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Understanding how materials melt is crucial for their practical applications and development, thereby

enabling us to predict their behavior in real-world environmental conditions. Accurate computation of

melting temperatures (Tm) has been a long-standing pursuit involving various methods for classical

potentials and first-principles calculations. However, finding literature Tm references for many elements

using a clearly defined set of calculation parameters is rare. Herein we apply deep neural network

atomistic potentials (DNPs), trained on density functional theory (DFT) generated datasets, to describe

the melting temperature of 20 single-element materials across the Periodic Table using large-scale

molecular dynamics simulations. Our results demonstrate high-fidelity with experimental observations

and also with calculated reference melting temperatures, yielding an average deviation of less than 18%.

We propose a straightforward elemental-group-specific relationship between Tm and cohesive energy

for these calculated references to provide reliable DFT specific reference points, which we believe can

be readily applied to many materials. Additionally, we compare DNP predictions for three representative

elements at external pressures up to 30 GPa in molecular dynamics simulations, revealing reasonable

consistency with experimental and DFT literature references despite the lack of explicit training at these

high pressures. This work further extends our flexible approach to developing and modifying DNPs to

create unique atomistic potentials tailored to describe atomically complex materials under extreme

environmental conditions.
1. Introduction

Accurate predictions of a material's melting provide insight into
the behavior of materials under real-world and extreme
conditions1–4 and can facilitate the discovery of new materials
with desirable properties. The melting temperature (Tm) is
a critical material parameter in variety of research elds, such
as materials science,5–7 metallurgy,8–10 solid-state physics,11–15

and astro/geophysics.3,4 The determination of Tm can be both
experimentally and computationally challenging.16 For mate-
rials with large Tm (>2000 K) and/or at high pressures (>10 GPa),
experimental data are rare due to experimental limitations.
Computational Tm prediction has been demonstrated using
various approaches (e.g., hysteresis,17–19 two-phase coexis-
tence,20,21 interface pinning,22,23 and other methods24–28) and has
and Materials Science, University of
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been actively explored for decades.24,25,29–36 The two-phase
coexistence (TPC) approach employing large supercells (>10
000 atoms) is considered the “gold standard” for predicting Tm,

as this approach relies on very few assumptions.37 However,
accurate computational predictions based on rst-principles
methods, which are accurate and generally predictive, are
prohibitively computationally expensive as ensuing calculations
are “large” in two domains: the number of atoms in the simu-
lation cell and the length of simulation time.3,29

Machine learning-based atomistic potentials (MLP),38 such
as deep neural network potentials (DNPs),38–41 have emerged as
promising tools to accelerate molecular dynamics (MD) simu-
lations. These MLPs can provide accurate predictions of various
material properties at a much lower computational cost than
rst-principles methods while providing high-delity simula-
tions akin to rst-principles calculations.42–45 Recent method-
ologies using MLPs, such as moment tensor potentials46 and
graph neural networks37 have been demonstrated to improve
material properties predictions at elevated temperatures, thus
highlighting the community's need for accurate, fast, and ex-
ible approaches to calculating these related gures of merit.

Herein, we describe the training of individual element DNPs
for predicting Tm for twenty elements across the Periodic Table
using molecular dynamics (MD) simulations at nite pressure.
Digital Discovery, 2024, 3, 1421–1429 | 1421
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Fig. 1 Adaptive learning workflow for developing DNPs for accurate
Tm predictions. The first loop adds liquid phase structures at three
temperatures (xTm; x = 1, 1.2, and 1.4). The second loop added solid
phase structures (xTm; x = 0.8 and 0.9), and the third loop added
liquid–solid interface structures (if needed).
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For limited systems where data is available, we compare our
results with those obtained using traditional methods, such as
MD simulations, DFT calculations, and experimental observa-
tions. Although some of these MLP approaches depend on
extensive training datasets, in this work, we focus our training
protocol on limiting the size of the datasets while we evaluate
these DNPs using a MD methodology (TPC simulations) known
to have a low bias of Tm predictions when used with classical
atomistic potentials.

Our study demonstrates the effectiveness of MLPs in pre-
dicting Tm yielding accurate values compared to experiments
based on simulations using MD simulations executed contain-
ing ∼20 000 atoms, despite the datasets being trained with
a relatively small supercells (<64 atoms). These ndings
strongly suggest the general applicability of DNPs for studying
material properties of a large variety of elements, paving the way
for future investigations into the behavior of complex materials
under extreme conditions. This work aims to provide a pathway
to generate DNP models capable of accurately modeling the
melting behavior of materials. Further, this work highlights the
value of DNPs as a powerful tool for discovering, designing, and
characterizing materials.47–52
2. Computational methods
2.1 General

The training and validation of the initial DNP training datasets
are described in detail elsewhere.51,53 We used the LAMMPS54

code with DeePMD-kit(v2.2.1)41 and DeepPOT-SE55 to train
DNPs and predict melting temperatures using a simple two-
phase coexistence approach.21 We studied twenty elemental
systems in this work; we used a supercell of 14 × 14 × 28 to
ensure our prediction of the Tm had negligible nite-size effects
and a minimal impact of thermal uctuations. The initial
conventional unit cells for each element's groundstate lattice
(bcc, diamond cubic, fcc, hcp, orthorhombic, or rhombohedral)
conguration were taken from “The Materials Project” data-
base56 (Table S1†).
2.2 Training via adaptive learning

We used an adaptive learning approach to improve the previ-
ously reported Tm prediction of the initial DNPs, increasing the
total congurations <1000 structures during training (Table
S2†). An ensemble approach was used to identify new structures
to add to these datasets using three randomly seeded DNPs and
a NPT ensemble for one hundred ps with one fs timestep. We
initially applied two distinct training loops for this work (Fig. 1).
The rst loop focused on selecting liquid phase structures at
temperatures 1.0, 1.2, and 1.4 of each element's bulk experi-
mental melting temperature (Tm, exp) (Table S1†). Only up to ve
congurations with the largest deviations within a force toler-
ance of 0.3–1.5 eV Å−1 were selected for generating MD trajec-
tories with VASP.57–60 We then ran NVT as implemented in VASP
described in detail previously53 (VASP INCAR parameters61 are
provided in the ESI† on GitHub) on each identied structure at
the corresponding temperatures; these structures are then
1422 | Digital Discovery, 2024, 3, 1421–1429
added to the training data to generate a new DNP. For the next
iteration, we repeated this process but extended the ensemble
to include structures at 0.8 and 0.9 Tm, exp. This iterative process
continued until the number of structures that matched the
force criteria dwindled to less than 0.5 eV Å−1 for all ve
temperatures. A nal loop was run for all elements, adding
solid–liquid interface structures; however, improvement of Tm
predictions was only observed for Al, Os, Ti, and Zr.
2.3 Two-phase coexistence

The DNPs used were rst compressed using DeePMD-kit to
improve performance for these MD simulations. The simula-
tions were run at nite external pressure, 1.0312 bar (standard
atmospheric pressure) or higher for pressure-dependent
testing, with an isoenthalpic ensemble (NPH) as implemented
in LAMMPS with an equilibration time of one hundred twenty
picoseconds (ps) at one femtosecond (fs) timestep to ensure
equilibration between the solid and liquid phases. The entire
simulation was rst heated to melting temperature guess (for
convenience, we take Tm, guess = Tm, exp) using NPT with a one
hundred fs temperature and one thousand fs pressure damping
frequency for ten ps. The lower half of the supercell was
assigned as the liquid phase, and the upper half (along the z-
axis of the crystal axis) as the solid phase. Next, the liquid phase
was heated to approximately 1.25 of the Tm, guess for ten ps,
using a NPH ensemble. The statistics for the average Tm of the
simulation and standard deviation were calculated from the last
twenty ps of the NPH simulation. The impact of the randomly
seeded initial velocities was assessed for ve distinct simula-
tions for each elemental system with randomly seeded initial
velocities. Unless noted otherwise, the errors reported are the
same as those of these ve simulations. Additionally, we
© 2024 The Author(s). Published by the Royal Society of Chemistry
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examined the effect of the supercell using 4 × 4 × 8 up to 20 ×

20 × 40 supercells for three representative element systems
(exploring temperature range, solid phase, and atomic mass)
(Li, Ni, and Re). Lastly, using the previously described methods,
we explored the accuracy of three selected potentials at higher
pressures up to 30 GPa in 5 GPa increments.
3. Results and discussion

The TPC MD simulation approach employed to calculate Tm
excels in simplicity, i.e., no extraordinary assumptions are
made. Using a mixed supercell composed of a solid and liquid
phase, Tm is determined when the two phases are in equilib-
rium, and the melting or crystallization behavior between the
phases has stabilized. Our simulations average the total system
temperature over many timesteps (20 ps) to predict Tm.29,62 We
found that simulations of ∼22 000 atoms for these calculations
were an acceptable compromise of computation costs and
predictive accuracy, vide infra. Starting with our previously
developed elemental DNPs,53 we nd that these unmodied
DNPs predict Tm values with an overall modest accuracy relative
to Tm, exp at standard pressure (Fig. S1 and Table S1†) with an
average percent error of 24%. We rst attempted to rectify the
calculated Tm's underestimation of Tm, exp by additional
training through an adaptive learning approach. Indeed, we did
not expect these original DNPs to describe the melting regime
well as they were not trained on the elements' liquid phase,
which we had expected would make the TPC calculations
challenging.

Therefore, in the rst iteration of adaptive learning, we
added additional training structures focused on each element's
liquid phase (using NPT above the experimental melting
temperature at standard pressure) for all elements, see Fig. 1.
We gathered results from three randomly seeded DNPs for each
element, sampled 100 ps MD trajectories at 1.0, 1.2, and 1.4
multiples of the Tm, exp, and selected congurations for further
training that deviated from a set force criterion 0.3 eV Å−1 (Table
S2†). No further training was necessary for Li, Mg, or Sr aer the
rst adaptive learning iteration as the largest forces for new
structures were <0.05 eV Å−1, well below our threshold. We
examined force deviations of liquid, solid, and liquid–solid
interfaces for the remaining elements to improve the Tm's
prediction. Finally, we re-evaluated basic material benchmark
properties (Table S3†), as discussed elsewhere.53 We note
improved predictive accuracy compared with DFT for cohesive
energy (Ecoh), yielding an average error and standard deviation
of <2%.
Fig. 2 The impact of supercell size N (atoms) on the thermal noise in
the simulations of three randomly seeded initial velocity starting points
for Li, Ni, and Nb.
3.1 Finite-size effects on Tm

Thermal uctuations in MD simulations increase with
increasing temperature and decrease with the number of
atoms. Therefore, we use large supercell sizes of +10 000 or
more atoms to mitigate these inherent noise sources and to
improve predictive accuracy. Of course, simulations with so
many atoms are highly impractical for DFT calculations due to
the high computational costs that would be incurred.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Nevertheless, the ease of availability for which atomistic
(machine learning) potentials utilize large numbers of atoms
and over long timescales (100's of ps), which DFT cannot readily
achieve without great computational expense, is a signicant
asset similar to what has been previously demonstrated for
classical potentials (e.g., embedded atom models and modied
embedded atom models). This is especially valuable when the
atomistic potential training is streamlined and requires less
oversight from the operator, a general distinction from previous
classical potential developments.

To assess nite-size effects, we investigated three elements
with low (Li), moderate (Ni), and high (Nb) experimental
melting temperatures (Fig. 1). Due to the stochastic nature of
the MD trajectory that depends on how the simulations are
initiated, our Tm's are reported as the average obtained from
three randomly seeded initial temperature velocities (Table S4†)
with the standard error of themean (sem). Fig. S2† suggests that
supercells with ∼22 000 atoms (14 × 14 × 28, fcc conventional
unit cell) are sufficiently large to reduce thermal noise to less
than 5 K. We nd that the employed TCP approach is sensitive
to the total number of atoms of the supercell. However, it is
challenging to discern if this dependency is solely a result of
improving the uncertainty as the number of atoms increases or
other nite-size effects, such as long–range interactions. Also,
we note, unsurprisingly, that the 1/ON dependence of the sem,
with the number of atoms N in the simulation (Fig. 2), is
consistent with the uctuation trends in the canonical
ensemble.

To be thorough, we examined the differences in the Tm TPC-
DNP results from the nal DNP iteration for each element to
understand the precision of the randomly seeded DNPs. We
nd close agreement, as expected, aer one or more iterations
of adaptive learning training via this stochastic approach. We
emphasize the distinction of this analysis from the noise anal-
ysis using three randomly seeded initialized velocities (vide
Digital Discovery, 2024, 3, 1421–1429 | 1423
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supra) compared to this assessment of the DNP training/dataset
using three randomly seeding DNPs. For Li, Ni, and Nb, we nd
that the errors are similar to what we observe from the randomly
seeded DNPs (Tables S1, S4, and S5†), suggesting that the
potentials are well-trained and that any intrinsic errors are
inherent to the accuracies of the DFT approach. These statis-
tical analyses provide not only an assessment of the robustness
of the DNP model for MD simulations but also a reasonable
estimation of the accuracy of the DNP training and dataset.

Using the simulation protocol of the TPC simulations
established and validated for Li, Ni, and Nb, we computed Tm
for all selected elements. Fig. 3A (Table S6†) summarizes the
DNP as the predicted Tm increases (Re, Mo, Nb, and Os have the
largest error), consistent with the expected observations of MD
simulations (e.g., increasing thermal noise with increasing
temperature). To ensure that nite-size effects in the training
data structure for the DNP potential have no appreciable effect,
we compared our results with two embedded atom models
(EAM) potentials63–65 located in the NIST Interatomic Potential
Repository.66 We note that the nite-size impact on Tm is small
for these simulation cell ranges (8 × 8 × 16 to 20 × 20 × 40)
and is more evident when simulations are under (8 × 8 × 16).
Also, results obtained with the MLPs show similar trends in
thermal noise reduction as those obtained with the EAM
potentials. Furthermore, this comparison suggests that neither
the training dataset nor the DNP model shows signicant
differences from classical potential behaviors (Fig. S3†)
regarding nite-size effects.

3.2 DNP-TPC Tm validation

In our initial validation, we elected to compare our ndings
with experimental reference values over DFT-derived reference
values for two reasons: (1) TPC DFT simulations in practice
suffer from small supercells and large thermal uctuations; (2)
the DFT reference values in the literature could only be found
Fig. 3 Comparison of the DNP-TPC Tm versus (A) experimental results (
pressure. Data on the plot are themean of fiveMD simulations with rando
which are smaller than the plot symbol. In (B), y-errors bar are sems from
The dashed line indicates the parity line.

1424 | Digital Discovery, 2024, 3, 1421–1429
for 3
4 of the investigated elements in this study, namely Ag,67 Al,68

Au,69 Cu,70 Li,71 Mg,72 Mo,73 Ni,74 Os,75 Pb,76 Pd,77 Pt,78 Re,79 Sr,80

and Zr81 (Table S6†). However, we cannot straightforwardly
compare these studies given that they are heterogeneous in the
adapted computational framework, such as in the exchange-
correlation functional, pseudopotentials, DFT codes, and
simulation cut-offs. Further, these calculations may be
impacted by nite-size effects.

There are a handful of recent studies using DNPs to predict
Tm. Although the training datasets are more extensive and were
developed using different approaches compared to this work,
we note relatively good agreement with this literature references
for Al (918± 5 K),82 Cu (1210 K),83 Mg (870 K),82 and Ti (1886 K)84

with our Tm values of 923 ± 1 K (Al), 1197 ± 1 K (Cu), 911 ± 1 K
(Mg), and 1633± 13 K (Ti), respectively. Again, there are notable
differences between these studies; for example, the authors of
the Ti-DNP work did not use TPC but instead a metadynamics
approach with smaller supercells than ours for predicting Tm.84

Nevertheless, the overall agreement is compelling and
supportive of robust MD modeling using DNP for various pha-
ses and elements with good agreement regardless of the dataset
composition or specic training approach (e.g., DFT training set
generation parameters, and DNP model training parameters,
Tm calculation approach, supercell size, etc.). However, notice-
able deviations from Tm, exp depend not only on the exchange-
correlation functionals27,28,85,86 employed in the DFT calcula-
tions but also on other variables such as DFT code, pseudopo-
tentials, energy cut-offs, rather than the MLP model or the
adaptive training approach. Therefore, an alternative Tm refer-
ence may provide a better understanding of the DNP-TPC
accuracy (Fig. 3B), discussed in detail below.

We posit that the DNP underestimation of Tm compared to
corresponding experimental values is an artifact propagated
from the DFT datasets utilized to train the DNPs (Fig. 3A).
Admittedly, it is challenging to show this conclusively, given
R2 = 0.8491) and (B) predicted DFT Tm with (R2 = 0.9896) at standard
mly seeded initial velocities and the standard error of themean, some of
the five simulations, and the x-errors are associated with the linear fit.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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that accurate and systematic Tm predictions are scarce using
DFT with a consistent computational framework, as discussed
before. However, as we argue below, this conclusion is strongly
suggested, leveraging the empirical correlation between the
melting temperature and the system's Ecoh. Overall, under-
estimating the solid phase binding energies yields a less ther-
mally stable solid phase; therefore, the material's melting point
is predicted to occur at lower temperatures than experimentally
observed.

Our study used the semi-local Perdew–Burke–Ernzerhof
(PBE) functional to generate the DFT training data. Local and
semi-local functionals are well-known to have shortcomings
due to self-interactions that can only be rectied by accurately
including the exact exchange energy, as in hybrid functionals.
While PBE reproduces many experimental observables well
compared to other semi-local DFT functionals,86 particularly the
local-density approximation (LDA), PBE oen exhibits lower
bond energies.87 This underbinding yields lower Ecoh; see Table
S7.† For example, compared to LDA, Zhang et al. noted that PBE
provides reasonable Ecoh estimations for main group elements
and 3d transition metals (Ti, Co, Cu, and Zn, in this work) but is
less accurate for the 4d and 5d transition metals (Zr, Nb, Mo,
Pd, Re, Os, Pt, and Au in this work).86 Issues from the exchange–
correlation functional could also be a concern for Zn, Ag, Au,
and Pt at elevated temperatures and pressures.88

Another factor that inuences the melting temperature,
which is also compounded by intrinsic inaccuracies of the
exchange–correlation functional, is the atomic packing of the
lattice. The number of bonds or coordination number (CN) for
an atom in orthorhombic, rhombohedral, diamond cubic, bcc,
fcc, and hcp lattices are 2, 4, 4, 8, 12, and 12, respectively. The
number of bonds in the element's solid phase is larger than the
number of bonds in the liquid phase, leading to an underesti-
mation of the propagation of the overall binding energy of the
solid phase relative to the liquid phase.37 These coordination
numbers are signicant in the context of accurate Tm predic-
tions. The bcc (CN = 8) elements evaluated in this work (Li, Ni,
and Mo) exhibit remarkable accuracy. We observe increasing
average errors (relative to Tm, exp) of 5, 13, and 20% for bcc (3),
fcc (9), and hcp (7), respectively. This exemplies that the
transition from solid to liquid for elements with lower CN is
Fig. 4 Comparison of non-transition metal elements (A) parity plot show
and (B) Tm, exp and Ecoh and linear fit using eqn (2), (3) and (6), the dotted l
(R2 = 0.9914). Linear fits in parity plots were forced through the origin. T

© 2024 The Author(s). Published by the Royal Society of Chemistry
generally more accurate than those with more CN (e.g., fcc and
hcp).89 Additionally, elements without d-electrons in their outer
electron shell required minimal training (Li, Mg, and Sr), and
this is consistent with the highly accurate predictions of the
initial DNPs without requiring additional training.
3.3 DFT-based prediction of an element's Tm

A well-known empirical relationship exists between an
element's Ecoh and the expected Tm value for pure metals (eqn
(1)).90 We nd a reasonable correlation (R2 = 0.9523) using eqn
(1) and DNP-TPC simulations (Fig. S4†). However, we expected
better correlations grouping by element.

Tm = 0.032 × Ecoh-EXP/kB (1)

Element group-specic linear regression was generated
using alkali metals, alkaline earth metals, transition metals, p-
block elements, and Noble gases, eqn (2)–(6), respectively. As
shown in Fig. 4B, we nd that elemental group-specic equa-
tions have appreciably better predictions for alkali metals (eqn
(2), R2 = 0.9869), alkaline earth metals (eqn (3), R2 = 0.9418),
and noble gases (eqn (6), R2 = 0.9992). We also have a simple
linear predictive relationship between Tm and Ecoh for all d-
block metals (eqn (4), Fig. S5,† R2 = 0.9915). The relationship
between Ecoh and Tm of the p-block elements is more complex
than that of the other groups discussed. We note that the
reactive nonmetal group elements (C, N, O, P, S, and Se), the
highly electronegative halogens (F and Cl), and post-transition
metals (Ga, In, and Sn) are outliers and were not included in
the p-block elements equation (eqn (5), Fig. S6,† R2 = 0.9176).
However, this empirical relationship fails to correlate Ecoh and
Tm for certain elements, especially the f-block elements,
Fig. S7.† We also note a correlation (R2 = 0.9409), Fig. S8†
between Ecoh (DFT) and Tm,exp, but these errors are more
signicant than using the relationships based on experimental
Tm and Ecoh.

Tm = (0.0293 × Ecoh/kB) + 430 K (2)

Tm = (0.0156 × Ecoh/kB) + 162 K (3)

Tm = 0.0346 × Ecoh/kB (4)
ing observed Tm, exp and predicted Tm, exp using eqn (1) (R2 = 0.9857)
ine represents eqn (1). (C) Tm, exp and Tm, exp predicted using eqn (2)–(6)
he dashed lines are the parity lines.

Digital Discovery, 2024, 3, 1421–1429 | 1425
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Fig. 5 Comparison of DNP TPC Tm values elevated pressures (5, 10, 15, 20, 25, and 30 GPa) with literature values for (A) Li (bcc), (B) Ni (fcc), and
(C) Re (hcp). A single MD was run at each DNP point, and the 2s was smaller than the symbol. DNP-TPC data were compared with reference
literature data from first principles 71,74,91 and experiment.89,92–94 The bars shown for Tamblyn et al.91 represent Tm's calculated upper and lower
bounds.
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Tm = (0.0351 × Ecoh/kB) − 204 K (5)

Tm = (0.0873 × Ecoh/kB) (6)

Applying eqn (2)–(6) provides accurate predictions of Tm, exp

(Fig. 4C). Using experimental Ecoh values, we note that for this
data comprised of y-ve elements, the average % error
between the Tm, exp and Tm, exp-pred decreases from 19 to 10%,
respectively, for using eqn (1) and (2)–(6) (Table S8†). Extrapo-
lating, we posit that this improvement in correlating cohesive
energies and Tm also applies to the DFT values.

We had previously shown excellent agreement with DNP Ecoh
values for the corresponding DFT reference values, and this
comparison holds even with the additional training data.53

These predictions (using eqn (2)–(6)) are suitable for esti-
mating Tm based on the DFT Ecoh.
3.4 Assessing the robustness of predictions at higher
pressures

Lastly, we push the limits of these DNPs further by exploring the
Tm predictive accuracy at high pressures (5, 10, 15, 20, 25, and
30 GPa) for select elements (Li, Ni, and Re); see Fig. 5 and Table
S10.†We note that we did not explicitly train these potentials at
high pressures, only at standard pressure; effectively, we are
probing the extent of these DNP's functionality with these
compact DFT datasets. However, the distorted lattice structures
we used previously to train the initial DNPs53 have some
compression, which we anticipate to be likely sufficient to
describe these processes at higher pressures. Fig. 5 shows
a good agreement of our melting temperature predictions as
a function of pressure for these representative systems with
literature values. For instance, the non-monotonic Li melting
curve prole falls within the bounds of two previous DFT PBE
calculations by Tamblyn et al.74 (Fig. 5A). We see an increase in
Tm up to 25 GPa and 30 GPa. This anomalous negative slope
from ∼10 GPa to 30 GPa is also observed in Na and K, possibly
due to the “soening” of phonon modes95,96 and the increasing
compressibility of the liquid phase.97–99 The agreement with the
experimental results is reasonable;89,92 however, the DFT
1426 | Digital Discovery, 2024, 3, 1421–1429
predictions71,91 are not in agreement, and our DNP results fall
between these DFT results, suggesting further research effort is
needed to understand why this is observed. One explanation
could be that the Li phase change from bcc to fcc at 10–30 GPa
accounted for the NVT-based DFT studies, while experimental
literature supports this pressure-dependent phase change at
this pressure range.100 We observe the fcc phase temperature
and pressure regime, which are expected to occur based on
experiment.101

The predicted Tm for Ni (Fig. 5B) and Re (Fig. 5C) follow more
typical trends in Tm, showing an increase in Tm as pressure
increases up to 30 GPa, similar to Ni (ref. 74 and 102) and Re (ref.
93) literature values. Our predictions for Ni agree well with the
DFT (PBE) calculations,74 and the agreement is reasonable with
experimental observations.89 For Re, we note an agreement with
the overall experimental trend for Yang et al. data,93,103 which
appears to improve as pressure increases. Interestingly, we could
not nd any DFT (PBE) calculations in the literature for
comparison, and thus, this work may be a rst glimpse of what
a pressure-dependent Tm curve would show for DFT. These high-
temperature and high-pressure calculations and experiments are
difficult to conduct,104 exemplied by the few literature reports on
Tm and pressure dependence for each method. As the pressure
increases, the deviation between DNP/DFT and experiment
decreases; this observation has been noted in previous DFT
melting simulations for a variety of materials3,30,71,74 and is
consistent with lower accuracy of rst-principles modeling using
PBE functionals at pressures close to zero.88
4. Conclusions

This work highlights the utility of DNPs and the advantages of
using large supercells with a two-phase coexistence MD
approach to predict the melting temperature of single-element
materials with various properties andmelting temperatures. We
use adaptive learning training to systematically expand these
datasets to describe melting temperatures; we demonstrate that
the corresponding DNPs generated from compact DFT training
sets maintain excellent predictive ability. We show that the
accuracy and the thermal noise reduction of the DNP atomistic
© 2024 The Author(s). Published by the Royal Society of Chemistry
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potentials for Tm prediction are sufficient using a TPC approach
when supercells are ∼22 000 (14 × 14 × 28, fcc conventional
unit cell). This highly exible DNP adaptive training approach
can be applied to environments outside the DFT training set
with high delity. The DNPs' prediction of Tm's deviations from
the experiment is explained in the context of the intrinsic
shortcomings of the PBE functional employed in our study.
However, these DNPs allow for predictions with high-delity to
the rst-principles calculations. This approach can be readily
adapted to more complex materials and/or evaluated under
extreme conditions such as high pressures (e.g., hundreds of
GPa) starting from these or the initial DFT-based training set
data.

Data availability

(1) Data used to generate the main text gures are found in this
publication's ESI le.† (2) Due to the large DFT training data le
sizes, we have deposited all of the training data to this link
(https://www.github.com/saidigroup/20-DNPs-Tm.com). In
addition, example validation scripts for both LAMMPs and
VASP are archived, as well as the nal iterations and all three
randomly seeded DNPs for each of the 20 elements discussed
in this study.
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