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Abstract—It has been recently shown that dictionary learning is
identifiable with a complete dictionary, with relatively loose assumptions

that the dictionary is invertible and that a geometric body obtained from

the sparse coefficient matrix is sufficiently scattered in the hypercube.

In addition, if the sparse coefficients are generated from the Bernoulli-

Gaussian model, then the number of samples required to guarantee

identifiability is $ (9 log(9 ) ) . In this paper, we further improve the

identifiability results in two-folds. First, we extend the deterministic

identifiability results from the real domain in the previous work to the

complex domain, hence significantly expand its applications. Second,

we consider the generative model for the sparse coefficients from the

more specific (also widely adopted) Bernoulli-Gaussian to a much wider

class where the nonzero entries can be drawn from any subexponential

distributions, and show that the same sample complexity results still holds.

The recovery performance is confirmed in a Monte-Carlo simulation

where the sparse coefficients are drawn from Bernoulli-Laplacian model.

Index Terms—dictionary learning, sufficiently scattered, Bernoulli-

subexponential.

I. INTRODUCTION

Dictionary learning (DL) amounts to factor a data matrix as ^ = GY

where Y is sparse [1]. Treating ^ ∈ R9×< or C9×< as a collection

of data samples as its columns, this factorization means that each

sample is a sparse combination of the columns of G, or in other

words atoms of the dictionary. Unlike the task of compressive sensing

or sparse vector recovery, in which case the dictionary matrix G is

given, dictionary learning tries to find both G and Y , therefore the

problem is a lot more challenging. Depending on the shape of the

dictionary matrix G, we may seek to find a complete dictionary if G

is square or an overcomplete dictionary if G is wide. In this paper

we focus on complete dictionary learning, therefore G ∈ R9×9 and

Y ∈ R9×< (or C9×9 and C9×< , respectively).

Identifiability of dictionary learning has been an open question ever

since the problem was posed. As an instance of matrix factorization,

inherent ambiguities of permutation and scaling of the columns of G

(and in turn same permutation and counter-scaling of the rows of Y )

are unavoidable and inconsequential in practice, and the factorization

is essentially unique or identifiable if all admissible factorization are

permutation and scaling of each other. Earlier works focus on directly

enforcing sparsity constraints on Y , which show that over-complete

DL is identifiable if < > $ ((9 + 1)
(9
A

)
) [2], [3] and complete DL

is identifiable with $ (93/(9 − A )2) samples. Notice that these work

require all columns of Y to be strictly A -sparse—no dense outliers

is allowed for the analysis to work. More recently, there have been

work on identifiability of DL with �1 norm as the regularization to

promote sparsity, although they are only able to show identifiability

in a local region [4]–[6] if the dictionary G is incoherent and the

sparse coefficients Y follows some sparse generative model such as

the Bernoulli-Gaussian model. The benefit is not only that algorithm
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design is easier with �1 norm regularization, but also that the number

of samples < required is usually $ (9 log9 ), while a few outlying

dense columns of Y are allowed.

The best known result regarding the identifiability of DL is in [7],

which shows that complete dictionary learning is globally identifiable

if: 1) the complete dictionary G ∈ R9×9 is invertible (hence no

incoherence is necessary for complete dictionaries), and 2) the sparse

coefficients Y ∈ R9×< satisfies some sufficiently scattered condition,

which we will elaborate in the next section. It was also shown that

if Y is generated from the Bernoulli-Gaussian model, it will satisfy

the sufficiently scattered condition with overwhelming probability

as long as the sample size < is larger than $ (9 log(9 )), which

confirms the sample complexity analysis in [4]–[6] but identifiability

is guaranteed globally, not just in a local region near the groundtruth

factors. This new framework for identifiable DL is based on a new

problem formulation by constraining the �1 norm of each row of Y

while minimizing the matrix volume of the dictionary, i.e., | detG |.
In this paper, we aim at further improving the identifiability result

for complete dictionary learning. First, noticing that all the results in

[7] applies only to real dictionary learning, we extend the identifiability

result from the real case to the complex case, i.e., allowing both the

dictionary matrix G and the sparse coefficients matrix Y to have

complex values. A complex matrix Y is sparse if a significant portion

of its values are equal to zero, but for its nonzero values we do

not care if their real or imaginary parts are zero—they are simply

treated as nonzeros. Second and more importantly, we extend the

sample analyses to a much wider class of generative models for Y

called Bernoulli-subexponential models; compared to the Bernoulli-

Gaussian model that is widely adopted in DL research, we now

allow the nonzero values of Y to be drawn from any subexponential

distributions, which includes not only Gaussian but also a large variety

of distributions such as Laplacian, Cauchy, chi, and any bounded ones

[8].

II. IDENTIFIABILITY OF DICTIONARY LEARNING

We denote the groundtruth factorization of the DL model as ^ =

GpY p. Suppose the rows of ^ are linearly independent, which is a

valid assumption since 9 > <, then the row space of ^ is the same

as that of Y p. Consider another factorization ^ = GY , then the same

rule applies, which means that there exists an invertible matrix ]

such that Y =]Y p. Furthermore, both Y and Y p are right-invertible,

and they are related as Y
 
= Y

 
p
]

−1; multiplying it from the right

on both sides of GY = GpY p shows that G = Gp]
−1. This shows

that matrix factorization in general is not identifiable without any

structural constraints. On the other hand, people have discovered a

plethora of structural constraints that do guarantee identifiability, i.e.,

restricting the choice of ] to be the product of a permutation matrix
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and a diagonal matrix, such as nonnegative [9]–[11], simplicial [12],

[13], or bounded [14]–[16].

A breakthrough result regarding identifiability of DL has been

shown in [7] using the following formulation:

minimize
G,Y

| detG |

subject to ^ = GY , ∥Y 8 ,:∥1 f 1, 8 = 1, . . . , 9 ,
(1)

In the remainder of this section, we present the identifiability result

in the complex domain, although the original result in [7] was in

the real domain, and show that similar identifiability result can be

obtained in a much more general complex case.

First we introduce some definitions.

Definition 1 (Cellular hull). The cellular hull of a finite set of vectors

{s1, . . . , s< }, stacked as the columns of the matrix Y , is

cell(Y ) =
{
Y)

���� ∥) ∥∞ f 1

}
.

Notice that the definition works in both real and complex cases: in

the real domain, it restricts the absolute values of the coefficients \7 ,

and in the complex domain, it restricts the magnitudes of the complex

coefficients \7 .

Assumption 1 (Sufficiently scattered in the complex hypercube). Let

B denote the complex Euclidean ball B = {x ∈ C9 | ∥x ∥ f 1} and

C denote the complex hypercube C = {x ∈ C9 | ∥x ∥∞ f 1}. A set

S is sufficiently scattered in the complex hypercube if:

1) B ¦ S ¦ C;

2) mB ∩ mS = {Ue 7 | |U | = 1, 7 = 1, . . . , 9 }, where m denotes the

boundary of the set, and e1, . . . , e9 are the 9 unit vectors in R9 .

Our main result on the identifiability of complex DL is presented

as follows:

Theorem 1. Consider the complex DL model ^ = GpY p, where

Gp ∈ C3×9 is the groundtruth mixing matrix and Y p is the groundtruth

sparse coefficient matrix. Let Ỹ p denote the matrix obtained from

rescaling the rows of Y p to have unit �1 norms. If rank(Gp) = 9

and cell(Ỹ p) is sufficiently scattered in the complex hypercube as in

Assumption 1, then for any solution of (1), denoted as (G★,Y★), there

exist a permutation matrix � and a complex diagonal matrix J such

that

Gp = G★J� and Y p = �
¦
J

−1
Y★.

In other words, complex DL is identifiable if the groundtruth Gp has

full column rank and the cellular hull of Y p is sufficiently scattered.

Proof. Let Ỹ p denote the matrix obtained from rescaling the rows of

Y p to have unit �1 norms, and counter-scale the columns of Gp to

obtain G̃p. Since both (G̃p, Ỹ p) and (G★,Y★) are feasible for (1), we

immediately have that | detG★ | f | det G̃p |. Define ] = G
−1
★ G̃p, then

| det] | = | detG−1
★ G̃p | = | det G̃p |/| detG★ | g 1. (2)

On the other hand, since ] Ỹ p = G
−1
★ G̃pỸ p = Y★, we also have that

∥ [] Ỹ p] 8 ,:∥ f 1. Let w ¢£ be any row of ] , then ∥w ¢£
Ỹ p∥1 f 1. This

is equivalent to a set of linear inequalities

w
¢£
Ỹ p) f 1, ∀∥) ∥∞ f 1.

Now we invoke the assumption that cell(Ỹ p) is sufficiently scattered,

then for any v with unit norm ∥v ∥ = 1, there must exist ) with

∥) ∥∞ f 1 such that v = Ỹ p) . Therefore

��w ¢£
v
��
=

���w ¢£
Ỹ p)

��� f 1. (3)

Since (3) holds for every v with unit norm, we must have ∥w ∥ f 1

as well (otherwise we would let v = w/∥w ∥ and have that |w ¢£
v | =

∥w ∥ > 1, contradicting (3)), which means every row of ] has norm

no greater than 1. This gives us

| det] | f
9∏

8=1

∥w 8 ∥ f 1, (4)

where the first inequality is due to the Hadamard inequality. Combining

(2) and (4) shows that (Gp,Y p) or any of their column permutation

and unimodular scaling is in the set of optimal solutions of (1). The

second requirement of Assumption 1 further ensures that they are

the only possible solutions. This shows the identifiability of complete

dictionary learning in the complex domain. □

III. IMPROVED SAMPLE COMPLEXITY ANALYSIS

The analysis given in the previous section gives an exact character-

ization of when dictionary learning is identifiable using the proposed

formulation (1) with a matrix volume identification criterion. The

analysis is inspired by the line of work from nonnegative matrix

factorization and simplicial component analysis [9], [11], [13] using

geometric interpretations, but with the introduction of cellular hulls in

the complex domain, the geometric interpretation becomes harder to vi-

sualize. Nevertheless, there is a simple algebraic representation: cell(Ỹ )
is sufficiently scattered in the complex hypercube if the solution set of

the following optimization problem is {Ue 8 | |U | = 1, 8 = 1, . . . , 9 }:

maximize
w

∥w ∥2

subject to ∥Ỹ¢£w ∥1 f 1.
(5)

Solving (5) exactly is NP-hard. In this section, we assume that the

sparse coefficient matrix Y is generated from a probabilistic generative

model and show that it would satisfy guarantee identifiability with high

probability, provided that the number of data points < is $ (9 log9 ).
What differs from the previous work [7] as well as several earlier

work on local identifiability is that here we consider a much broader

class of generative model called Bernoulli-Subexponential model as

introduced here.

Assumption 2 (Bernoulli-Subexponential model). The matrix Y ∈
R9×< or C9×< is generated from a Bernoulli-Subexponential model

with parameter > ∈ (0, 1), denoted as Y ∼ BE(>), if its elements are

i.i.d. with (7 8 = 17 8 67 8 , where 17 8 ∈ {0, 1} are i.i.d. Bernoulli random

variables with Pr[17 8 = 1] = > (thus Pr[17 8 = 0] = 1−>) and 67 8 are

i.i.d. random variables drawn from a subexponential distribution with

subexponential norm a .

First let us review the definition of subexponential distributions. As

the name suggests, a random variable is called subexponential if its tail

distribution can be upperbounded by an exponential function. There

are several equivalent characterizations of subexponential distributions

[8]. One of the more explicit definitions, which involves the notion

of subexponential norms in Assumption 2, is as follows:

Definition 2 (Subexponential random variables). A random variable

/ ∈ R or C is called a sub-exponential random variable if the moment-

generating function of |/ | satisfies E[exp( |/ |/B )] f 2 for some B > 0.

The smallest B that satisfies such inequality is called the subexponential

norm of / , denoted as a in Assumption 2, i.e.,

a = inf{B > 0 : E[exp( |/ |/B )] f 2}.

A wide variety of random variables can be categorized as subex-

ponential, including not only common ones such as Gaussian and
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bounded, but also heavy-tailed ones such as Laplacian, Cauchy, and

chi. By allowing the nonzero entries of Y to be drawn from any

subexponential distribution, we greatly expand the applicability of the

sample complexity analysis given in [7].

One of the nice properties of subexponential random variables is

that sums of independent ones are concentrated around their mean,

as shown in Bernstein’s inequality:

Theorem 2 (Bernstein’s inequality [8]). Let /1, . . . , /< be i.i.d.

subexponential random variables with mean ` and subexponential

norm a . Then, for any B > 0, we have

Pr

[�����
1

<

<∑

7=1

/7 − `

����� > n

]
f 2 exp

(
−2< min

(
n2

a2
,
n

a

))
,

where 2 > 0 is an absolute constant.

We are now ready to present the main theorem about improved

sample complexity for identifiable dictionary learning:

Theorem 3. Suppose Y ∈ R9×< or C9×< is generated from the

Bernoulli-Subexponential model BE(>), and Ỹ is obtained by scaling

its rows to have unit �1 norm. Then

Pr

[
sup

∥w¦Ỹ ∥1f1

∥w ∥ > 1

]
f 4 exp

(
9 log(3

√
9 ) − 2< (`/a)2> (1 − >)

)
,

(6)

where ` and a are parameters of the subexponential distribution, and

2 is an absolute constant (c.f. Theorem 2).

Proof. We assume that Y ∼ BE(>), and the first thing we do is

rescaling its rows to have unit �1 norms and use it for the problem (5).

To simplify the analysis, we can instead directly maximize ∥w ∥2

subject to ∥w¦
Y ∥1 f 1, and compare it with the largest �1 norm of

the rows of Y . The complement of the intended probability can be

bounded as

Pr

[
sup

∥w¦Ỹ ∥1f1

∥w ∥ f 1

]
g Pr

[
sup

∥w¦Y ∥1f1

∥w ∥ f U ∩ max
8

∥Y 8 ,:∥1 g U

]
,

with arbitrary choice of U. Conversely,

Pr

[
sup

∥w¦Ỹ ∥1f1

∥w ∥ > 1

]
f Pr

[
sup

∥w¦Y ∥1f1

∥w ∥ > U ∪ max
8

∥Y 8 ,:∥1 < U

]

f Pr

[
sup

∥w¦Y ∥1f1

∥w ∥ > U

]
+ Pr

[
max
8

∥Y 8 ,:∥1 < U

]
(7)

where the second inequality is obtained from the union bound.

a) Bounding the second term in (7): Let s = (A1, . . . , A< )
be generated from BG(>), i.e., each A7 = 17 67 with 17 Bernoulli

with probability > and 67 subexponential with norm a , we will use

Bernstein’s inequality with /7 = 17 |67 |. If E |67 | = `, then E/7 = >`,

and /7 is also subexponential with norm >a . Therefore

Pr [∥s ∥1 < < (>` − n)] f Pr

[�����

<∑

7=1

(/7 − E[/7 ])
����� > <n

]

f 2 exp

(
−2< min

(
n2

>2a2
,
n

>a

))

This puts a bound on the probability that one row of Y has bounded

�1 norm. The second term in (7) requires all 9 rows to be bounded,

which clearly has an even smaller probability, therefore

Pr

[
max
8

∥Y 8 ,:∥1 < U

]
f 2 exp

(
−2< min

(
n2

>2a2
,
n

>a

))
. (8)

b) Bounding the first term in (7): First we note the following

equivalence:

Pr

[
sup

∥w¦Y ∥1f1

∥w ∥ > U

]
= Pr

[
inf

∥w ∥=1
∥Y¦w ∥1 < 1/U

]
(9)

We are also going to use the following notion of X -cover from convex

geometry [17] that holds for all �> norm balls, but we are only to

instantiate the Euclidean ball:

Lemma 1 (X -cover). A finite X -cover of the unit sphere in R9 is a

finite set CX of points with unit �2 norm such that any point on the

unit sphere is within n away from an element in CX , i.e.

min
w 7 ∈CX

∥w −w 7 ∥ < X , ∀∥w ∥ = 1.

For X ∈ (0, 1) there always exists an X -cover Cn with cardinality

|CX | < (3/X )9 . In the complex case, the �2 norm essentially treats

the real and imaginary parts separately, therefore the X -cover is

|CX | < (3/X )29

Let CX = {w 7 } be an X -cover for the sphere in R9 or C9 . Assume

that we have both the lowerbound

∥Y¢£w 7 ∥1 g V,∀w 7 ∈ CX
and the upperbound

∥Y¢£∥1 = sup
∥w ∥1f1

∥Y¢£w ∥1 f W .

Then

∥Y¢£w ∥1 g ∥Y¢£w 7 ∥1 − ∥Y¢£ (w −w 7 )∥1

g V − ∥Y¢£∥1∥w −w 7 ∥1

g V − ∥Y¢£∥1∥w −w 7 ∥
√
9 g V −WX

√
9.

Therefore

inf
∥w ∥f1

∥Y¢£w ∥1 g V −WX
√
9 .

As a result, we have

Pr

[
inf

∥w ∥f1
∥Y¢£w ∥1 < V −WX

√
9

]

f
∑

w 7 ∈CX
Pr

[
∥Y¢£w 7 ∥1 < V

]
+ Pr

[
∥Y¢£∥1 > W

]
, (10)

where CX is a X -cover of the unit sphere with cardinality |CX | <
(3/X )9 in R9 or |CX | < (3/X )29 in C9 .

The bound to the first term in (10) is almost identical to (7).

Dropping the subscript of w 7 , we write

∥Y¢£w ∥1 =

<∑

7=1

������

9∑

8=1

17 8 67 8E8

������
:=

<∑

7=1

/7 .

Each /7 is the absolute value of the weighted sum of 9 subexponentials

with norm >a , so it is also subexponential with norm less than >a ,

Denote `w = E[/7 ], then

Pr
[
∥Y¢£w ∥1 < < (`w − n)

]
f Pr

[�����

<∑

7=1

(/7 − E[/7 ])
����� > <n

]

f 2 exp

(
−2< min

(
n2

>2a2
,
n

>a

))
. (11)

To bound ∥Y¢£∥1, we recall that this is the �1 induced norm for

matrix Y
¢£, which is shown to be the maximum of the �1 norms of
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the columns of Y¢£. This means we can use similar arguments used

in (8) (but applied to the other direction) to have

Pr
[
∥Y¢£∥1 > < (>` + n)

]
= Pr

[
max
8

∥Y 8 ,:∥1 > < (>` + n)
]

f Pr
[
∥Y 8 ,:∥1 > < (>` + n)

]

f Pr

[�����

<∑

7=1

(/7 − E[/7 ])
����� > <n

]

f 2 exp

(
−2< min

(
n2

>2a2
,
n

>a

))
, (12)

where we pick an arbitrary 8 ∈ [9 ] in the second line since this event

implies that the maximum �1 norm of the rows are lowerbounded.

Combining (11), (11), and (12) with V = < (`w − n), W = < (>`+ n),
and

X =

<2 (`w − n) (>` − n) − 1

<2 (>` + n) (>` − n)
√
9
,

which satisfies 0 < X < 1 for small enough n, then we have

Pr

[
inf

∥w ∥=1
∥Y¦w ∥1 < 1/(< (>` − n))

]

f ((3/X )9 + 1)2 exp

(
−2< min

(
n2

>2a2
,
n

>a

))
. (13)

Combining (13) and (8) with U = < (>` − n) into (7) gives us

Pr

[
sup

∥w ¢£Ỹ ∥1f1

∥w ∥ > 1

]
(14)

f Pr

[
inf

∥w ∥=1
∥Y¢£w ∥1 < 1/U

]
+ Pr

[
max
8

∥Y 8 ,:∥1 < U

]

f 2

((
3

X

)9
+ 2

)
exp

(
−2< min

(
n2

>2a2
,
n

>a

))
. (15)

For any 0 < n < >` we have X > 1/
√
9 ; if we further require

n2/>2a2 < n/>a , i.e. n < >a , then (14) becomes

Pr

[
sup

∥w ¢£Ỹ ∥1f1

∥w ∥ > 1

]
f 2

((
3
√
9
)9

+ 2

)
exp

(
−2<n

2

>2a2

)

f 4
(
3
√
9
)9

exp

(
−2<n

2

>2a2

)

f 4 exp
(
9 log(3

√
9 ) − 2< (`/a)2> (1 − >)

)
.

□

Theorem 3 shows that if Y is generated from a Bernoulli-

Subexponential model, then the probability that it does not satisfy the

sufficiently scattered condition can be upperbounded by (6), which

approaches zero at an exponential rate as < k 9 log(2
√
9 )/> (1 − >).

As a result, we have the following corollary that directly bounds the

probability that such a Bernoulli-Subexponential Y can be uniquely

identified via complex dictionary learning.

Corollary 1. Consider the generative model ^ = GpY p, where Gp ∈
C9×9 is the groundtruth dictionary and Y is the groundtruth sparse

coefficients. If rank(Gp) = 9 and the matrix Y p ∈ C9×< is generated

from the Bernoulli-Subexponential model BE(>), then (Gp,Y p) are

globally identifiable via optimizing (1) with probability at least

1 − 4 exp
(
9 log(3

√
9 ) − 2< (`/a)2> (1 − >)

)
.
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Fig. 1. Groundtruth Y p is generated from a Bernoulli-Laplacian model. The
probability of exactly recovering the dictionary for various sample size < and
sparsity > (probability of nonzeros in Y p). The dictionary size is fixed with
9 = 20.

IV. EXPERIMENTS

We justify the improved sample complexity analysis of identifiable

dictionary learning in the following numerical experiment conducted

in MATLAB. The algorithm to approximately solve formulation

(1) is the L-ADMM algorithm proposed in [7]. Different from the

simulations done in [7], the groundtruth dictionary Y p is generated

from a Bernoulli-Laplacian model; the Laplacian distribution has

a much heavier tail distribution compared to Gaussian, but is still

in the category of subexponential distributions, and we demonstrate

that similar identifiability results still hold here, as confirmed by

Theorem 3.

We fix the dictionary size 9 = 20, and change the sample

size < from 100 to 1000 and the probability > in the Bernoulli-

Subexponential model from 0.1 to 0.9. To ensure definitively that the

dictionary is recovered, we will normalize the column and use the

Hungarian algorithm [18] to find the best column matching, and then

calculate the estimation error. We declare success if the estimation error

is smaller than 1e-5. In each setting the experiments are repeated 10

times and the percentage of exact recovery are recorded. The results

are shown in Figure 1, which agrees with the bound in Theorem 3.

V. CONCLUSION

In this work we greatly improve the identifiability result of complete

dictionary learning in [7] in two ways. First, the result is generalized

to the complex domain, while [7] was only shown in the real domain.

Second, we show that the same sample complexity analysis could be

extended to a wider class of generative model in which the nonzeros

of the sparse coefficients can be drawn from any subexponential

distributions, as opposed to only Gaussian models in the previous work.

We demonstrate the recovery performance in Monte-Carlo simulation

where the nonzeros of the sparse coefficients are drawn from the

Laplacian distributions, and the results show that the identifiability

agrees with the developed theory.
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