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Abstract—In this paper, we propose to solve simplicial and
nonnegative component analysis problems using the Frank-Wolfe
algorithm. Simplicial component analysis (SCA) is a blind source
separation technique that is widely used in hyperspectral unmixing,
which has an interesting geometric interpretation of finding the
minimum volume enclosing simplex of a set of data points. A highly
related but different problem is called nonnegative component
analysis (NCA), which is a variant of the celebrated nonnegative
matrix factorization. Both problems enjoy amiable identifiability
guarantees under a mild assumption that the factor matrix with
simplicial and nonnegative structures satisfies the sufficiently
scattered condition in the probability simplex or the nonnegative
orthant, respectively. Algorithm design for either formulations
remains to be challenging. In this paper we propose to use the
Frank-Wolfe algorithm to solve it. After a brief review of the
Frank-Wolfe algorithm, we first provide an improved convergence
analysis of it by employing the backtracking line search strategy
for choosing step sizes, and show that for convex problems it
converges to a global optimum at a linear rate if the step sizes
can be lowerbounded. Notice that no strong convexity is necessary
to achieve such linear rate, which is somewhat surprising. Despite
the improved convergence rate analysis, the proof is surprisingly
succinct and easy to understand. Then we show how it can be
applied to SCA and NCA with similar implementations. We
conclude the paper by showing its performance in numerical
experiments comparing with some baseline algorithms.

Index Terms—Frank-Wolfe, minimum volume, nonnegative
matrix factorization, simplicial component analysis

I. INTRODUCTION

Nonnegative matrix factorization (NMF) has been a powerful
tool for signal and data analytics [1], particularly thanks to
its identifiability property under the mild sufficiently scattered
condition [2]. If identifiability is the main concern, people have
discovered more principled formulation to help facilitate it,
using a so-called minimum volume criterion. The idea stems
from hyperspectral unmixing, which takes a similar matrix
factorization model X = AS, but assumes that S is not only
elementwise nonnegative but also column sum to one, meaning
that each column of X, representing pixels of the hyperspectral
image, is a convex combination of the columns of A. To promote
identifiability, the following formulation is proposed [3], [4],
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Fig. 1. A geometric interpretation of (1) of finding the minimum volume
enclosing simplex for a set of points.

which we call simplicial component analysis (SCA) in this
paper:
minimize det(A'A+11")
AS (1)
subject to X =AS, §>0, I'S=1".

Formulation (1) has a very interesting geometric interpretation.
Since each column of S is a nonnegative vector that sums to
one, it means that every column of X is a convex combination
of the columns of A; in other words, the convex hull of the
columns of A is a polytope that encloses the set of points
defined by the columns of X. Furthermore, if columns of A
are affinely independent, or equivalently if the columns of the

following matrix
~ rr
A= [l]

are linearly independent, then the polytope is called a simplex.
When A is a square matrix, then the volume of the simplex
is proportional to |detAl; if A is tall then we can calculate
the (degenerate) volume detA A, which equals to the objective
function of (1). As a result, formulation (1) has a nice
geometric interpretation of finding the minimum volume
enclosing simplex (MVES) of a set of points. Figure 1 shows
an illustration of MVES.

In the context of matrix factorization, however, the column
sum to one constraint in (1) is somewhat unnatural. Due to
scaling ambiguity, it is more natural to constraint, without
loss of generality, that the rows of § are bounded, leading to
the following formulation that is much more related to the
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celebrated NMF. Since it is not the same as the most common
formulation for NMF, and that the factor A is not required
to be strictly nonnegative, we call it nonnegative component
analysis (NCA) in this paper:
minimize det(A'A)
AS (2)
subjectto X =AS, §>0, SI=1.
As we can see, this formulation not only imposes a more natural
row-sum-to-one constraint on S, but also involves a simpler
objective function to optimize. Nevertheless, it is evident that
formulations (1) and (2) show great similarities, and one would
like to design a unified algorithmic framework to solve both
of them.

One of the biggest benefit of using either formulation (1) or
(2) in practice is their potential of identifying the correct latent
factors under mild conditions. In a nutshell, if the groundtruth
factor § satisfies a so-called sufficiently scattered condition
in either the probability simplex for (1) or in the nonnegative
orthant for (2) and A has independent columns, then the
solutions of (1) or (2) must be the groundtruth S up to row
permutation and/or positive scaling [5]-[8]. Pertinent formula-
tions have found numerous applications in machine learning
and signal processing, including hyperspectral unmixing [9],
topic modeling [10], hidden Markov models identification [11],
community detection [12], and crowdsourcing [13], to name
just a few.

The main goal of this paper is to design a unified algorithmic
framework for solving both (1) and (2). Before this work,
people have developed algorithms based on block coordinate
descent (BCD) [10], [14], and more specifically the augmented
Lagrangian method for SCA [15]. One of the main drawbacks
of BCD is that it only works when A is square, so one needs to
employ an additional step of dimensionality reduction for the
over-determined case. Furthermore, BCD works the best if the
constraints are separable over the blocks, which is true for NCA
but not SCA, despite their similar formulations. In this paper,
we propose a more unified algorithmic framework based on the
Frank-Wolfe algorithm. We introduce the Frank-Wolfe (FW)
algorithm in Section II, with a side contribution of showing an
improved convergence analysis with backtracking line search
for convex problems. Then we describe how to apply FW for
SCA and NCA in Section III. We will see how FW provides a
more unified treatment to the two similar-looking but different
formulations (1) and (2). Numerical results show improved
performance on either of the formulations.

II. THE FRANK-WOLFE ALGORITHM

The Frank-Wolfe (FW) algorithm [16], also known as the
conditional gradient method for constrained optimization [17],
iteratively minimizes a linear objective, defined by the gradient
at the current iterate, under the same constraint set to determine
the search direction and obtain the next iterate via some line
search approach along the search direction. More specifically,
consider the following generic optimization problem

3)

minimize f(w) subjectto w € C,
w

where C is a convex constraint set. The Frank-Wolfe algorithm
takes the following iterative form:

8:
Wiy

Notice that the line search step is open for the user to choose.
Some common choices include constant, diminishing, exact,
and Armijo, also known as back-tracking [18]. In this paper
we focus on the back-tracking line search strategy, which seeks
for a step size y; such that the following inequality holds:

fw:+1.8) < f(w)+pyVf(w)'g,

where 0 < B < 1 is some user-specified parameter.

FW has been a popular algorithm for many machine learning
applications [19], but our understanding of its convergence
behavior has been surprisingly limited. The seminal work [19]
showed that for convex problems it converges to a global
minimum at a sublinear rate when using a diminishing step
size strategy. In this paper, we provide a surprisingly simple
proof to show that if the backtracking line search is adopted,
then the convergence can be easily improved to a linear rate
under mild conditions.

— argming,+gec Vf(w,)'g
— w; +7Y:8,; via line search '

“

&)

Proposition 1. Suppose f is a convex function and C is a
convex set. Let wy denote an optimal solution of (3), then the
optimality gap at iteration t of the Frank-Wolfe algorithm (4)
with back-tracking line search satisfies:

t—1
Fw) = fw) < (f(wo) = fw)) [ [ -pro). (6)
s=0

Proof. Since the back-tracking line search is employed, we
have

fwy) < fwi 1)+ pVf(we)(w —wiy), (D)

according to (5). By definition of the Frank-Wolfe search
direction, we have

Vi(we-1)'g,y < Vf(we) (w—wiy)

for all w € C. Instantiating w = w, on the right-hand-side, and
recognizing that g,_; = (w; —w;_1)/y: on the left-hand-side,
this leads to

%Vf(wt_lf(wl ~wiop) < V(i) (we —wip). 8)

Combining (8) with (7) gives
fwy) < f(wi-1) + By Vi(we—)(wy —wi1).  (9)

Now if f is convex and differentiable, then we also have

fwy) = f(w, 1) +Vf(w, ) (we —w,y).  (10)
Combining (10) with (9) gives us

f(w) < f(wi1) + By (f(wy) = f(wi)).

Subtracting f(w,) from both sides and rearrange, we get

fw) = f(wye) < (1= By-1) (f(wemr = f(wy))). (11
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Repeating this inequality from iteration O to ¢ then shows
(6). O

The bound in (6) of Proposition 1 shows that the optimality
gap at iteration ¢ is a fraction of the initial optimality at
initialization, and the factor involves all the past step sizes
Yor---»Ye—1- Since 0 < B < 1 and 0 < y; < 1 for all s, that
factor is in (0, 1) for sure. If we further have that the step sizes
have a common lowerbound y < y; for all ¢, then we easily
obtain a linear convergence rate

fwy) = fwy) < (1= (f(wo) = f(wy)).

This can be easily achieve by, for example, further assume
that gradients of f are Lipschitz continuous. Proposition 1 also
shows that the best rate is potentially achieved with y; = 1 for
all ¢, which is still a linear rate (1 — 8)".

Theorem 1. Suppose f is a convex function and C is a convex
set. Also assume there exists a constant L such that ||Vf(w) —
Vf@@)| < L|lw — w|| for all w and Ww. Let w, denote an
optimal solution of (3), then the optimality gap at iteration t of
the Frank-Wolfe algorithm (4) with back-tracking line search
satisfies:

fws) = fw,) < (1-py)' (f(wo) - f(wy)),
where v < v; for all t.

(12)

We skip the proof due to space limitation.

III. FRANK-WOLFE FOR SCA AND NCA

Before we apply FW for SCA or NCA, we first reformulate
the problems by eliminating the § variable. Let us start with
the relatively simpler formulation (2). Let A have independent
columns, then it has a left inverse W, and X = AS is equivalent
to § = WX. We can therefore eliminate the variable § and
apply a change of variable from A to W as

min‘i/{,nize —logdetWw™

13)
subject to WX >0, WXI=1.

This is a nonconvex optimization problem but subject to convex

(linear) constraints. _

As for formulation 1, recall we defined A by concatenating
an all-one row on top of A, and we can similarly define X by
concatenating an all-one row on top of X to combine the two
equality constraints of (1) into one

X = AS.
If we ingtead treat A as variable,~we need to constrain the first
row of A to be all ones, i.e., eTlA = I". Now assume columns

of A are linearly independent, it has a left inverse W, then
apply a change-of-variable while eliminating S leads to

minimize - logdetWW'
v - (14)
subject to WX >0, I'W =e].

This is again a nonconvex optimization problem but subject to
convex (linear) constraints. From an optimization perspective,

the main difference between (14) and (13) is that the constraints
of (13) separates over the rows of W, while those of (14) are
not. This is the reason why applying block coordinate descent
works much better for (13) than (14).

Both (13) and (14) are easily amendable for applying the
Frank-Wolfe algorithm. For the log-determinant objective, we
have that the gradient is —(W™)". As a result, the Frank-Wolfe
algorithm for (13) or (14) is given in Algorithm 1.

Algorithm 1 Solving (13) or (14) with Frank-Wolfe
initialize W (o)
for £ =0,1,2,... until convergence do
W, =arg mMi/n - Tr(WL)W)
subject to WX >0, WXI =1 if solving (13)
or WX >0, IT'W = e} if solving (14)

y <1
while — log | det(W([) + V1 (Wd - W([)))J >
—log|detW )| + (v/2) TT(W (,, (Wa = W (1))
do
Yy < v/2
end while
Wiy =Wy +y(Wa —W(y,))
end for

Regarding the line search step, we propose to use the
backtracking line search (Armijo rule) [17] to guarantee
sufficient decrease of the objective function. Since the constraint
set of (13) or (14) is convex, as long as W ;) is feasible, then
W ;1) is also feasible since it is a convex combination of
W ;) and W, which are by definition feasible.

Since we are trying to solve nonconvex problems, it is
expected that the performance depends on the initialization.
In our experience, the behavior of the two problems (13) or
(14) are quite different. It is relatively easy to achieve good
performance with NCA (13), as we can simply optimize an
arbitrary linear objective subject to the same constraint as (13)
and use the result as initialization W (). For SCA (14), such
an initialization often fails to achieve good result. We propose
to use the successive projection algorithm (SPA) to initialize
Algorithm 1 when trying to solve SCA.

In terms of complexity, each iteration is dominated by the
linear programming with mk variables if A € R™**_ For the
SCA problem (14), the per-iteration complexity could be as
high as O(m>k?). However, the linear programming to be
solved in the NCA problem (13) is blessed with structures to
be exploited to greatly reduce the complexity. Denote w; as the
ith row of W, then the linear programming in each iteration of
Algorithm 1 is in fact k independent problems, each involving

only one row of W; let f; denote the ith column of WI 0’ then

we should solve the following problem with i = 1,...,k
minimize - fiw;
Wi (15)

subject to wjX >0, wiXI=1

Each of these problems involves m variables, which can be
solved with O(m?) flops. This important observation brings
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Fig. 2. Convergence of Algorithm 1 for the NCA problem (13) on 10 random
trials.

the per-iteration complexity of Algorithm 1 down to O(km?)
when solving the NCA problem (13).

I'V. NUMERICAL VALIDATION

We conclude the paper by providing some numerical
validation to the proposed theoretical analysis. Since SCA
and NCA both guarantee identifiability under the sufficiently
scattered condition, we are going to generate the data matrix
X with a groundtruth latent factorization A;Sy. This way, even
though we are trying to solve a nonconvex problem either (13)
or (14), we know the optimal value is log det A"A, and we can
use it to measure the optimality gap, which ideally would go
to zero if the proposed FW algorithm manages to solve (13)
or (14) to global optimality.

We implement the algorithm in MATLAB and use the built-
in 1inprog function in MATLAB to solve each of the linear
programming sub-problems.

A. Performance on NCA

We fix n = 1000 and m = k = 20. Matrix Ay is simply
generated from i.i.d. standard normal distribution. The Sy
factor is first generated from i.i.d. exponential distribution,
then approximately 50% of entries are randomly selected to be
zeros. It has been empirically observed that such a randomly
generated matrix Sy has a very high probability of satisfying
the sufficiently scattered condition in the nonnegative orthant
[1]. The data matrix X = AySy, and is feed into Algorithm 1
to generate the results. Figure 2 shows the convergence of
Algorithm 1 for the NCA problem (13) on 10 random trials.
As we can see, in all 10 instances a global optimum is attained
within approximately 40 iterations. The surprising effectiveness
is well-worth further investigation.

B. Performance on SCA

We fix n = 1000 and m = k = 20. Matrix Ay is simply
generated from i.i.d. standard normal distribution. The Sy
factor is first generated from i.i.d. exponential distribution, then
approximately 50% of entries are randomly selected to be zeros,

— W E
SISAL
MVES

optimality gap

Fig. 3. Convergence of Algorithm 1 for the SCA problem (14) on 10 random
trials.

and each column of § is rescaled to sum to one. It has been
empirically observed that such a randomly generated matrix
Sy has a very high probability of satisfying the sufficiently
scattered condition in the probability simplex [1]. The data
matrix X = A;Sy, and is feed into Algorithm 1 to generate the
results. Figure 3 shows the convergence of Algorithm 1 for the
SCA problem (14) on 10 random trials. As we can see, 9 out
of 10 instances a global optimum is attained in exactly one
iteration. As we explained before, FW for SCA is initialized
by SPA, which explains why it converges in just one iteration
if it works. On the other hand, it is more likely to converge to
a saddle point in the SCA case.

The proposed FW algorithm is compared with two classical
algorithms for SCA: MVES based on the block coordinate
descent (BCD) algorithm proposed in [14] and the simplex
identification via split augmented Lagrangian (SISAL) method
in [15]. With the problem dimension of this size, MVES is
not performing very well, but SISAL works very well and
converges much faster than FW, since it does not rely on
existing convex optimization solvers.

V. CONCLUSION

In this paper we consider the simplicial and nonnegative
component analysis problems, which are tightly related to
the celebrated nonnegative matrix factorization and many
of its applications such as hyperspectral unmixing, topic
modeling, and community detection. We propose to solve
both problems using a unified algorithmic framework based
on the Frank-Wolfe algorithm. As a side contribution, we
also provide an improved convergence analysis of Frank-
Wolfe with backtracking line search on convex problems,
and show that linear convergence can be easily obtained
if there is a lowerbound on the step sizes obtained from
the backtracking line search. Numerical experiments show
impressive performance of the proposed algorithm.
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