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Abstract

In this work, we investigate stochastic approximation (SA) with Markovian data
and nonlinear updates under constant stepsize ↵ > 0. Existing work has primarily
focused on either i.i.d. data or linear update rules. We take a new perspective and
carefully examine the simultaneous presence of Markovian dependency of data and
nonlinear update rules, delineating how the interplay between these two structures
leads to complications that are not captured by prior techniques. By leveraging the
smoothness and recurrence properties of the SA updates, we develop a fine-grained
analysis of the correlation between the SA iterates ✓k and Markovian data xk. This
enables us to overcome the obstacles in existing analysis and establish for the
first time the weak convergence of the joint process (xk, ✓k)k�0. Furthermore, we
present a precise characterization of the asymptotic bias of the SA iterates, given
by E[✓1] � ✓⇤ = ↵(bm + bn + bc) + O(↵3/2). Here, bm is associated with the
Markovian noise, bn is tied to the nonlinearity of the SA operator, and notably,
bc represents a multiplicative interaction between the Markovian noise and the
nonlinearity of the operator, which is absent in previous works. As a by-product of
our analysis, we derive finite-time bounds on higher moment E[k✓k � ✓⇤k2p] and
present non-asymptotic geometric convergence rates for the iterates, along with a
Central Limit Theorem.

1 Introduction

Stochastic Approximation (SA) is an iterative scheme for solving fixed-point equations using noisy
observations. Its application spans various domains including stochastic control [9, 40], reinforcement
learning (RL) [4, 62] and stochastic optimization [43]. A typical SA algorithm takes the form ✓k+1 =
✓k+↵g(✓k, xk), where (xk)k�0 represents the underlying noisy data sequence and ↵ > 0 is a constant
stepsize. The goal of SA is to approximate the target solution ✓⇤ that solves Ex⇠⇡[g(✓⇤, x)] = 0,
with ⇡ being the stationary distribution of the stochastic process (xk)k�0.

SA subsumes many important algorithms. A prime example is stochastic gradient descent (SGD) for
minimizing a function J(✓) given noisy estimates g(✓, x) of its gradient. Linear SA schemes include
SGD for quadratic objective functions, as well as various RL algorithms such as linear TD-Learning
(in which g is not the gradient of any function and standard SGD results do not apply).

Of particular interest to us are SA updates given by a nonlinear function g(✓, x) of ✓. One motivating
example is learning a Generalized Linear Model (GLM) y ⇡ �(z>✓) with a nonlinear mean function
� : R ! R. A power approach, developed in [19, 36, 37, 64], uses a surrogate loss function, where the
corresponding SGD update takes the form ✓k+1 = ✓k + ↵(�(w>

k ✓k)� yk)wk, where xk = (wk, yk)
is the observed covariate-response pair. Common choices of � include the identity map for linear
regression, the sigmoid function for logistic regression, as well as Rectified Linear Unit (ReLU) and
its various smoothed versions (e.g., ELU and SoftPlus) for ReLU regression [7, 18, 19, 30, 36].
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Furthermore, we are interested in the setting where the data sequence (xk)k�0 forms a Markov chain,
going beyond the common i.i.d. data setting. The Markovian model captures a wide range of SA
problems in machine learning where stochastic data exhibit serial dependence [5, 33, 38, 53].

Classical work on SA focuses on diminishing stepsizes [10, 58]. Constant stepsize schemes have
recently gained popularity due to easy parameter tuning, fast initial convergence, and robust empirical
performance. Non-asymptotic error bounds have been obtained for constant stepsize SA [17, 60].
Recent work further provides fine-grained characterization of the distributional and steady-state
behaviors of the iterates [20, 33, 45, 67, 69]. Two recurring themes in these results are weak
convergence of the distribution of ✓t and the presence of an asymptotic bias E[✓1]� ✓⇤ / ↵, both
having important implications for iterate averaging, bias reduction and statistical inference [34].

Note that most previous work studied the nonlinear update setting and Markovian data setting
separately—e.g., in [20, 67] for nonlinear SGD with i.i.d. data, and in [33, 34] for Markovian linear
SA. The linearity or i.i.d. assumptions imposed in these prior works are restrictive, especially in the
face of modern machine/reinforcement learning paradigms where nonlinear models are the norm and
dependent data is common. Moreover, the absence of prior work dealing with Markovian nonlinear
SA is not merely an overlook—as argued below, this setting is significantly more challenging.

Our Contributions In this work, we study constant-stepsize SA with both Markovian data and
nonlinear update. In Section 3, we elucidate the new challenges that arise from the simultaneous
presence of these two structures, which break key steps in previous analyses of the i.i.d. or linear
setting. Due to the interaction between these two structures, establishing weak convergence is far
from obvious, and the asymptotic bias exhibits new behaviors. Consequently, analyzing the nonlinear
Markovian setting requires more than simply combining previous techniques.

To address the above confounding complication, we exploit the smoothness and recurrence structures
of the SA update, thereby developing a fine-grained analysis of the correlation of the parameter
✓k and data xk. This allows us to establish for the first time the weak convergence of the joint
process (xk, ✓k)k�0 to a unique invariant distribution, represented by the limiting random variable
(x1, ✓1). As a by-product of our analysis, we derive finite-time bounds on E[k✓k� ✓⇤k2p], the 2p-th
moments of the errors, generalizing the results in [17, 20, 60] to higher moments and to the nonlinear
Markovian setting. In addition, we prove a Central Limit Theorem (CLT) for averaged iterates.

Moreover, we show that nonlinearity and Markovian structure contribute in a multiplicative way to
the asymptotic bias of the SA iterates. We obtain the following bias characterization: E[✓(↵)1 ]� ✓⇤ =
↵(bm + bn + bc) +O((↵⌧↵)3/2). We provide explicit expressions for the vectors bm, bn, bc, which are
independent of ↵. bm represents the bias component due to Markovian data (quantified by the mixing
property of xk), and bn the bias due to the nonlinearity of g (quantified by the second derivative g00).
Importantly, we identify the compound term bc, which is absent in both nonlinear SA with i.i.d. data
and linear SA with Markovian data. We explore the algorithmic implications of the above results on
Polyak-Ruppert (PR) averaging [35, 56, 59] and Richardson-Romberg (RR) extrapolation [31]. We
show that PR averaging reduces the variance but not the bias, whereas RR extrapolation eliminates
the leading bias term ↵(bm + bn + bc), reducing the asymptotic bias to a higher order of ↵.

Related Work Postponing a detailed literature review to Section 6, here we remark on the recent
works most relevant to ours [1, 44, 45, 46], all studying Markovian nonlinear SA. The authors of [1]
present an upper bound for the PR-averaged iterates and, similar to our results, demonstrate the
effectiveness of RR-extrapolation in reducing bias, but lack weak convergence result for last iterates.
In [44], the authors suggest adopting the ordinary differential equation framework to prove weak
convergence of iterates and derive an upper bound for the asymptotic bias, which contrasts with our
equality characterization with a closed-form solution for the leading-order bias. In [45], the authors
prove weak convergence of (xt, ✓t) using coupling, but only in the linear setting, not for nonlinear
SA. In the latter setting, their weak convergence analysis is thwarted by challenges similar to what
we elucidate in Section 3, the interplay between nonlinearity and Markovian data leading to “double
recursions.” The coupling technique differs as well: we couple two processes by sharing data xt = x0

t,
while in [45], they initialize two processes with different x0 and x0

0, and analyze the stopping time ⌧
when ✓⌧ = ✓0⌧ . Moreover, they only present an upper bound for asymptotic bias, while ours presents
a fine-grained characterization in Theorem 4.6 necessary for justifying RR-extrapolation. Lastly, the
paper [46] discusses stepsize selection and its impact on the asymptotic statistics of PR-averaged SA
with both constant and diminishing stepsizes.
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Notations The Euclidean norm is denoted by k · k. The notation “u ⌦ v” represents the tensor
product between vectors u and v, and “u⌦k” denotes the k-th tensor power of vector u. The ball
with radius � is B(�) := {✓ 2 Rd : k✓k  �}. L(z) denotes the distribution of a random vector
z and Var(z) its covariance matrix. Let P2(Rd) be the space of square-integrable distributions
on Rd and P2(X ⇥ Rd) be the space of distributions ⌫̄ on X ⇥ Rd with square-integrable second
marginal on Rd. The Wasserstein-2 between two probability measures µ and ⌫ in P2(Rd) is defined
as W2(µ, ⌫) = inf 2⇧(µ,⌫)

� �
E[k✓ � ✓0k2]

� 1
2 : L(✓) = µ,L(✓0) = ⌫

 
, where ⇧(µ, ⌫) is the set of

all couplings between µ and ⌫. Extending to X ⇥ Rd, we define the metric d̄
�
(x, ✓), (x0, ✓0)

�
:=p

{x 6= x0}+ k✓ � ✓0k2, and denote by W̄2 the extended Wasserstein-2 distance w.r.t. d̄.

The lowercase letter c and its derivatives c0, c0, etc. denote universal numerical constants, whose value
may change from line to line. We use s ⌘ s(✓0, ✓⇤, µ, L,R) and its derivatives to denote quantities
(scalars, vectors, or matrices) that are independent of the stepsize ↵ and the iteration index k, but may
depend on the initialization ✓0, SA primitives ✓⇤, µ and L, and the coefficient R for the geometric
mixing rate of (xk) in Assumption 1. As we are primarily interested in dependence on ↵ and k, we
adopt the following big-O notation: kfk = O(h(↵, k)) if it holds that kfk  s · kh(↵, k)k.

2 Problem Setup and Preliminaries

Let (xk)k�0 be a Markov chain on a general state space X . Consider the following projected
stochastic approximation (SA) iteration:

✓(↵)k+1 = ⇧B(�)

h
✓(↵)k + ↵

�
g(✓(↵)k , xk) + ⇠k+1(✓

(↵)
k )

�i
, (2.1)

where g : Rd
⇥ X ! Rd is a deterministic function, {⇠k}k�1 are i.i.d. zero-mean random fields,

↵ > 0 is a constant stepsize, and ⇧B(�)(✓) := argminz:kzk� kz � ✓k is the projection operator.
We shall omit the superscript (↵) in ✓k when the dependence on ↵ is clear from the context. In this
work, we also consider the projection-free variant of the iteration (2.1) with � = 1.

We denote by ⇡ the stationary distribution of the Markov chain (xk)k�1 and define the shorthand
ḡ(✓) := E⇡[g(✓, x)], where E⇡[·] denotes the expectation with respect to x ⇠ ⇡. The algorithm (2.1)
computes an estimation of the target vector ✓⇤ that solves the steady-state equation E⇡[g(✓, x)] = 0.
Our general goal is to characterize the relationship between the iterate ✓k and the target solution ✓⇤.

In the following, we state the assumptions needed for our main results. For a more detailed discussion
of the assumptions, we refer readers to Appendix B.
Assumption 1 (Uniform Ergodicity). (xk)k�0 is a uniformly ergodic Markov chain on a countable

state space (X ,B(X )) with transition kernel P and a unique stationary distribution ⇡. That is, there

exist constants r 2 [0, 1) and R > 0 such that kP k(x, ·)� ⇡kTV  Rrk, 8x 2 X .

The countable state space ensures separability under the {x 6= x0
} metric, necessary for constructing

a valid coupling in the invariance proof and establishing a well-defined P ⇤ for bias characterization.
We keep the notation general to allow future extensions to general state space and broader applicability
of our results. All irreducible, aperiodic, and finite state space Markov chains are uniformly ergodic.
The uniform ergodicity assumption is common in prior work on SA with Markovian noise [6, 21,
24, 33, 48]. Relaxing this uniform ergodicity assumption, in the style of [45, 52, 60] is possible but
orthogonal to our focus, and thus we do not pursue this direction in this work.

We allow the chain (xk)k�0 to be arbitrarily initialized rather than from the stationary distribution ⇡.
An important quantity is the mixing time of the Markov chain, defined as follows.
Definition 2.1. For ✏ 2 (0, 1), the ✏-mixing time of (xk)k�0, denoted by ⌧✏ � 1, is defined as

⌧✏ := min
�
k � 1 : supx2X kP k(x, ·)� ⇡kTV  ✏

 
.

Under Assumption 1, the ✏-mixing time satisfies ⌧✏  K log 1
✏ for all ✏ 2 (0, 1), where K � 1 is

independent of ✏. In the sequel, unless otherwise specified, we always choose ✏ = ↵ and let ⌧ ⌘ ⌧↵.

The following assumptions on the nonlinear function g in (2.1) is standard in the literature [17, 20,
32, 45, 48]. A wide family of g functions satisfies these assumptions, with the L2-regularized logistic
regression of GLM being a standard example.
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Assumption 2 (Differentiability and Linear Growth). For each x 2 X , the function g(✓, x) is

three times continuously differentiable in ✓ with uniformly bounded first to third derivatives, i.e.,

sup✓2Rd kg(i)(✓, x)k < +1 for i = 1, 2, 3, x 2 X . Moreover, there exists a constant L1 > 0
such that (1)kg(i)(✓, x) � g(i)(✓0, x)k  L1, for all ✓, ✓0 2 Rd

, i = 0, 1, 2 and x 2 X , and (2)

kg(0, x)k  L1 for all x 2 X .

The linear growth condition in Assumption 2 implies that g(✓, x) is L1-Lipschitz w.r.t. ✓ uniformly
in x. When g is a linear function, i.e., g(✓, x) = A(x)✓ + b(x), this assumption is satisfied with
supx2X kA(x)k < 1 and supx2X kb(x)k < 1, which are commonly assumed for linear SA. The
above assumption immediately implies that the growth rate of kgk and kḡk will be at most linear in ✓,
i.e., kg(✓, x)k  L1(k✓ � ✓⇤k+ 1) and kḡ(✓)k  L1(k✓ � ✓⇤k+ 1).

Assumption 3 (Strong Monotonicity). There exists µ > 0 such that h✓ � ✓0, ḡ(✓) � ḡ(✓0)i 

�µk✓ � ✓0k2, 8✓, ✓0 2 Rd
. Consequently, the target equation ḡ(✓) = 0 has a unique solution ✓⇤.

When g is a gradient field, Assumption 3 is equivalent to strong convexity. For notational simplicity,
we assume the strong monotonicity parameter satisfies µ  1� r, where r is the convergence factor
in Assumption 1. For general µ, our results remain valid with µ replaced by min{µ, 1� r}.

We next consider the noise. Denote by Fk the filtration generated by {xt, ✓t, ⇠t+1}
k�1
t=0 [ {xk, ✓k}.

Assumption 4 (Noise Sequence). Let p 2 Z+ be given. The noise sequence (⇠k)k�1 is a collection

of i.i.d. random fields satisfying the following conditions with L2,p > 0:

E[⇠k+1(✓)|Fk] = 0 and E1/(2p)[k⇠1(✓)k
2p]  L2,p(k✓ � ✓⇤k+ 1), 8✓ 2 Rd. (2.2)

Define C(✓) = E[⇠1(✓)⌦2] and assume that C(✓) is at least twice differentiable. There also exist

M✏, k✏ � 0 such that for ✓ 2 Rd
, we have maxi=1,2

��C(i)(✓)
��  M✏

�
1 + k✓ � ✓⇤kk✏

 
.

In the sequel, we set L := L1 + L2, and without loss of generality, we assume L � 1.

When p = 1, the second inequality in (2.2) only requires linear growth in expectation, which relaxes
the almost sure linear growth condition in [17]. The constraint on the covariance matrix C(✓) is
lenient and satisfied in most regular enough settings, as shown in [20].

3 Analytical Challenges and Techniques

In this section, we elaborate on the challenges and techniques in proving the above results.

Previous work has established weak convergence of (xk, ✓k) separately for nonlinear SA with i.i.d.
data, and for Markovian linear SA. The high-level approaches used in two representative prior works
can be summarized as follows. The work [20] on nonlinear SGD leverages local linearization of
g through Taylor expansion. The work [33] on Markovian linear SA exploits the mixing property
of the Markovian noise to regain approximate independence, particularly between xk and ✓k�⌧ for
sufficiently large ⌧. It is tempting to expect that nonlinear SA can be analyzed by combining these
two approaches. Perhaps surprisingly, such a simple combination would not work due to the interplay
between nonlinearity and Markovian structures.

To demonstrate this challenge, let us seek to establish weak convergence in the Wasserstein dis-
tance W2 via forward coupling [29], an approach employed by both [20, 33] as well as others [25].
Specifically, we consider two SA iterate sequences (✓[1]k )k�0 and (✓[2]k )k�0 from different initializa-
tions ✓[1]0 and ✓[2]0 coupled by sharing the data sequence (xk)k�0: ✓[1]k+1 = ✓[1]k + ↵g(✓[1]k , xk) and
✓[2]k+1 = ✓[2]k + ↵g(✓[2]k , xk). To establish convergence in W2, we consider the difference sequence

wk+1 := ✓[1]k+1 � ✓[2]k+1 = wk + ↵
�
g(✓[1]k , xk)� g(✓[2]k , xk)

�
, (3.1)

and it suffices to prove wk converges to 0 in mean square: E[kwk+1k
2] . ⇢kE[kw0k

2] for ⇢ < 1.

With this goal in mind and following the idea from [20], one may first linearize the right-hand side of
the difference dynamic (3.1) and obtain the approximation

wk+1 ⇡ wk + ↵g0(✓[2]k , xk)wk. (3.2)
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Next, to analyze the drift of the Lyapunov function E[kwkk
2] and handle the Markovian noise (xk),

we use the conditioning technique from [33]. We condition on the information of ⌧ steps before,
denoted by Fk�⌧ := �

�
(✓[1]t , ✓[2]t , xt) : t  k � ⌧

�
. Ignoring higher-order terms and assuming a

one-dimensional problem for simplicity, we obtain that

E[kwk+1k
2] ⇡ E

h
E
⇥
kwkk

2
�
1 + 2↵g0(✓[2]k , xk)

�
| Fk�⌧

⇤i

⇡ E
h
kwk�⌧k

2
�
1 + 2↵E

⇥
g0(✓[2]k , xk) | Fk�⌧

⇤�i
, (3.3)

where we use wk ⇡ wk�⌧ for small ↵ (this argument, which is made precise in [33, 60], essentially
exploits the fact that xk evolves faster than ✓k).

To prove dynamic (3.3) converges, it boils down to showing the “gain matrix” E
⇥
g0(✓[2]k , xk) | Fk�⌧

⇤

is negative/Hurwitz. To further simplify, we assume k is large so that the chain (xk) is distributed per
its stationary distribution ⇡, in which case the gain matrix simplifies to Ex1⇠⇡[g0(✓

[2]
1 , x1)].

Analyzing this gain matrix is where our analysis diverges from previous work. If the SA update were
linear, i.e., g(✓, x) = A(x)✓, then the gain E[g0(✓[2]1 , x1)] = E⇡[A(x1)] would be independent of
✓[2]1 , and its Hurwitz property is a standard and necessary condition for proving convergence of linear
SA. If the data sequence (xk) were i.i.d., then ✓k would be independent of xk and hence the gain
becomes E[g0(✓[2]1 , x1)] = E[E[g0(✓[2]1 , x1)|✓[2]1 ]] = E[ḡ0(✓[2]1 )] with ḡ(·) := Ex⇠⇡[g(·, x)], where
the Hurwitz property again follows from standard assumptions on ḡ.

However, both arguments fail for the Markovian nonlinear setting. Common assumptions for
nonlinear SA only ensure Hurwitz Ex⇠⇡[g0(✓, x)|✓] given ✓. This does not imply the desired Hurwitz
E[g0(✓[2]1 , x1)], precisely owing to the simultaneous presence of (i) the dependence of g0 on both ✓1
and x1 (due to nonlinearity) and (ii) the correlation between ✓1 and x1 (due to Markovian).

Our Approach We overcome this challenge by carefully analyzing the properties of the above
dependence and correlation. Therefore, for sufficiently large ⌧ , we further decompose (3.3) as

E[kwk+1k
2] ⇡ E

h
kwk�⌧k

2
�
1 + 2↵E

⇥
g0(✓[2]k , xk) | Fk�⌧

⇤�i

= E
h
kwk�⌧k

2
⇣
1 + 2↵ E

⇥
g0(✓[2]k�⌧ , xk) | Fk�⌧

⇤
| {z }

⇡E[g0(✓[2]k�⌧ ,x1)|Fk�⌧ ] Hurwitz

+2↵
�
E
⇥
g0(✓[2]k , xk)� g0(✓[2]k�⌧ , xk) | Fk�⌧

⇤�⌘i

. ⇢E[kwk�⌧k
2] + ↵E

h
E
h
hwk�⌧ , g(✓

[1]
k , xk)� g(✓[2]k , xk)� g(✓[1]k�⌧ , xk) + g(✓[2]k�⌧ , xk)i| {z }

�

| Fk�⌧

ii
,

where we approximate wk ⇡ wk�⌧ , wtg0(✓
[2]
t , xk) ⇡ (g(✓[1]t , xk) � g(✓[2]k , xk)) for t = k, k � ⌧

and obtain the second term in the last inequality. Next, we propose employing two different Taylor
expansions to prove that � is of higher orders of ↵. We first apply the Taylor expansion to g(✓[1]k , xk)�

g(✓[2]k , xk) and g(✓[1]k�⌧ , xk)�g(✓[2]k�⌧ , xk). However, this only achieves � . kwkk
2
�
kwkk+↵⌧T1

�
,

where T1 = min(k✓[1]k k, k✓[2]k k, k✓[1]k�⌧k, k✓
[2]
k�⌧k) + 1. When ✓[1]k and ✓[2]k are not close to each order,

i.e., when kwkk is large, � is not necessarily of higher order. Therefore, we consider a second type
of Taylor expansion on g(✓[1]k , xk) � g(✓[1]k�⌧ , xk) and g(✓[2]k , xk) � g(✓[2]k�⌧ , xk). The intuition for
the second type of Taylor expansion is to analyze and bound � by the small distance between ✓[j]k

and ✓[j]k�⌧ for j 2 {1, 2}, even when kwkk is large. This achieves � . kwkk↵⌧T1

�
kwkk+ ↵⌧T1

�
.

Simultaneously applying the two Taylor expansions will yield � . ↵⌧kwkk
2T1. Finally, we

overcome this challenge by carefully analyzing the boundness of T1; see Theorem 4.1 and its proof.

In parallel to the above coupling approach, we also explore an alternative approach by verifying the
joint Markov chain (xk, ✓k) satisfies certain irreducibility and Lyapunov drift conditions, which in
turn imply the chain is ergodic. To apply this approach, we exploit additional properties of the SA
noise, namely miniorization, which is satisfied in many applications where additional randomness is
injected to the SA update. While the high level strategy of this approach is well developed [23, 50],
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carrying out the analysis of each step is technically involved. In particular, we need to translate the
minorization property of the noise to the irreducibility of the joint chain (xk, ✓k), which is nontrivial
in the presence of Markovian noise and nonlinearity.

4 Main Results

4.1 Weak Convergence of Projected SA

Our first main result proves the ergodicity of the joint process (xk, ✓k)k�0 of the projected SA (2.1).
Theorem 4.1 (Ergodicity of Projected SA). Suppose that Assumption 1–4 (p = 1) hold. The

projected SA (2.1) is applied with radius parameter 2k✓⇤k  � < 1. For stepsize ↵ > 0 that

satisfies the constraint ↵⌧↵ 
µ

(940+96�)L2 , the Markov chain (xk, ✓k)k�0 converges to a unique

stationary distribution ⌫̄↵ 2 P2(X ⇥ Rd). Let ⌫↵ := L(✓1) be the second marginal of ⌫̄↵. For

k � 2⌧↵, it holds that

W2(L(✓k), ⌫↵)  W̄2(L(xk, ✓k), ⌫̄↵)  (1� ↵µ)k/2 · s(✓0, ✓
⇤, µ, L,R).

Theorem 4.1 generalizes prior weak convergence results for constant stepsize SA/SGD either under
i.i.d. noise [20, 67] or linear update [33, 45]. Our stepsize condition ↵⌧↵ . µ/L2 coincides
with [33, 60] on linear SA, a special case of our setting.

The proof of Theorem 4.1 highlights the stabilizing effect of the projection operation in (2.1). This
effect, together with the smoothness of update function g, controls how the Markovian correlation
propagates through the nonlinear update, allowing us to overcome the challenges discussed in
Section 3. It is unclear whether our proof, which is based on Markov chain coupling, can be fully
generalized to SA without projection. Nevertheless, we show that such a generalization is possible
for a sub-family of nonlinear SA where g possesses the additional structure termed “asymptotic
linearity”, which is satisfied by, e.g., SGD applied to certain settings of logistic regression. For a
formal statement of this result and proof, we refer the readers to Appendix E.

As a by-product of our analysis, we establish the following non-asymptotic 2p-th moment bound on
the error ✓k � ✓⇤. Let ✓t+1/2 := ✓t + ↵(g(✓t, xt) + ⇠t+1(✓t)) denote the pre-projection iterate.

Proposition 4.2. Consider (✓k)k�0 of iteration (2.1) with � 2 [2k✓⇤k,1]. Let Assumption 1–4(2p)
hold. If stepsize ↵ satisfies ↵⌧↵L2

 cpµ, with cp  1, the following holds for all k � ⌧↵,

E[k✓k+1�✓⇤k2p]  E[k✓k+1/2�✓⇤k2p]  cp,1(1�↵µ)k+1E[k✓0�✓⇤k2p]+cp,2(↵⌧↵)
p
·s(✓0, ✓

⇤, L, µ).

Proposition 4.2 implies that E[k✓k � ✓⇤k2p] . (↵⌧)p for sufficiently large k, generalizing the results
of [17, 20, 60] to higher moments and the nonlinear Markovian setting. Notably, this result holds even
without the projection operation in the SA update (2.1), i.e., � = 1. Furthermore, Proposition 4.2
can be used to derive high-probability tail bounds using the Markov inequality.

4.2 Weak Convergence without Projection

Parallel to the coupling approach, we consider an alternative approach for establishing weak conver-
gence via verifying irreducibility, positive Harris recurrence, and V -uniform ergodicity [50] of the
Markov chain (xk, ✓k). This approach applies to nonlinear SA even without projection. To verify
irreducibility, we exploit the following additional noise structure.
Assumption 5 (Noise Minorization). For each ✓ 2 Rd

, the distribution of the random variable ⇠1(✓),
denoted by ⇣✓, can be decomposed as ⇣✓ = ⇣1,✓ + ⇣2,✓, where the measure ⇣1,✓ has a density, denoted

by p✓, which satisfies inf✓2C p✓(t) > 0 for any bounded set C and any t 2 Rd
.

A similar assumption is considered in [5, 67]. This assumption is mild and satisfied by any continuous
random field supported on Rd. Introducing such (small) continuous noise is often part of the algorithm
design for inducing privacy [2, 22] or exploration [28, 55]. Without Assumption 5, the chain may fail
to be irreducible even when the other assumptions are satisfied; see [33] for a counterexample.

Under Assumption 5, we obtain the following ergodicity result paralleling Theorem 4.1.
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Theorem 4.3 (Ergodicity of SA – Minorization). Suppose that Assumption 1–3, Assumption 4(p =
1), and Assumption 5 hold. For stepsize ↵ > 0 that satisfies the constraint ↵⌧↵L2 < c2µ, the

Markov chain (xk, ✓k)k�0 of (2.1) with � = 1 is V -uniformly ergodic with Lyapunov function

V (x, ✓) = k✓� ✓⇤k2+1 and a unique stationary distribution ⌫̄↵ 2 P2(X ⇥Rd). Moreover, defining

the V -norm k⌫kV :=
R
|⌫(dx)|V (x), we have

��L(xk, ✓k)� ⌫̄↵
��
V
 ⇢k, 8(x0, ✓0) 2 X ⇥ Rd, 8k � 0, (4.1)

where the constants ⇢ 2 (0, 1) and  2 (0,1) may depend on ↵.

4.3 Non-Asymptotic Convergence Rate and Central Limit Theorem

In the sequel, let (x1, ✓(↵)1 ) denote the random vector whose law is the stationary distribution ⌫̄↵
given in Theorem 4.1. As a corollary, we have geometric convergence for the first 2 moments of ✓k.
Corollary 4.4 (Non-Asymptotic Convergence Rate). Under the setting of Theorem 4.1, for any

initialization of ✓0 2 Rd
, we have

��E[✓k]� E[✓(↵)1 ]
��  (1� ↵µ)k/2 · s0(✓0, ✓

⇤, µ, L,R), and

��E[✓k✓>k ]� E[✓(↵)1 (✓(↵)1 )>]
��  (1� ↵µ)k/2 · s00(✓0, ✓

⇤, µ, L,R).

Moreover, the convergence rate established in Theorem 4.1 is fast enough that we can use it to prove
a Central Limit Theorem for the average iterates.
Corollary 4.5 (Central Limit Theorem). Under the setting of Theorem 4.1, as k ! 1 we have

1p
k

Pk�1
t=0

�
✓t � E[✓1]

�
) N (0,⌃(a)), where ⌃(↵) := limk!1

1
kE
⇥�Pk�1

t=0

�
✓t � E[✓(↵)1 ]

��⌦2⇤
.

Establishing the CLT sets the stage for using the SA iterates for statistical inference tasks such as
confidence interval estimation. We discuss this in greater detail in Section 4.4 after characterizing the
asymptotic bias, another important ingredient for using SA for inference.

4.4 Bias Characterization

In this subsection, we characterize the asymptotic bias E[✓(↵)1 ]� ✓⇤. Understanding the bias structure
has important algorithmic implications for bias reduction, which we explore in Section 4.5, as well as
for more efficient statistical inference and confidence interval estimation [34].
Theorem 4.6 (Bias Characterization). Suppose Assumptions 1–4(p = 3) hold. For each stepsize

↵ > 0 satisfying ↵⌧↵L2 < c3µ, the following holds for some vector b independent of ↵ :

E[✓(↵)1 ]� ✓⇤ = ↵b+O
�
(↵⌧↵)

3/2
�
. (4.2)

More specifically, the leading bias can be decomposed as b = bm + bn + bc, where

bm = �(ḡ0(✓⇤))�1E[g0(✓⇤, x1)h(✓⇤, x1)], (4.3)

bn =
1

2
(ḡ0(✓⇤))�1ḡ00(✓⇤)A

⇣
E[g(✓⇤, x1)⌦2] + E[(⇠1(✓⇤))⌦2]

⌘
, (4.4)

bc =
1

2
(ḡ0(✓⇤))�1ḡ00(✓⇤)A

⇣
E[g(✓⇤, x1)⌦ h(✓⇤, x1)] + E[h(✓⇤, x1)⌦ g(✓⇤, x1)]

⌘
, (4.5)

with A = (ḡ0(✓⇤)⌦I+I⌦ ḡ0(✓⇤))�1
and h(✓⇤, x) =

R
X (I�P ⇤+⇧)�1(P ⇤

�⇧)(x, dx0)g(✓⇤, x0),
with the kernel P ⇤

being a regular conditional probability on X that satisfies
R
B ⇡(dx)P (x,C) =R

C ⇡(dy)P ⇤(y,B), for all B,C 2 B(X ).

We defer the detailed proof to Appendix I. A few remarks are in order. First, we emphasize that (4.2)
is essentially an equality, indicating a non-zero bias of order ↵ whenever b 6= 0 (up to higher order
terms). Notably, the Polyak-Ruppert averaging of the iterates cannot eliminate this bias. Note that
the bias expansion in (4.2) applies to both weakly converged projected and non-projected SA. Our
analysis shows that compared with the non-projected SA, the projection operator induces an extra
bias term of the order O(↵2⌧3↵), which is negligible relative to the main terms in in (4.2).

More importantly, Theorem 4.6 provides an explicit expression of the leading bias, which decomposes
into three components: the Markovian part, the nonlinearity contribution, and a compound term,
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which is unique in nonlinear Markovian SA. Specifically, bm in (4.3) is associated with the Markovian
multiplicative noise, where the matrix P ⇤

�⇧ in the h function determines the mixing time of the
data sequence (xk)k�. The term bn in (4.4) is linked to nonlinearity, as reflected by the Hessian
term ḡ00(✓⇤) = E[g00(✓⇤, x1)], which quantifies the nonlinearity of g and is equal to zero in the case
of a linear g. Lastly, bc in (4.5) is the compound term, due to its dependence on both the Markov
noise (h function) and the nonlinearity measure ḡ00. In particular, we note the following two special
cases: (1) When g is a linear function, ḡ00(✓⇤) = 0. Hence, bn = bc = 0, and bm recovers the result
in [33]; (2) When (xk)k�0 is i.i.d. sampled from the stationary distribution ⇡, we have h(✓⇤, x) ⌘ 0
8x 2 X , for P = P ⇤ = ⇧. As such, bm = bc = 0, recovering the result in [20]. The presence of
the compound term bc suggests that as the SA structure becomes more nonlinear and the underlying
Markov chain mixes more slowly, the impact on the bias is multiplicative rather than simply additive,
a surprising phenomenon not unveiled in previous studies. It is possible to improve the residual
order from O(↵3/2) to O(↵2) with a more refined characterization of the asymptotic second moment
E[(✓1 � ✓⇤)⌦2] by following a similar strategy as our current approach. We leave this refinement
out of the scope of the current paper.

4.5 Algorithmic Implications

We examine the practical implications of our weak convergence and bias characterization results,
particularly for Polyak-Ruppert (PR) tail averaging and Richardson-Romberg (RR) extrapolation. In
this subsection, we focus on the dependence on the stepsize ↵ and iteration index k, and make use of
the big-O notation from Section 1. Recall that b is the bias vector defined in Theorem 4.6.

PR averaging [56, 59] is a classical approach for reducing the variance and accelerating the
convergence of SA. Here we consider the tail-averaging variant of PR averaging, defined as
✓̄k0,k := 1

k�k0

Pk�1
t=k0

✓t, for k � k0, with a user-specified burn-in period k0 � 0 (a common
choice is k0 = k/2). The following corollary, proved in Appendix J, provides a non-asymptotic
bound on the mean squared error (MSE) for the averaged iterates ✓̄k0,k.
Corollary 4.7 (Tail Averaging). Under the setting of Theorem 4.6, the tail-averaged iterates satisfy

the following bounds for all k > k0 + 2⌧↵ and k0 � ⌧↵ + 1
↵µ log

�
1
↵⌧↵

�
,

E
h
k✓̄k0,k � ✓⇤k2

i
= ↵2

kbk2 +O

⇣
↵ · (↵⌧)

3
2

⌘

| {z }
T1: asymptotic squared bias

+O

⇣ ⌧↵
k � k0

⌘

| {z }
T2: variance

+O

⇣ (1� ↵µ)k0/2

↵ (k � k0)
2

⌘

| {z }
T3: optimization error

.

Corollary 4.7 shows that the MSE can be decomposed into three terms and elucidates how these
terms depend on ↵, k, and other problem parameters. In particular, the term T1 corresponds to
the asymptotic squared bias kE[✓(↵)1 � ✓⇤]k2, which is not affected by averaging. The term T2 is
associated with the variance Var(✓̄k0,k), which decays at rate 1/k due to averaging. Lastly, the term
T3 represents the optimization error kE✓̄k0,k � ✓1k

2, which decays geometrically in k0 thanks to the
use of a constant stepsize ↵ and the tail-averaging procedure.

Note that averaging does not affect the bias of order ↵. With the precise bias characterization in
Theorem 4.6, we can order-wise reduce the bias to O(↵3/2) by employing the RR extrapolation
technique [61]. Let ✓̄(↵)k0,k

and ✓̄(2↵)k0,k
denote the tail-averaged iterates using two stepsizes ↵ and 2↵

with the same data (xk)k�0. The RR extrapolated iterates are defined as e✓(↵)k0,k
= 2✓̄(↵)k0,k

� ✓̄(2↵)k0,k
.

Corollary 4.8 (RR-Extrapolation). Under the setting of Theorem 4.6, the RR-extrapolated iterates

satisfy the following bounds for all k > k0 + 2⌧↵ and k0 � ⌧↵ + 1
↵µ log

�
1
↵⌧↵

�
,

E
h
ke✓k0,k � ✓⇤k2

i
= O

⇣
(↵⌧↵)

3
⌘
+O

⇣ ⌧↵
k � k0

⌘
+O

⇣ (1� ↵µ)k0/2

↵ (k � k0)
2

⌘
.

Backed by the CLT in Corollary 4.5, the iterates of constant-stepsize SA can be used to construct
confidence intervals of ✓⇤. For i.i.d. data or linear SA, this approach has been explored in [34, 47,
66, 67] along with an appropriate variance estimator [26, 66]. In our Markovian nonlinear setting,
where the iterates are biased, it is crucial to use RR extrapolation for bias reduction. Once the bias
is accounted for, the power of using constant stepsizes reveals itself as it leads to rapid mixing and
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low correlation of the iterates. Together, they lead to efficient confidence interval estimation schemes
using nonlinear Markovian SA; see the empirical results in [34] showing its efficacy. In contrast, the
classical diminishing stepsize paradigm often suffers from high correlation [13] and in turn inaccurate
variance estimation, resulting in unsatisfactory coverage probability with finite data [34].

4.6 Implications for Learning GLM

Generalized linear models (GLM) extend linear regression to the model E[Y |W ] = �(W>✓⇤), where
W is the covariate, Y the response variable, and � is called the mean function. For any monotone
(and potentially nonlinear) �, the powerful framework developed in [19, 36, 37, 64] allows one
to formulate the estimation of ✓⇤ as minimizing an appropriate convex (surrogate) loss function.
Applying SGD to this loss leads to a nonlinear SA update, to which our results are applicable. Below
we discuss their applications in two concrete examples of GLMs.

Logistic Regression Logistic regression uses a sigmoid mean function �(x) = 1
1+exp(�x) . Suppose

the covariate wk is sequentially sampled from a uniformly ergodic Markov chain with a bounded
state space W ⇢ Rd, and conditioned on wk the response yk is Bernoulli distributed with parameter
(1 + exp(�w>

k ✓
⇤))�1. SGD applied to the L2-regularized negative log-likelihood function takes

the form of the SA update ✓k+1 = ✓k + ↵g(✓k, xk), where xk = (wk, yk) 2 W ⇥ {0, 1} and
g(✓k, xk) = �wk

�
�(�w>

k ✓k)� yk
�
� �✓k. For simplicity, we do not consider ⇠-perturbation, i.e.,

⇠k+1(✓k) ⌘ 0. It is easy to verify that this g is strongly monotone and sufficiently smooth with at most
linear growth in |✓|, hence satisfying Assumption 1–3. Therefore, all the results in Sections 4.1–4.5
apply to logistic regression with constant stepsizes and Markovian data.

Smooth ReLU Regression The mean function � can be interpreted as playing a similar role as
the activation function in neural networks. Widely adopted is ReLU activation �(x) = max(0, x)
as well as its various smooth approximations [7, 30]. The problem of learning ✓⇤ in this setting,
sometimes called ReLU Regression, has been studied in the last decade and recently regained attention
[19, 36, 37, 64]. Unlike linear or logistic regression, the least squares and maximum likelihood
formulation associated with such nonlinear mean functions � is non-convex. Nevertheless, the convex
surrogate loss framework in [19, 64] still applies. As an example, we focus on the SoftPlus activation
�(x) = log(1 + exp(◆x))/◆ with a temperature parameter ◆ > 0 [30]. With L2-regularization the
resulting SGD iteration is ✓k+1 = ✓k � ↵

�
wk

�
1
◆ log(1 + exp(◆w>

k ✓k)) � yk
�
+ �✓k

�
, where the

covariate-response pair (✓k, xk) is as before. This problem can again be cast as nonlinear SA with a
strongly monotone and smooth g, satisfying Assumptions 1–3. All results in Sections 4.1–4.5 apply.

5 Numerical Experiments

In this section, we provide numerical experiment results to verify our theoretical results. We run
SGD on L2-regularized logistic regression with Markovian data and constant stepsizes, where the
covariate xt 2 R is sequentially sampled from an autoregressive (AR) model of order 1; specifically,
xt+1 = 0.9xt + ⇣t+1 with ⇣t i.i.d. following N(0, 1), and the stationary distribution is x1 ⇠

N(0, 1/(1�0.92)). The binary dependent variable yt is sampled from Bernoulli(1/(1+exp(�w⇤xt))
with w⇤ = 1. The regularized parameter is set to � = 0.0001.1

To examine the asymptotic bias, we run the experiment for an episode length of 107, with Markovian
data as well as i.i.d. data sampled from N(0, 1/(1� 0.92)). We plot the errors (distance to ✓⇤) of the
PR averaged iterates and the RR extrapolated iterates, for different stepsizes ↵. Figure 1(a) verifies
the presence of an asymptotic bias approximately proportional to the stepsize ↵, and illustrates the
effectiveness of RR extrapolation in reducing this bias. In Figure 1(b), we compare the bias under
Markovian data (xt+1 ⇠ P (·|xt)) and i.i.d. data (xt ⇠ x1). Interestingly, Figure 1(b) reveals that
Markovian data does not necessarily lead to a larger bias than i.i.d. data. This is consistent with our
theory, as the three bias terms bm, bn, bc may have opposite signs leading to cancellation. This result
suggests that in the presence of nonlinearity, one should not avoid Markovian data simply for the
sake of reducing bias. Rather, RR extrapolation may be more effective for bias reduction.

1The experiments were conducted on two sockets of Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz with
566Gb of RAM. Implementation details and code are available at https://github.com/lucyhuodongyan/
nonlinear-sa-bias.
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(a) This plot shows the errors of PR-averaged iter-
ates and RR-extrapolated iterates, all generated using
Markovian data.

(b) This plot compares the errors under Markovian
data (xt ⇠ P (·|xt�1)) and iid data (xt ⇠ ⇡),
where all other settings are the same.

Figure 1: Experiment results to illustrate the properties of asymptotic bias.

To verify the CLT in Corollary 4.5, we repeat the experiment 1000 times with an episode length
of 106 and stepsize ↵ = 0.8. We compute the PR averaged iterates and plot the histogram and the
quantile-quantile (QQ) plot in Figure 2 in Appendix C. The close alignment between the histogram
and the normal curve in Figure 2(a) and the linearity of the points along the 45-degree reference line
in the QQ plot in Figure 2(b) confirm that the empirical distribution follows a normal distribution.

6 Related Work

General SA and SGD. SA and SGD can be traced back to the seminal work of [58]. Classical
work assumes a diminishing stepsize sequence, and has shown almost sure asymptotic convergence
to ✓⇤ [8, 58]. Subsequent works propose the iterate averaging technique, now known as Polyak-
Ruppert (PR) averaging, to reduce variance and accelerate convergence [56, 59], and also establish a
Central Limit Theorem for the asymptotic normality of the averaged iterates [57]. The asymptotic
convergence theory of SA and SGD is well developed and extensively addressed in many exemplary
textbooks, see [3, 40, 65]. There are also recent works studying the non-asymptotic convergence with
diminishing stepsizes [12, 14]. The recent work [15] establishes the high probability bound on the
estimation error of contractive SA with diminishing stepsize.

SA and SGD with Constant Stepsizes. There has been an increasing interest in studying SA with
constant stepsize. Many works in this line provide non-asymptotic upper bounds on mean squared
error (MSE) E[k✓t � ✓⇤k2]. Works in [25, 42, 51] study linear SA (LSA) under i.i.d. data. Recent
works extend the analysis of the MSE to LSA with Markovian data, such as [24, 52, 60]. There are
also works providing upper bounds of MSE for general contractive SA with Markovian noise [14, 17].

In addition to non-asymptotic guarantees, some works focus on the asymptotic behavior of SA iterates.
Recent works have shown that when using constant stepsize, one loses the almost sure convergence
guarantee in the diminishing stepsize sequence regime, and at best can achieve distributional con-
vergence, as demonstrated in [16, 20, 25, 33, 66, 67, 69]. The presence of asymptotic bias is also a
recurring theme in recent literature, with precise characterization given in [20] for strongly-convex
SGD with i.i.d. data and in [33] for LSA with Markovian data. Works in [34, 51, 66, 67, 69] also
establish Central Limit Theorems for averaged SA iterates with constant stepsizes.

7 Conclusion

We provide the first weak convergence and steady-state analysis for constant-stepsize SA with both
nonlinear update and Markovian data. Our analysis elucidates the compound effect of nonlinearity
and memory, which leads to new analytical challenges and behaviors. A limitation of our results is
the use of a projection step or the noise minorization assumption. Whether they can be removed is
worth investigating. Other future directions include refining the dimension dependence in our results,
as well as a theoretical investigation of statistical inference.
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A Additional Notations

General Probability We write z1 ?? z2 | z3 if random variables z1 and z2 are conditionally
independent given z3.

Recall that we define the metric d̄
�
(x, ✓), (x0, ✓0)

�
:=
p

{x 6= x0}+ k✓ � ✓0k2 for the space X⇥Rd.
Thus, for µ̄ and ⌫̄ in P2(X ⇥ Rd), the Wasserstein-2 distance w.r.t. d̄ is computed as

W̄2(µ̄, ⌫̄) = inf
n�

E[ {x 6= x0
}+ k✓ � ✓0k2]

� 1
2 : L

�
(x, ✓)

�
= µ̄,L

�
(x0, ✓0)

�
= ⌫̄

o
.

General State Space Markov Chains Throughout the paper, we assume that X is a Borel
space. Let P denote the transition kernel. We call ⇡ the stationary distribution of P if it
satisfies

R
X ⇡(dx)P (x,B) = ⇡(B), for B 2 B(X ). Define the ⇡-weighted inner product

hf, giL2(⇡) =
R
X ⇡(dx)f>(x)g(x) and the induced norm kfkL2(⇡) = (hf, fiL2(⇡))

1/2. Let
L2(⇡) = {f : kfkL2(⇡) < 1} denote the corresponding Hilbert space of Rd-valued, square-
integrable and measurable functions on X . For an operator T : L2(⇡) ! L2(⇡), its operator norm is
defined as kTkL2(⇡) = supkfkL2(⇡)=1 kTfkL2(⇡). The transition kernel is a bounded linear operator
on L2(⇡), in particular with norm kPkL2(⇡)=1. Also, we define the kernel/operator ⇧ = 1⌦ ⇡ by
⇧(x, ·) = ⇡.

Throughout the paper, we assume that X is a Borel space. Let P denote the transition kernel. We call ⇡
the stationary distribution of P if it satisfies

R
X ⇡(dx)P (x,B) = ⇡(B), for B 2 B(X ). There exists

a kernel P ⇤ as a regular conditional probability that satisfies
R
A ⇡(ds)P (x,B) =

R
B ⇡(dy)P ⇤(y,A),

for A,B 2 B(X ) [27, Chapter 21.4, Theorem 19], and P ⇤ defines the probability law for the
time-reversed chain of (xk)k�0.

B Additional Discussion on Assumptions

In this section, we provide a more detailed discussion of the assumptions taken in this work.

Projection and Minorization Projection steps have a longstanding presence in SA literature for
tractability in convergence theory, as seen in many analyses of SGD [6, 11, 39, 41, 54]. Although not
an algorithmic proposal, this additional projection step does not incur much computational cost in
practice, as it only involves rescaling the iterates, and the projection radius can be estimated a priori.
Before our work, no studies had proven weak convergence for non-linear SA with Markovian data
and constant stepsize, with or without the projection. Thus, our result is the first to prove detailed
weak convergence in this setting. Nonetheless, we provide an alternative proof of weak convergence
in Theorem 4.3 using the Drift and Minorization technique, which does not require a projection.

Differentiability The differentiability condition of the SA update operator g in Assumption 2
ensures controlled evolution of the iterates ✓. This differentiability assumption supports a third-order
Taylor expansion of g with a bounded remainder, which is crucial for both analyzing the � term in
the convergence proof as discussed in Section 3 and for bias characterization. Moreover, some form
of differentiability assumption is standard in SA literature, such as [1, 20, 45], particularly when
one seeks a fine-grained characterization of the iterates’ distributional property. Such an assumption
is satisfied by many GLMs, such as logistic regression and Poisson regression. When g is not
differentiable, the bias of SA iterates behaves drastically different [68], which is beyond the scope of
this paper.

Strong Monotonicity The strong monotonicity assumption is common in SA literature. Together
with smoothness, it allows us to establish geometric distributional convergence. While some GLMs
by themselves do not satisfy this condition, it is a common practice to apply L2-regularization
(equivalently, weight decay) to ensure strong convexity and improve statistical performance. It is a
standard calculation that one can appropriately choose the regularization parameter to derive tight
results for non-strongly-convex functions.
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C Additional Plots

In this section, we present the plots from numerical experiments in Section 5 that verify the Central
Limit Theorem (CLT) in Corollary 4.5. In these plots, we plot the centered and scaled PR-averaged
iterates, i.e,

p
T
⇣
✓̄(k)T �

P1000
l=1 ✓̄(l)T

⌘
, where ✓̄(k) =

⇣PT
t=1 ✓t

⌘
/T with T = 106 is the PR-averaged

iterates for the k-th repeat.

(a) Histogram of Centered and Scaled PR-Averaged
Iterates with Fitted Normal Density. This histogram
displays the distribution of the PR-averaged iterates
from the experiment. Overlaid on the histogram is a
fitted normal density curve. The close alignment in-
dicates that the empirical distribution of the iterates
closely follows the normal distribution.

(b) QQ Plot of Centered and Scaled PR-Averaged
Iterates. This QQ plot compares the empirical dis-
tribution of the PR-averaged iterates from the L2-
regularized logistic regression experiment with the
theoretical normal distribution. The linearity of the
points along the 45-degree reference line indicates
that the empirical distribution closely follows the
normal distribution.

Figure 2: Experiment results to verify the Central Limit Theorem.

D Proof of Pilot Results (Proposition 4.2)

In this section, we prove the pilot result, namely Proposition 4.2. We prove the desired moments for
� = 1, i.e., without any projection. It is easy to see that when the projection radius � 2 [2k✓⇤k,1],

E[k✓t+1 � ✓⇤k2p]  E[k✓t+1/2 � ✓⇤k2p],

where ✓t+1/2 denotes the iterate before projection. The term on the right hand side can be further
bounded by the moment bounds for iteration without projection. Therefore, it suffices for us to prove
the respective moment bounds without any projection.

Given Assumption 4 hold for 2p-th moment, with p � 1, we prove the moment bound in Proposi-
tion 4.2 for n with 1  n  p by induction.

D.1 Base Case

In this section, we prove the base case of Proposition 4.2, i.e., with n = 1. The base case gives the
desired mean squared error (MSE) convergence bound, which will subsequently be used in the proof
of weak convergence.

We start by noting the following decomposition,
E[k✓k+1 � ✓⇤k2]� E[k✓k � ✓⇤k2]

= 2↵E[h✓k � ✓⇤, g(✓k, xk)i] + ↵2E[kg(✓k, xk)k
2] + ↵2E[k⇠k+1(✓k)k

2]

= 2↵E[h✓k � ✓⇤, g(✓k, xk)� ḡ(✓k)i] + 2↵E[h✓k � ✓⇤, ḡ(✓k)i]

+ ↵2E[kg(✓k, xk)k
2] + ↵2E[k⇠k+1(✓k)k

2].

It is easy to see that under Assumption 3, we have
h✓k � ✓⇤, ḡ(✓k)i = h✓k � ✓⇤, ḡ(✓k)� ḡ(✓⇤)i  �µk✓k � ✓⇤k2. (D.1)
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Additionally, under Assumption 2 and 4, we have the following upper bound

↵2
⇣
E[kg(✓k, xk)k

2] + E[k⇠k+1(✓k)k
2]
⌘

 ↵2
⇣
L2
1E[(k✓k � ✓⇤k+ 1)2] + L2

2E[(k✓k � ✓⇤k+ 1)2]
⌘

 2↵2L2
⇣
E[k✓k � ✓⇤k2] + 1

⌘
. (D.2)

Therefore, the key to analyze the remaining inner product h✓k � ✓⇤, g(✓k, xk)� ḡ(✓k)i.

Consider the following decomposition

h✓k � ✓⇤, g(✓k, xk)� ḡ(✓k)i = h✓k � ✓k�⌧ , g(✓k, xk)� ḡ(✓k)i (D.3)
+ h✓k�⌧ � ✓⇤, g(✓k�⌧ , xk)� ḡ(✓k�⌧ )i (D.4)
+ h✓k�⌧ � ✓⇤, g(✓k, xk)� g(✓k�⌧ , xk)i (D.5)
+ h✓k�⌧ � ✓⇤, ḡ(✓k)� ḡ(✓k�⌧ )i. (D.6)

Hence, we need some upper bound on k✓k � ✓k�⌧k.

We next note the following technical Lemma, which is adapted from [17, 60] for the updated
unbounded i.i.d. noise assumption in Assumption 4. The proof of the technical Lemma is delayed to
Appendix D.1.1.
Lemma D.1. For 16↵⌧  µ/(4L2), we have

E[k✓k � ✓k�⌧k|Fk�⌧ ]  2↵⌧Lk✓k�⌧ � ✓⇤k+ 2↵⌧L (D.7)
E[k✓k � ✓k�⌧k|Fk�⌧ ]  4↵⌧LE[k✓k � ✓⇤k|Fk�⌧ ] + 4↵⌧L (D.8)

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  8↵2⌧2L2

k✓k�⌧ � ✓⇤k2 + 8↵2⌧2L2 (D.9)

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  32↵2⌧2L2E[k✓k � ✓⇤k2|Fk�⌧ ] + 32↵2⌧2L2. (D.10)

Given (D.10), we additionally note that

k✓k�⌧ � ✓⇤k2 + 1 = E[k✓k�⌧ � ✓⇤k2|Fk�⌧ ] + 1

 2
⇣
E[k✓k � ✓k�⌧k

2
|Fk�⌧ ] + E[k✓k � ✓⇤k2|Fk�⌧ ]

⌘
+ 1

 2
⇣
32↵2⌧2L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1) + E[k✓k � ✓⇤k2|Fk�⌧ ]

⌘
+ 1

 4(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1). (D.11)

We next use the above four technical inequalities to analyze the four terms in (D.3)–(D.4).

To bound (D.3), we first note that

kE[h✓k � ✓k�⌧ , g(✓k, xk)� ḡ(✓k)i|Fk�⌧ ]k

 E[k✓k � ✓k�⌧k · 2L(k✓k � ✓⇤k+ 1)|Fk�⌧ ]
(i)
 2L

p
E[k✓k � ✓k�⌧k2|Fk�⌧ ]

p
E[(k✓k � ✓⇤k+ 1)2|Fk�⌧ ]

(ii)
 2L

p
32↵2⌧2L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)]

p
2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)

 16↵⌧L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1),

where (i) holds for the Cauchy-Schwarz inequality and (ii) holds for (D.10).

To bound (D.4), we next note that

kE[h✓k�⌧ � ✓⇤, g(✓k�⌧ , xk)� ḡ(✓k�⌧ )i|Fk�⌧ ]k

= kh✓k�⌧ � ✓⇤,E[g(✓k�⌧ , xk)� ḡ(✓k�⌧ )|Fk�⌧ ]ik

 k✓k�⌧ � ✓⇤kkE[g(✓k�⌧ , xk)� ḡ(✓k�⌧ )|Fk�⌧ ]k
(iii)
 k✓k�⌧ � ✓⇤k ·

⇣
↵L(k✓k�⌧ � ✓⇤k+ 1)

⌘

 2↵L(k✓k�⌧ � ✓⇤k2 + 1)
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(iv)
 8↵L(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)

 8↵⌧L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1),

where (iii) holds due to the mixing property of Markov chain (xk)k�0 and (iv) holds for (D.11).

To bound (D.5), we have

kE[h✓k�⌧ � ✓⇤, g(✓k, xk)� g(✓k�⌧ , xk)i|Fk�⌧ ]k

= kh✓k�⌧ � ✓⇤,E[g(✓k, xk)� g(✓k�⌧ , xk)|Fk�⌧ ]ik

 Lk✓k�⌧ � ✓⇤k · E[k✓k � ✓k�⌧k|Fk�⌧ ]
(v)
 Lk✓k�⌧ � ✓⇤k · 2↵⌧L(k✓k�⌧ � ✓⇤k+ 1)

 4↵⌧L2(k✓k�⌧ � ✓⇤k2 + 1)
(vi)
 16↵⌧L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1),

where (v) holds for (D.7) and (vi) holds for (D.11).

Lastly, to bound (D.6), we apply the similar technique used in bounding the third term in (D.5) and
obtain a similar result

kE[h✓k�⌧ � ✓⇤, ḡ(✓k)� ḡ(✓k�⌧ )i|Fk�⌧ ]k  16↵⌧L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1).

Combining all analyses above, we have

k2↵E[h✓k � ✓⇤i, g(✓k, xk)� ḡ(✓k)|Fk�⌧ ]k

 2↵(16↵⌧L2 + 8↵⌧L2 + 32↵⌧L2)(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)

 112↵2⌧L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1). (D.12)

Hence, making use of (D.1), (D.2), and (D.12), we obtain the following

E[k✓k+1 � ✓⇤k2|Fk�⌧ ]� E[k✓k � ✓⇤k2|Fk�⌧ ]

 �2↵µE[k✓ � ✓⇤k2|Fk�⌧ ] + 112↵2⌧L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)

+ 2↵2L2(E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)

 �2↵µE[k✓ � ✓⇤k2|Fk�⌧ ] + 114↵2⌧L2E[k✓k � ✓⇤k2|Fk�⌧ ] + 114↵2⌧L2

= �2↵(µ� 57↵⌧L2)E[k✓k � ✓⇤k2|Fk�⌧ ] + 114↵2⌧L2.

Therefore, when we have ↵ satisfying the constraint, i.e., ↵⌧L2 < c2,1µ, we obtain

E[k✓k+1 � ✓⇤k2|Fk�⌧ ]  (1� ↵µ)E[k✓k � ✓⇤k2|Fk�⌧ ] + 114↵2⌧L2.

Recursively, we get

E[k✓k � ✓⇤k2]  (1� ↵µ)k�⌧E[k✓⌧ � ✓⇤k2] +
114↵⌧L2

µ

 2(1� ↵µ)k�⌧
⇣
E[k✓0 � ✓⇤k2] + E[k✓⌧ � ✓0k

2]
⌘
+

114↵⌧L2

µ

 2(1� ↵µ)k�⌧
⇣
E[k✓0 � ✓⇤k2] + 8↵2⌧2L2

⇣
E[k✓0 � ✓⇤k2] + 1

⌘
+

114↵⌧L2

µ

 4(1� ↵µ)k�⌧E[k✓0 � ✓⇤k2] +
122↵⌧L2

µ
.

Lastly, we note that
1

(1� ↵µ)⌧
(i)


1

1� ↵⌧µ

(ii)


1

1� ↵⌧L

(iii)
 2, (D.13)

where (i) holds by the Bernoulli inequality, that (1 + x)r � 1 + rx for x � �1 and r � 1; (ii) holds
for µ  L; (iii) holds for ↵⌧L < µ/(114L) < 1

2 .
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Hence, for k � ⌧ , we have

E[k✓k � ✓⇤k2]  c2,1(1� ↵µ)kk✓0 � ✓⇤k2 + c2,2↵⌧↵
L2

µ
,

for c2,1 and c2,2 some universal constants. As such, we have completed the proof of base case for
Proposition 4.2.

D.1.1 Proof of Lemma D.1

In this section, we provide the proofs of the four technical inequalities in Lemma D.1.

Proof of (D.7).
E[k✓k � ✓k�⌧k|Fk�⌧ ]  2↵⌧Lk✓k�⌧ � ✓⇤k+ 2↵⌧L.

Proof. Note that

k✓k � ✓k�⌧k 

k�1X

t=k�⌧
k✓t+1 � ✓tk,

so we start with analyzing k✓t+1 � ✓tk.
k✓t+1 � ✓⇤k � k✓t � ✓⇤k  k✓t+1 � ✓tk = ↵kg(✓t, xt) + ⇠t+1(✓t)k

 ↵kg(✓t, xt)k+ ↵k⇠t+1(✓t)k  ↵L1(k✓t � ✓⇤k+ 1) + ↵k⇠t+1(✓t)k

k✓t+1 � ✓⇤k  (1 + ↵L1)k✓t � ✓⇤k+ ↵L1 + ↵k⇠t+1(✓t)k.

Recall that we assume
E1/2[k⇠t+1(✓t)k

2
|Ft]  L2(k✓tk+ 1),

then we have for k � ⌧  t  k,
E[k⇠t+1(✓t)k|Fk�⌧ ] = E[E[k⇠t+1(✓k)|Ft]|Fk�⌧ ]  E[L2(k✓kk+ 1)|Fk�⌧ ]

E[k✓t+1 � ✓tk|Fk�⌧ ]  ↵L(E[k✓t � ✓⇤k|Fk�⌧ ] + 1)

E[k✓k+1 � ✓⇤k|Fk�⌧ ]  (1 + ↵L)E[k✓k � ✓⇤k|Fk�⌧ ] + ↵L.

Hence, for 0  n  ⌧ ,

E[k✓k�⌧+n � ✓⇤k|Fk�⌧ ]  (1 + ↵L)nE[k✓k�⌧ � ✓⇤k|Fk�⌧ ] + ↵L
n�1X

l=0

(1 + ↵L)l

= (1 + ↵L)nk✓k�⌧ � ✓⇤k+ ((1 + ↵L)n � 1).

We next note that
(1 + x)y = ey log(1+x)

 exy  1 + 2xy, xy 2 [0, 1/2].

Hence, at this stage, if we require ↵⌧L < µ/(4L) < 1/4, we have the following upper bound
(1 + ↵L)n  (1 + ↵L)⌧  1 + 2↵⌧L  2.

Therefore, for 0  n  ⌧ ,
E[k✓k�⌧+n � ✓⇤k|Fk�⌧ ]  (1 + 2↵⌧L)k✓k�⌧ � ✓⇤k+ 2↵⌧L

 2k✓k�⌧ � ✓⇤k+ 2↵⌧L.

As such, we have

E[k✓k � ✓k�⌧k|Fk�⌧ ] 
k�1X

t=k�⌧
E[k✓t+1 � ✓tk|Fk�⌧ ]

 ↵L
k�1X

t=k�⌧
E[k✓t � ✓⇤k|Fk�⌧ ] + ↵⌧L

 ↵⌧L(2k✓k�⌧ � ✓⇤k+ 2↵⌧L) + ↵⌧L

 2↵⌧Lk✓k�⌧ � ✓⇤k+ 2↵⌧L,

and prove the desired inequality.
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Proof of (D.8).

E[k✓k � ✓k�⌧k|Fk�⌧ ]  4↵⌧LE[k✓k � ✓⇤k|Fk�⌧ ] + 4↵⌧L.

Proof. We prove this inequality based on the claim that we have just shown,

E[k✓k � ✓k�⌧k|Fk�⌧ ]  2↵⌧Lk✓k�⌧ � ✓⇤k+ 2↵⌧L.

We simply note that

k✓k�⌧ � ✓⇤k = E[k✓k�⌧ � ✓⇤k|Fk�⌧ ]

 E[k✓k � ✓k�⌧k|Fk�⌧ ] + E[k✓k � ✓⇤k|Fk�⌧ ].

Hence,

E[k✓k � ✓k�⌧k|Fk�⌧ ]  2↵⌧L(E[k✓k � ✓k�⌧k|Fk�⌧ ] + E[k✓k � ✓⇤k|Fk�⌧ ] + 1)

(1� 2↵⌧L)E[k✓k � ✓k�⌧k|Fk�⌧ ]  2↵⌧LE[k✓k � ✓⇤k|Fk�⌧ ] + 2↵⌧L.

Therefore, we obtain

E[k✓k � ✓k�⌧k|Fk�⌧ ]  4↵⌧LE[k✓k � ✓⇤k|Fk�⌧ ] + 4↵⌧L.

Proof of (D.9).

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  32↵2⌧2L2E[k✓k � ✓⇤k2|Fk�⌧ ] + 32↵2⌧2L2.

Proof. To analyze E[k✓k � ✓k�⌧k2|Fk�⌧ ], we consider the following attempt.

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  ⌧

k�1X

t=k�⌧
E[k✓t+1 � ✓tk

2
|Fk�⌧ ]

= ↵2⌧
k�1X

t=k�⌧
E[(kg(✓t, xt)k+ k⇠t+1(✓t)k)

2
|Fk�⌧ ]

 2↵2⌧
k�1X

t=k�⌧

⇣
E[kg(✓t, xt)k

2
|Fk�⌧ ] + E[k⇠t+1(✓t)k

2
|Fk�⌧ ]

⌘

 2↵2⌧L2
k�1X

t=k�⌧
E[(k✓t � ✓⇤k+ 1)2|Fk�⌧ ]

 4↵2⌧L2
k�1X

t=k�⌧
E[k✓t � ✓⇤k2|Fk�⌧ ] + 4↵2⌧2L2.

Next, we study E[k✓t � ✓⇤k2|Fk�⌧ ]. We start with the following, for k � ⌧  t < k,

E[k✓t+1 � ✓⇤k2|Fk�⌧ ]

= E[k✓t � ✓⇤k2|Fk�⌧ ] + 2↵E[h✓t � ✓⇤, g(✓t, xt)i|Fk�⌧ ] + ↵2E[kg(✓t, xt) + ⇠t+1(✓t)k
2
|Fk�⌧ ]

 E[k✓t � ✓⇤k2|Fk�⌧ ] + 2↵2
⇣
E[kg(✓t, xt)k

2
|Fk�⌧ ] + E[k⇠t+1(✓t)k

2
|Fk�⌧ ]

⌘

+ 2↵E[k✓t � ✓⇤kkg(✓t, xt)k|Fk�⌧ ].

We note that

2E[k✓t � ✓⇤kkg(✓t, xt)k|Fk�⌧ ]  2
p
E[k✓t � ✓⇤k2|Fk�⌧ ]E[kg(✓t, xt)k2|Fk�⌧ ]

 2
p
E[k✓t � ✓⇤k2|Fk�⌧ ]E[(L(k✓t � ✓⇤k+ 1))2|Fk�⌧ ]

 2
p
E[k✓t � ✓⇤k2|Fk�⌧ ]2L2E[k✓t � ✓⇤k2 + 1|Fk�⌧ ]
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 4L(E[k✓t � ✓⇤k2|Fk�⌧ ] + 1).

Substituting the above inequality back, we obtain

E[k✓t+1 � ✓⇤k2|Fk�⌧ ]

 E[k✓t � ✓⇤k2|Fk�⌧ ] + 4↵2L2
⇣
E[k✓t � ✓⇤k2|Fk�⌧ ] + 1

⌘
+ 4↵LE[k✓t � ✓⇤k2|Fk�⌧ ] + 4↵L

 (1 + 4↵2L2 + 4↵L)E[k✓t � ✓⇤k2|Fk�⌧ ] + (4↵2L2 + 4↵L).

We further recall that
4↵2L2

 4↵L(↵⌧L)  ↵L,

and hence we obtain the following upper bound

E[k✓t+1 � ✓⇤k2|Fk�⌧ ]  (1 + 5↵L)E[k✓t � ✓⇤k2|Fk�⌧ ] + 5↵L.

Then, recursively, for 0  n  ⌧ , we have

E[k✓k�⌧+n � ✓⇤k2|Fk�⌧ ]  (1 + 5↵L)nk✓k�⌧ � ✓⇤k2 + 5↵L
n�1X

l=0

(1 + 5↵L)l.

As such, under the assumption that 4↵⌧L < µ/(4L) < 1/4, then for k � ⌧  t  k, we have

E[k✓t � ✓⇤k2|Fk�⌧ ]  (1 + 10↵⌧L)k✓k�⌧ � ✓⇤k2 + 10↵⌧L

 2k✓k�⌧ � ✓⇤k2 + 10↵⌧L.

Combining all the analyses above, we have

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  4↵2⌧L2

k�1X

t=k�⌧
E[k✓t � ✓⇤k2|Fk�⌧ ] + 4↵2⌧2L2

 4↵2⌧2L2
⇣
2k✓k�⌧ � ✓⇤k2 + 10↵⌧L

⌘
+ 4↵2⌧2L2

 8↵2⌧2L2
k✓k�⌧ � ✓⇤k2 + 8↵2⌧2L2.

Proof of (D.10).

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  32↵2⌧2L2E[k✓k � ✓⇤k2|Fk�⌧ ] + 32↵2⌧2L2.

Proof. This inequality simply extends the result from (D.9),i.e.,

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  8↵2⌧2L2

k✓k�⌧ � ✓⇤k2 + 8↵2⌧2L2.

We first note that

k✓k�⌧ � ✓⇤k2 = E[k✓k�⌧ � ✓⇤k2|Fk�⌧ ]

 2E[k✓k � ✓k�⌧k
2
|Fk�⌧ ] + 2E[k✓k � ✓⇤k2|Fk�⌧ ].

Hence,

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  8↵2⌧2L2(2E[k✓k � ✓k�⌧k

2
|Fk�⌧ ] + 2E[k✓k � ✓⇤k2|Fk�⌧ ] + 1)

(1� 16↵2⌧2L2)E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  16↵2⌧2L2E[k✓k � ✓⇤k2|Fk�⌧ ] + 8↵2⌧2L2.

Again, under the assumption that 16↵⌧L2 < µ/4, we can conclude that

E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]  32↵2⌧2L2E[k✓k � ✓⇤k2|Fk�⌧ ] + 32↵2⌧2L2.
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D.2 Induction Step

In this step, assume that the moment bound in Proposition 4.2 has been proven for k  n� 1, we
now proceed to show that the desired moment convergence holds for n with 2  n  p.

We start with the following decomposition of k✓k+1 � ✓⇤k2n

k✓k+1 � ✓⇤k2n

=
⇣
k✓k � ✓⇤k2 + 2↵h✓k � ✓⇤, g(✓k, xk) + ⇠k+1(✓k)i+ ↵2

kg(✓k, xk) + ⇠k+1(✓t)k
2
⌘n

=
X

i,j,l
i+j+l=n

✓
n

i, j, l

◆
k✓k � ✓⇤k2i

⇣
2↵h✓k � ✓⇤, g(✓k, xk) + ⇠k+1(✓k)i

⌘j⇣
↵kg(✓k, xk) + ⇠k+1(✓k)k

⌘2l

We note the following cases.

1. i = n, j = l = 0. In this case, the summand is simply k✓k � ✓⇤k2i.
2. When i = n � 1, j = 1 and l = 0. In this case, the summand is of order ↵, i.e., ↵2nh✓k �

✓⇤, g(✓k, xk) + ⇠k+1(✓k)ijk✓k � ✓⇤k2(n�1). We can further compose it as

2n↵h✓k � ✓⇤, g(✓k, xk) + ⇠k+1(✓k)ik✓k � ✓⇤k2(n�1)

= 2n↵h✓k � ✓⇤, g(✓k, xk)� ḡ(✓k) + ⇠k+1(✓k)ik✓k � ✓⇤k2(n�1)

| {z }
T1

+ 2n↵h✓k � ✓⇤, ḡ(✓k)ik✓k � ✓⇤k2(n�1)

| {z }
T2

.

Note that, when (xk) is i.i.d. or from a martingale noise sequence, we have

E[T1|✓k] = 0.

However, when (xk) is Markovian, the above equality then does not hold and T1 requires a careful
analysis.
Nonetheless, under the strong monotonicity assumption, we have

T2  �2n↵µk✓k � ✓⇤k2n.

3. For the remaining terms, we see that they are of higher orders of ↵. Therefore, when ↵ is selected
sufficiently small, these terms do not raise concern.

Therefore, to prove the desired moment bound, we spend the remaining section analyzing T1.
Immediately, we note that

E[T1|Fk�⌧ ] = E
h
2n↵h✓k � ✓⇤, g(✓k, xk)� ḡ(✓k) + E[⇠k+1(✓k)|✓k]ik✓k � ✓⇤k2(n�1)

|Fk�⌧

i

= E
h
2n↵h✓k � ✓⇤, g(✓k, xk)� ḡ(✓k)ik✓k � ✓⇤k2(n�1)

| {z }
T 0
1

|Fk�⌧

i
.

Subsequently, we focus on analyzing T 0
1.

We start with the following decomposition of T 0
1.

2n↵hg(✓k, xk)� ḡ(✓k), ✓k � ✓⇤ik✓k � ✓⇤k2(n�1)

 2n↵kg(✓k�⌧ , xk)� ḡ(✓k�⌧ )kk✓k�⌧ � ✓⇤k2n�1 (D.14)

+ 2n↵kg(✓k, xk)� g(✓k�⌧ , xk)kk✓k�⌧ � ✓⇤k2n�1 (D.15)

+ 2n↵kḡ(✓k�⌧ )� ḡ(✓k)kk✓k�⌧ � ✓⇤k2n�1 (D.16)

+ 2n↵kg(✓k, xk)� ḡ(✓k)kk✓k � ✓⇤k2(n�1)
k✓k � ✓k�⌧k (D.17)

+ 2n↵kg(✓k, xk)� ḡ(✓k)kk✓k�⌧ � ✓⇤k ·
�
k✓k � ✓⇤k2(n�1)

� k✓k�⌧ � ✓⇤k2(n�1)
�
. (D.18)

We note the following technical lemma, which will offer significant help in the analysis of T 0
1. We

postpone the proof of the lemma to the end of this subsection.
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Lemma D.2. For c̃n↵⌧  µ/(4L2), where c̃n denotes some constant dependent of the higher-moment

2n, we have

E[k✓k � ✓k�⌧k
2n
|Fk�⌧ ]  cn↵

2n⌧2nL2n(k✓k�⌧ � ✓⇤k2n + 1).

Following the lemma, we observe that a natural consequence is for any m  2n, we have

E[k✓k � ✓k�⌧k
m
|Fk�⌧ ] 

⇣
E[k✓k � ✓k�⌧k

2n
|Fk�⌧ ]

⌘ m
2n



⇣
cn↵

2n⌧2nL2n(k✓k�⌧ � ✓⇤k2n + 1)
⌘ m

2n

 cm↵m⌧mLm
⇣
k✓k�⌧ � ✓⇤km + 1

⌘
,

where we use the inequality ap + bp > (a+ b)p for a, b > 0, p 2 (0, 1) to obtain the final inequality.

Now, we are ready to analyze (D.14)–(D.18). Firstly, for (D.14), we make use of the mixing
assumption of ⌧ , and have that

E[|(D.14)||Fk�⌧ ]  2n↵k✓k�⌧ � ✓⇤k2n�1E[kg(✓k�⌧ , xk)� ḡ(✓k�⌧ )k|Fk�⌧ ]

 2n↵2Lk✓k�⌧ � ✓⇤k2n�1(k✓k�⌧ � ✓⇤k+ 1)

 2n↵2Lk✓k�⌧ � ✓⇤k2n + 2n↵2Lk✓k�⌧ � ✓⇤k2n�1

 3n↵2Lk✓k�⌧ � ✓⇤k2n + n↵2Lk✓k�⌧ � ✓⇤k2(n�1),

where we make use of the inequality 2|x|3  x2 + x4 to obtain the final step.

Next, we proceed to analyze (D.15). It is easy to see that

E[|(D.15)||Fk�⌧ ] = 2n↵k✓k�⌧ � ✓⇤k2n�1E[kg(✓k, xk)� g(✓k�⌧ , xk)|Fk�⌧ ]

 2n↵k✓k�⌧ � ✓⇤k2n�1E[k✓k � ✓k�⌧k|Fk�⌧ ]

 2n↵k✓k�⌧ � ✓⇤k2n�1
⇣
2↵⌧L(k✓k�⌧ � ✓⇤k+ 1)

⌘

 4n↵2⌧Lk✓k�⌧ � ✓⇤k2n + 4n↵2⌧Lk✓k�⌧ � ✓⇤k2n�1

 6n↵2⌧Lk✓k�⌧ � ✓⇤k2n + 2n↵2⌧Lk✓k�⌧ � ✓⇤k2(n�1).

The term in (D.16) can be analyzed in a similar fashion as the (D.15).

For (D.17), we first derive the following

E[|(D.17)||Fk�⌧ ]

 2n↵E
h
2L
⇣
k✓k � ✓⇤k+ 1

⌘
k✓k � ✓k�⌧kk✓k � ✓⇤k2(n�1)

|Fk�⌧

i

= 4n↵LE[k✓k � ✓k�⌧kk✓k � ✓⇤k2n�1
|Fk�⌧ ]| {z }

Ta

+4n↵LE[k✓k � ✓k�⌧kk✓k � ✓⇤k2(n�1)
|Fk�⌧ ]| {z }

Tb

.

We next analyze the two terms Ta and Tb respectively. Starting with Ta, we have

4n↵LE[k✓k � ✓k�⌧kk✓k � ✓⇤k2n�1
|Fk�⌧ ] (D.19)

 4n↵LE
h
k✓k � ✓k�⌧k

⇣
k✓k � ✓k�⌧k+ k✓k�⌧ � ✓⇤k

⌘2n�1
|Fk�⌧

i
(D.20)

 22(n�1)4n↵LE[k✓k � ✓k�⌧k(k✓k � ✓k�⌧k
2n�1 + k✓k�⌧ � ✓⇤k2n�1

|Fk�⌧ ] (D.21)

= 4nn↵L
⇣
E[k✓k � ✓k�⌧k

2n
|Fk�⌧ ]| {z }

by Lemma D.2

+k✓k�⌧ � ✓⇤k2n�1E[k✓k � ✓k�⌧k|Fk�⌧ ]
⌘

(D.22)

 4nn↵L
⇣
cn↵

2n⌧2nL2n

| {z }
2↵⌧L

(k✓k�⌧ � ✓⇤k2n + 1) + k✓k�⌧ � ✓⇤k2n�1(2↵⌧L(k✓k�⌧ � ✓⇤k+ 1))
⌘

(D.23)

 4nn↵L
⇣
4↵⌧Lk✓k�⌧ � ✓⇤k2n + 2↵⌧Lk✓k�⌧ � ✓⇤k2n�1 + cn↵

2n⌧2nL2n
⌘

(D.24)

 4nn↵L
⇣
5↵⌧Lk✓k�⌧ � ✓⇤k2n + ↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + c0n↵

2n�1⌧2n�1L2n�1
⌘
. (D.25)
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For Tb, we have

4n↵LE[k✓k � ✓k�⌧kk✓k � ✓⇤k2(n�1)
|Fk�⌧ ]

 4n↵LE
h
k✓k � ✓k�⌧k

⇣
k✓k � ✓k�⌧k+ k✓k�⌧ � ✓⇤k

⌘2(n�1)
|Fk�⌧

i

 22n�1n↵LE[k✓k � ✓k�⌧k(k✓k � ✓k�⌧k
2(n�1) + k✓k�⌧ � ✓⇤k2(n�1)

|Fk�⌧ ]

= 22n�1n↵L
⇣
E[k✓k � ✓k�⌧k

2n�1
|Fk�⌧ ]| {z }

by Lemma D.2

+k✓k�⌧ � ✓⇤k2(n�1)E[k✓k � ✓k�⌧k|Fk�⌧ ]
⌘

 22n�1n↵L
⇣
cn�1↵

2n�1⌧2n�1L2n�1

| {z }
2↵⌧L

(k✓k�⌧ � ✓⇤k2n�1 + 1)

+ k✓k�⌧ � ✓⇤k2(n�1)(2↵⌧L(k✓k�⌧ � ✓⇤k+ 1))
⌘

 22n�1n↵L
⇣
4↵⌧Lk✓k�⌧ � ✓⇤k2n�1 + 2↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + cn�1↵

2n�1⌧2n�1L2n�1
⌘

 22n�1n↵L
⇣
2↵⌧Lk✓k�⌧ � ✓⇤k2n + 4↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + cn�1↵

2n�1⌧2n�1L2n�1
⌘
.

Combining the analyses of the two terms, we get the following upper bound to (D.17)

E[|(D.17)||Fk�⌧ ]

 4nn↵L
⇣
5↵⌧Lk✓k�⌧ � ✓⇤k2n + ↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + c0n↵

2n�1⌧2n�1L2n�1
⌘

+ 22n�1n↵L
⇣
2↵⌧Lk✓k�⌧ � ✓⇤k2n + 4↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + cn�1↵

2n�1⌧2n�1L2n�1
⌘

= 22n�1n↵L
⇣
12↵⌧Lk✓k�⌧ � ✓⇤k2n + 6↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + c00n�1↵

2n�1⌧2n�1L2n�1
⌘
.

Lastly, we analyze (D.18). We first make use of the mean-value theorem, with a 2 [0, 1], we have

k✓k � ✓⇤k2(n�1)
� k✓k�⌧ � ✓⇤k2(n�1)

= k✓k � ✓k�⌧k · 2(n� 1)ka(✓k � ✓⇤) + (1� a)(✓k�⌧ � ✓⇤)k2n�3

= k✓k � ✓k�⌧k · 2(n� 1)ka(✓k � ✓k�⌧ ) + ✓k�⌧ � ✓⇤k2n�3

 22n�3(n� 1)k✓k � ✓k�⌧k
⇣
k✓k � ✓k�⌧k

2n�3 + k✓k�⌧ � ✓⇤k2n�3
⌘

Substituting the above upper bound back into (D.18), we obtain

E[|(D.18)||Fk�⌧ ]

 22n�1n(n� 1)↵Lk✓k�⌧ � ✓⇤k

E
h
(k✓k � ✓⇤k+ 1)k✓k � ✓k�⌧k

⇣
k✓k � ✓k�⌧k

2n�3 + k✓k�⌧ � ✓⇤k2n�3
⌘
|Fk�⌧

i

 22n�1n(n� 1)↵L
⇣
k✓k�⌧ � ✓⇤kE[k✓k � ✓k�⌧k

2n�1
|Fk�⌧ ] + k✓k�⌧ � ✓⇤k2E[k✓k � ✓k�⌧k

2n�2
|Fk�⌧ ]

+ k✓k�⌧ � ✓⇤kE[k✓k � ✓k�⌧k
2n�2

|Fk�⌧ ] + k✓k�⌧ � ✓⇤k2n�2E[k✓k � ✓k�⌧k
2
|Fk�⌧ ]

+ k✓k�⌧ � ✓⇤k2n�1E[k✓k � ✓k�⌧k|Fk�⌧ ] + k✓k�⌧ � ✓⇤k2n�2E[k✓k � ✓k�⌧k|Fk�⌧ ]
⌘

 22n�1n(n� 1)↵L
⇣
cn↵⌧Lk✓k�⌧ � ✓⇤k2n + cn�1↵⌧Lk✓k�⌧ � ✓⇤k2(n�1) + cn�1↵

2n�1⌧2n�1L2n�1
⌘
.

Combining the analyses above, we have the following bound for T1,

E[|T1||Fk�⌧ ]

 E[k(D.14)||Fk�⌧ ] + E[k(D.15)||Fk�⌧ ] + E[k(D.16)||Fk�⌧ ]

+ E[k(D.17)||Fk�⌧ ] + E[k(D.18)||Fk�⌧ ]

 cn,1↵
2⌧L2

k✓k�⌧ � ✓⇤k2n + cn,2↵
2⌧L2

k✓k�⌧ � ✓⇤k2(n�1) + cn,3↵
2n⌧2n�1L2n,
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where cn,1, cn,2 and cn,3 are some constants that depend on n.

Additionally, we note that
k✓k�⌧ � ✓⇤k2n = E[k✓k�⌧ � ✓⇤k2n|Fk�⌧ ]

 E
h⇣

k✓k � ✓k�⌧k+ k✓k � ✓⇤k
⌘2n

|Fk�⌧

i

 22n�1E[k✓k � ✓k�⌧k
2n
|Fk�⌧ ] + 22n�1E[k✓k � ✓⇤k2n|Fk�⌧ ]

 cn↵
2n⌧2nL2n(k✓k�⌧ � ✓⇤k2n + 1) + 22n�1E[k✓k � ✓⇤k2n|Fk�⌧ ].

Therefore, for sufficiently small ↵⌧L < µ/(c0nL), we have
(1� c0n↵

2n⌧2nL2n)k✓k�⌧ � ✓⇤k2n  c00nE[k✓k � ✓⇤k2n|Fk�⌧ ] + cn↵
2n⌧2nL2n

) k✓k�⌧ � ✓⇤k2n  2c00nE[k✓k � ✓⇤k2n|Fk�⌧ ] + 2cn↵
2n⌧2nL2n.

As such, for sufficiently small ↵, we have
E[|T1||Fk�⌧ ]

 cn,1↵
2⌧L2

⇣
cnE[k✓k � ✓⇤k2n|Fk�⌧ ] + c0n↵

2n⌧2nL2n
⌘

+ cn,2↵
2⌧L2

⇣
cn�1E[k✓k � ✓⇤k2(n�1)

|Fk�⌧ ] + c0n�1↵
2(n�1)⌧2(n�1)L2(n�1)

⌘
+ cn,3↵

2n⌧2n�1L2n

= cn,1↵
2⌧L2E[k✓k � ✓⇤k2n|Fk�⌧ ] + cn,2↵

2⌧L2E[k✓k � ✓⇤k2(n�1)
|Fk�⌧ ] + cn,3↵

2n⌧2n�1L2n.

Hence, up til this point, we have obtained
E[k✓k+1 � ✓⇤k2n|Fk�⌧ ]

 (1� 2n↵µ)E[k✓k � ✓⇤k2n|Fk�⌧ ]

+ cn,1↵
2⌧L2E[k✓k � ✓⇤k2n|Fk�⌧ ] + cn,2↵

2⌧L2E[k✓k � ✓⇤k2(n�1)
|Fk�⌧ ] + cn,3↵

2n⌧2n�1L2n

 (1� 2n↵(µ� c0n,1↵⌧L
2))E[k✓k � ✓⇤k2n|Fk�⌧ ]

+ cn,2↵
2⌧L2E[k✓k � ✓⇤k2(n�1)]|Fk�⌧ ] + cn,3↵

2n⌧2n�1L2n.

Following the induction hypothesis, when k is sufficiently large, we have

E[k✓k � ✓⇤k2(n�1)
|Fk�⌧ ]  cn�1↵

n�1⌧n�1s(✓0, L, µ).

Substituting the above upper bound back into our analysis of the 2n-th moment bound, we obtain
E[k✓k+1 � ✓⇤k2n|Fk�⌧ ]  (1� 2n↵(µ� c0n,1↵⌧L

2))E[k✓k � ✓⇤k2n|Fk�⌧ ]

+ ↵n+1⌧nL2cn,2 · cn�1s(✓0, L, µ) + cn,3↵
2n⌧2n�1L2n.

Subsequently, if we set ↵ sufficiently small, such that
↵⌧L2 < cn · µ,

we obtain
E[k✓k+1 � ✓⇤k2n|Fk�⌧ ]  (1� ↵µ)E[k✓k � ✓⇤k2n|Fk�⌧ ] + ↵n+1⌧nc0n,2 · s(✓0, L, µ),

where s(✓0, L, µ) is some constant that may depend on the initialization ✓0 and the problem primitives
µ and L but is independent of ↵.

Recursively, we get
E[k✓k � ✓⇤k2n]  (1� ↵µ)k�⌧E[k✓⌧ � ✓⇤k2n] + ↵n⌧n · s(✓0, L, µ).

Lastly, we recall that
E[k✓⌧ � ✓⇤k2n]  22n�1E[k✓⌧ � ✓0k

2n] + 22n�1E[k✓0 � ✓⇤k2n]

 cn,1↵
2n⌧2nL2n(E[k✓0 � ✓⇤k2n] + 1) + cn,2k✓0 � ✓⇤k2n

 cn,1E[k✓0 � ✓⇤k2n] + cn,2↵
2n⌧2nL2n.

Substituting back, we obtain for sufficiently large k,
E[k✓k � ✓⇤k2n]  cn,1(1� ↵µ)k�⌧E[k✓0 � ✓⇤k2n] + ↵2n⌧2ns(✓0, L, µ).

As such, we have proven the desired n-th moment bound.
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D.2.1 Proof of Lemma D.2

We now come back to Lemma D.2 and provide the complete proof.

Proof. The proof follows a similar strategy as (D.9) and (D.10) in Section D.1.1.

We start with the following relaxation and obtain that

E[k✓k � ✓k�⌧k
2n
|Fk�⌧ ]  E

h⇣ k�1X

t=k�⌧
k✓t+1 � ✓tk

⌘2n
|Fk�⌧

i

 ⌧2n�1
k�1X

t=k�⌧
E[k✓t+1 � ✓tk

2n
|Fk�⌧ ]

= ↵2n⌧2n�1
k�1X

t=k�⌧
E[kg(✓t, xt) + ⇠t+1(✓t)k

2n
|Fk�⌧ ]

 22n�1↵2n⌧2n�1
k�1X

t=k�⌧

⇣
E[kg(✓t, xt)k

2n
|Fk�⌧ ] + E[k⇠t+1(✓t)k

2n
|Fk�⌧ ]

⌘

 22n�1↵2n⌧2n�1
k�1X

t=k�⌧

⇣
L2n
1 E[(k✓t � ✓⇤k+ 1)2n|Fk�⌧ ] + L2n

2 (E[k✓t � ✓⇤k|Fk�⌧ ] + 1)2n
⌘

 42n�1↵2n⌧2n�1L2n
k�1X

t=k�⌧
E[k✓t � ✓⇤k2n|Fk�⌧ ] + 42n�1↵2n⌧2nL2n.

Next, in order to obtain a bound on k✓t � ✓⇤k2n, we study the following term.

E[k✓t+1 � ✓⇤k2n|Fk�⌧ ]  E
h⇣

k✓t+1 � ✓tk+ k✓t � ✓⇤k
⌘2n

|Fk�⌧

i

=
2nX

i=0

✓
2n

i

◆
E[k✓t+1 � ✓tk

i
k✓t � ✓⇤k2n�i

|Fk�⌧ ]

= E[k✓t � ✓⇤k2n|Fk�⌧ ] +
2nX

i=1

↵iE[kg(✓t, xt) + ⇠t+1(✓t)k
i
k✓t � ✓⇤k2n�i

|Fk�⌧ ]

Note that

E[kg(✓t, xt) + ⇠t+1(✓t)k
i
k✓t � ✓⇤k2n�i

|Fk�⌧ ]

 2i�1E
h⇣

kg(✓t, xt)k
i + k⇠t+1(✓t)k

i
⌘
k✓t � ✓⇤k2n�i

|Fk�⌧

i

= 2i�1E
h
E[(kg(✓t, xt)k

i + k⇠t+1(✓t)k
i)|✓t]k✓t � ✓⇤k2n�i

|Fk�⌧

i

 2i�1LiE
h
(k✓t � ✓⇤k+ 1)2n|Fk�⌧

i

 22(n�1)2iLi
⇣
E[k✓t � ✓⇤k|Fk�⌧ ] + 1

⌘

Substituting back, we obtain

2nX

i=1

↵iE[kg(✓t, xt) + ⇠t+1(✓t)k
i
k✓t � ✓⇤k2n�i

|Fk�⌧ ]

 22(n�1)
2nX

i=1

2i↵iLi
⇣
E[k✓t � ✓⇤k|Fk�⌧ ] + 1

⌘

= 22(n�1)
⇣
E[k✓t � ✓⇤k|Fk�⌧ ] + 1

⌘
· 2↵L(1 + 2↵L)2n�1
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 42n�1↵L
⇣
E[k✓t � ✓⇤k|Fk�⌧ ] + 1

⌘

Consolidating the terms, we have

E[k✓t+1 � ✓⇤k2n|Fk�⌧ ]  (1 + 42n�1↵L)
⇣
E[k✓t � ✓⇤k|Fk�⌧ ] + 1

⌘

Recursively, for 0  l  ⌧ , we have

E[k✓k�⌧+l � ✓⇤k2n|Fk�⌧ ]  (1 + 42n�1↵L)lk✓k�⌧ � ✓⇤k2n + 42n�1↵L
l�1X

i=0

(1 + 42n�1↵L)i

= (1 + 42n�1↵L)lk✓k�⌧ � ✓⇤k2n + (1 + 42n�1↵L)l

Then, for
42n�1↵⌧L  µ/4L < 1/4,

we have for k � ⌧  t  k,

E[k✓t � ✓⇤k2n|Fk�⌧ ]  (1 + 24n�1↵⌧L)k✓k�⌧ � ✓⇤k2n + 24n�1↵⌧L

 2k✓k�⌧ � ✓⇤k2n + 24n�1↵⌧L

Finally, we have

E[k✓k � ✓k�⌧k
2n
|Fk�⌧ ]  42n�1↵2n⌧2n�1L2n

k�1X

t=k�⌧
E[k✓t � ✓⇤k2n|Fk�⌧ ] + 42n�1↵2n⌧2nL2n

 42n�1↵2n⌧2nL2n
⇣
2k✓k�⌧ � ✓⇤k2n + 24n�1↵⌧L+ 1

⌘

 24n�1↵2n⌧2nL2n
⇣
k✓k�⌧ � ✓⇤k2n + 1

⌘
.

As such, we have completed the proof.

E Proof of Theorem 4.1

In this section, we prove the weak convergence result in Theorem 4.1. In fact, the proof of the
projected SA weak convergence result can be seen as a special case of unprojected SA with the
asymptotic linearity condition, which we have briefly discussed in Section 4. Therefore, the proof
proceeds in the following two subsections. First, we formally define the asymptotic linearity condition
and present our weak convergence result for unprojected SA under this additional assumption. Next,
we relate this result for unprojected SA to projected SA and specialize the proof to obtain Theorem 4.1.

E.1 Asymptotic Linearity

In this subsection, we formally introduce the asymptotic linearity condition, which is crucial for
establishing weak convergence in the context of unprojected SA (� = 1). Additionally, we explore
the implications of this condition.
Assumption 6 (Asymptotic Linearity). The noise sequence (⇠k)k�1 is a collection of i.i.d. random

fields satisfying the following conditions: (1) E[⇠k+1(✓)|Fk] = 0, (2) there exists a constant L3 > 0
such that ⇠1 is L3-Lipschitz, i.e., k⇠1(✓) � ⇠1(✓0)k  L3k✓ � ✓0k, for all ✓, ✓0 2 Rd

, and (3)

k⇠1(0)k  L3.

Moreover, there exists a function G(·) : X ! Rd⇥d
such that given ✏ > 0, define

�(✏) := min
�
� : kg0(✓, x)�G(x)k  ✏, 8x 2 X and 8✓ 2 {✓ : k✓k � �}

 
,

and we have lim✏!0 ✏�(✏) = 0.

The first part of Assumption 6 states that the random field grows at most linearly in ✓. The second
part of Assumption 6 implies that g0(✓, x) converges to a limit G(x) when k✓k ! 1 for all x 2 X ,
which shows the asymptotic linearity of g(✓, x). Furthermore, Assumption 6 also requires how fast
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g0(✓, x) converges to G(x). A sufficient condition under which the second part of Assumption 6
holds is that there exists ! > 0 such that k✓k1+!kg0(✓, x)�G(x)k < 1 for 8✓ 2 Rd and x 2 X .

We can verify that to ensure kg0(✓, x)�G(x)k < ✏, we can set k✓k 2 ⇥(✏�
1

1+! ), which can ensure
✏�(✏) 2 O(✏

!
1+! ) ! 0 as ✏ ! 0. This sufficient condition implies that g0(✓, x) uniformly converge

to G(x) with convergence rate of O(k✓k�(1+w)). By definition, we conclude that the structure of
linear SA is also asymptotic linear. Besides that, the 1-dimensional logistic regression also satisfies
Assumption 6. For 1-dimensional logistic regression, we have g(✓, x, y) = x

⇣
1

1+e�✓x � y
⌘
+ �✓,

where (x, y) presents the data. Therefore, we have g0(✓, x, y) = x2e�✓x

(1+e�✓x)2 + � and g0(✓, x, y)
uniformly converges to � with geometric convergence rate, thereby satisfies the Assumption 6.

E.2 Proof Under Assumption 6

With the asymptotic linearity condition now formally defined, we proceed to prove the weak conver-
gence for unprojected SA. For convenient reference, we state the theorem below.
Theorem E.1 (Ergodicity of SA–Asymptotic Linearity). Suppose that Assumption 1–Assumption 4

hold. Additionally, assume 6. For stepsize ↵ > 0 that satisfies the constraint ↵⌧↵L2 < min(c2µ,µ),
with c2 formalized in Proposition 4.2 and µ defined in (E.1), the Markov chain (xk, ✓k)k�0 converges

to a unique stationary distribution ⌫̄↵ 2 P2(X ⇥ Rd).

Moreover, there exist µ > 0 and some universal constant c0 such that

✏�(✏)  c0µ, 8✏  µ. (E.1)

We let ⌫↵ := L(✓1) be the second marginal of ⌫̄↵. For k � 2⌧↵, it holds that

W2(L(✓k), ⌫↵)  W̄2(L(xk, ✓k), ⌫̄↵)  (1� ↵µ)k/2 · s(✓0, L, µ). (E.2)

The proof of Theorem E.1 consists of two major steps. Firstly, we assume that x0 ⇠ ⇡, and show that
(xk, ✓k)k�0 converges to a unique limiting invariant distribution. Next, we relax the assumption of
x0 ⇠ ⇡, and prove that for arbitrary initialization (x0, ✓0) 2 X ⇥Rd, the Markov chain will converge
to the same limit.

Step 1: Initialization with x0 ⇠ ⇡. To prove the convergence of the Markov chain, we consider the
following coupling construction. We have a pair of Markov chains (xk, ✓

[1]
k )k�0 and (xk, ✓

[2]
k )k�0

sharing the same underlying process and noise, i.e., (xk, ⇠k+1)k�0, i.e.,

✓[1]k+1 = ✓[1]k + ↵(g(✓[1]k , xk) + ⇠k+1(✓
[1]
k )),

✓[2]k+1 = ✓[2]k + ↵(g(✓[2]k , xk) + ⇠k+1(✓
[2]
k )).

(E.3)

We assume that the initial iterates ✓[1]0 and ✓[2]0 may depend on each other and on x0, but are
independent of subsequent (xk)k�1 given x0. For the iterates difference ✓[1]k � ✓[2]k , we have the
following Proposition E.2, whose proof is given at the end of this subsection.
Proposition E.2. 8k � ⌧ and ↵⌧  min( µ

908L2 ,
µ

L2 ), we have

E[k✓[1]k � ✓[2]k k
2]  4(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k

2],

where µ > 0 and ✏�(✏)  µ
768 , 8✏  µ.

By Proposition E.2 and the definition of W2 and W̄2, we have

W 2
2

⇣
L(✓[1]k ),L(✓[2]k )

⌘ (i)
 W̄ 2

2

⇣
L(xk, ✓

[1]
k ),L(xk, ✓

[2]
k )
⌘

(ii)
 E[k✓[1]k � ✓[2]k k

2]

(iii)
 4(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k

2],

(E.4)

where (i) and (ii) hold by the definition of W2 and W̄2 and (iii) holds by applying Proposition E.2.
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Note that equation (E.4) always holds for any joint distribution of initial iterates (x0, ✓
[1]
0 , ✓[2]0 ). Recall

that P ⇤ represents the transition kernel for the time-reversed Markov chain of {xk}k�0, and the
initial distribution of x0 is assumed to be mixed already. Given a specific x0, we sample x�1 from
P ⇤(· | x0). Additionally, we use ✓[2]�1 to denote the random varible that satisfies ✓[2]�1

d
= ✓[1]0 and is

independent of {xk}k�0. Finally, we set ✓[2]0 as

✓[2]0 = ✓[2]�1 + ↵(g(x�1, ✓
[2]
�1) + ⇠0(✓

[2]
�1)).

By the property of time-reversed Markov chain, we have {xk}k��1
d
= {xk}k�0. Given that

✓[2]�1
d
= ✓[1]0 and ✓[2]�1 is independent with {xk}k��1, we can prove (xk, ✓

[2]
k )

d
= (xk+1, ✓

[1]
k+1) for

k � 0. We thus have for all k � ⌧ :

W̄ 2
2

⇣
L

⇣
xk, ✓

[1]
k

⌘
,L
⇣
xk+1, ✓

[1]
k+1

⌘⌘
= W̄ 2

2

⇣
L

⇣
xk, ✓

[1]
k

⌘
,L
⇣
xk, ✓

[2]
k

⌘⌘

(i)
 4(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k

2],

where (i) holds by inequality (E.4). Then, we have
1X

k=0

W̄ 2
2

⇣
L

⇣
xk, ✓

[1]
k

⌘
,L
⇣
xk+1, ✓

[1]
k+1

⌘⌘



t↵�1X

k=0

W̄ 2
2

⇣
L

⇣
xk, ✓

[1]
k

⌘
,L
⇣
xk+1, ✓

[1]
k+1

⌘⌘
+ 4E[k✓[1]0 � ✓[2]0 k

2]
1X

k=0

(1� µ↵)k

<1.

Consequently, {L(xk, ✓
[1]
k )}k�0 forms a Cauchy sequence w.r.t. the metric W̄2. Since the space

P2(X ⇥ Rd) endowed with W̄2 is a Polish space, every Cauchy sequence converges [63, Theorem
6.18]. Furthermore, convergence in Wasserstein 2-distance also implies weak convergence [63,
Theorem 6.9]. Therefore, we conclude that the sequence (L(xk, ✓

[1]
k ))k�0 converges weakly to a

limit distribution µ̄ 2 P2(X ⇥ Rd).

Now that we have established the existence of a limiting distribution, we next proceed to show the
uniqueness. We prove this by contradiction. Note that we currently assume that x0 ⇠ ⇡, hence to
show that the limit (x1, ✓1) is unique, we only need to show that the limit is independent of the
initial distribution of ✓0, which can be correlated to x0.

Consider two Markov chains (xk, ✓k)k�0 and (xk, ✓0k)k�0, sharing (xk, ⇠k+1)k�0 but with arbitrary
initialization of ✓0 and ✓00. For the sake of contradiction, we assume that (x0, ✓0) ) (x1, ✓1) and
(x0, ✓00) ) (x1, ✓01) respectively. Then, by the triangle inequality, we have that

W̄2

⇣
(x1, ✓1), (x1, ✓01)

⌘

 W̄2

⇣
(x1, ✓1), (xk, ✓k)

⌘
+ W̄2

⇣
(xk, ✓k), (xk, ✓

0
k)
⌘
+ W̄2

⇣
(xk, ✓

0
k), (x1, ✓01)

⌘

! 0.

As such, we have shown that the limit ⌫̄ is unique.

Lastly, we prove that ⌫̄ is invariant. Suppose that we initialize the joint process at its limit, i.e.,
(x0, ✓0) ⇠ ⌫̄. We first apply the triangle inequality, and we obtain

W̄2

⇣
(x1, ✓1), (x0, ✓0)

⌘
 W̄2

⇣
(x1, ✓1), (xk+1, ✓k+1)

⌘
+ W̄2

⇣
(xk+1, ✓k+1), (x0, ✓0)

⌘
.

Clearly, as k ! 1, W̄2

⇣
(xk+1, ✓k+1), (x0, ✓0)

⌘
! 0. To bound W̄2

⇣
(x1, ✓1), (xk+1, ✓k+1)

⌘
, we

need the following lemma.
Lemma E.3. Consider two copies of the SA trajectory, where L(x0, ✓0) = ⌫̄ and L(x0

0, ✓
0
0) is

allowed to be arbitrary.

W̄ 2
2

⇣
L(x1, ✓1),L(x

0
1, ✓

0
1)
⌘
 ⇢1 · W̄

2
2

⇣
L(x0, ✓0),L(x

0
0, ✓

0
0)
⌘
+ ⇢2 ·

r
W̄ 2

2

⇣
L(x0, ✓0),L(x0

0, ✓
0
0)
⌘
,
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where

⇢1 := 1 + 2(1 + ↵L)2 + 16↵2L2 < 1 and ⇢2 := 16↵2L2
p

E[k✓0k4] < 1

are independent of L(x0
0, ✓

0
0).

Proof. Consider the following coupling between the two processes (xk, ✓0)k�0 and (x0
k, ✓

0
k)k�0

W̄ 2
2

⇣
L(x0, ✓0),L(x

0
0, ✓

0
0)
⌘
= E

h
d0(x0, x

0
0) + k✓0 � ✓00k

2
i

and

xk+1 = x0
k+1 if xk = x0

k, 8k � 0.

Then, it is clear that

W̄ 2
2

⇣
L(x1, ✓1),L(x

0
1, ✓

0
1)
⌘
 E

h
d0(x1, x

0
1) + k✓1 � ✓01k

2
i
.

Recall the metric d0(x, x0) = {x 6= x0
} and hence, we have

g(✓0, x0) = g(✓0, x
0
0) + d0(x

0
0, x0)(g(✓0, x0)� g(✓0, x

0
0)).

Therefore, it is easy to see that

✓1 � ✓01 = ✓0 � ✓00 + ↵(g(✓0, x0)� g(✓00, x
0
0)) + ↵(⇠1(✓0)� ⇠1(✓

0
0))

= ✓0 � ✓00 + ↵(g(✓0, x0)⌥ g(✓0, x
0
0)� g(✓00, x

0
0)) + ↵(⇠1(✓0)� ⇠1(✓

0
0))

= ✓0 � ✓00 + ↵(g(✓0, x
0
0)� g(✓00, x

0
0)) + ↵(⇠1(✓0)� ⇠1(✓

0
0))

+ ↵d0(x
0
0, x0)(g(✓0, x0)� g(✓0, x

0
0)),

whence

k✓1 � ✓01k  (1 + ↵L)k✓0 � ✓00k+ ↵d0(x
0
0, x0)kg(✓0, x0)� g(✓0, x

0
0)k

 (1 + ↵L)k✓0 � ✓00k+ ↵d0(x
0
0, x0) · 2L(k✓0k+ 1).

As such, we see that

E[d0(x1, x
0
1) + k✓1 � ✓01k

2]  E[d0(x0, x
0
0)] + 2(1 + ↵L)2 · E[k✓0 � ✓00k

2]

+ 16↵2L2
· E[d0(x0

0, x0)(k✓0k
2 + 1)].

Next, we make use of Cauchy-Schwarz inequality and obtain

E[d0(x0
0, x0) · k✓0k

2] 
q
E[d0(x0

0, x0)]
q
E✓0⇠µ[k✓0k4].

Because Assumption 6 implies Assumption 4(p = 2), by Proposition 4.2 and Fatou’s lemma, we
have

E[k✓1 � ✓⇤k4]  lim inf
k!1

E[k✓k � ✓⇤k41] < 1,

which implies E[k✓1k
4] < 1. Hence, the desired inequality follows through.

By Lemma E.3, we can set L(x0
0, ✓

0
0) = L(xk, ✓k), then

W̄ 2
2 (L (x1, ✓1) ,L(xk+1, ✓k+1))  ⇢1W̄

2
2 (µ̄,L(xk, ✓k)) + ⇢2

q
W̄ 2

2 (⌫̄,L(xk, ✓k)).

Therefore, W̄ 2
2 (L (x1, ✓1) ,L(xk+1, ✓k+1)) ! 0 as k ! 0, which implies W̄2

⇣
(x1, ✓1), (x0, ✓0)

⌘
=

0. As such, we have proved the joint sequence (xk, ✓k)k�0 converges weakly to the unique invariant
distribution ⌫̄ 2 P2(X ⇥ Rd). As a result, {✓k}k�0 converges weakly to µ 2 P2(Rd), where µ is
the second marginal of µ̄ over Rd.

Lastly, before proceeding to the next step, in which we remove the assumption x0 ⇠ ⇡, we first derive
the convergence rate of {✓k}k�0 under x0 ⇠ ⇡ as presented in the following lemma. This lemma
will help us to establish the convergence rate without x0 ⇠ ⇡.
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Lemma E.4. Under x0 ⇠ ⇡, Assumption 1–4 and 6 and the same setting as Proposition E.2,

W 2
2 (L(✓k), ⌫↵)  W̄ 2

2 (L(xk, ✓k), ⌫̄↵)  16(1� µ↵)k ·

⇣
E
h
k✓[1]0 � ✓⇤k2

i
+ c02,2

⌘
.

Proof. Let us consider the coupled processes defined as equation (E.3). Suppose that the initial
iterate (x0, ✓

[2]
0 ) follows the stationary distribution ⌫̄, thus L(xk, ✓

[2]
k ) = ⌫̄ and L(✓[2]k ) = ⌫ for all

k � 0. By equation (E.4), we have for all k � ⌧ :

W 2
2

⇣
L(✓[1]k ), µ

⌘
= W 2

2

⇣
L(✓[1]k ),L(✓[2]k )

⌘

 W̄ 2
2

⇣
L(xk, ✓

[1]
k ),L(xk, ✓

[2]
k )
⌘

 4(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k
2]

 8(1� µ↵)k�⌧ ·
⇣
E
h
k✓[1]0 � ✓⇤k2

i
+ E

⇥
k✓1 � ✓⇤k2

⇤⌘

 16(1� µ↵)k ·

⇣
E
h
k✓[1]0 � ✓⇤k2

i
+ E

⇥
k✓1 � ✓⇤k2

⇤⌘
,

(E.5)

where we make use of the derivation in (D.13) to obtain the last inequality.

We note that

E[k✓1 � ✓⇤k2]  lim inf
k!1

E[k✓k � ✓⇤k21]  c2,2 · ↵⌧L
2/µ  c02,2,

the last inequality holds for ↵⌧  min( µ
908L2 ,

µ

L2 ). Therefore, we prove the desired inequality

W 2
2

⇣
L(✓[1]k ), µ

⌘
 16(1� µ↵)k ·

⇣
E
h
k✓[1]0 � ✓⇤k2

i
+ c02,2

⌘
.

Step 2: Arbitrary Initialization for (x0, ✓0). In this step, we remove the assumption of x0 ⇠ ⇡
needed in the previous step. We need the following lemma to prove our result.
Lemma E.5. Consider two trajectories (xk, ✓k)k�0 and (x0

k, ✓
0
k)k�0. Suppose that ✓0 = ✓00, x

0
0 ⇠ ⇡

and x0 is initialized from some arbitrary distribution that satisfies kL(x0) � ⇡kTV = ✏. Then for

k � ⌧, we have

W̄2(L(xk, ✓k),L(x
0
k, ✓

0
k))  ✏

⇣
4c2,1(1� ↵µ)kE[k✓0 � ✓⇤k2] + 4cs,2↵⌧ ·

L2

µ
+ 1
⌘1/2

.

Proof. We consider the following coupling between two joint processes (xk, ✓k)k�0 and (x0
k, ✓

0
k)k�0.

We first apply the maximal coupling on x0 and x0
0 such that

P(x0 6= x0
0) = kL(x0)� L(x0

0)kTV = ✏.

For the case x0 = x0
0, we can couple the two Markov chains {xk}k�0 and {x0

k}k�0 such that

xk ⌘ x0
k, 8k � 0.

Under this coupling, we have ✓k ⌘ ✓0k, 8k � 0.

For the case x0 6= x0
0, we let the two processes (xk, ✓k)k�1 and (x0

k, ✓
0
k)k�1 evolve independently.

Given the above coupling, we first observe that

W̄2(L(xk, ✓k),L(x
0
k, ✓

0
k)) = E[W̄2(L(xk, ✓k),L(x

0
k, ✓

0
k))|x0 = x0

0]P(x0 = x0
0)

+ E[W̄2(L(xk, ✓k),L(x
0
k, ✓

0
k))|x0 6= x0

0]P(x0 6= x0
0)

= ✏E[W̄2(L(xk, ✓k),L(x
0
k, ✓

0
k))|x0 6= x0

0].

The second equality holds since E[W̄2(L(xk, ✓k),L(xk, ✓0k))|x0 = x0
0] = 0 and P(x0 6= x0

0) = ✏.

Next, we note the following upper bound of the Wasserstein distance,

W̄ 2
2 (L(xk, ✓k),L(x

0
k, ✓

0
k)) = inf E

h
{xk 6= x0

k}+ k✓k � ✓0kk
2
i
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 1 + 2
⇣
E[k✓k � ✓⇤k2] + E[k✓0k � ✓⇤k2]

⌘
.

Making use of Proposition 4.2, we have
W̄ 2

2 (L(xk, ✓k),L(x
0
k, ✓

0
k))

2c2,1(1� ↵µ)k
⇣
E[k✓0 � ✓⇤k2] + E[k✓00 � ✓⇤k2]

⌘
+ 4c2,2↵⌧ ·

L2

µ
+ 1

4c2,1(1� ↵µ)kE[k✓0 � ✓⇤k2] + 4c2,2↵⌧ ·
L2

µ
+ 1,

where the second inequality holds for ✓0 = ✓00 by assumption.

Note that the above upper bound to the Wasserstein distance is independent of the choice of (x0, x0
0).

Hence, we can conclude that
W̄2(L(xk, ✓k),L(x

0
k, ✓

0
k)) = ✏E[W̄2(L(xk, ✓k),L(x

0
k, ✓

0
k))|x0 6= x0

0]

 ✏
⇣
4c2,1(1� ↵µ)kE[k✓0 � ✓⇤k2] + 4c2,2↵⌧ ·

L2

µ
+ 1
⌘1/2

.

We complete the proof of the lemma.

By Lemma E.5, we see that when x0 is close to its stationary distribution ⇡, ✓k would not deviate too
much from ✓0k, as if it were initialized from the stationary distribution.

Now we consider a joint process (xk, ✓k)k�0 with arbitrary initialization. By the property of
uniform ergodicity of (xk)k�0, we know that kL(xk) � ⇡kTV  Rrk. Choose time t0 � 0. We
construct a second Markov chain (x0

k, ✓
0
k)k�t0 with the following properties: (1) x0

t0 ⇠ ⇡ and is
maximally coupled to xk0 , i.e., kL(xt0)�L(x0

t0)kTV = P(xt0 6= x0
t0) and (2) ✓0t0 = ✓k0 . Under this

construction, for k � t0 + ⌧ , we have
W̄2(L(xk, ✓k), ⌫̄) W̄2(L(xk, ✓k),L(x

0
k, ✓

0
k)) + W̄2(L(x

0
k, ✓

0
k), ⌫̄)

Rrt0
⇣
4c2,1(1� ↵µ)k�t0E[k✓t0 � ✓⇤k2] + 4c2,2↵⌧ ·

L2

µ
+ 1
⌘1/2

+ 16(1� ↵µ)k�t0
⇣
E
⇥
k✓t0 � ✓⇤k2

⇤
+ c02,2

⌘
,

where the last inequality follows from Lemma E.4 and Lemma E.5.

For each t with t0 � ⌧ , set t0 = t/2. From the above inequality, we obtain that
W̄2(L(xt, ✓t), ⌫̄)

Rrt/2
⇣
4c2,1(1� ↵µ)t/2E[k✓t0 � ✓⇤k2] + 4c2,2↵⌧ ·

L2

µ
+ 1
⌘1/2

+ 16(1� ↵µ)t/2
⇣
E
⇥
k✓t0 � ✓⇤k2

⇤
+ c02,2

⌘

Rrt/2
⇣
4c2,1(1� ↵µ)t/2 ·

⇣
8(1� ↵µ)t0E[k✓0 � ✓⇤k2] + c2,2↵⌧ ·

L2

µ

⌘
+ 4c2,2↵⌧ ·

L2

µ
+ 1
⌘1/2

+ 16(1� ↵µ)t/2
⇣⇣

8(1� ↵µ)t0E[k✓0 � ✓⇤k2] + c2,2↵⌧ ·
L2

µ

⌘
+ c02,2

⌘

max(r, 1� ↵µ)t/2 · s(✓0, ✓
⇤, µ, L,R)

(1� ↵µ)t/2 · s(✓0, ✓
⇤, µ, L,R)

where s(✓0, L, µ) denote some constant that depends on the initialization of ✓0, and problem primitives
L, µ, but independent of stepsize ↵ and iteration index t. Last inequality holds because µ  1� r
and ↵ 

µ
908L2  1.

Therefore, as t ! 1, we obtain that W̄2(L(xk, ✓k), ⌫̄) ! 0, which implies that the Markov chain
(xk, ✓k)k�0 with arbitrary initailization converges to the same ⌫̄. As such, we have proved the desired
weak convergence result without the assumption on x0 ⇠ ⇡ initialization.

Additionally, we obtain the following convergence rate. For any initialization (x0, ✓0) 2 X ⇥Rd, we
have

W2(L(✓t), µ)  W̄2(L(xt, ✓t), ⌫̄)  (1� ↵µ)t/2 · s(✓0, L, µ).

33



E.2.1 Proof of Proposition E.2

First, we present the following lemma that is similar to [17, Lemma 2.3].
Lemma E.6. For any k1 < k2 satisfying ↵(k2 � k1) 

1
8L , the following six inequalities hold:

k✓[1]k2
� ✓[2]k2

� ✓[1]k1
+ ✓[2]k1

k  8↵L(k2 � k1)k✓
[1]
k2

� ✓[2]k2
k

k✓[1]k2
� ✓[2]k2

� ✓[1]k1
+ ✓[2]k1

k  8↵L(k2 � k1)k✓
[1]
k1

� ✓[2]k1
k

k✓[1]k2
� ✓[1]k1

k  8↵L(k2 � k1)
⇣
k✓[1]k2

k+ 1
⌘

k✓[1]k2
� ✓[1]k1

k  8↵L(k2 � k1)
⇣
k✓[1]k1

k+ 1
⌘

k✓[2]k2
� ✓[2]k1

k  8↵L(k2 � k1)
⇣
k✓[2]k2

k+ 1
⌘

k✓[2]k2
� ✓[2]k1

k  8↵L(k2 � k1)
⇣
k✓[2]k1

k+ 1
⌘
.

Proof. Consider the coupling given by equation (E.3), by Assumption 2 and 6, we have

k✓[1]k+1 � ✓[2]k+1k � k✓[1]k � ✓[2]k k  k✓[1]k+1 � ✓[2]k+1 � ✓[1]k + ✓[2]k k

= ↵kg(✓[1]k , xk) + ⇠k+1(✓
[1]
k )� g(✓[1]k , xk)� ⇠k+1(✓

[1]
k )k

 2↵Lk✓[1]k � ✓[2]k k.

Given k1 < k2, for 8t 2 [k1, k2], since 1 + x  ex for 8x 2 R, we have

k✓[1]t � ✓[2]t k 

t�1Y

j=k1

(1 + 2↵L)k✓[1]k1
� ✓[2]k1

k

 exp(2↵(k2 � k1)L)k✓
[1]
k1

� ✓[2]k1
k

(i)
 (1 + 4↵(k2 � k1)L)k✓

[1]
k1

� ✓[2]k1
k

 2k✓[1]k1
� ✓[2]k1

k,

where (i) holds for ex  1 + 2x 8x 2 [0, 1
2 ] and ↵(k2 � k1) 

1
8L .

Then, we have

k✓[1]k2
� ✓[2]k2

� ✓[1]k1
+ ✓[2]k1

k 

k2�1X

t=k1

k✓[1]t+1 � ✓[2]t+1 � ✓[1]t + ✓[2]t k  4↵(k2 � k1)Lk✓
[1]
k1

� ✓[2]k1
k.

Therefore, following ↵(k2 � k1) 
1
8L , we have

k✓[1]k2
� ✓[2]k2

� ✓[1]k1
+ ✓[2]k1

k  4↵(k2 � k1)Lk✓
[1]
k1

� ✓[2]k1
k

 4↵(k2 � k1)L(k✓
[1]
k2

� ✓[2]k2
� ✓[1]k1

+ ✓[2]k1
k+ k✓[1]k2

� ✓[2]k2
k)


1

2
k✓[1]k2

� ✓[2]k2
� ✓[1]k1

+ ✓[2]k1
k+ 4↵(k2 � k1)Lk✓

[1]
k2

� ✓[2]k2
k.

Then, by rearranging the terms, we have

k✓[1]k2
� ✓[2]k2

� ✓[1]k1
+ ✓[2]k1

k  8↵(k2 � k1)Lk✓
[1]
k2

� ✓[2]k2
k,

thereby we have proved the first two inequalities of Lemma E.6.

By Assumption 2 and 6 and [17, Lemma 2.3], we can prove the last four inequalities and we omit the
details here.

Now, we are ready to prove Proposition E.2. We start with the following decomposition. By equation
(E.3), we first have

E[k✓[1]k+1 � ✓[2]k+1k
2] =E

h
k✓[1]k � ✓[2]k + ↵

⇣
g(✓[1]k , xk)� g(✓[2]k , xk) + ⇠k+1(✓

[1]
k )� ⇠k+1(✓

[2]
k )
⌘
k
2
i
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=E
h
k✓[1]k � ✓[2]k k

2
i
+ 2↵E

h
h✓[1]k � ✓[2]k , g(✓[1]k , xk)� g(✓[2]k , xk)i

i

| {z }
T1

+ ↵2 E
h
kg(✓[1]k , xk)� g(✓[2]k , xk) + ⇠k+1(✓

[1]
k )� ⇠k+1(✓

[2]
k )k2

i

| {z }
T2

.

For T2, by Assumption 2 and 6, we have

T2  4L2E
h
k✓[1]k � ✓[2]k k

2
i
.

We denote "(·, xk) := g(·, xk)� ḡ(·) to be the noise function. Then, by Assumption 2, we conclude
that "(·, xk) is 2L-Lipschitz continuous. Therefore, T1 can be rewritten as:

T1 = E
h
h✓[1]k � ✓[2]k , "(✓[1]k , xk)� "(✓[2]k , xk)i

i
+ E

h
h✓[1]k � ✓[2]k , ḡ(✓[1]k )� ḡ(✓[2]k )i

i
.

For E
h
h✓[1]k � ✓[2]k , ḡ(✓[1]k )� ḡ(✓[2]k )i

i
, by Assumption 3, we have

E
h
h✓[1]k � ✓[2]k , ḡ(✓[1]k )� ḡ(✓[2]k )i

i
 �µE

h
k✓[1]k � ✓[2]k k

2
i
.

Let Fk := �
⇣
(✓[1]t , ✓[2]t , xt) | t  k

⌘
. For E

h
h✓[1]k � ✓[2]k , "(✓[1]k , xk)� "(✓[2]k , xk)i

i
, we have

E
h
h✓[1]k � ✓[2]k , "(✓[1]k , xk)� "(✓[2]k , xk)i

i

=E
h
E
h
h✓[1]k � ✓[2]k , "(✓[1]k , xk)� "(✓[2]k , xk)i | Fk�⌧

ii

=E
h
E
h
h✓[1]k�⌧ � ✓[2]k�⌧ , "(✓

[1]
k�⌧ , xk)� "(✓[2]k�⌧ , xk)i | Fk�⌧

ii
(T3)

+ E
h
h✓[1]k � ✓[2]k � ✓[1]k�⌧ � ✓[2]k�⌧ , "(✓

[1]
k�⌧ , xk)� "(✓[2]k�⌧ , xk)i

i
(T4)

+ E
h
h✓[1]k � ✓[2]k , "(✓[1]k , xk)� "(✓[2]k , xk)� "(✓[1]k�⌧ , xk) + "(✓[2]k�⌧ , xk)i| {z }

�

i
.

We assume ↵⌧ 
1
8L . For T3, by definition of mixing time ⌧ , we obtain

T3 = E
h
E
h
h✓[1]k�⌧ � ✓[2]k�⌧ , "(✓

[1]
k�⌧ , xk)� "(✓[2]k�⌧ , xk)i | ✓

[1]
k�⌧ , ✓

[2]
k�⌧ , xk�⌧

ii

 2↵LE
h
k✓[1]k�⌧ � ✓[2]k�⌧k

2
i

 4↵LE
h
k✓[1]k � ✓[2]k k

2
i
+ 4↵LE

h
k✓[1]k�⌧ � ✓[2]k�⌧ � ✓[1]k + ✓[2]k k

2
i

 (4↵L+ 256↵3⌧2L3)E
h
k✓[1]k � ✓[2]k k

2
i
,

where the last inequality holds by Lemma E.6.

For T4, we obtain

T4  E
h
k✓[1]k � ✓[2]k � ✓[1]k�⌧ + ✓[2]k�⌧kk"(✓

[1]
k�⌧ , xk)� "(✓[2]k�⌧ , xk)k

i

 16↵⌧L2E
h
k✓[1]k � ✓[2]k kk✓[1]k�⌧ � ✓[2]k�⌧k

i

 (16↵⌧L2 + 128↵2⌧2L3)E
h
k✓[1]k � ✓[2]k k

2
i
.

Below, we bound term � by two different Taylor expansions. One the one hand, there exist �1,�2 2

[0, 1] such that hk = �1✓
[1]
k + (1� �1)✓

[2]
k , hk�⌧ = �2✓

[1]
k�⌧ + (1� �2)✓

[2]
k�⌧ and

|�| =|h✓[1]k � ✓[2]k , "0(hk, xk)(✓
[1]
k � ✓[2]k )� "0(hk�⌧ , xk)(✓

[1]
k�⌧ � ✓[2]k�⌧ )i|

=|h✓[1]k � ✓[2]k , "0(hk�⌧ , xk)(✓
[1]
k � ✓[2]k � ✓[1]k�⌧ + ✓[2]k�⌧ )i
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+ h✓[1]k � ✓[2]k , ("0(hk, xk)� "0(hk�⌧ , xk))(✓
[1]
k � ✓[2]k )i|

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + |h✓[1]k � ✓[2]k , ("0(hk, xk)� "0(hk�⌧ , xk))(✓
[1]
k � ✓[2]k )i| (E.6)

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 2Lk✓[1]k � ✓[2]k k
2
khk � hk�⌧k

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 2Lk✓[1]k � ✓[2]k k
2(khk � ✓[2]k k+ k✓[2]k � ✓[2]k�⌧k+ k✓[2]k�⌧ � hk�⌧k)

(E.7)

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 2Lk✓[1]k � ✓[2]k k
2(k✓[1]k � ✓[2]k k+ k✓[2]k � ✓[2]k�⌧k+ k✓[1]k�⌧ � ✓[2]k�⌧k)

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 2Lk✓[1]k � ✓[2]k k
2(2k✓[1]k � ✓[2]k k+ 8↵⌧L(k✓[2]k k+ 1) + 8↵⌧Lk✓[1]k � ✓[2]k k)

(E.8)

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 2Lk✓[1]k � ✓[2]k k
2
⇣
3k✓[1]k � ✓[2]k k+ 8↵⌧L(k✓[2]k k+ 1)

| {z }
A

⌘
:= (Bound1) .

where we note that choosing the second iterates for triangle inequality in equation (E.7) and choosing
✓[2]k for bounding ✓[2]k � ✓[2]k�⌧ in equation (E.8) are both symmetric, which implies that we can replace
the ✓[2]k in term A with arbitrary one in {✓[1]k�⌧ , ✓

[1]
k , ✓[2]k�⌧ , ✓

[2]
k }.

On the other hand, there exist �̄1, �̄2 2 [0, 1] such that pk = �̄1✓
[1]
k + (1� �̄1)✓

[1]
k�⌧ , qk = �̄2✓

[2]
k +

(1� �̄2)✓
[2]
k�⌧ and

|�| =|h✓[1]k � ✓[2]k , "0(pk, xk)(✓
[1]
k � ✓[1]k�⌧ )� "0(qk, xk)(✓

[2]
k � ✓[2]k�⌧ )i|

=|h✓[1]k � ✓[2]k , "0(pk, xk)(✓
[1]
k � ✓[2]k � ✓[1]k�⌧ + ✓[2]k�⌧ )i (E.9)

+ h✓[1]k � ✓[2]k , ("0(pk, xk)� "0(qk, xk))(✓
[2]
k � ✓[2]k�⌧ )i|

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 2Lk✓[1]k � ✓[2]k kkpk � qkkk✓
[2]
k � ✓[2]k�⌧k

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 16↵⌧L2
k✓[1]k � ✓[2]k kkpk � qkkk(k✓

[2]
k k+ 1), (E.10)

where adding and subtracting the second iterates in equation (E.7) and choosing ✓[2]k for bounding
✓[2]k � ✓[2]k�⌧ in equation (E.8) are both symmetric. We have

kpk � qkk = k�̄1(✓
[1]
k � ✓[2]k ) + (1� �̄1)(✓

[1]
k�⌧ � ✓[2]k�⌧ ) + (�̄1 � �̄2)(✓

[2]
k � ✓[2]k�⌧ )k

 (2 + 8↵⌧L)k✓[1]k � ✓[2]k k+ 8↵⌧L(k✓[2]k k+ 1)

 3k✓[1]k � ✓[2]k k+ 8↵⌧L(k✓[2]k k+ 1).

Therefore, we obtain

|�| 16↵⌧L2
k✓[1]k � ✓[2]k k

2

+ 2Lk✓[1]k � ✓[2]k k

⇣
3k✓[1]k � ✓[2]k k+ 8↵⌧L(k✓[2]k k+ 1)

| {z }
B

⌘
8↵⌧L(k✓[2]k k+ 1)
| {z }

C

:= (Bound2),

and we can replace the ✓[2]k in term B and C with arbitrary one in {✓[1]k�⌧ , ✓
[1]
k , ✓[2]k�⌧ , ✓

[2]
k }.

By (Bound1) and (Bound2), we have

|�|  min(Bound1,Bound2)

 16↵⌧L2
k✓[1]k � ✓[2]k k

2 + 48↵⌧L2
k✓[1]k � ✓[2]k k

2(k✓[2]k k+ 1).

Below, we discuss the upper bound for |�| by three cases.

Case 1: If one of {✓[1]k�⌧ , ✓
[1]
k , ✓[2]k�⌧ , ✓

[2]
k } has norm that is less than 4�↵⌧L2 , where we define

�↵⌧L2 := �(↵⌧L2), without loss of generality, we assume k✓[2]k k  4�↵⌧L2 . Multiply (k✓[2]k k 

4�↵⌧L2) to both sides of the above inequality, and we have

|�| (k✓[2]k k  4�↵⌧L2)
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

⇣
16↵⌧L2

k✓[1]k � ✓[2]k k
2 + 48↵⌧L2

k✓[1]k � ✓[2]k k
2(k✓[2]k k+ 1)

⌘
(k✓[2]k k  4�↵⌧L2)

(64 + 192�↵⌧L2)↵⌧L2
k✓[1]k � ✓[2]k k

2,

where we can replace the ✓[2]k in the left hand of the above inequality with an arbitrary one in
{✓[1]k�⌧ , ✓

[1]
k , ✓[2]k�⌧ , ✓

[2]
k } by the similar argument under (Bound1) and (Bound2).

Case 2: If k✓[1]k k < 2k✓[1]k � ✓[2]k k, we obtain

k✓[2]k k  k✓[1]k � ✓[2]k k+ k✓[1]k k  3k✓[1]k � ✓[2]k k.

Therefore, by definition of � and Lemma E.6, we obtain

|�| (k✓[1]k k  2k✓[1]k � ✓[2]k k)

 2Lk✓[1]k � ✓[2]k k(k✓[1]k � ✓[1]k�⌧k+ k✓[2]k � ✓[2]k�⌧k) (k✓[1]k k  2k✓[1]k � ✓[2]k k)

 16↵⌧L2
k✓[1]k � ✓[2]k k(k✓[1]k k+ k✓[2]k k) (k✓[1]k k  2k✓[1]k � ✓[2]k k)

 80↵⌧L2
k✓[1]k � ✓[2]k k.

Case 3: If all four variables in {✓[1]k�⌧ , ✓
[1]
k , ✓[2]k�⌧ , ✓

[2]
k } have a norm larger than 4�↵⌧L2 , and k✓[1]k k �

2k✓[1]k � ✓[2]k k, we obtain

khkk = k�1✓
[1]
k + (1� �1)✓

[2]
k k � k✓[1]k k � k✓[1]k � ✓[2]k k �

k✓[1]k k

2
� 2�↵⌧L2

khk�⌧k = k�2✓
[1]
k�⌧ + (1� �2)✓

[2]
k�⌧k

� k✓[1]k�⌧k � k✓[1]k�⌧ � ✓[2]k�⌧k

(i)
� �↵⌧L2 � (1 + 8↵⌧L)k✓[1]k � ✓[2]k k

� �↵⌧L2 ,

where (i) holds by choosing ↵⌧ 
1

16L . Therefore, we have khkk � �↵⌧L2 and khk�⌧k � �↵⌧L2 .
Therefore, by equation (E.6) and Assumption 6, we obtain

|�| (Case 3)

16↵⌧L2
k✓[1]k � ✓[2]k k

2 + k✓[1]k � ✓[2]k k
2 (k"0(hk, xk)�G(xk)k+ k"0(hk�⌧ , xk)�G(xk)k)

18↵⌧L2
k✓[1]k � ✓[2]k k

2.

Therefore, we obtain

|E[�]|  E[|�|] E[|�| (k✓[1]k�⌧k  �↵⌧L2)] + E[|�| (k✓[1]k k  �↵⌧L2)]

+ E[|�| (k✓[2]k�⌧k  �↵⌧L2)] + E[|�| (k✓[2]k k  �↵⌧L2)]

+ E[|�| (k✓[1]k k  2k✓[1]k � ✓[2]k k)] + E[|�| (Case 3)]

(354 + 768�↵⌧L2)↵⌧L2E[k✓[1]k � ✓[2]k k
2].

By Assumption 6, there exists µ > 0 such that ✏�(✏)  µ
3072 for 8✏  µ. By the above bounds,

when ↵⌧  min( cµL2 ,
µ

L2 ), where we specify the constant c < 1 later, we obtain

E[k✓[1]k+1 � ✓[2]k+1k
2]


�
1 + 2↵(�µ+ 4↵L+ 256↵3⌧2L3 + 128↵2⌧2L3 + 784↵⌧L2 + 768�↵⌧L2↵⌧L2) + 4↵2L2

�
E[k✓[1]k � ✓[2]k k

2]

=
⇣
1 + ↵(�2µ+ 1568↵⌧L2 + 256↵2⌧2L3 + 1536�↵⌧L2↵⌧L2) + ↵2(8L+ 512↵2⌧2L3 + 4L2)

⌘
E[k✓[1]k � ✓[2]k k

2]



✓
1 + ↵µ(�2 + 1568c+ 256c+

1

2
+ 524c)

◆
E[k✓[1]k � ✓[2]k k

2]
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(1� µ↵)E[k✓[1]k � ✓[2]k k
2],

where the last inequality holds by choosing c = 1
4696 .

Therefore, for k � ⌧ and ↵⌧  min( µ
906L2 ,

µ

L2 ) we have

E[k✓[1]k � ✓[2]k k
2]  (1� µ↵)k�⌧E[k✓[1]⌧ � ✓[2]⌧ k

2]

 2(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k
2 + k✓[1]⌧ � ✓[2]⌧ � ✓[1]0 + ✓[2]0 k

2]

 2(1 + 8↵⌧L)(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k
2]

 4(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k
2].

E.3 Proof of Projected SA

Now, we specialize the proof of Theorem E.1 to the projected SA iterates.

We consider the same coupling:

✓[1]
k+ 1

2
= ✓[1]k + ↵

�
g(✓[1]k , xk) + ⇠k+1(✓

[1]
k )
�
,

✓[1]k+1 = ⇧B(�)

h
✓[1]
k+ 1

2

i
,

✓[2]
k+ 1

2
= ✓[2]k + ↵

�
g(✓[2]k , xk) + ⇠k+1(✓

[2]
k )
�
,

✓[2]k+1 = ⇧B(�)

h
✓[2]
k+ 1

2

i
.

We first need to verify that Proposition E.2 holds for projected SA. By the non-expansion property of
⇧B(�) with respect to k · k, we obtain the following inequality:

k✓[1]k+1 � ✓[2]k+1k � k✓[1]k � ✓[2]k k  k✓[1]
k+ 1

2
� ✓[2]

k+ 1
2
k � k✓[1]k � ✓[2]k k,

which implies Lemma E.6 still holds for projected SA. For Proposition E.2, we can notice that the
iterates of projected SA will always satisfy Case 1 with a finite bound � and we do not need to discuss
Cases 2 and 3.

Therefore, when ↵⌧  min( cµL2 ,
1
8L ), where we specify the constant c < 1 later, we obtain

E[k✓[1]k+1 � ✓[2]k+1k
2]



⇣
1 + ↵(�2µ+ (160 + 96�))↵⌧L2 + 256↵2⌧2L3) + ↵2(8L+ 512↵2⌧2L3 + 4L2)

⌘
E[k✓[1]k � ✓[2]k k

2]

 (1 + ↵µ(�2 + (160 + 96�)c+ 256c+ 524c))E[k✓[1]k � ✓[2]k k
2]

=(1� µ↵)E[k✓[1]k � ✓[2]k k
2],

where we set c = 1
940+96� .

Therefore, 8k � ⌧ and ↵⌧ 
µ

(940+96�)L2 , we have

E[k✓[1]k � ✓[2]k k
2]  4(1� µ↵)k�⌧E[k✓[1]0 � ✓[2]0 k

2].

Then, still by the non-expansion of ⇧B(�) with respect to k · k, the rest of the proof simply follows
the same proof for non-projected SA. As such, we have proven Theorem 4.1.

F Proof of Corollary 4.4

In this section, we present the proof of Corollary 4.4.

Recall that by Theorem 4.3, we obtain for k � 2⌧ ,

W 2
2

⇣
L(✓k), ⌫↵

⌘
 (1� ↵µ)k · s(✓0, ✓

⇤, µ, L,R).
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By [63, Theorem 4.1], there exists a coupling between ✓k and ✓1 such that

W 2
2 (L(✓k), ⌫↵) = E[k✓k � ✓1k

2].

Applying Jensen’s inequality twice, we obtain that

kE[✓k � ✓1]k2  (E[k✓k � ✓1k])2  E[k✓k � ✓1k
2]  (1� ↵µ)k · s(✓0, ✓

⇤, µ, L,R).

We thus have for all k � 2⌧ ,

kE[✓k]� E[✓1]k  E[k✓k � ✓1k]  (1� ↵µ)k/2 · s0(✓0, ✓
⇤, µ, L,R).

For the second moment, we first note that

kE[✓k✓>k ]� E[✓1✓>1]k

= kE[(✓k � ✓1)(✓k � ✓1)>] + E[✓1(✓k � ✓1)>] + E[(✓k � ✓1)✓>1]k

 kE[(✓k � ✓1)(✓k � ✓1)>]k+ kE[✓1(✓k � ✓1)>]k+ kE[(✓k � ✓1)✓>1]k

 E[k✓k � ✓1k
2]k+ 2E[k✓1kk✓k � ✓1k]k

 E[k✓k � ✓1k
2]k+ 2

p
E[k✓1k2k✓k � ✓1k2]k, (F.1)

where we apply Cauchy-Schwarz to obtain the last inequality.

Meanwhile, we have

E
h
k✓k � ✓1k

2
i
 (1� ↵µ)k · s(✓0, ✓

⇤, µ, L,R) and E
h
k✓1k

2
i
= O(1).

Substituting the above bounds into the right-hand side of inequality (F.1) yields
��E
⇥
✓k✓

>
k

⇤
� E

⇥
✓1✓>1

⇤��  (1� ↵µ)k/2 · s00(✓0, ✓
⇤, µ, L,R).

G Proof of Corollary 4.5

In this section, we prove the CLT result.

Proof. Consider the following centered test function h̄ : X ⇥ Rd
! Rd defined as

h̄(x, ✓) = ✓ � E[✓1].

To prove that the CLT for function h̄, we need to verify the Maxwell-Woodroofe condition [49], i.e.,
1X

n=1

n�3/2
���

n�1X

t=0

Qth
���
L2(⌫̄)

< 1,

where Q denotes the transition kernel of the joint Markov chain. If we can show the following
���

n�1X

t=0

Qth
���
L2(⌫̄)

= O(nr) (G.1)

with r 2 [0, 1/2), then the Maxwell-Woodroofe condition is verified, as
1X

n=1

n�3/2
���

n�1X

t=0

Qth
���
L2(⌫̄)

=
1X

n=1

n�3/2
O(nr) < 1.

We now proceed to prove the desired order in (G.1). For sufficiently large n � 2⌧↵, we observe
���

n�1X

t=0

Qth
���
L2(⌫̄)

= E⌫̄
���

n�1X

t=0

Qth
���
2


n�1X

t=0

E⌫̄kQthk2

=
2⌧↵�1X

t=0

E⌫̄kQthk2

| {z }
T1

+
n�1X

t=2⌧↵

E⌫̄kQthk2

| {z }
T2

.
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We now show that both terms T1 and T2 are of order O(1) with respect to the parameter n.

For T1, since Q is a transition kernel, so its kQkL2(µ) operator norm equals to 1. Hence, T1 can be
upper bounded as

T1  ⌧↵Eµ̄[kh(✓, x)k
2
2] = ⌧↵ Tr(Var(✓1)) < C1,

where the last inequality follows from Tr(Var(✓1))  ↵⌧ established in (H.4) and ↵⌧2↵ ! 0 by
Definition 2.1.

Before proceeding to analyze the summation in T2, we first recall (E.2), that for t � 2⌧↵,

W̄2(L(xt, ✓t), ⌫̄) = O((1� ↵µ)t/2),

which holds for any (x, ✓) 2 X ⇥ Rd. Hence, by the property of Wasserstein distance [63], there
always exists a coupling that attains the optimality, i.e.,

E�((xt,✓t),⌫̄)

h
k✓t � ✓0k22 + �0(xt 6= x0)

i
= O((1� ↵µ)t).

Making use of this relationship, we can therefore bound T2,

T2 =
n�1X

t=⌧↵

E⌫̄kQthk2 

1X

t=⌧↵

E⌫̄kQthk2 = O

⇣ 1

1� (1� ↵µ)1/2

⌘
= O(1),

where the last O(·) is asymptotic in n.

Combining the analysis of T1 and T2, we have shown the desired order in (G.1). Therefore, the
Maxwell-Woodroofe condition has been verified and we establish the CLT for averaged nonlinear
iterates with constant stepsize and Markovian data.

H Proofs under Minorization Condition

When assuming the perturbed continuous noise condition in Assumption 5, one takes the alterna-
tive route to prove weak convergence. This is achieved by establishing the satisfaction of both a
minorization condition and a drift condition. In this section, we prove the weak convergence result in
Theorem 4.3 by following this alternative approach. The subsequent corollaries of weak convergence,
namely the non-asymptotic convergence rate in Corollary 4.4 and the Central Limit Theorem (CLT)
in Corollary 4.5, also hold, and we will provide the proofs for these results as well.

H.1 Proof of Theorem 4.3

In this section, we prove the weak convergence under Assumption 5(a). The proof consists of two
major steps. Firstly, built upon the MSE convergence established in Proposition 4.2, we derive a
multi-state drift condition. Subsequently, we show that under the minorization condition, the Markov
chain is (xk, ✓k)k�0 is '-irreducible. Then, follow [50, Theorem 19.1.3], we can conclude that the
Markov chain (xk, ✓k)k�0 is geometrically ergodic.

For completeness, we include the Theorem 19.1.3 from [50] below.
Theorem H.1. Suppose that � is a '-irreducible chain on X , and let n(x) be a measurable function

from X ! Z+. The chain is geometrically ergodic if it is aperiodic and there exists some petite set

C, a nonnegative function V � 1 and bounded on C, and positive constants � < 1 and b satisfying
Z

Pn(x)(x, dy)V (y)  �n(x)[V (x) + b C(x)]. (H.1)

We note that the function n(x) can be interpreted as the number of steps we must wait, starting from
any x, for the drift to become negative.

Step 1: Deriving the Drift Condition Given the iteration step
✓k+1 = ✓k + ↵(g(✓k, xk) + ⇠t+1(✓k)),

we have already shown the following convergence rate on the MSE in Proposition 4.2, that

E[k✓k � ✓⇤k2]  c2,1(1� ↵µ)kk✓0 � ✓⇤k2 + c2,2↵⌧↵
L2

µ
.
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Inspired by the MSE convergence bound, we define the Lyapunov function V : X ⇥ Rd
! [1,1]

V (x, ✓) = k✓ � ✓⇤k2 + 1. (H.2)

Therefore, the major goal in this step is to obtain the desired drift condition as shown in (H.1).

Therefore, from the above MSE convergence rate, we first obtain that

QkV (x0, ✓0)  c2,1(1� ↵µ)kV (x0, ✓0) + c2,2
L2

µ
↵⌧ + 1. (H.3)

Consider k = min{t � 0 : c2,1(1 � ↵µ)t < 1}. Then, set ⌘ = 8(1 � ↵µ)k, � = 1�⌘
2 , and

m = c2,2
L2

µ ↵⌧ + 1, and we consider the following bounded sublevel set,

C⇥ = {✓ : (k✓ � ✓⇤k2 + 1)  m/�}.

From (H.3), we derive that

QkV (x0, ✓0)� V (x0, ✓0)  ��V (x0, ✓0) +m C̄(x0, ✓0),

where C̄ = X ⇥ C⇥. Rewriting the above Lyapunov drift condition, with b = m/(1� �), we obtain

QkV (x0, ✓0)  (1� �)
⇣
V (x0, ✓0) + b C̄(x0, ✓0)

⌘
.

Setting � such that �k = 1� �, we have

QkV (x0, ✓0)  �k
⇣
V (x0, ✓0) + b C̄(x0, ✓0)

⌘
,

which gives the desired multi-step drift condition.

Step 2: Proving the Minorization Condition Now that we have established the desired multi-step
drift condition, it remains for us to show that C̄ is accessible, small, and aperiodic.

Under this setup of ⇠t(✓) in Assumption 5(a), it is straightforward to verify the accessibility of C̄.
For any (x, ✓) 2 X ⇥ Rd, we have

Q((x, ✓), C̄) = P((x0, ✓0) 2 X ⇥ C⇥|(x, ✓))

= P(✓0 2 C⇥|(x, ✓)) �

Z

✓02C⇥

1

↵d
p✓
⇣✓0 � ✓

↵
� g(x, ✓)

⌘
d✓0 > 0.

As such, we have shown that C̄ is accessible.

Assuming C̄ is small, we can directly conclude aperiodicity following the definition of period of an
accessible small set, d(C) = g.c.d.

n
n 2 N⇤ : infx2C Pn(x,C) > 0

o
.

Therefore, what remains to show is that C̄ is small. For (x, ✓) 2 C̄ and Ā 2 B(X ) ⇥ B(Rd), we
define the following projection sets,

Ax = {✓ 2 Rd
|(x, ✓) 2 Ā} and A✓ = {x 2 X|(x, ✓) 2 Ā}.

Therefore,

Qm((x, ✓), Ā) =

Z

{(x(k),✓(k))}m�1
k=1

2(X⇥Rd)m�1

P((xm, ✓m) 2 Ā|(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))

· · ·P((x1, ✓1) = d(x(1), ✓(1))|(x0, ✓0) = (x, ✓))

�

Z

{(x(k),✓(k))}m�1
k=1

2(X⇥C⇥)m�1

P((xm, ✓m) 2 Ā|(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))

· · ·P((x1, ✓1) = d(x(1), ✓(1))|(x0, ✓0) = (x, ✓))

=

Z

{(x(k),✓(k))}m�1
k=1

2(X⇥C⇥)m�1

⇣Z

x02X
P(xm = dx0

|xm�1 = x(m�1))P(✓m 2 Ax0 |(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))
⌘
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P(xm�1 = dx(m�1)
|xm�2 = x(m�2))P(✓m�1 = d✓(m�1)

|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))
⌘

· · ·

P(x1 = dx(1)
|x0 = x)P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

=

Z

x02X

Z

{x(k)}m�1
k=1

2Xm�1

P(xm = dx0
|xm�1 = x(m�1))P(xm�1 = dx(m�1)

|xm�2 = x(m�2)) · · ·P(x1 = dx(1)
|x0 = x)

 Z

{✓(k)}m�1
k=1

2Cm�1
⇥

P(✓m 2 Ax0 |(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘

· · ·P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

!
.

Next, for (x, ✓) 2 C̄, we observe that

P(✓k = d✓0|(xk�1, ✓k�1) = (x, ✓)) = P
⇣
⇠k(✓) = d

�✓0 � ✓

↵
� g(x, ✓)

�
|(xk, ✓k) = (x, ✓)

⌘

�
1

↵d
p✓
⇣✓0 � ✓

↵
� g(x, ✓)

⌘
d✓0

�
1

↵d
inf
✓̂2C⇥

p✓̂

⇣✓0 � ✓

↵
� g(x, ✓)

⌘
d✓0.

We next recall the linear growth assumption in Assumption 2 that kg(x, ✓)k  L(k✓k+ 1). Hence,
given ✓ 2 C⇥, 8x 2 X , we have

k✓ + ↵g(x, ✓)k  k✓k+ ↵kg(x, ✓)k  (1 + ↵L)(k✓k+ 1)

 (1 + ↵L)(
p

M/� + k✓⇤k+ 1)  B,

for some bounded value B.

We now define the measure &† on Rd as &†(A) = 1
↵d infkzkB

R
✓02A\C⇥

inf ✓̂2C⇥
p✓̂

⇣
✓0�z
↵

⌘
d✓0.

Hence, it is easy to see that &†(Cc
⇥) = 0. Moreover, we note the following property of measure &†.

Claim 1. For A ✓ C⇥ and �(A) > 0, &†(A) > 0, where � denotes the Lebesgue measure.

We delay the proof to the end. Taking the claim as true, we derive that
Z

{✓(k)}m�1
k=1

2Cm�1
⇥

P(✓m 2 Ax0 |(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘
· · ·P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

=

Z

✓(m)2Ax0

Z

✓(m�1)2C⇥

P(✓md✓(m)
|(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))

Z

✓(m�2)2C⇥

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘

· · ·
Z

✓(1)2C⇥

P(✓2 = d✓(2)|(x1, ✓1) = (x(1), ✓(1)))P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

�

Z

✓(m)2Ax0

Z

✓(m�1)2C⇥

1

↵d
inf
✓̂2C⇥

p✓̂

⇣✓(m)
� ✓(m�1)

↵
� g(x(m�1), ✓(m�1))

⌘
d✓(m)

Z

✓(m�2)2C⇥

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘
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· · ·
Z

✓(1)2C⇥

P(✓2 = d✓(2)|(x1, ✓1) = (x(1), ✓(1)))P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

� inf
(x̃,✓̃)2C̄

Z

✓(m)2Ax0

Z

✓(m�1)2C⇥

1

↵d
inf
✓̂2C⇥

p✓̂

⇣✓(m)
� ✓̃

↵
� g(x̃, ✓̃)

⌘
d✓(m)

Z

✓(m�2)2C⇥

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘

· · ·
Z

✓(1)2C⇥

P(✓2 = d✓(2)|(x1, ✓1) = (x(1), ✓(1)))P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

� inf
kzkB

Z

✓(m)2Ax0

Z

✓(m�1)2C⇥

1

↵d
inf
✓̂2C⇥

p✓̂

⇣✓(m)
� z

↵

⌘
d✓(m)

Z

✓(m�2)2C⇥

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘
· · ·

Z

✓(1)2C⇥

P(✓2 = d✓(2)|(x1, ✓1) = (x(1), ✓(1)))P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

� &†(Ax0)

Z

✓(m�1)2C⇥

Z

✓(m�2)2C⇥

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘
· · ·

Z

✓(1)2C⇥

P(✓2 = d✓(2)|(x1, ✓1) = (x(1), ✓(1)))P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

� &†(Ax00)&†(C⇥)
m�1.

Therefore, by combining all the analyses, we obtain

Qm((x, ✓), Ā)

�

Z

x02X

Z

{x(k)}m�1
k=1

2Xm�1

P(xm = dx0
|xm�1 = x(m�1))P(xm�1 = dx(m�1)

|xm�2 = x(m�2))

· · ·P(x1 = dx(1)
|x0 = x)

 Z

{✓(k)}m�1
k=1

2Cm�1
⇥

P(✓m 2 Ax0 |(xm�1, ✓m�1) = (x(m�1), ✓(m�1)))

P(✓m�1 = d✓(m�1)
|(xm�2, ✓m�2) = (x(m�2), ✓(m�2)))

⌘

· · ·P(✓1 = d✓(1)|(x0, ✓0) = (x, ✓))

!

� &†(C⇥)
m�1

Z

x02X
&†(Ax0)

Z

{x(k)}m�1
k=1

2Xm�1

P(xm = dx0
|xm�1 = x(m�1)) · · ·P(x1 = dx(1)

|x0 = x)

� &†(C⇥)
m�1

Z

x02X
&†(Ax0)�(dx0)

= ⇣ · (�⇥ &†)(Ā),

where ⇣ = &†(C⇥)m�1 and �⇥ &† being the unique induced product measure on X ⇥ Rd.

As such, we have proven that C̄ is (m,�⇥ &†)-small, and hence (�m,�⇥ &†)-petite, and subsequently
shown that (xk, ✓k)k�0 is geometrically ergodic.
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By [50, Theorem 16.0.1 (iv)], we can further conclude that the geometrically ergodic (✓t, xt)t�0 is
also V -uniformly ergodic with the same V as defined in (H.2). Therefore, we have the following
convergence rate in the V -norm

��L(xk, ✓k),�⌫̄↵
��
V
 ⇢k, where  and ⇢ implicitly depend on the

stepsize ↵.

Lastly, we provide the proof of Claim 1.

Proof. We first recall that for any set B ✓ Rd such that �(B) > 0, where � refers to the Lebesgue
measure, then for ✓ 2 C⇥, we know that

R
t2B p✓(t)dt �

R
t2B inf✓2C⇥ p✓(t)dt > 0. Moreover, for a

given (translation) z 2 Rd and ✓ 2 C⇥, we have
Z

t2B
p✓(t� z)dt =

Z

t02B�z
p✓(t

0)dt0 �
Z

t02B�z
inf
✓2C

p✓(t
0)dt0 > 0.

Following the properties stated above, we define h(z) =
R
t2B inf✓2C p✓(t� z)dt, and it is easy to

verify that h(z) is a continuous function. Hence, for a bounded set D, we have infz2D h(z) > 0.
Subsequently, we define the measure &† induced by h and we verify that

&†(A) = inf
kzkB

Z

t2A\C⇥

inf
✓2C

p✓(t� z)dt > 0.

H.2 Proof of Corollary 4.4

As shown in the previous section, the joint process (xk, ✓k)k�0 is V -uniformly ergodic and hence also
exhibits a geometric non-asymptotic convergence rate under the V -weighted norm. Subsequently, this
corresponds to a version of Corollary 4.4 resulting in a different set of convergence rate coefficients.
Thus, we restate Corollary 4.4 in the context of the minorization setting and provide the proof below.
Corollary H.2 (Non-Asymptotic Convergence Rate). For any initialization of ✓0 2 Rd

, under the

setting of Theorem 4.3, we have
��E[✓k]�E[✓(↵)1 ]

��  ·⇢k ·s0(✓0, L, µ), and

��E[✓k✓>k ]�E[✓(↵)1 (✓(↵)1 )>]
��  ·⇢k ·s00(✓0, L, µ),

where  and ⇢ are defined in (4.1) and implicitly depend on ↵.

Proof. For V -uniformly ergodic Markov chain (xk, ✓k)k�0, when functions f : X ⇥ Rd
! Rd is

dominated by the Lyapunov function, i.e., kfk  V , it enjoys the following convergence property,
kQnf(x0, ✓0)� ⇡fk  ⇢nV (✓0).

Consider test function f(✓, x) = ✓ � ✓⇤. It is easy to see that kfk  V . Hence, we obtain
kE[✓n]� E[✓1]k = kQnf(x, ✓)� ⇡fk  ⇢nV (✓0).

Next, consider f 0(x) = (✓ � ✓⇤)(✓ � ✓⇤)>. Clearly, kf 0
k  V . Therefore,

kE[(✓t � ✓⇤)(✓t � ✓⇤)>]� E[(✓1 � ✓⇤)(✓1 � ✓⇤)>]k  ⇢nV (✓0).

For the LHS, we have
kE[(✓t � ✓⇤)(✓t � ✓⇤)>]� E[(✓1 � ✓⇤)(✓1 � ✓⇤)>]k

= kE[✓t✓>t ]� E[✓1✓>1]� E[✓t � ✓1](✓⇤)> � ✓⇤E[(✓t � ✓1)>]k

� kE[✓t✓>t ]� E[✓1✓>1]k � 2kE[✓t � ✓1]kk✓⇤k.

Subsequently,
kE[✓t✓>t ]� E[✓1✓>1]k  (2k✓⇤k+ 1)⇢nV (✓0).

The above results imply the convergence of the first two moments. Moreover, we conclude that
Var(✓1) = Var(✓1 � ✓⇤)  E[k✓1 � ✓⇤k2] = lim

t!1
E[k✓t � ✓⇤k2] . ↵⌧.

Additionally,
E[k✓1 � ✓⇤k]2  E[k✓1 � ✓⇤k2] . ↵⌧. (H.4)
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H.3 Proof of Corollary 4.5

After establishing the V -uniform ergodicity of the joint process (xk, ✓k)k�0, the central limit theorem
for averaged iterates follows as a straightforward consequence.

Proof. For any test function h : X ⇥ Rd
! Rd that satisfies khk2  V , by Theorem 17.0.1 in [50],

it has the following CLT results,

1
p
k

h k�1X

t=0

�
ht � E[h1]

�i
) N (0,⌃(a)).

Therefore, consider h(x, ✓) = ✓ � ✓⇤, it is easy to see that khk2  V , and hence we naturally obtain
the desired CLT result, 1p

k

hPk�1
t=0

�
✓t � E[✓1]

�i
) N (0,⌃(a)) as k ! 1.

I Proof of Theorem 4.6

We now provide the proof of Theorem 4.6 on characterizing the asymptotic bias of nonlinear SA.

I.1 BAR and Preliminaries

The proof utilizes the basic adjoint relationship (BAR) approach to study the stationary distribution
E⌫̄ [(P � I)h(✓, x)] = 0,

via carefully designed test functions h. We refer readers to [33] for the derivation of the following
properties of Markovian SA at stationarity,

E[ {✓1 2 S} | x1](x) = E[ {✓1+1 2 S} | x1+1](x), (I.1)
E[✓1 | x1](x) = E[✓1+1 | x1+1](x), (I.2)

E[(✓1)⌦2
| x1](x) = E[(✓1+1)

⌦2
| x1+1](x). (I.3)

Following the Borel state space assumption in 1, E[ {✓1 2 ·}|x1 = x] induce a regular conditional
probability measure, which we denote as ⌫̃(·, x1 = x), and hence (I.1) can be reformulated as

⌫̃(✓1 2 S, x1 = x) = ⌫̃(✓1+1 2 S, x1+1 = x).

Before proceeding to the proof, we introduce the following shorthands and notations. For x 2 X ,
zi(x) := E[(✓1 � ✓⇤)⌦i

|x1 = x],

�i(x) := zi(x)� ⇡zi,

Following the differentiability assumption of g in Assumption 3, and we can apply Taylor expansion
to g and we note the following notation on residuals.

g(✓, x) = g(✓⇤, x) + g0(✓⇤, x)(✓ � ✓⇤) +
1

2
g00(✓⇤, x)(✓ � ✓⇤)⌦2 +R3(✓, x) (I.4)

= g(✓⇤, x) + g0(✓⇤, x)(✓ � ✓⇤) +R2(✓, x). (I.5)
By Assumption 3 and results from Proposition 4.2 and 4.2, we note that the residual Rn(✓, x) satisfies

sup
x2X ,✓2Rd

n
kRn(✓, x)k/k✓ � ✓⇤kn

o
< +1.

Hence, we have
kRn(✓, x1)kL2(⇡) . E[k✓1 � ✓⇤kn] = O((↵⌧)n/2), n = 2, 3, 4.

Lastly, we denote
ḡ(✓) := Ex⇠⇡[g(✓, x)], ḡ2(✓) := Ex⇠⇡[(g(✓, x))

⌦2]

ḡ(1)(✓) := Ex⇠⇡[g
0(✓, x)], ḡ(1)2 (✓) := Ex⇠⇡[(g

0(✓, x))⌦2], ḡ(2)(✓) := Ex⇠⇡[g
00(✓, x)].

We are now ready to present our proof. The proof consists of two major steps. For the complexity of
this problem, we first set aside the projection constraint and focus on the BAR analysis, and we shall
present the asymptotic bias characterization without the projection step. The analysis in this step thus
shall work for the minorization proof technique as well. Then, in the second step, we elaborate on the
impact brought along by the projection analysis and conclude our proof.
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I.2 Step 1: Bias Characterization without Projection

I.2.1 Step 1: First Moment Analysis

Consider test function h1(x, ✓) = ✓ � ✓⇤. Therefore, we first have

E[✓1+1 � ✓⇤] = E[✓1 � ✓⇤] + ↵
⇣
E[g(✓1, x1)] + E[⇠1+1(✓1)]

⌘
,

which immediately implies that
0 = E[g(✓1, x1)]. (I.6)

Substituting the Taylor expansion (I.4) back into (I.6), we have

0 = E[g(✓⇤, x)] + E[g0(✓⇤, x1)(✓1 � ✓⇤)] +
1

2
E[g00(✓⇤, x1)(✓1 � ✓⇤)⌦2] + E[R3(✓1, x1)]

= E[g0(✓⇤, x1)(✓1 � ✓⇤)] +
1

2
E[g00(✓⇤, x1)(✓1 � ✓⇤)⌦2] +O((↵⌧)3/2), (I.7)

where we make use of E[g(✓⇤, x)] = ḡ(✓⇤) = 0 by definition and the order or E[R3(✓1, x1)] =
O((↵⌧)3/2) to obtain the second equality.

Next, we proceed to analyze the two terms in (I.7). For the first term, we have

E[g0(✓⇤, x1)(✓1 � ✓⇤)] = E[g0(✓⇤, x1)z1(x1)]

= E[g0(✓⇤, x1)�1(x1)] + ḡ(1)(✓⇤)E[✓1 � ✓⇤]. (I.8)

We now move on to analyze the second term, and obtain

E[g00(✓⇤, x1)(✓1 � ✓⇤)⌦2] = E[g00(✓⇤, x1)z2(x1)]

= E[g00(✓⇤, x1)�2(x1)] + ḡ(2)(✓⇤)E[(✓1 � ✓⇤)⌦2]. (I.9)

Hence, substituting (I.8) and (I.9) back into (I.7), we reorganize the terms and arrive at

E[✓1 � ✓⇤]

= �(ḡ(1)(✓⇤))�1
⇣
E[g0(✓⇤, x1)�1(x1)] (I.10)

+
1

2

⇣
E[g00(✓⇤, x1)�2(x1)] + ḡ(2)(✓⇤)E[(✓1 � ✓⇤)⌦2]

⌘⌘
(I.11)

+O((↵⌧)3/2).

To obtain a refined characterization of the asymptotic bias, we carefully analyze the remaining three
terms in (I.10)–(I.11). We focus on each term in the next three sections respectively.

I.2.2 Step 2: Second Moment Analysis

We start with analyzing E[(✓1 � ✓⇤)⌦2] in this section.

Following the BAR approach, we consider the test function h2(x, ✓) = (✓ � ✓⇤)⌦2 and obtain

E[(✓1+1 � ✓⇤)⌦2] = E[(✓1 � ✓⇤ + ↵(g(✓1, x1) + ⇠1+1(✓1))⌦2]

= E[(✓1 � ✓⇤)⌦2] + ↵2(E[(g(✓1, x1))⌦2] + E[(⇠1+1(✓1))⌦2])

+ ↵(E[g(✓1, x1)⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦ g(✓1, x1)]).

Simplifying the above expression, we have

0 = ↵(E[(g(✓1, x1))⌦2] + E[(⇠1+1(✓1))⌦2])

+ (E[(✓1 � ✓⇤)⌦ g(✓1, x1)] + E[g(✓1, x1)⌦ (✓1 � ✓⇤)]).
(I.12)

We adopt a similar approach in analyzing the above relationship that contains g(✓1, x1) as in the
previous step. We make use of the Taylor expansion of g at ✓⇤ but at a lower order. We substitute the
Taylor expansion (I.5) into (I.12) and obtain

0 = ↵E[(g(✓⇤, x1) + g0(✓⇤, x1)(✓1 � ✓⇤) +R2(✓1, x1))⌦2] + ↵E[(⇠1+1(✓1))⌦2]
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+ E[(g(✓⇤, x1) + g0(✓⇤, x1)(✓1 � ✓⇤) +R2(✓1, x1))⌦ (✓1 � ✓⇤)]

+ E[(✓1 � ✓⇤)⌦ (g(✓⇤, x1) + g0(✓⇤, x1)(✓1 � ✓⇤) +R2(✓1, x1))]

= E[g(✓⇤, x1)⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦ g(✓⇤, x1)] (I.13)
+ E[(g0(✓⇤, x1)(✓1 � ✓⇤))⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦ (g0(✓⇤, x1)(✓1 � ✓⇤))] (I.14)

+ ↵E[(g0(✓⇤, x1)(✓1 � ✓⇤))⌦2] (I.15)
+ ↵E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)(✓1 � ✓⇤))] + ↵E[(g0(✓⇤, x1)(✓1 � ✓⇤))⌦ g(✓⇤, x1)] (I.16)
+ E[R2(✓1, x1)⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦R2(✓1, x1)]

+ ↵E[(g(✓⇤, x1))⌦2] + ↵E[(⇠1+1(✓1))⌦2] +O(↵2⌧).

Therefore, we proceed to analyze the terms in (I.13)–(I.16).

Starting with the terms in (I.13), we have

E[g(✓⇤, x1)⌦ (✓1 � ✓⇤)] = E[g(✓⇤, x1)⌦ (�1(x1) + ⇡z1)]

= E[g(✓⇤, x1)⌦ �1(x1)] + E[g(✓⇤, x1)]| {z }
=0

⌦E[✓1 � ✓⇤]

= E[g(✓⇤, x1)⌦ �1(x1)].

Similarly,
E[(✓1 � ✓⇤)⌦ g(✓⇤, x1)] = E[�1(x1)⌦ g(✓⇤, x1)].

Next, for the terms in (I.14), we have

E[(g0(✓⇤, x1)(✓1 � ✓⇤))⌦ (✓1 � ✓⇤)] = E[g0(✓⇤, x1)(✓1 � ✓⇤)⌦2]

= E[g0(✓⇤, x1)(�2(x1) + ⇡z2)]

= E[g0(✓⇤, x1)�2(x1)] + ḡ(1)(✓⇤)E[(✓1 � ✓⇤)⌦2].

Similarly,

E[(✓1 � ✓⇤)⌦ (g0(✓⇤, x1)(✓1 � ✓⇤))] = E[�2(x1)g0(✓⇤, x1)] + E[(✓1 � ✓⇤)⌦2]ḡ(1)(✓⇤).

Moving on to the second term in (I.15)

E[(g0(✓⇤, x1)(✓1 � ✓⇤))⌦2] = E[g0(✓⇤, x1)(✓1 � ✓⇤)⌦2g0(✓⇤, x1)]

= E[g0(✓⇤, x1)(�2(x1) + ⇡z2)g
0(✓⇤, x1)]

= E[g0(✓⇤, x1)�2(x1)g0(✓⇤, x1)] + ḡ(1)2 (✓⇤)E[(✓1 � ✓⇤)⌦2].

Last, for the terms in (I.16)

E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)(✓1 � ✓⇤))] = E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)(�1(x1) + ⇡z1))]

= E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)�1(x1))]

+ E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)E[✓1 � x1])].

Similarly,

E[(g0(✓⇤, x1)(✓1 � ✓⇤))⌦ g(✓⇤, x1)] = E[(g0(✓⇤, x1)�1(x1))⌦ g(✓⇤, x1)]

+ E[(g0(✓⇤, x1)E[✓1 � x1])⌦ g(✓⇤, x1)].

Lastly, by a second order Taylor expansion around ✓⇤ of C(✓1) = E[(⇠1+1(✓1))⌦2], we have

C(✓1) = C(✓⇤) + C0(✓⇤)E[✓1 � ✓⇤] + E[R0
2(✓1)],

where R0
2(✓) satisfies supx2Rd

n
kR0

2(✓)k/(k✓ � ✓⇤k2 + k✓ � ✓⇤kk✏+2)
o
< 1.
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Substituting the above analyses of the terms and consolidating the terms, we obtain

� (ḡ(1)(✓⇤)⌦ I + I ⌦ ḡ(1)(✓⇤))E[(✓1 � ✓⇤)⌦2]

= ↵ḡ2(✓
⇤) + ↵E[(⇠1+1(✓

⇤))⌦2] + ↵ḡ(1)2 (✓⇤)E[(✓1 � ✓⇤)⌦2]

+ E[g(✓⇤, x1)⌦ �1(x1)] + E[�1(x1)⌦ g(✓⇤, x1)]

+ E[g0(✓⇤, x1)�2(x1)] + E[�2(x1)g0(✓⇤, x1)]

+ ↵E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)�1(x1))] + ↵E[g(✓⇤, x1)⌦ (g0(✓⇤, x1)E[✓1 � x1])]

+ ↵E[(g0(✓⇤, x1)�1(x1))⌦ g(✓⇤, x1)] + ↵E[(g0(✓⇤, x1)E[✓1 � x1])⌦ g(✓⇤, x1)]

+ ↵E[g0(✓⇤, x1)�2(x1)g0(✓⇤, x1)]

+ E[R2(✓1, x1)⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦R2(✓1, x1)] + ↵C 0(✓⇤)E[✓1 � ✓⇤]

+O(↵2⌧).

(I.17)

By far, we observe that the remaining terms all contain �1 and �2. Therefore, we conclude our analysis
of E[(✓1 � ✓⇤)⌦2] at this step and leave the analysis of �1 and �2 to the next section.

I.2.3 Step 3: Analysis of the �-System

In this section, we analyze �1 and �2.

Analysis of �1. Starting with �1, we first consider the following recursive relationship induced
by (I.2).

E[✓1+1 � ✓⇤|x1+1 = s] =

Z

R
P ⇤(s, ds0)E[✓1+1 � ✓⇤|x1+1 = s, x1 = s0]

(i)
=

Z

R
P ⇤(s, ds0)E[✓1 � ✓⇤ + ↵g(✓1, x1)|x1 = s0]

(ii)
=

Z

R
P ⇤(s, ds0)E

h
✓1 � ✓⇤ + ↵

⇣
g(✓⇤, x1) + g0(✓⇤, x1)(✓1 � ✓⇤) +R2(✓1, x1)

⌘
|x1 = s0

i

=

Z

R
P ⇤(s, ds0)E

h
✓1 � ✓⇤|x1 = s0

i

+ ↵

Z

R
P ⇤(s, ds0)

⇣
g(✓⇤, s0) + g0(✓⇤, s0)E[✓1 � ✓⇤|x1 = s0] + E[R2(✓1, x1)|x1 = s0]

⌘
,

where in (i) we make use of the update rule in (2.1), E[⇠1+1(✓1)] = 0 and conditional independence
x1+1 ?? ✓1|x1. Next, we substitute the Taylor expansion (I.5) to obtain (ii).

Writing with notation shorthands z and �, we have

z1(s) =

Z

R
P ⇤(s, ds0)z1(s0)

+ ↵

Z

R
P ⇤(s, ds0)

⇣
g(✓⇤, s0) + g0(✓⇤, s0)z1(s

0) + E[R2(✓1, s0)|x1 = s0]
⌘
.

(I.18)

If we apply ⇡ to both sides of (I.18), we obtain
Z

⇡(ds)P ⇤(s, ds0)
⇣
g(✓⇤, s0) + g0(✓⇤, s0)z1(s

0) + E[R2(✓1, s0)|x1 = s0]
⌘
= 0.

Analyzing the three terms closely, we observe that
Z

⇡(ds)
Z

P ⇤(s, ds0)g(✓⇤, s0) =
Z

g(✓⇤, s0)

Z
⇡(ds)P ⇤(s, ds0)

| {z }
=⇡(ds0)

= ḡ(✓⇤) = 0

Z
⇡(ds)

Z
P ⇤(s, ds0)g0(✓⇤, s0)z1(s0) = E[g0(✓⇤, x1)z1(x1)]
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Z
⇡(ds)

Z
P ⇤(s, ds0)E[R2(✓1, s0)|x1 = s0] = E[R2(✓1, x1)],

and hence we first obtain

E[g0(✓⇤, x1)z1(x1)] + E[R2(✓1, x1)] = 0. (I.19)

We now subtract ⇡z1 on both sides of (I.18), and obtain

�1(s) =

Z

R
P ⇤(s, ds0)�1(s0)

+ ↵

Z

R
P ⇤(s, ds0)

⇣
g(✓⇤, s0) + g0(✓⇤, s0)z1(s

0) + E[R2(✓1, s0)|x1 = s0]
⌘

=

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘
�1(s

0)

+ ↵

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘⇣
g(✓⇤, s0) + g0(✓⇤, s0)z1(s

0) + E[R2(✓1, s0)|x1 = s0]
⌘
.

Consolidating the terms, we have

(I � P ⇤ +⇧)�1(s)

= ↵

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘⇣
g(✓⇤, s0) + g0(✓⇤, s0)z1(s

0) + E[R2(✓1, s0)|x1 = s0]
⌘
.

(I.20)

We next note the following properties,

kE[R2(✓1, x1)|x1 = s]k2L2(⇡)  E[kR2(✓1, x1)2k]] = O((↵⌧)2),

kz1(s)k
2
L2(⇡)  E[k✓1 � ✓⇤k2] = O(↵⌧) = O(1).

Therefore, we can first conclude that k�kL2(⇡) = O(↵).

Subsequently, from (I.19), we can derive that

0 = E[g0(✓⇤, x1)z1(x1)] + E[R2(✓1, x1)]

= E[g0(✓⇤, x1)�1(x1)] + ḡ(1)(✓⇤)E[✓1 � ✓⇤] + E[R2(✓1, x1)]

E[✓1 � ✓⇤] = �(ḡ(1)(✓⇤))�1
⇣
E[g0(✓⇤, x1)�1(x1)] + E[R2(✓1, x1)]

⌘
. (I.21)

Hence, together with the relationship between �1 and z1, we have

z1 = �1 � (ḡ(1)(✓⇤))�1
⇣
E[g0(✓⇤, x1)�1(x1)] + E[R2(✓1, x1)]

⌘
. (I.22)

Lastly, we substitute (I.22) back into (I.20) and obtain

(I � P ⇤ +⇧)�1(s)

= ↵

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘
g(✓⇤, s0)

+ ↵

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘
g0(✓⇤, s0)

⇣
�1(s

0)� (ḡ(1)(✓⇤))�1E[g0(✓⇤, x1)�1(x1)]
⌘

� ↵

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘
g0(✓⇤, s0)

⇣
(ḡ(1)(✓⇤))�1E[R2(✓1, x1)]

⌘

+ ↵

Z

R

⇣
P ⇤(s, ds0)� ⇡(ds0)

⌘
E[R2(✓1, x1)|x1 = s0]

⌘

= ↵v(✓⇤, s) +O(↵2⌧),

where

v(✓⇤, s) = (I � P ⇤ +⇧)�1(P ⇤
�⇧)g✓⇤(s) =

Z

R
(I � P ⇤ +⇧)�1(P ⇤

�⇧)(s, ds0)g(✓⇤, s0).
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Therefore, for the terms that involve �1, we can conclude that

E[g(✓⇤, x1)⌦ �1(x1)] = ↵M +O(↵2⌧) and E[�1(x1)⌦ g(✓⇤, x1)] = ↵M +O(↵2⌧),

E[g0(✓⇤, x1)�1(x1)] = ↵v0 +O(↵2⌧), (I.23)

where M and v are independent of ↵.

Note that (I.23) together with (I.21) implies that

E[✓1 � ✓⇤] = ↵v(1) +O(↵⌧).

Analysis of �2. For z2, we first note that

|E[(✓1 � ✓⇤)⌦2
|x1]k2L2(⇡)  E[k✓1 � ✓⇤k4] = O((↵⌧)2),

and hence this implies that
kz2kL2(⇡) = O(↵⌧).

Next, following (I.3), we obtain the following recursive relationship.

E[(✓1+1 � ✓⇤)⌦2
|x1+1 = s0] =

Z
P ⇤(s0, ds)E[(✓1+1 � ✓⇤)⌦2

|x1+1 = s0, x1 = s]

(i)
=

Z
P ⇤(s0, ds)E[(✓1 � ✓⇤ + ↵(g(✓1, x1) + ⇠1+1(✓1)))⌦2

|x1 = s]

(ii)
=

Z
P ⇤(s0, ds)E[(✓1 � ✓⇤)⌦2

|x1 = s]

+ ↵2

Z
P ⇤(s0, ds)E[(g(✓1, s))⌦2

|x1 = s] + ↵2

Z
P ⇤(s0, ds)E[(⇠1+1(✓1))⌦2

|x1 = s]

+ ↵

Z
P ⇤(s0, ds)

⇣
E[(✓1 � ✓⇤)⌦ g(✓1, s)|x1 = s] + E[g(✓1, s)⌦ (✓1 � ✓⇤)|x1 = s]

⌘
,

where in (i) we make use of the update rule in (2.1) and conditional independence x1+1 ?? ✓1|x1.
Next, we substitute the Taylor expansion (I.5) to obtain (ii).

Writing with z2 shorthand, we have

z2(s
0) =

Z
P ⇤(s0, ds)z2(s)

+ ↵2

Z
P ⇤(s0, ds)E[(g(✓1, s))⌦2

|x1 = s] + ↵2

Z
P ⇤(s0, ds)E[(⇠1+1(✓1))⌦2

|x1 = s]

+ ↵

Z
P ⇤(s0, ds)

⇣
E[(✓1 � ✓⇤)⌦ g(✓1, s)|x1 = s] + E[g(✓1, s)⌦ (✓1 � ✓⇤)|x1 = s]

⌘
.

Making use of the relationship (P ⇤
�⇧)z2 = (P ⇤

�⇧)�2, we have

�2(s
0) =

Z ⇣
P ⇤(s0, ds)� ⇡(ds)

⌘
�2(s)

+ ↵2

Z
P ⇤(s0, ds)E[(g(✓1, s))⌦2

|x1 = s] + ↵2

Z
P ⇤(s0, ds)E[(⇠1+1(✓1))⌦2

|x1 = s]

+ ↵

Z
P ⇤(s0, ds)

⇣
E[(✓1 � ✓⇤)⌦ g(✓1, s)|x1 = s] + E[g(✓1, s)⌦ (✓1 � ✓⇤)|x1 = s]

⌘
.

Hence,

(I � P ⇤ +⇧)�2(s
0)

= ↵

Z
P ⇤(s0, ds)

⇣
E[(✓1 � ✓⇤)⌦ g(✓1, s)|x1 = s] + E[g(✓1, s)⌦ (✓1 � ✓⇤)|x1 = s]

+ ↵2

Z
P ⇤(s0, ds)

⇣
E[g((✓1, s))⌦2

|x1 = s] + E[(⇠1+1(✓1))⌦2
|x1 = s]

⌘
.
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To analyze the above system of �2, we make use of the Taylor expansion of g(✓1, s) and ⇠1+1(✓1).

Starting with the first term, we have

E[(✓1 � ✓⇤)⌦ g(✓1, s)|x1 = s]

= E
h⇣

✓1 � ✓⇤
⌘
⌦

⇣
g(✓⇤, s) + g0(✓⇤, s)(✓1 � ✓⇤) +R2(✓, s)

⌘
|x1 = s

i

= z1(s)⌦ g(✓⇤, s) + z2(s)g
0(✓⇤, s) + E[(✓1 � ✓⇤)⌦R2(✓, s)|x1 = s]

=
⇣
�1(s)� (ḡ(1)(✓⇤))�1

⇣
E[g0(✓⇤, x1)�1(x1)] + E[R2(✓1, x1)]

⌘⌘
⌦ g(✓⇤, s)

+ z2(s)g
0(✓⇤, s) + E[(✓1 � ✓⇤)⌦R2(✓, s)|x1 = s].

Similarly, we have the following relationship for the second term,

E[g(✓1, s)⌦ (✓1 � ✓⇤)|x1 = s]

= g(✓⇤, s)⌦
⇣
�1(s)� (ḡ(1)(✓⇤))�1

⇣
E[g0(✓⇤, x1)�1(x1)] + E[R2(✓1, x1)]

⌘⌘

+ g0(✓⇤, s)z2(s) + E[R2(✓, s)⌦ (✓1 � ✓⇤)|x1 = s].

Next, we proceed to analyze the third term.

E[(g(✓1, s))⌦2
|x1 = s]

= E
h⇣

g(✓⇤, s) + g0(✓⇤, s)(✓1 � ✓⇤) +R2(✓1, s)
⌘⌦2

|x1 = s
i

= E[(g(✓⇤, s))⌦2
|x1 = s] + E[(g0(✓⇤, s)(✓1 � ✓⇤))⌦2

|x1 = s]

+ E[g(✓⇤, s)⌦ (g0(✓⇤, s)(✓1 � ✓⇤))|x1 = s] + E[(g0(✓⇤, s)(✓1 � ✓⇤))⌦ g(✓⇤, s)|x1 = s]

+ E[g(✓⇤, s)⌦R2(✓1, s)|x1 = s] + E[R2(✓1, s)⌦ g(✓⇤, s)|x1 = s]

+ E[(g0(✓⇤, s)(✓1 � ✓⇤))⌦R2(✓1, s)|x1 = s]

+ E[R2(✓1, s)⌦ (g0(✓⇤, s)(✓1 � ✓⇤))|x1 = s] + E[(R2(✓1, s))⌦2
|x1 = s].

Lastly, for the noise term, we derive that

E[(⇠1+1(✓1))⌦2
|x1 = s] = E[(⇠1+1(✓

⇤))⌦2]+C 0(✓⇤)E[✓1�✓⇤|x1 = s]+E[R0
2(✓1)|x1 = s].

Leveraging on the respective orders, we can conclude that

k�2kL2(⇡) = O(↵2⌧).

Therefore, for second-moment cross-terms, we have the following orders

E[g0(✓⇤, x1)�2(x1)] = O(↵2⌧) and E[�2(x1)g0(✓⇤, x1)] = O(↵2⌧),

E[g00(✓⇤, x1)�2(x1)] = O(↵2⌧). (I.24)

I.2.4 Step 4: Bias Characterization

Finally, we are ready to consolidate the above analyses and conclude the characterization of the
asymptotic bias.

We recall that we have already shown the following expansion of the asymptotic bias

E[✓1 � ✓⇤]

= �(ḡ(1)(✓⇤))�1
⇣
E[g0(✓⇤, x1)�1(x1)] +

1

2

⇣
E[g00(✓⇤, x1)�2(x1)] + ḡ(2)(✓⇤)E[(✓1 � ✓⇤)⌦2]

⌘⌘

+O((↵⌧)3/2).

By our analyses above, we have shown that

�1 = ↵(I � P ⇤ +⇧)�1(P ⇤
�⇧)g⇤✓ +O(↵2⌧).

Hence, we derive that

E[g0(✓⇤, x1)�1(x1)] = ↵E[g0(✓⇤, x1)(I � P ⇤ +⇧)�1(P ⇤
�⇧)g⇤✓(x1)] +O(↵2⌧).
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For the second term, we simply use the order shown in (I.24).

Lastly, we substitute our analyses of �1 and �2 into the expansion of MSE (I.17) and derive that

� (ḡ(1)(✓⇤)⌦ I + I ⌦ ḡ(1)(✓⇤))E[(✓1 � ✓⇤)⌦2]

= ↵ḡ2(✓
⇤) + ↵E[(⇠1+1(✓

⇤))⌦2]

+ ↵E[g(✓⇤, x1)⌦ (I � P ⇤ +⇧)�1(P ⇤
�⇧)g✓⇤(x1)]

+ ↵E[(I � P ⇤ +⇧)�1(P ⇤
�⇧)g✓⇤(x1)⌦ g(✓⇤, x1)] +O(↵2⌧).

Therefore, combining all the analyses, we have shown the bias characterization in Theorem 4.6,

E[✓1 � ✓⇤]

= �↵ · (ḡ(1)(✓⇤))�1E[g0(✓⇤, x1)h(✓⇤, x1)]

+ ↵ ·
1

2
(ḡ(1)(✓⇤))�1(ḡ(1)A

⇣
ḡ2(✓

⇤) + ↵E[(⇠1+1(✓
⇤))⌦2]

⌘

+ ↵ ·
1

2
(ḡ(1)(✓⇤))�1A

⇣
E[g(✓⇤, x1)⌦ h(✓⇤, x1)] + E[h(✓⇤, x1)⌦ g(✓⇤, x1)]

⌘
+O((↵⌧)3/2).

where

A = (ḡ(1)(✓⇤)⌦ I + I ⌦ ḡ(1)(✓⇤))�1,

h(✓⇤, s) = (I � P ⇤ +⇧)�1(P ⇤
�⇧)g✓⇤(s)

=

Z

X
(I � P ⇤ +⇧)�1(P ⇤

�⇧)(s, ds0)g(✓⇤, s0).

Therefore, we see that assuming weak convergence without projection, the bias admits a leading term
of order ↵. We emphasize that the expansion holds as equality, rather than an upper bound.

I.3 Step 2: Impact of Projection on Bias

Now, we proceed to analyze the impact of having the additional projection step on the asymptotic
bias characterization. In the following, we use the shorthand ✓t+1/2 to denote the iterate we obtain
before the projection step, i.e.,

✓t+1/2 = ✓t + ↵
�
g(✓t, xt) + ⇠t+1(✓t)

�
and ✓t+1 = ⇧B(�)✓t+1/2.

Therefore, we see that our analysis from Step 1 can be understood as the analysis for ✓1+1/2.

Starting with the first moment analysis with test function h1(x, ✓) = ✓ � ✓⇤, we have

E[✓1+1 � ✓⇤] = E[✓1+1/2 � ✓⇤] + E[✓1+1 � ✓1+1/2]

= E[✓1 � ✓⇤] + ↵
�
E[g(✓1, x1)] + E[⇠1+1(✓1)]) + E[✓1+1 � ✓1+1/2],

which implies that

�
1

↵
E[✓1+1 � ✓1+1/2] = E[g0(✓⇤, x1)(✓1 � ✓⇤)] +

1

2
E[g00(✓⇤, x1)(✓1 � ✓⇤)⌦2] +O((↵⌧)3/2).

(I.25)

Therefore, we turn our focus to analyzing E[✓1+1 � ✓1+1/2].

E[✓1+1 � ✓1+1/2]

= E[(✓1+1 � ✓1+1/2) {k✓t+1/2 � ✓⇤k < �}] + E[(✓1+1 � ✓1+1/2) {k✓t+1/2 � ✓⇤k � �}]

= E[(✓1+1 � ✓1+1/2) {k✓t+1/2 � ✓⇤k � �}],

where we note that when k✓t+1/2 � ✓⇤k  � implies that k✓t+1/2k  � + k✓⇤k  2� and hence
✓1+1 = ✓t+1/2 in this case. To analyze the remaining term, we use Hölder’s inequality and obtain

kE[(✓1+1 � ✓1+1/2) {k✓t+1/2 � ✓⇤k � �}]k

 E1/p[k(✓1+1 � ✓⇤)� (✓1+1/2 � ✓⇤)kp]E1/q[ {k✓t+1/2 � ✓⇤k � �}]
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 2E1/p[k✓1+1/2 � ✓⇤kp]
�
P(k✓t+1/2 � ✓⇤k � �)

�1/q
.

Setting p = 6 and q = 6/5, and making use of the property that E[k✓1+1/2 � ✓⇤k6] = O((↵⌧)3)
from Proposition 4.2, we have

E1/6[k✓1+1/2 � ✓⇤k6]
�
P(k✓t+1/2 � ✓⇤k � R)

�5/6 . (↵⌧)3/6
⇣
E[k✓t+1/2 � ✓⇤k6]/R6)5/6

. (↵⌧)3.

Hence, we can conclude that

E[✓1+1 � ✓1+1/2] = O((↵⌧)3).

Substituting this order information back into (I.25), we can see that E[✓1+1 � ✓1+1/2]/↵ =
O(↵2⌧3). Recall that ⌧ = O(log(1/↵)), and hence we can assimilate this residual order from
projection into the existing O((↵⌧)3/2) residual term.

For the remaining terms, we follow the existing analysis in Section I.2.1 and again obtain

E[✓1 � ✓⇤] = �(ḡ(1)(✓⇤))�1
⇣
E[g0(✓⇤, x1)�1(x1)]

+
1

2

⇣
E[g00(✓⇤, x1)�2(x1)] + ḡ(2)(✓⇤)E[(✓1 � ✓⇤)⌦2]

⌘⌘

+O((↵⌧)3/2).

Now, we proceed to analyze E[(✓1 � ✓⇤)⌦2] and examine the impact of projection. Consider test
function h2(x, ✓) = (✓ � ✓⇤)⌦2 and follow a similar strategy as the first moment analysis, we have

E[(✓1+1 � ✓⇤)⌦2] = E[(✓1+1/2 � ✓⇤)⌦2] + E[(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2]

= E[(✓1 � ✓⇤)⌦2] + ↵2(E[(g(✓1, x1))⌦2] + E[(⇠1+1(✓1))⌦2])

+ ↵(E[g(✓1, x1)⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦ g(✓1, x1)])

+ E[(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2].

Hence, by reorganizing the terms, we have

�
1

↵
E[(✓1+1 � ✓⇤)⌦2

� (✓1+1/2 � ✓⇤)⌦2]

= ↵(E[(g(✓1, x1))⌦2] + E[(⇠1+1(✓1))⌦2])

+ (E[g(✓1, x1)⌦ (✓1 � ✓⇤)] + E[(✓1 � ✓⇤)⌦ g(✓1, x1)]).

Therefore, we turn our focus to analyzing E[(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2]. Similar as the

first moment analysis, we have

E[(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2]

= E[((✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2) {k✓t+1/2 � ✓⇤k � �}].

To analyze the term on the right-hand side, we again make use of Hölder’s inequality and obtain

kE[((✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2) {k✓t+1/2 � ✓⇤k � �}]k

 E1/p[k(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2

k
p]E1/q[ {k✓t+1/2 � ✓⇤k � �}]

 2E1/p[k✓1+1/2 � ✓⇤k2p]
�
P(k✓t+1/2 � ✓⇤k � �)

�1/q
.

Setting p = 3 and q = 3/2, and making use of the property that E[k✓1+1/2 � ✓⇤k6] = O((↵⌧)3)
from Proposition 4.2, we have

E1/3[k✓1+1/2 � ✓⇤k6]
�
P(k✓t+1/2 � ✓⇤k � R)

�2/3 . (↵⌧)
⇣
E[k✓t+1/2 � ✓⇤k6]/R6

⌘2/3

. (↵⌧)3.

Hence, we can conclude that

E[(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2] = O((↵⌧)3).
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From the analyses above, we can also conclude that

kE[✓1+1 � ✓1+1/2|x1]kL2(⇡) = O((↵⌧)3/2)

kE[(✓1+1 � ✓⇤)⌦2
� (✓1+1/2 � ✓⇤)⌦2

|x1]kL2(⇡) = O((↵⌧)3/2).

Therefore, combining the analyses above, we see that the projection only introduces error terms of
order O(↵2⌧3). Hence, combining the analysis from Section I.2.1, we can conclude the same desired
order that

E[✓(↵)1 � ✓⇤] = ↵b+O((↵⌧)3/2).

J Additional Insights on TA and RR

In this section, we present more detailed results that characterize the first and second moment of
Polayk-Ruppert (PR) tail-averaged iterates and Richardson-Romberg (RR) extrapolated iterates.

The following corollary provides non-asymptotic characterization for the first two moments of PR
tail-averaged iterates ✓̄k0,k.

Corollary J.1 (Tail Averaging). Under the setting of Theorem 4.6, the tail-averaged iterates satisfy

the following bounds for all k > k0 + 2⌧ and k0 � ⌧ + 1
↵µ log

�
1
↵⌧↵

�
:

E[✓̄(↵)k0,k
� ✓⇤] = ↵b+O

�
(↵⌧↵)

3/2
�
+O

✓
(1� ↵µ)k0/2

↵(k � k0)

◆
and (J.1)

E
h
(✓̄(↵)k0,k

� ✓⇤)(✓̄(↵)k0,k
� ✓⇤)>

i
= ↵2bbT +O(↵ · (↵⌧↵)

3/2) +O

✓
⌧↵

k � k0
+

(1� ↵µ)k0/2

↵ (k � k0)
2

◆
.

(J.2)

With this result, taking the trace on both sides of (J.2) recovers Corollary 4.7.

Proof. First, we have

E[✓̄(↵)k0,k
� ✓⇤] = (E [✓1]� ✓⇤) +

1

k � k0

k�1X

t=k0

E [✓t � ✓1] .

By Corollary 4.4, we obtain

kE[✓t]� E[✓1]k  (1� ↵µ)
t
2 · s0(✓0, L, µ).

Hence, it follows that
�����

k�1X

t=k0

E [✓t � ✓1]

����� 

k�1X

t=k0

kE [✓t]� E[✓1]k

 s0(✓0, L, µ) · (1� ↵µ)
k0
2

1

1�
p
(1� ↵µ)

 s0(✓0, L, µ) · (1� ↵µ)
k0
2

2

↵µ
.

Together with Theorem 4.6, we have

E
h
✓̄(↵)k0,k

i
� ✓⇤ = ↵b+O

�
(↵⌧↵)

3/2
�
+O

✓
(1� ↵µ)k0/2

↵(k � k0)

◆
,

thereby finishing the proof of the first moment.
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To bound the second moment of the tail-averaged iterate, we follow the proof technique in [33,
Section A.6.2] . We notice that

E
⇣

✓̄(↵)k0,k
� ✓⇤

⌘⇣
✓̄(↵)k0,k

� ✓⇤
⌘>�

=E
⇣

✓̄(↵)k0,k
� E [✓1] + E [✓1]� ✓⇤

⌘⇣
✓̄(↵)k0,k

� E [✓1] + E [✓1]� ✓⇤
⌘>�

=E
⇣

✓̄(↵)k0,k
� E [✓1]

⌘⇣
✓̄(↵)k0,k

� E [✓1]
⌘>�

| {z }
T1

+E
h⇣

✓̄(↵)k0,k
� E [✓1]

⌘
(E [✓1]� ✓⇤)>

i

| {z }
T2

+ E

(E [✓1]� ✓⇤)

⇣
✓̄(↵)k0,k

� E [✓1]
⌘>�

| {z }
T3

+E
h
(E [✓1]� ✓⇤) (E [✓1]� ✓⇤)>

i

| {z }
T4

.

For T2, we have

T2 =
1

k � k0

 
k�1X

t=k0

E [✓t � ✓1]

!
(E[✓1]� ✓⇤)>

= O

✓
(1� ↵µ)k0/2

↵(k � k0)

◆
· (↵b+O

�
(↵⌧↵)

3/2
�
) = O

✓
(1� ↵µ)k0/2

(k � k0)

◆
.

The term T3 is similar to T2 and obeys the same bound.

For T4, we have

T4 = (↵b+O
�
(↵⌧↵)

3/2
�
)(↵b+O

�
(↵⌧↵)

3/2
�
)T = ↵2bbT +O(↵ · (↵⌧↵)

3/2).

For T1, we have

T1 =
1

(k � k0)
2E
⇣ k�1X

t=k0

�
✓t � E[✓1]

�⌘⇣ k�1X

t=k0

�
✓t � E[✓1]

�⌘>�

=
1

(k � k0)
2

k�1X

t=k0

E
h�
✓t � E[✓1]

��
✓t � E[✓1]

�>i (J.3)

+
1

(k � k0)
2

k�1X

t=k0

k�1X

l=t+1

E
h�
✓t � E[✓1]

��
✓l � E[✓1]

�>i (J.4)

+
1

(k � k0)
2

k�1X

t=k0

k�1X

l=t+1

E
h�
✓l � E[✓1]

��
✓t � E[✓1]

�>i
. (J.5)

By Corollary 4.4 and Proposition 4.2 we have

E
h�
✓t � E[✓1]

��
✓t � E[✓1]

�>i

=
⇣
E
⇥
✓t✓

>
t

⇤
� E

⇥
✓1✓1

>⇤⌘+
⇣
E
⇥
✓1✓1

>⇤
� E[✓1]E

⇥
✓1

>⇤⌘

�

⇣
E [✓t]E

⇥
✓1

>⇤+ E[✓1]E
⇥
✓>t
⇤
� 2E[✓1]E

⇥
✓1

>⇤⌘

=
⇣
E
⇥
✓t✓

>
t

⇤
� E

⇥
✓1✓1

>⇤⌘+Var
�
✓1
�
� E

⇥
✓t � ✓1

⇤
E
⇥
✓1

>⇤
� E[✓1]E

h
(✓t � ✓1)>

i

=O

⇣
(1� ↵µ)

t
2 + ↵⌧↵

⌘
,

where we bound Var
�
✓1
�

with O(↵⌧↵) by Proposition 4.2 and Fatou’s lemma.
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Then, for (J.3), we have

(J.3) =
1

(k � k0)
2

k�1X

t=k0

O

⇣
(1� ↵µ)

t
2 + ↵⌧↵

⌘

= O

✓
1

(k � k0)
2

1X

t=k0

(1� ↵µ)
t
2

◆
+O

✓
↵⌧↵

k � k0

◆

= O

✓
(1� ↵µ)k0/2

↵ (k � k0)
2 +

↵⌧↵
k � k0

◆
.

We restate the following claim, whose proof closely resembles Claim 4 in [33].

Claim 2. For t � ⌧ + 1
↵µ log

⇣
1
↵⌧↵

⌘
and l � t+ 2⌧↵, we have

���E
h�
✓t � E[✓(↵)]

��
✓l � E[✓(↵)]

�>i��� = O

⇣
(↵⌧↵) · (1� ↵µ)

(l�t)
2

⌘
.

Then, by [33, Claim 4], we have term (J.4) = O
�

⌧↵
k�k0

�
. Similarly, we have term (J.5)= O

�
⌧↵

k�k0

�
.

Therefore, we have

T1 = O

✓
(1� ↵µ)k0/2

↵ (k � k0)
2

⌘
+

⌧↵
k � k0

◆
. (J.6)

By adding T1–T4 together, we obtain

E
⇣

✓̄(↵)k0,k
� ✓⇤

⌘⇣
✓̄(↵)k0,k

� ✓⇤
⌘>�

=↵2bbT +O(↵ · (↵⌧↵)
3/2) +O

✓
(1� ↵µ)k0/2

(k � k0)

◆

+O

✓
(1� ↵µ)k0/2

↵ (k � k0)
2 +

⌧↵
k � k0

◆

=↵2bbT +O(↵ · (↵⌧↵)
3/2) +O

✓
⌧↵

k � k0
+

(1� ↵µ)k0/2

↵ (k � k0)
2

◆
.

Next, we present the following corollary formalizes the non-asymptotic characterization for the first
two moments of the RR-extrapolated iterate e✓(↵)k0,k

.

Corollary J.2 (Richardson-Romberg Extrapolation). Under the setting of Theorem 4.6, the RR

extrapolated iterates with stepsizes ↵ and 2↵ satisfy the following bounds for all k > k0 + 2⌧↵ and

k0 � ⌧↵ + 1
↵µ log

�
1
↵⌧↵

�
:

E[✓̃(↵)k0,k
� ✓⇤] = O

�
(↵⌧↵)

3/2
�
+O

⇣ (1� ↵µ)k0/2

↵(k � k0)

⌘
, and (J.7)

E
h
(✓̃(↵)k0,k

� ✓⇤)(✓̃k0,k � ✓⇤)>
i
= O

�
(↵⌧↵)

3
�
+O

⇣ ⌧↵
k � k0

+
(1� ↵µ)k0/2

↵ (k � k0)
2

⌘
. (J.8)

Proof. By equation (J.1), we obtain

E
h
✓̃(↵)k0,k

i
� ✓⇤ =E

h
2✓̄(↵)k0,k

� ✓̄(2↵)k0,k

i
� ✓⇤ = 2E

h
✓̄(↵)k0,k

� ✓⇤
i
� E

h
✓̄(2↵)k0,k

� ✓⇤
i

=2

✓
↵b+O

�
(↵⌧↵)

3/2
�
+O

✓
(1� ↵µ)k0/2

↵(k � k0)

◆◆

�

✓
2↵b+O

�
(2↵⌧2↵)

3/2
�
+O

✓
(1� 2↵µ)k0/2

↵(k � k0)

◆◆

=O
�
(↵⌧↵)

3/2
�
+O

✓
(1� ↵µ)k0/2

↵(k � k0)

◆
.
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Let u1 := ✓̄(↵)k0,k
� E

h
✓(↵)1

i
, u2 := ✓̄(2↵)k0,k

� E
h
✓(2↵)1

i
and v := 2E

h
✓(↵)1

i
� E

h
✓(2↵)1

i
� ✓⇤.

With these notations, ✓̃k0,k � ✓⇤ = 2u1 � u2 + v. We then have the following bound
����E
⇣

✓̃(↵)k0,k
� ✓⇤

⌘⇣
✓̃(↵)k0,k

� ✓⇤
⌘>����� E

h
k2u1 � u2 + vk2

i

3E k2u1k
2 + 3E ku2k

2 + 3kvk2.

By equation (J.6), we have

E ku1k
2 = Tr

�
E
⇥
u1u

>
1

⇤ �
= O

 
(1� ↵µ)k0/2

↵ (k � k0)
2 +

⌧↵
k � k0

!
.

Similarly, we have

E ku2k
2
2 = O

 
(1� 2↵µ)k0/2

↵ (k � k0)
2 +

⌧2↵
k � k0

!
.

By Theorem 4.6, we have kvk22 = O
�
(↵⌧↵)3

�
.

Combining these bounds, we have

E
h�
✓̃k0,k � ✓⇤

��
✓̃k0,k � ✓⇤

�>i
= O

�
(↵⌧↵)

3
�
+O

⇣ ⌧↵
k � k0

+
(1� ↵µ)k0/2

↵ (k � k0)
2

⌘
.
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paper’s contributions and scope. The main results are elaborately discussed in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions for this paper are stated in Section 2 and Section 4, with
a more detailed discussion provided in Appendix B. Complete proofs detailed in Appen-
dices D–J.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiment details are fully described in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is publicly available at https://github.com/lucyhuodongyan/
nonlinear-sa-bias.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment details are fully described in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Given the experiment set-up, error bars are omitted for the convergence plots
in Figure 1, because the focus is on the asymptotic bias, to which Polyak-Ruppert averaged
iterates converge almost surely. As the bias approaches its limit, variability decreases,
making error bars unnecessary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computation resources are disclosed in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper is theoretical and has no potential negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

63

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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