always exists an §-cover Ce¢ with cardinality
ICsl < (3/ 8)k. In the complex case, the € norm essentially treats

the real and imaginary parts separately, therefore the &-cover is
ICsl < (3/6)%

Let Cs = {w;} be an d-cover for the sphere in R¥ or CK. Assume
that we have both the lowerbound

IS w;ll; > B, Yw; € Cs

and the upperbound

IS"l = sup [IS"wll; < 7.
lwli <1
Then
IS"wlly > [IS"w; i - I$"(w - w;)ll;
> B - |I8"1llw — w;lly
> - |I$"l1llw - wil|Vk > g — yoVk.
Therefore

inf |IS"w|, > g - yéVk.

lwil<1
As a result, we have

Pr[ inf |IS"w|, < B -y6Vk
llw] <1

< > Pr(iIs"will < ] +Pr[IIs"Ih > v],

w;€Cs

(10)

where Cgs is a d-cover of the unit sphere with cardinality |Cs| <
(3/6)% in R¥ or |Cs| < (3/6)% in Ck.

The bound to the first term in (10) is almost identical to (7).
Dropping the subscript of w;, we write

IS"wll, = Z Zbijgijwj = ZZi-

n |k n
i=1|j=1 i=1

Each Z; is the absolute value of the weighted sum of k subexponentials

with norm pv, so it is also subexponential with norm less than pv,
Denote pyy = E[Z;], then

n

>z -Elz))| > ne]
i=1

2

€ €
<2 - in|——=,—|]. (11
< exp( cnmln(pzv2 pv)) (11)

To bound ||S"||{, we recall that this is the £; induced norm for
matrix S", which is shown to be the maximum of the ¢; norms of

Pr[|IS"wll; < n(pw —€)] < Pr
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the columns of $". This means we can use similar arguments used
in (8) (but applied to the other direction) to have

Pr (|87l > n(pu+e€)] =Pr

mj@lXIISj,;Ill > n(pp + €)
<Pr[8):lli > n(pu+e)|

2 (Zi~Elzi])| > ne]
i=1

< 2exp (—cnmin [—Es, € (12)
< 2exp o))

<Pr

where we pick an arbitrary j € [k] in the second line since this event
implies that the maximum ¢; norm of the rows are lowerbounded.
Combining (11), (11), and (12) with 8 = n(uw —¢€), vy = n(pu+e€),
and
_ P (pw - &) (pp-e€) -1
n2(pu+e)(pu—eVk

which satisfies 0 < 6 < 1 for small enough €, then we have

Pr [” irlllf_l ISTwll; < 1/(n(pu - 6))}
< ((3/8)% + 2 exp | —cnmin & e (13)
< p o))

Combining (13) and (8) with & = n(pu — €) into (7) gives us

Pr sup  |lw]|l > 1 (14)
w8l <1
< Pr[ inf ||S"w]||; <1/a|+Pr max [|S;.[l; < a]
llwll=1 J
k 2
3
SZ((E) +2) exp (—cnmin (#,piv)) (15)

For any 0 < € < pu we have § > 1/ Vk; if we further require
€2/p%v? < €/pv, ie. € < pv, then (14) becomes

k 2
Pr sup  lw| >1| <2 ((3\@) + 2) exp (—CZEZ)
llwH§]l <1 p=v
k cne?
< 4 (3\/%) exp (—W)

< 4exp (k log(3\/E) - cn(y/v)zp(l - p)) .

]

Theorem 3 shows that if § is generated from a Bernoulli-
Subexponential model, then the probability that it does not satisty the
sufficiently scattered condition can be upperbounded by (6), which
approaches zero at an exponential rate as n > k log(2Vk)/ p(1—p).
As a result, we have the following corollary that directly bounds the
probability that such a Bernoulli-Subexponential S can be uniquely
identified via complex dictionary learning.

Corollary 1. Consider the generative model X = AySy, where Ay €
CkXk s the groundtruth dictionary and S is the groundtruth sparse
coefficients. If rank(Ayp) = k and the matrix Sy € ckxn g generated
from the Bernoulli-Subexponential model BE(p), then (Ay, Sy) are

globally identifiable via optimizing (1) with probability at least

1 —4exp (klog(%@) - cn(p/v)zp(l - p)) .
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Fig. 1. Groundtruth Sy, is generated from a Bernoulli-Laplacian model. The
probability of exactly recovering the dictionary for various sample size n and
sparsity p (probability of nonzeros in Sy). The dictionary size is fixed with
k =20.

IV. EXPERIMENTS

We justify the improved sample complexity analysis of identifiable
dictionary learning in the following numerical experiment conducted
in MATLAB. The algorithm to approximately solve formulation
(1) is the L-ADMM algorithm proposed in [7]. Different from the
simulations done in [7], the groundtruth dictionary Sy is generated
from a Bernoulli-Laplacian model; the Laplacian distribution has
a much heavier tail distribution compared to Gaussian, but is still
in the category of subexponential distributions, and we demonstrate
that similar identifiability results still hold here, as confirmed by
Theorem 3.

We fix the dictionary size k = 20, and change the sample
size n from 100 to 1000 and the probability p in the Bernoulli-
Subexponential model from 0.1 to 0.9. To ensure definitively that the
dictionary is recovered, we will normalize the column and use the
Hungarian algorithm [18] to find the best column matching, and then
calculate the estimation error. We declare success if the estimation error
is smaller than 1e-5. In each setting the experiments are repeated 10
times and the percentage of exact recovery are recorded. The results
are shown in Figure 1, which agrees with the bound in Theorem 3.

V. CONCLUSION

In this work we greatly improve the identifiability result of complete
dictionary learning in [7] in two ways. First, the result is generalized
to the complex domain, while [7] was only shown in the real domain.
Second, we show that the same sample complexity analysis could be
extended to a wider class of generative model in which the nonzeros
of the sparse coefficients can be drawn from any subexponential
distributions, as opposed to only Gaussian models in the previous work.
We demonstrate the recovery performance in Monte-Carlo simulation
where the nonzeros of the sparse coefficients are drawn from the
Laplacian distributions, and the results show that the identifiability
agrees with the developed theory.
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