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Abstract

Landslides are common geohazards worldwide, resulting in significant losses to economies and human lives. Data-driven
approaches, especially machine learning (ML) models, have been widely used recently for landslide susceptibility mapping
(LSM) by extracting features from geospatial variables based on their contribution to landslide occurrences using known
distributions of landslides as the training dataset. However, challenges remain in applying ML models for LSM models due
to the scarcity and uneven spatial distribution of landslide data coupled with the spatial heterogeneity of hillslope
conditions. Moreover, ML models developed with limited data often exhibit unexpected behaviors, resulting in poor
interpretability and predictions that deviate from intuitive expectations and established domain knowledge. To overcome
these challenges, this study proposes a physics-guided machine learning (PGML) framework that integrates landslide
domain knowledge into ML models for LSM. The PGML framework was developed and assessed using a detailed debris
flow inventory from a storm event in the Colorado Front Range. Based on the infinite slope model, the factor of safety for
the study area was first determined and was subsequently used to constrain the prediction of ML models through a modified
loss function and measure the physics consistency of model predictions. To evaluate the robustness and generalizability of
the models, this study uses geographical sample selections for model performance evaluation, where ML models are
trained and tested across heterogeneous ecoregions. The results of this study demonstrated the efficacy of both physics-
based and data-driven methods in determining landslide susceptibility in the study area; however, pure data-driven ML
models produced physically unrealistic results and poor generalization performance in new ecoregions. With the incor-
poration of physical constraints, the PGML model demonstrated notable enhancements in physics consistency and gen-
eralization capability, along with reduced model uncertainties across various ecoregions, surpassing the performance of
benchmark ML models.
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1 Introduction recurrent and significant issue, primarily in coastal and

mountainous regions such as the Pacific Northwest, Cali-

Landslides represent a major natural hazard, causing sub-
stantial economic and human losses globally [22, 36]. In
the USA, landslides occur in nearly all states and are a
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fornia, and the Appalachian Mountains. These events result
in approximately 25-50 fatalities and exceed one billion
dollars in losses annually [53]. In addition, more frequent
extreme climate events, such as heavy rainfall and wild-
fires, are expected under current climate projections
[21, 108], which may result in more frequent landslides and
related damages. As urban expansion progresses into
mountainous regions, many infrastructures are becoming
susceptible to the threats posed by landslides [29]. Con-
sequently, pinpointing potential landslide zones becomes
pivotal in elevating public awareness and lessening fore-
seeable repercussions.
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Landslide susceptibility mapping (LSM) is a systematic
process that identifies and quantifies the susceptibility of
landslide occurrences in specified geographic regions based
on the analysis of various contributing factors such as
geologic formations, topographic characteristics, and cli-
matic conditions. It answers the question of where land-
slides are likely to occur [24]. As outlined by Reichenbach
et al. [72] and Merghadi et al. [52], strategies to identify
zones prone to landslides primarily fall into three cate-
gories: physics-based, heuristic, and statistical methods.
The physics-based strategies depend heavily on the limit
equilibrium analysis grounded in soil mechanics, which
defines the limiting state where the shear stress along a
potential failure surface in the slope has reached the shear
strength of the slope materials. Notably, methodologies
such as the infinite slope model, along with its variations,
have become popular tools in assessing landslide risk for
rainfall-induced shallow landslides (e.g.,
[7, 33, 49, 55, 57, 91]). The physics-based methods can
provide physically consistent results that align with
geotechnical domain knowledge on landslide mechanism;
however, their implementation in LSM is often confined to
small-scale analysis due to simplified physical assumptions
embedded in physical models and the challenges of
obtaining precise and comprehensive data on soil and
hydrological attributes. Due to these limitations, physics-
based methods for LSM are typically employed to provide
early warning for impending slope failures [61, 90], where
detailed site characterization can be obtained. Heuristic
approaches use opinion-driven models that conduct land-
slide susceptibility zonation by ranking and weighting
instability factors based on expert opinion and expertise
(e.g., [12, 60, 70]). However, results based on heuristic
approaches are challenging to evaluate and quantify
objectively as they rely on investigators’ understanding and
judgments on the actual causes of landslides in the study
area [72]. Statistically based approaches create functional
correlations between landslide susceptibility and various
geo-environmental determinants based on the analysis of
historic and ongoing landslide location observations. The
recent developments in remote sensing and data science
have been steering the research focus toward these statis-
tically based methodologies [72]. Methods for statistically
based approaches include classic statistical analysis and
machine learning (ML), and substantial progress has been
made using various techniques and algorithms. Detailed
reviews of statistical and ML methods for landslide sus-
ceptibility modeling and associated terrain zonations can
be found in [43, 52, 72].

Although statistically based approaches, particularly ML
models, have made tremendous progress in recent LSM
studies, they encounter two inherent challenges that limit
their effectiveness: data availability and model reliability.
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Moreover, it should be noted that these issues are not
unique to LSM but are prevalent in general ML applica-
tions across various disciplines (e.g., [56, 58]). For the data
availability challenges, data-driven LSM models heavily
depend on data availability and quality, which presents
significant obstacles for regional and broader-scale appli-
cations. Existing landslide inventories are often sparse and
unevenly distributed (i.e., they have bias and insufficient
representation), and substantial environmental variations
exist between hillslopes and different regions [53, 95].
Landslide inventories that are consistent, accurate, repre-
sentative, and cover extensive regions remain very limited
[53]. Despite some recent advancements in automating
landslide inventory mapping from remote sensing images
(e.g., [99, 64, 106]), these challenges persist in effectively
applying data-driven LSM models on a larger scale. The
model reliability challenge is another critical but often
overlooked issue. The inherent flexibility of ML models
(e.g., deep neural networks or tree-based models) enables
them to capture nuances in large datasets; however, this
flexibility can also lead to unexpected behaviors in parts of
the input space not covered by the training and validation
datasets (e.g., [28, 67, 94, 104]), potentially failing to
reflect the fundamental physics behind mass movements of
landslides (e.g., [67, 81, 103]). This issue is especially
problematic when learning from small datasets, which can
lead to overfitting and poor generalization. Importantly,
these problems remain undetected during the development
phase due to dataset limitations [104].

Therefore, there is a critical need to develop robust
models and comprehensive model evaluation frameworks
that can navigate through these challenges, thereby ensur-
ing the reliability and applicability of data-driven LSM
models across regional or larger scales. In response to these
challenges, recent progress in the community has included
the adoption of ensemble methods [19] and knowledge
transfer strategies such as transfer learning [105] and few-
shot learning [92]. Ensemble methods help improve model
stability and accuracy by aggregating predictions from
multiple models, thereby reducing the risk of overfitting by
improving statistical robustness in LSM applications (e.g.,
[20, 23, 42, 107]). Meanwhile, transfer learning has been
utilized to effectively improve LSM model performance by
transferring knowledge learned from source regions to
target regions where data may be limited (e.g.,
[93, 96, 103]). Few-shot learning, on the other hand,
enables rapid model adaptation to new, often scarcely
sampled areas, thus addressing the data availability chal-
lenge [16]. Despite these advances, these methodologies
are primarily focused on improving model performance
based on accuracy metrics [78]; they often overlook the
integration of domain-specific knowledge and physical
laws, which is crucial for accurately modeling
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susceptibility for complex geological processes like land-
slides. This oversight is significant because of the afore-
mentioned challenges. Limited, non-representative data
and unconstrained ML flexibility can lead to overfitting and
models that poorly reflect actual landslide susceptibility
during deployment. For example, Pei et al. [66] and Pei and
Qiu [67] evaluated commonly used ML models for pre-
dicting slope stabilities using case histories for circular
failure slope; their results showed that ML models with
good performance based on data science accuracy metrics
could behave poorly in terms of physics consistency, which
highlights the need for innovative approaches that combine
data-driven approaches with domain knowledge.
Physics-based models can estimate landslide suscepti-
bility without the need for labeled data, relying solely on
established domain knowledge to interpret geological
conditions and predict potential landslide areas. However,
data-driven approaches often overlook the insights offered
by these physics-based models, leaving a significant gap in
harnessing the potential of domain knowledge within these
systems. Bridging this gap represents a substantial oppor-
tunity to enhance the accuracy and robustness of LSM
models by integrating empirical data with theoretical
understanding. Incorporating domain-specific knowledge
into data-driven models has gained traction in various
fields, including computer vision and natural language
processing, and some regulated domains that require high-
stakes predictions, such as healthcare, criminal justice, and
finance, as detailed in comprehensive surveys by Carvalho
et al. [15] and von Rueden et al. [88]. In the case of
modeling physics processes, ML models that integrate
physics principles are generally termed physics-guided
machine learning (PGML), as mentioned in several studies
(e.g., [30, 38, 45, 63, 66, 74]). PGML aims to use ML
techniques to model physical phenomena while incorpo-
rating the underlying physical laws and constraints into the
model. This approach can help improve the model per-
formance and make predictions more physically meaning-
ful. Figure 1 presents a schematic comparison of the uses
of data and theory among different models. PGML has
been applied in various fields, including geoscience
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Fig. 1 Comparison of model development strategies across varying
data scales (after Pei et al. [66])

applications, to improve the accuracy and interpretability
of ML models and uncover new physical insights.

There are several different ways that physics can be
incorporated into ML models. For example, hybrid physics
and data-driven (HPD) models with data augmentations
and feature enhancements based on physics-based models
have been used to predict various scientific problems, and
improvements in model performances have been observed
in multiple studies (e.g., [18, 26, 99, 100, 102]). Apart from
HPD models, physics-based models can also provide
foundations for initializing and informing data-driven
models [46, 66, 67]. For example, Read et al. [73] and Jia
et al. [30] enhanced the accuracy and robustness of their
deep learning (DL) models for lake temperature forecasting
using pre-trained models based on simulated data from
physics-based models. Moreover, Ma et al. [54] demon-
strated the significance of knowledge transfer; they applied
weights learned from a comprehensive USA dataset to
regions with less data availability, such as China and Chile.
In addition, physics-based model architectures can be used
to constrain data-driven model behaviors. For example,
Rahmani et al. [76] and Tsai et al. [85] implemented pro-
cess-based models as differentiable modules into the deep
learning framework for hydrological modeling, and per-
formance improvement was observed on various metrics.
Moreover, physics-based regularization can be used to
impose physical constraints on the model to ensure the
model behaves in a physically meaningful way. For
instance, Daw et al. [18] implemented a physics-guided
loss in their ML model to predict lake temperatures across
different depths. They aimed to ensure that the model
predictions adhered to the monotonic relationship between
water depth and density (i.e., denser water should reside at
deeper depths). Subsequent works by Read et al. [73] and
Jia et al. [30] refined this framework to incorporate energy
conservation principles for temporal lake temperature
predictions. Furthermore, in the field of LSM, there are also
some studies that can be broadly classified under the
PGML modeling strategy. Stanley et al. [81, 82] applied
monotonic constraints to their ML models for LSM, in
which a direction was assigned to model response for each
input variable using prior knowledge based on their con-
tribution to landslide risk (e.g., non-decreasing mono-
tonicity between soil moisture and landslide risk). Wei
et al. [97, 98] developed HPD models for LSM, wherein
results from the infinite slope model were used as addi-
tional input features for ML models. This integration led to
observed improvements in both model performance and
generalization capability across different regions. Khabiri
et al. [39] and Liu et al. [44] used physics-based models for
negative sample selection. Their LSM models trained on
datasets filtered through these physics-based models
demonstrated  higher performance and improved
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interpretability. However, it should be noted that while
these studies demonstrate advancements in model perfor-
mance and interpretability, they remain either too restric-
tive or do not consistently guarantee physics consistency.

The present study proposed a PGML modeling frame-
work that utilizes physics-based model regularizations to
model landslide susceptibility. A well-documented debris
flow inventory from a debris flow event in the Colorado
Front Range was used to develop and evaluate the per-
formance of the proposed PGML model. In the following
sections, the study area and debris flow inventory are first
described, followed by descriptions of the physics models,
baseline ML models, PGML models, and the design of ML
experiments. Last, the performance of these models was
compared and evaluated. It should be noted that debris flow
is a type of landslide [11]; in the subsequent discussions,
the term debris flow is used to describe what actually
occurred in the Colorado Front Range, whereas the term
landslide is used in the context of LSM and downslope
movement of soil in general. In addition, it should be noted
that the landslide contributing factors used and the LSM
models developed in this study are independent of
dynamic, time-specific events such as rainfall. They aim to
provide long-term, static assessments of areas inherently
susceptible to landslides due to geological and environ-
mental factors.

2 Study area and debris flow inventory

The generalizability of LSM models is fundamental for
their effectiveness in estimating landslide susceptibility
across diverse environmental conditions. To evaluate the
generalization capability of LSM models, an area encom-
passing a wide range of ecological, topographical, and
climatic conditions is necessary. The Colorado Front
Range, a key segment of the Southern Rocky Mountains in
North America, was selected as the study area due to its
pronounced environmental diversity and historical preva-
lence of landslides.

Centrally located in the state of Colorado, this mountain
range originated from the orogenic uplift caused by
regional compression during the Laramide Orogeny in the
Late Cretaceous to early Tertiary periods [17]. The range
showcases a substantial elevation variation ranging
between 1500 and 4300 m; it encompasses four major
topographic elements and five distinct ecosystem zones
[1, 14]. The vegetation density, soil development, and
regolith production are dependent on the slope aspect,
especially in the montane zones. The north-facing hill-
slopes are covered by dense coniferous forests and have
more leached, colder soils compared to the south-facing
slopes, which predominantly support grass with a few
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small shrubs [5, 47]. An ecoregion defines areas with
similar types, quality, and quantity of environmental
resources, such as biomes and topography [48]. Based on
level IV ecoregions of the Conterminous U.S., the study
area in the present study consists of seven distinct ecore-
gions, including Flat to Rolling Plains (FRP), Front Range
Fans (FRF), Foothill Shrublands (FS), Crystalline Mid-
Elevation Forests (CMEF), Crystalline Subalpine Forests
(CSF), Sedimentary Mid-Elevation Forests (SMEF), and
Alpine Zone (AZ) in the order of rising elevation. The
location and extent of the study area and the ecoregion
partitions within the study area are shown in Fig. 2.

The accuracy and extensiveness of landslide inventories
are essential for the efficacy of data-driven LSM models. In
this study, a comprehensive debris flow inventory with
precise location was used to develop LSM models to dis-
cover connections between landslide contributing factors
and landslide susceptibility within the study area. The
inventory was mapped by Coe et al. [14] and is publicly
available from the USGS Landslide Inventory, which can
be accessed at https://www.usgs.gov/tools/us-landslide-
inventory. It encompasses a broad range of debris flows
mobilized from discrete sliding masses of colluvial soil
(i.e., shallow landslides), spanning an area of 3430 km? in
the northern portion of the Colorado Front Range. These
debris flows are located across five ecoregions in the study
area: FRF, FS, CMEF, CSF, and AZ. The origin of 97% of
these shallow landslides can be traced back to open slopes
(48%) or swales (49%), with channels only contributing to
3% of the initiations [14]. The inventory provides accurate
coordinates for the initiation points of 1138 debris flows
and 212 slides, which were mapped through field recon-
naissance and the analysis of high-definition orthorectified
satellite imagery [14]. This extensive debris flow inventory
provides a rich dataset foundation to assess the perfor-
mance of LSM models. The locations of these debris flows
are presented in Fig. 2.

3 Landslide contributing factors

For statistically based LSM, landslide contributing factors
need to be carefully selected to ensure they can reflect the
effects of soil properties, hydrologic conditions, and terrain
geometries that correspond to landslide formation. Given
the data accessibility and the nature of landslides that
occurred in the study area, nine landslide contributing
factors were selected for the present study, ensuring a
relevant and robust data foundation for training ML models
to predict landslide susceptibility accurately [68]: eleva-
tion, slope, aspect, topographic wetness index (TWI),
normalized difference vegetation index (NDVI), sand
content, clay content, bulk density, and field capacity.
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Fig. 2 Summary of the study area and debris flow locations: a continental United States; b State of Colorado; ¢ overview of the study area,

including debris flow locations and ecoregion partitions

Among these factors, elevation is based on the high-reso-
lution digital elevation model (DEM) provided by the 3D
Elevation Program (3DEP) [86] with a spatial resolution of
10 m, which is a reasonable value to represent the size of a
typical landslide detachment area while also capturing
local topographic gradients. Slope and aspect were calcu-
lated from the DEM, representing the local gradient of the
hillslope and its cardinal directions. TWI was derived from
the DEM to quantify topographic control on hydrological
processes, which is calculated as:

As
TWI = In (tan ﬁ) (1)

where Ag is the specific catchment area and £ is the hill-
slope angle. NDVI was used to represent surface vegetation
coverage and was calculated based on near-infrared and red
bands from Landsat-7 satellite images:

NIR — R
NIR +R

NDVI = (2)
where NIR is the near-infrared portion and R is the red
portion of the electromagnetic spectrum. In the present
study, Landsat-7 satellite images taken within half a year

before the September storm event were used to calculate
the average NDVI for the study area. The soil information
(i.e., sand/clay content, soil bulk density, and field capac-
ity) was obtained from SoilGrids [34], which provides a
global estimation of a wide range of soil, land cover,
hydrology, geology, climate, and relief characteristics with
a spatial resolution of 250 m. These soil properties are
provided for six standard depths up to 200 cm produced by
ML algorithms trained on global soil profiles. The present
study used the depth-weighted average to obtain soil
properties at each location. These landslide contributing
factors were stored as georeferenced raster images. The
respective values at various locations can be retrieved by
extracting the corresponding pixel values from these ima-
ges. Figure 3 presents a visualization of these landslide
contributing factors for the study area. All data used in this
study, including landslide inventory and landslide con-
tributing factors, are summarized in Table 1. To facilitate
subsequent modeling and analysis, all the landslide con-
tributing factors were resampled to the same resolution as
the DEM (i.e., elevation).
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Table 1 Summary of data used in the present study

Data Unit Type Resolution Data source

Landslide inventory - Point - USGS landslide inventory
Elevation m Raster 10 m USGS 3DEP

Slope deg Raster 10 m Derived from elevation
Aspect deg Raster 10 m Derived from elevation
Topographic Wetness Index (TWI) - Raster 10 m Derived from elevation
Normalized difference vegetation index (NDVI) - Raster 30 m Landsat 7

Sand content %o Raster 250 m SoilGrids

Clay content % Raster 250 m SoilGrids

Bulk density 10 kg/m3 Raster 250 m SoilGrids

Field capacity % Raster 250 m SoilGrids

4 Physics-based model thickness, respectively. The elevation-dependent soil

In this study, the infinite slope model was selected as the
physics-based model owing to its suitability for predicting
shallow landslides and its simplicity and compatibility with
Geographic Information Systems (GIS) for grid-based
analysis on regional scales [101]. The factor of safety (FoS)
for the infinite slope model is calculated as the ratio of the
soil shear strength to the shear stress imposed by the slope
material:
¢+ (yd —y,h) cos? ftan ¢

F =
oS yd sin f§ cos 8 (3)

where h represents the height of the groundwater table, d
denotes the depth of the potential sliding plane, f is the
slope angle. The terms y and y,, correspond to the unit
weight of soil and the unit weight of water, respectively.
And ¢ and c are the soil friction angle and cohesion,
respectively. For simplicity and to ensure hydrological
consistency, submerged slopes with seepage parallel to the
slope were assumed when calculating the FoS (i.e., h = d).
This approach represents a conservative scenario and
allows for a uniform assessment of landslide susceptibility
across the study area rather than modeling the response to
specific rainfall events. The input parameters for the infi-
nite slope model were estimated based on landslide con-
tributing factors using empirical relationships and previous
studies in the study area [65]. For example, [ is based on
the hillslope angle from DEM. 4 is estimated based on an
elevation-dependent relationship [77] as:

Zi — Zmin

di = dmax - (dmax - dmin) (4)

Zmax — Zmin
where d; and z; are local soil layer thickness and terrain
elevation, respectively; Zmin and zmax are the minimum and
the maximum terrain elevation, respectively; and dp, and
dmax are the minimum and the maximum soil layer

thickness relationship assumes that the elevation and soil
thickness are inversely related. This assumption suggests
that soil erosion increases with elevation, resulting in
shallower soils, while sedimentation occurs at lower ele-
vations, forming thick colluvial and alluvial soils [40]. As
summarized in several previous studies (e.g., [2, 9, 50]),
the soil thickness in the study area is generally thin and
exposed bedrock is observed in some areas. The estimated
soil thickness for landslide source areas clustered between
0.4 and 1.3 m, with a few thicker than 2.0 m on less steep
slopes, based on the reconnaissance by Coe et al. [14]. In
the present study, dpi, = 0.1 m and dp, = 1.5 m were
used to reflect the decreasing trend of soil layer thickness
as elevation increases for the study area. Tiwari and Marui
[84] reported soil residual friction angle versus clay con-
tents for 82 natural disasters associated with slope stability
problems. This study used curve fitting (R*> = 0.49) to
correlate soil clay content with residual friction angle based
on these 82 samples:

tan ¢ = —0.0978 In(clay content) + 0.575 (5)

For estimating ¢, the soil was assumed to be cohesion-
less; however, an apparent cohesion due to root rein-
forcement in slope stability was considered. The values of
¢ were estimated by applying a linear transformation to the
full spectrum values of NDVI using the following equation
[31]:
¢ = Cmin + Cint X % (6)
where cmin and cjne are constants controlling the minimum
value and range of the cohesion. In the present study,
Cmin = 0 kPa and cj = 8 kPa produce apparent cohesions
within the same range as previous studies (e.g., [9, 50]).
The soil unit weight is based on bulk density and field
capacity from SoilGrids. Assuming the initial volumetric
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water content of the soil is at the field capacity, which is the
moisture content above which the soil layer is drained by
gravity. Then, the saturated unit weight of soils can be
calculated as:

Ysat = Vo + (1 — Urc), (7)

where y, is the bulk density; ¥pc is the field capacity,
which is reported as the volumetric water content [34]; and
n is the soil porosity, which can be estimated using the
following equation:
Vb
n=1-—-— 8
’VwGS ( )

where G is the specific gravity of soil particles and is
assumed to be 2.65 in this study.

5 ML model

This study used the multi-layer perceptron neural network
(MLPNN) to develop models for predicting landslide sus-
ceptibility for the study area. MLPNNSs consist of multiple
layers of interconnected nodes or neurons and are capable
of learning nonlinear relationships between input features
and target outputs, making them suitable for modeling
complex natural processes. In this study, the MLPNN was
designed to have three hidden layers, each containing 24
neurons; the rectified linear unit (ReLU) activation func-
tion [3] was applied in the hidden layers, providing better
training efficiency and mitigating the vanishing gradient
problem. The sigmoid activation function was applied to
the output layer for the binary classification task, and the
binary cross-entropy loss function was employed to mea-
sure the error between the network’s predictions and
ground truth labels. The Adam optimization algorithm was
chosen for optimizing the weights and biases for the net-
work with a learning rate of 0.001. In addition, all the
models were trained for 50 epochs with a batch size of 16
during the model development procedure. A detailed
description of MLPNN can be found in Kuhn and Johnson
[37] and Goodfellow et al. [27].

6 PGML framework

Traditional machine learning (ML) models (e.g., MLPNN)
often struggle to accurately represent complex scientific
relationships derived directly from data, particularly when
the available training data are insufficient [94]. Recently,
researchers have adopted physics-guided loss functions to
address challenges encountered by traditional ML models
for various applications (e.g., [30, 66, 73]). The PGML
framework integrates domain-specific scientific
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relationships into the loss functions during the model
training process, serving as regularization terms that guide
the model toward physical consistency and enhanced per-
formance. A generic form of the physics-guided loss
function Ly, can be expressed as:

Lpg = Lt + ;LrR + )”phprhy (9)

standard loss for ML models  physics—based loss

where Lgy, represents the supervised error between the
prediction and the ground truth, R is the regularization loss
that optimizes model simplicity, and Ly, is the physics-
based loss that measures the consistency of model predic-
tions with respect to domain-specific scientific relation-
ships. These three terms optimize three aspects of model
performance in terms of accuracy, simplicity, and consis-
tency. Parameters A, and Ay, are hyperparameters that
control the respective weights of R and Ly, in the physics-
guided loss function, respectively. Note that the first two
terms are the standard loss for traditional ML models. For
slope stability analysis, there is a generally accepted
monotonic relationship between the landslide susceptibility
and the FoS. The FoS measures the ratio between the
resisting force and the driving force along a potential
failure surface. A higher FoS value generally indicates
decreased landslide susceptibility, establishing a founda-
tional physics-based relationship that the model can learn
and respect. However, ML models trained solely with data
may not reflect this physical relationship, yielding less
scientifically interpretable predictions. Therefore, guiding
the model toward physics consistency is desirable during
the training process. The monotonic relationship between
landslide susceptibility based on model predictions y and
FoS values for any two samples can be expressed as:

Y1 — ¥, <0 if FoS; > FoS, (10)

If samples in each training batch are sorted based on
their FoS values in a descending manner
(i.e.,FoS; > FoS;+), a difference in model predictions can
be computed for any pair of sequential samples as:

A};:);Hl — i (11)

Hence, a negative value of Ay can be considered a
violation of physics. Similar to the approach proposed by
Daw et al. [18] and Pei et al. [66], a physics-based loss
term Lpyy that measures the average value of these viola-

tions of physics (i.e., physics inconsistency) can be
expressed as:

1

n—1

n—1
Loy = Zmax(_Ay, 0) (12)

where n is the number of training samples. Landslide
susceptibility prediction can be considered a binary
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classification problem. The binary cross-entropy loss [10]
is typically used as the standard loss and can be expressed
as:

1 . )
Lawa =~ > _yilog(y) + (1 —y;) log(1 - ) (13)
i=1

where y and y are labels and model predictions, respec-
tively. It should be noted that various regularization
methods have been extensively explored in the data science
community to implement different measures of regular-
ization; however, these approaches often neglect the
physical plausibility of trained models, potentially leading
to predictions that lack physical consistency [38]. There-
fore, the model complexity loss may inadvertently dilute
the emphasis on physical consistency and was not con-
sidered in this study. Based on Lgu, and Lypy, a complete
form of the physics-guided loss function for this study can
be expressed as:

Lpg = Loata + i1Dhprhy (14)

For the PGML model, the physics-based loss term in
Eq. (14) steers the model toward a monotonic relationship
between the model prediction and the calculated FoS based
on the physics-based model. A detailed illustration of the
PGML model training process can be found in Algorithm
1. The PGML model structure and hyperparameters remain
the same as the baseline MLPNN model except for the loss
function, and the same validation procedure was used to
evaluate the model performance, which will be discussed in
the following sections.

Algorithm 1 PGML model training process

Data: Training data, initial model parameters, hyperparameters Appy
Result: Trained model with integrated physics-guided principles

for each epoch do

for each batch do

Initialize batch loss to 0

1y < model.forward(Xpatch)

Laata ¢ =3 2iy [yil0og(9:) + (1 = i) log(1 — )]

indices < argsort(FoSpatch. descending=True)

Jsorted < Ylindices]

FoSsorted <= FoSpaten [indices|

Lphy <+ 0
for i< 1ton—1do
if FoSsortedli] > FoSsorteali + 1] then
A Gsorteali] = Gsorteali +1]

if Ay >0 then
| Lphy < Lpny + A3
end
end

end

Lphy 7257 Lphy

Lyg < Ldata + Aphy X Lpny

model.backward (L)

end

end

7 Model performance evaluation

In this study, the receiver operating characteristic (ROC)
curve was used to evaluate the model performance. The
ROC curve is a two-dimensional graphical representation
that illustrates the performance of a classification model by
depicting the relationship between the false positive rate
(FPR) and the true positive rate (TPR) at various classifi-
cation thresholds. The area under the ROC curve (AUC)
can be calculated, offering an aggregate measure of model
performance. The AUC score is a prominent single-value
metric utilized in classification model evaluations, quanti-
fying the model’s proficiency in distinguishing between
two classes. A model that merely predicts at random would
yield an AUC of 0.5, whereas a model with perfect clas-
sification capabilities would achieve an AUC of 1.0.
Additionally, the confusion matrix reports four possible
outcomes of model predictions at a given classification
threshold: (1) true positive (TP), which represents correctly
predicted landslide samples; (2) true negative (TN), which
represents the number of correctly predicted non-landslide
samples; (3) false positive (FP), which denotes misclassi-
fied landslide samples; and (4) false negative (FN), which
denotes misclassified non-landslide samples. After identi-
fying the optimal classification threshold from the ROC
curve, four commonly used model performance evaluation
metrics can be calculated based on the confusion matrix:
Accuracy, Precision, Recall, and F;. These performance
evaluation metrics, including FPR and TPR, can be cal-
culated using the following equations:

TP+ TN

A - 15
Y T TP L FN + TN + FP (15)

TP

Precision = ———— 16

recision = o5 (16)
TP

Recall = — 17

U TTP LN (17)

2 x precision X recall

F 18
: precision + recall (18)
TPR = _TP (19)
TP +FN
FP
FPR = ——— 20
FP + TN (20)

The Accuracy metric provides a holistic view of the
model’s predictions, representing the fraction of all correct
predictions. Precision focuses on the model’s ability to
correctly identify landslides, while Recall emphasizes the
model’s capability to capture all actual landslide events.
Note that the F'; score provides an aggregate measure of the
model performance score by calculating the harmonic
mean of Precision and Recall. Besides the above-
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mentioned metrics, a distinctive feature of the evaluation
framework used in this study is the incorporation of a
metric assessing the model’s adherence to physics princi-
ples, termed Physics Inconsistency (PI). As described in the
previous section, the calculation of PI is the same as Lpyy
using Eq. (12). In this study, the calculated FoS values
based on the physics-based model were used as the refer-
ence (i.e., ground truth) to evaluate PI and guide model
training. In light of the evaluation metrics outlined above,
this study employed six key metrics for a comprehensive
model performance evaluation, including Accuracy, Pre-
cision, Recall, F;, AUC, and PI.

8 Dataset preparation

In the context of LSM, employing ML techniques formu-
lates the problem into a binary classification task. In this
study, the 1350 mapped debris flow locations in the study
area and their corresponding values of landslide con-
tributing factors were used as positive samples. Based on
information reported in the USGS landslide inventory,
these debris flow locations were mapped from the after-
math of an intense storm event in September 2013 [14].
Figure 4 presents a map of cumulative rainfall during the
storm event for the study area. Figure 4 shows that the
mapped debris flow locations were all in the areas with an
cumulative rainfall more than 120 mm; a plausible

A Debris flows
¢ Non-debris flows

Cumulative
rainfall (mm)

481.0
254.5

28.0

07515 30
—
km

Fig. 4 Spatial distribution of debris flows and non-debris flows within
the study area overlaid on a map of cumulative rainfall for the
September 2013 storm event
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interpretation of this phenomenon is that it takes more than
120 mm cumulative rainfall to fully saturate the slopes in
the study area to initiate debris flows. Negative samples
were strategically selected from regions experiencing
cumulative rainfall exceeding 120 mm to force the ML
models to learn why debris flows were not triggered despite
having sufficient rainfall. These negative samples were also
positioned at least 100 m away from any known debris
flow locations to ensure they represent true non-debris flow
areas. Figure 4 shows the distribution of debris flows and
non-debris flows within the study area, overlaid on a map
of cumulative rainfall for the September 2013 storm event.
In Fig. 4, red triangles represent debris flow locations,
black dots indicate non-debris flow areas, and isolines
represent different levels of cumulative event rainfall.
Besides sample selection, ensuring a balanced dataset is
crucial for preventing model bias toward the predominant
class and enhancing predictive accuracy; an equivalent
number of negative and positive samples were drawn for
each ecoregion, resulting in a dataset of 2700 samples for
developing LSM models. Each sample was characterized
by nine input features and a singular output/target (i.e., 1
for debris flow or 0 for non-debris flow). Table 2 presents
the summary of the dataset size for each ecoregion and
shows that most debris flows occurred in the CMEEF,
whereas very few occurred in the CSF and AZ. Given the
substantial variations in the values of landslide contributing
factors, as shown in Fig. 3, standardization of each feature
was used in this study to facilitate effective model training.

Additionally, the t-distributed stochastic neighbor
embedding (t-SNE) was used to examine the distribution of
input datasets in this study. t-SNE is a dimensionality
reduction technique that creates a low-dimensional repre-
sentation of high-dimensional data [87]. A t-SNE plot
visually displays the structure and relationships within the
data by grouping similar data points close together and
dissimilar data points further apart in a two- or three-di-
mensional space. This visualization can help reveal pat-
terns, clusters, and potential outliers, making it a valuable

Table 2 Summary of dataset size for each ecoregion

Number of positive, negative, and
total samples

Ecoregion

Front Range Fans (FRF)
Foothill Shrublands (FS)

Crystalline Mid-Elevation
Forests (CMEF)

127, 127, 254
192, 192, 384
976, 976, 1952

Crystalline Subalpine Forests 27, 27, 54
(CSF)
Alpine Zone (AZ) 28, 28, 56
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Fig. 5 Two-dimensional t-SNE visualization of input datasets

tool for exploratory data analysis and assessing the quality
of features or representations learned by ML models. Fig-
ure 5 presents the two-dimensional t-SNE visualization of
input datasets based on nine landslide contributing factors
for all five ecoregions. As shown in Fig. 5, the input
datasets exhibit different distributions among ecoregions,
especially for the AZ, where data distribution significantly
differs from the other ecoregions. The difference in data
distribution can be attributed to the fact that these ecore-
gions contain unique ecological and geological character-
istics distinct from each other. For example, the AZ is
characterized by steep slopes and shallow soil to exposed
rock, which is significantly different than the FRF.

9 Model development

The model development procedure in this study includes
data preparation, model training and performance evalua-
tion, ensemble model formulation, and final deployment
for generating landslide susceptibility maps for the study
area. The Python package PyTorch [62] was used to
develop MLPNN and PGML models. To facilitate the
illustration of the model development procedure, Fig. 6
shows a workflow chart for developing the PGML.

During the development of LSM models, ensuring that
models possess strong generalization capabilities across
diverse geographical regions is crucial. Given the inherent
differences between hillslopes and ecoregions, it is essen-
tial to assess how well these models can extrapolate to
areas not represented in the training data, which requires a
robust validation technique that effectively evaluates the
model’s generalization performance.

Cross-validation (CV) is a commonly used model vali-
dation technique to evaluate ML model performance, and it
is particularly beneficial when working with limited data.
In this process, the dataset is divided into k subsets (i.e.,
folds). Each subset serves as a validation set, while the

model is trained on the remaining k — 1 subsets (or folds).
This process repeats k times, each with a different subset
serving as the validation fold. The final model performance
is derived by averaging the performance metrics across all
k iterations, ensuring a robust assessment of the model
performance and stability on unseen data.

However, generic CV methodologies based on random
sampling, such as random CV, often assume that data
samples are independently and identically distributed. This
assumption can result in overly optimistic performance
estimates when applied to data with inherent temporal,
spatial, hierarchical, or phylogenetic structures commonly
found in fields like ecology and geotech/geoscience. To
address this, it is preferable to sample data into blocks that
reflect their intrinsic structure (e.g., spatial autocorrelation
in landslide data [6, 8, 69, 80]). This approach helps ensure
the training and validation datasets are independent and
more accurately represent the complexities of the data.
[71]. As an alternative, spatial CV is a method used to
evaluate the performance of predictive models in geospa-
tial applications (e.g., [51, 71]), including landslide
detection and prediction (e.g., [41, 69, 79]), which gives a
more realistic assessment of the model performance by
ensuring that the training and validation sets are spatially
independent. In spatial CV, the dataset is divided into
multiple spatially disjoint subsets (folds); for each fold, the
model is trained on the remaining folds and then tested on
the target fold. The extent of ecoregions was used in this
study as the dataset partition strategy for spatial CV, which
aims to evaluate the model’s generalization capability
across heterogeneous environments. It should be noted that
the spatial CV framework used in this study is a generic
approach applicable for evaluating various models,
including both physics-based and data-driven (e.g., ML)
models. Moreover, the entire spatial CV procedure was
repeated five times with varying random seeds to accom-
modate and evaluate data and model uncertainties.

After model training and validation, one spatial CV was
randomly chosen from the five spatial CV repetitions. The
five candidate models produced from this single spatial CV
were then aggregated using the average ensembling
method [32] to generate a landslide susceptibility map for
the entire study area. This method not only enhances the
robustness and generalization of the final model by utiliz-
ing models trained on different ecoregion blocks but also
retains the structured nature of different ecoregions in the
individual models. The preservation of ecoregional struc-
tures in each individual model provides a more accurate
estimation of the prediction uncertainty for the ensemble
model across the entire study area. This approach can
effectively reflect model uncertainty due to geographical
and environmental diversity, providing a way to evaluate
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Fig. 6 Schematic overview of the PGML model development process for LSM

the reliability of the LSM model predictions in varied
landscapes.

10 Performance of physics-based model

Figure 7 presents the landslide susceptibility map based on
the physics-based model overlaid with mapped debris flow
locations, where the calculated FoS at each location is
shown as a contour for the study area. As shown in Fig. 7,
the concurrence of predicted low FoS areas and mapped
debris flow locations suggests that the geotechnical domain
knowledge, such as the infinite slope model and estimated
soil parameters, can effectively estimate regional-scale
debris flow risks when appropriately applied. The perfor-
mance of the physics-based model was evaluated using the
same spatial CV procedure as ML models based on the
dataset summarized in Table 2 to assess its performance on
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each ecoregion and its generalization capability across the
ecoregions. It is important to note that, unlike ML models,
the physics-based model does not require training, and its
performance is independent of dataset variability. Figure 8
presents the ROC curves for the physics-based model for
each ecoregion. These curves are generated by converting
the continuous output of the physics-based model (i.e.,
FoS) into binary classifications through the application of
various threshold values. By mapping through a range of
FoS threshold values, continuous measures are transformed
into discrete categories that indicate susceptibility. Sam-
ples with a FoS below the threshold are classified as sus-
ceptible to landslides (i.e., 1), while those above are
classified as not susceptible (i.e., 0). The TPR and FPR are
then calculated to construct the ROC curve. It is note-
worthy that this method of generating ROC curves by
mapping through thresholds is the same as the approach
used in ML. The primary difference is the nature of the
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Fig. 7 Landslide susceptibility map for the study area based on the
physics-based model
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Fig. 8 ROC curve for the physics-based model based on spatial CV
(diagonal line represents a random classifier)

thresholds used: physics-based models apply thresholds
based on FoS values, whereas ML models typically employ
probability thresholds ranging from O to 1. As shown in
Fig. 8, the physics-based model generally performs well in
distinguishing between landslide and non-landslide classes
in these ecoregions, with an average AUC score of 0.856.
However, the performance of the physics-based model
varies across different ecoregions. For example, the phy-
sics-based model achieved excellent performance for the
FRF and FS ecoregions with AUC scores above 0.9,

whereas the performance for the AZ was relatively low
with an AUC score below 0.8. These discrepancies may be
attributed to the empirical relationships used to determine
input parameters (e.g., Egs. (4) to (6)) and the applicability
of the infinite slope model for different ecoregions. For
example, the infinite slope model may not be applicable to
areas with exposed rock in the AZ, resulting in a low AUC
score for the ecoregion.

Based on reviews of case histories, Bowles [4] sum-
marized that a slope is generally deemed unstable and
prone to failure if FoS < 1.07, a moderate risk of failure if
1.07 < FoS < 1.25, and relatively stable if FoS > 1.25.
Thus, FoS = 1.25 was often used as the default threshold
for the binary classification of slope stability for physics-
based models. The optimal classification threshold can be
obtained from the ROC curve as the FoS value corre-
sponding to the point on the ROC curve closest to the top-
left corner (0, 1) that represents perfect classification.
These points are marked on Fig. 8§ as circles and the cor-
responding optimal threshold FoS values are reported in
Table 3. Figure 9 compares the classification performance
for the physics-based model using optimal thresholds
determined from the ROC curves for each ecoregion versus
a default threshold of FoS = 1.25. As shown in Fig. 9, the
optimal thresholds generally yield better classification
performance with less variation compared to the fixed
threshold value of 1.25, which can be attributed to the fact
that the optimal threshold considers the trade-off between
different types of misclassifications and is adjusted
according to the specific characteristics of the data and
task. Consequently, a more balanced and improved per-
formance can be achieved using the optimal threshold FoS
value.

Table 3 presents detailed classification scores based on
the optimal threshold value for each ecoregion. In addition,
Table 3 also presents classification scores based on the
five-fold random CV, for which stratified random sampling
was used for dataset partition, and non-debris flow samples
were randomly selected within the entire study area, dis-
regarding the ecoregions. As shown in Table 3, the optimal
classification threshold varies among these ecoregions,
which indicates that the generalized empirical relationships
used to determine input parameters and the infinite slope
model may not produce optimal values for all ecoregions,
and region-specific analysis should be used for calibrating
the physics-based model. Notably, Table 3 also shows that
the random CV yielded better performance scores than the
spatial CV. However, random CV ignores spatial depen-
dencies in the dataset and may not provide a rigorous and
realistic assessment of a model’s ability to generalize to
unseen data or from one ecoregion to another, which will
be further discussed.
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Table 3 Validation performance of the physics-based model across ecoregions

Ecoregion Accuracy Precision Recall Fy AUC Optimal classification threshold
FRF 0.850 0.868 0.827 0.847 0.916 1.821
FS 0.841 0.810 0.891 0.849 0.901 1.259
CMEF 0.813 0.800 0.835 0.817 0.852 1.110
CSF 0.759 0.769 0.741 0.755 0.833 1.482
AZ 0.714 0.750 0.643 0.692 0.779 1.815
Avg 0.796 0.799 0.787 0.792 0.856 1.498
Random CV 0.833 0.837 0.828 0.832 0.885 1.196

11 Performance of MLPNN model

In this study, the spatial CV procedure was repeated five
times with different random seeds. Figure 10 presents ROC
curves for the MLPNN model for each ecoregion based on
spatial CV, with the lines representing mean values and
shaded areas representing standard deviations. As shown in
Fig. 10, the performance of MLPNN models is generally
worse than the physics-based model (see Fig. 8), with an

1.0

Scores
o
»

0.41 == Optimal threshold
Fixed threshold

B (Fos = 1.25)

0.2 | - | -
Accuracy Precision

Recall F1

Fig. 9 Effect of classification thresholds on the physics-based model
performance based on spatial CV
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Fig. 10 ROC curve for the MLPNN model based on spatial CV
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average AUC score of 0.805. It should be noted that spatial
CV tests the model’s generalization capability on distinct
environments from one region to another, using the extent
of ecoregions as the sampling strategy. The relatively low
AUC score of the MLPNN model during validation can be
attributed to the fact that the traditional ML models (i.e.,
the MLPNN model) rely significantly on patterns in the
training data, limiting their adaptability to new scenarios.
In addition, unlike physics-based models grounded by
well-established physical rules, traditional ML models do
not have inherent rules or principles guiding their predic-
tions. They rely solely on identifying patterns in data, and
the model’s performance can degrade if these patterns do
not hold in new data; in other words, applying the ML
model trained based on the data from one ecoregion to
another may have significantly worse performance. In
particular, this is observed in the case of the AZ ecoregion,
where the MLPNN model had a low validation AUC score
of 0.580, similar to the performance of a random classifier,
which can be expected as the AZ ecoregion is drastically
different from the rest of the ecoregions (see Fig. 5). In
addition, Fig. 10 also shows significant variation between
spatial CV repetitions, which can be attributed to uncer-
tainties in data sampling and model development. Fig-
ure 11 compares classification performance between the

0.85 A ]

= MLPNN
0.60 1| Physics-based model

T T ||
Accuracy Precision Recall F1 AUC

Fig. 11 Comparison of classification performance between the
MLPNN and the physics-based model based on spatial CV
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Table 4 Validation performance of the MLPNN model across ecoregions

Ecoregion Accuracy Precision Recall F, AUC PI Optimal classification threshold
FRF 0.854 0.861 0.844 0.852 0.905 0.133 0.117
FS 0.818 0.835 0.793 0.813 0.878 0.222 0.454
CMEF 0.777 0.786 0.762 0.774 0.833 0.227 0.747
CSF 0.752 0.791 0.696 0.737 0.828 0.171 0.196
AZ 0.621 0.673 0.464 0.547 0.580 0.139 0.169
Avg 0.765 0.789 0.712 0.745 0.805 0.178 0.337
Random CV 0.867 0.873 0.859 0.866 0.932 0.194 0.486

MLPNN and the physics-based model based on their cor-
responding optimal classification thresholds. It is evident
from Fig. 11 that the MLPNN model generally underper-
forms when compared to the physics-based model in terms
of binary classification performance. Detailed classification
scores and optimal classification thresholds for the
MLPNN model across validation ecoregions are shown in
Table 4. It can be noted from Table 4 that the optimal
thresholds for MLPNN models across validation ecore-
gions exhibit significant variations, which are markedly
different from the standard 0.5. This variation is due to the
distinct characteristics and data distributions in each
ecoregion, which influence the model’s TPR and FPR
differently. Therefore, it is necessary to conduct region-
specific threshold adjustments to accurately reflect the
unique environmental and geological factors influencing
landslide susceptibility in different areas.

Table 4 also presents the corresponding results using the
fivefold random CV and PI scores. As shown in Table 4,
the MLPNN model based on random CV showed signifi-
cantly higher classification scores than those based on
spatial CV. However, these numbers can be misleading as
spatial autocorrelation was ignored during model training
and evaluation, and the actual generalization capability of
the model might be low, which is evident from the spatial
CV results. By comparing Tables 3 and 4, it is also evident
that the MLPNN showed better performance scores than
the physics-based model using random CV. This indicates
that the MLPNN model can effectively extract features
from training data and perform well on validation data with
similar distributions; however, its generalization perfor-
mance could be less reliable than the physics-based model.
Additionally, the MLPNN model showed a PI score of
0.178 for the spatial CV and 0.194 for the random CV,
respectively. These PI scores indicate that pure data-driven
MLPNN models may produce results that disobey the
underlying physical relationship contributing to landslide
susceptibility, such as monotonic relationships between
landslide susceptibility and FoS, which will be further
discussed in the following sections.

After MLPNN models were trained and evaluated, one
spatial CV repetition was randomly chosen, and the five
candidate models produced from this repetition were
aggregated to create an ensemble model, referred to as the
MLPNN ensemble model, using the average ensembling
approach described in the Model Development sec-
tion. This MLPNN ensemble model was then used to
generate the landslide susceptibility map depicted in
Fig. 12, which is essentially a contour of ML model pre-
diction/output, ranging from O (non-debris flow locations)
to 1 (debris flow locations); hence, the model output can be
interpreted as landslide susceptibility. As shown in Fig. 12,
the predicted areas of high landslide susceptibility closely
align with the mapped locations on the eastern side of the

Spatial CV:
« AUC =0.802
e PI=0.153

A Debris flows

Landslide
susceptibility

1.0
0.5

0.0

075 15 30
——t—
km

Fig. 12 Landslide susceptibility map for the study area based on the
MLPNN ensemble model from one spatial CV repetition
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study area (i.e., FRF, FS, and CMEF ecoregions) where
mapped debris flows are clustered. However, despite lim-
ited numbers of mapped debris flow locations, the MLPNN
ensemble model predicted high landslide susceptibility for
the western part of the study area (i.e., CSF and AZ
ecoregions) with steep slopes and shallow soils. This
overprediction can be attributed to the model’s reliance on
dominant features such as slope, which were heavily
weighted due to their strong correlation with landslide
susceptibility in the training data. Notably, these western
regions are underrepresented in the training dataset, and
their environmental and geological distributions differ
significantly from those in the data-rich eastern regions.
Consequently, the model’s learning has skewed toward
leveraging slope as a primary predictor without adequate
contextual adaptation to the unique characteristics of the
less represented areas, leading to overprediction. More-
over, this overprediction of landslide susceptibility for the
western area contradicts our domain knowledge. The CSF
and AZ ecoregions, known for their rocky terrain (i.e.,
shallow soil with exposed rock), are typically associated
with low shallow landslide risk on soil-mantled landscapes.
The physics-based model, on the other hand, more accu-
rately reflects this domain knowledge (comparing the
landslide susceptibility of the western area in Figs. 7 and
12), using elevation-dependent sliding layer thickness (see
Eq. (4)) to generate input parameters for the infinite slope
model to calculate FoS values. It should be noted that the
alpine environments in the Colorado Front Range are
susceptible to debris flows; however, they are primarily
nurtured by erosive processes (e.g., [13, 25, 75]), a trig-
gering mechanism that is different from the landslide
inventory used in the present study.

Based on the results discussed in this section (i.e.,
Figs. 10, 11 and 12 and Table 4), it is evident that data-
driven ML models for LSM may generate predictions that
do not align with our domain knowledge and generalize

poorly to different ecoregions, hindering the scaling up of
pure data-driven ML models.

12 Performance of PGML model
12.1 Effect of physics-guided loss function

In this study, Aphy in Eq. (14) is a critical parameter that
controls the influence of the physics-based loss term in
regularizing PGML models. Figure 13 illustrates the rela-
tionship between PI and classification scores obtained
through the spatial CV procedure, highlighting the impact
of Apny on the efficacy of the physics-guided loss function
for PGML models. Note that when 2,y = 0.0, the PGML
model is equivalent to the pure data-driven MLPNN model
and a larger A,p, value imposes a more stringent regular-
ization from the physics-guided loss term. As shown in
Fig. 13, an increase in Appy leads to a marked reduction in
PI scores. This observed trend underscores the effective-
ness of the physics-based loss term in guiding model pre-
dictions to follow the expected monotonic relationship
where a higher calculated FoS value is associated with a
lower landslide susceptibility. The model classification
performance (i.e., Accuracy, F, and AUC scores) also
improves with Ayny, peaking at an optimum Agny value of
0.5. Beyond Ayny = 0.5, the influence of the physics-based
loss term becomes less pronounced, and the performance
starts resembling that of the physics-based model (i.e.,
approaching the average values in Table 3). This observed
effect can be attributed to the fact that the rule imposed by
the physics-based loss term, while generally beneficial,
may conflict with the actual class labels. For instance, some
locations labeled as debris flows may exhibit high FoS
values, which contradicts the constraints imposed by the
model. Therefore, finding an appropriate trade-off between
prediction accuracy and physics consistency is essential.
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Fig. 13 Effect of physics-based loss function on PGML model performance
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Figure 14. presents scatter plots with marginal his-
tograms showing the predicted landslide susceptibility
based on the PGML model versus calculated FoS using the
physics-based model for validation ecoregions. To facili-
tate explanation, each subplot in Fig. 14 is divided into
four quadrants to demonstrate the physics consistency of
model predictions based on a default classification thresh-
old of 0.5 for the PGML model and 1.25 for the physics-
based model, respectively. These quadrants are: true posi-
tive (TP, landslide susceptibility > 0.5 and FoS < 1.25),
true negative (TN, landslide susceptibility < 0.5 and
FoS > 1.25), false positive (FP, landslide susceptibil-
ity > 0.5 and FoS > 1.25), and false negative (FN, land-
slide susceptibility < 0.5 and FoS < 1.25). As shown in
Fig. 14a, at Ay, = 0.0, the model without any constraints
can distinguish debris flow and non-debris flow samples.
However, the model predictions demonstrate significant
physics inconsistency, as a clear monotonic relationship
between the model predictions and FoS based on the

physics-based model is difficult to observe. This lack of
monotonicity violates our domain knowledge and indicates
a misalignment between the ML model’s predictions and
the physics-based expectations. For example, the model
incorrectly predicts low landslide susceptibilities for a
substantial number of debris flow samples in the validation
ecoregion that exhibit low FoS values (i.e., FN predic-
tions). Conversely, it assigns high landslide susceptibilities
to many non-debris flow samples in regions with compar-
atively high FoS values (i.e., FP predictions). By compar-
ing Fig. 14a with Fig. 14b and c, it is evident that
increasing the weight of /gy can significantly enhance the
monotonicity of model predictions relative to the calcu-
lated FoS, making the PGML model behavior align better
with our domain knowledge and reducing FP and FN
predictions with respect to the physics-based model. The
effects of A,ny demonstrated in Figs. 13 and 14 suggest that
the PGML model can harness the complementary strength
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Fig. 15 ROC curve for the PGML model based on spatial CV

of the ML and the physics-based models. This allows the
PGML model to excel in classification performance while
maintaining high physics consistency. In addition, the
discrepancies between ML and physics-based models
shown in Fig. 14 highlight a critical issue: data-driven
models can produce predictions that contradict established
domain knowledge. Therefore, it is essential to incorporate
an additional dimension, such as physics consistency
metrics, to evaluate model performance and guide the
training process effectively.

12.2 Performance of PGML model
with optimized 1,

Figure 15 presents ROC curves for the PGML model
(Zphy = 0.5) for each validation ecoregion based on the
spatial CV procedure with five repetitions. Lines in Fig. 15
represent mean values, while shaded areas represent stan-
dard deviations. As shown in Fig. 15, the PGML model
effectively distinguishes between debris flow and non-de-
bris flow classes within these ecoregions, with an average
AUC score of 0.872. In addition, the PGML model out-
performs both the physics-based model and the MLPNN
model (refer to Figs. 8 and 10) in terms of classification
performance. It also exhibits less fluctuation across spatial

CV repetitions and demonstrates enhanced stability across
different ecoregions.

Detailed classification scores can be found in Table 5,
which also includes PI scores, optimal thresholds, and
results based on the random CV procedure. By comparing
Table 5 with Table 4, it can be noted that the PGML model
showed significantly higher classification performance than
the MLPNN model based on spatial CV, albeit a slight
decrease in classification performance in terms of random
CV. However, regardless of different CV procedures, the
PGML model consistently presents a significant reduction
in PI scores compared to the MLPNN model. The perfor-
mance drop observed from the random CV procedure can
be attributed to the physics-based loss term, which acts as a
regularization factor. This term limits the model’s capacity
to fit the dataset by enforcing adherence to simple, domain
knowledge rules. This also implies that the random CV
procedure may yield misleading results when it comes to
geospatial analysis, such as LSM, where the assessment of
the generalization capability of the model is essential.
Moreover, Table 5 also shows the optimal threshold values
for the PGML model in various validation ecoregions,
which are consistently closer to 0.5 compared to those for
the MLPNN model in Table 4. This proximity to the
conventional threshold of 0.5 also indicates the PGML
model’s ability to generalize more effectively across
diverse ecoregions. The results in Fig. 15 and Table 5
suggest that the physics-based loss term performs effec-
tively in steering the model toward physics consistency and
reduces uncertainty in model predictions, which makes the
PGML model more generalizable and robust.

Similar to the MLPNN ensemble model, the PGML
ensemble model was created using the same average
ensembling approach by five candidate models produced
from one spatial CV repetition. This PGML ensemble
model was then used to generate the landslide suscepti-
bility map for the study area as shown in Fig. 16, which
compares the landslide susceptibility map for the study
area produced by the MLPNN ensemble and the PGML
ensemble model. In addition, Fig. 16 also presents the

Table 5 Performance of the PGML model (4, = 0.5) based on the cross-validation procedure

Ecoregion Accuracy Precision Recall AUC PI Optimal classification threshold
FRF 0.847 0.861 0.828 0.844 0.923 0.038 0.160
FS 0.849 0.856 0.840 0.847 0.912 0.049 0.517
CMEF 0.819 0.821 0.817 0.819 0.873 0.054 0.764
CSF 0.763 0.791 0.719 0.752 0.834 0.044 0.201
AZ 0.782 0.843 0.693 0.760 0.819 0.039 0.174
Avg 0.812 0.834 0.779 0.804 0.872 0.045 0.363
Random CV 0.855 0.870 0.837 0.853 0.905 0.042 0.504
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Fig. 16 Comparison of landslide susceptibility predicted by the MLPNN model and the PGML model: a mean value of MLPNN ensemble model
outputs; b std. of MLPNN ensemble model outputs; ¢ mean value of PGML ensemble model outputs; and d std. value of PGML ensemble model

outputs (4,p, = 0.5 was used for the PGML model)

standard deviation of model predictions for both the PGML
and the MLPNN ensemble models. As shown in Fig. 16a
and b, the MLPNN model overestimated landslide sus-
ceptibility for the western part of the study area encom-
passing the CSF and AZ ecoregions, and its predictions
also reveal substantial uncertainties for these two ecore-
gions (note the high standard deviation in Fig. 16b). This
raises concerns about the reliance on pure data-driven
models (e.g., the MLPNN model) for predicting landslide
susceptibility in varied environments with limited landslide
inventory. In contrast, Fig. 16c and d shows that the PGML
model considerably reduced overpredictions in the western
part of the study area and significantly reduced prediction
uncertainties across the entire study area (note the low
standard deviation in Fig. 16d), which highlights the value
of incorporating geotechnical domain knowledge via the
physics-guide loss function in facilitating regional-scale
LSM using PGML.

12.3 Generalization capability to heterogeneous
ecoregions

Generalization capability is essential for LSM using ML
models. This section adopted a modified spatial CV pro-
cedure to further assess the generalization capability of the
PGML model across diverse ecoregions. Unlike the spatial
CV procedure illustrated in Fig. 6, the training phase for

the modified spatial CV procedure was executed solely on
one ecoregion at a time, and the model validation was
independently performed on the remaining four ecoregions.
This configuration allows each model trained on a single
ecoregion to be rigorously tested in other ecoregions with
different environments, thereby providing a more com-
prehensive analysis of its generalization capabilities. It
should be noted that this modified spatial CV procedure is
only used in this section for model performance evaluation
and is not suitable for generating landslide susceptibility
maps. Using the modified spatial CV procedure, Fig. 17
compares the generalization performance between MLPNN
and PGML models trained solely on the FRF ecoregion.
For validation within the FRF ecoregion, the performance
was evaluated using a fivefold stratified random CV, which
should adequately evaluate the model’s performance as
data distribution within a single ecoregion is relatively
uniform. For validation across different ecoregions, the
outputs from these five models were aggregated into an
average ensemble model. This ensemble model was sub-
sequently utilized to assess the generalization capability
across the remaining four ecoregions. As shown in Fig. 17,
while both MLPNN and PGML models perform optimally
in their training ecoregion (i.e., FRF), their performance
deteriorates in other ecoregions, particularly as validation
ecoregions become increasingly distant from the training
ecoregion (i.e., the ecoregions are listed in ascending order
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Fig. 17 Comparison of generalization performance between MLPNN and PGML models across different ecoregions: a accuracy; b F; ¢ AUC;
and d PI (4,,, = 0.5 was used for the PGML model)

Table 6 Summary of generalization performance of ML models across different ecoregions (4,4, = 0.5 was used for the PGML model)

Ecoregions  Accuracy F, AUC PI
MLPNN  PGML Diff MLPNN PGML  Diff MLPNN PGML  Diff MLPNN PGML  Diff

FRF 0.811 0.838 3.4% 0.807 0.834 3.4% 0.856 0.884 3.3% 0.098 0.051 — 47.8%
FS 0.767 0.819 6.7% 0.772 0.821 6.4% 0.815 0.874 7.2% 0.160 0.073 — 54.5%
CMEF 0.660 0.754 143% 0.639 0.754 18.0%  0.700 0.806 15.2%  0.200 0.104 — 48.1%
CSF 0.678 0.752 11.0%  0.654 0.744 13.7%  0.700 0.813 16.1%  0.138 0.081 — 41.5%
AZ 0.621 0.733 18.1%  0.526 0.727 384%  0.638 0.767 20.2%  0.094 0.080 — 15.4%
Avg 0.707 0.779 10.7%  0.679 0.776 16.0%  0.742 0.829 124%  0.138 0.078 — 41.5%

in terms of elevation range in Fig. 17). However, the
PGML model showed significantly less performance
deterioration in all the validation ecoregions than the
MLPNN models and consistently exhibited significantly
low PI scores. Table 6 compares the model generalization
performance between the MLPNN and the PGML models
based on the modified spatial CV procedure. As shown in
Table 6, the PGML model showed substantial improve-
ments in classification performance and physics consis-
tency compared to the MLPNN model. Based on the results
presented in this section, it can be concluded that the
PGML model with integrated domain knowledge can
improve performance in landslide susceptibility prediction
compared to the MLPNN model with better generalization

@ Springer

capabilities across diverse ecoregions. This is validated by
both the spatial CV and modified spatial CV procedures, in
which less fluctuation, fewer overpredictions, and reduced
prediction uncertainties can be observed for the PGML
model compared to the MLPNN model.

13 Discussion and future work

This study confronts two prevalent challenges in LSM: the
scarcity of data and variable conditions across diverse
hillslope environments, alongside the tendency of flexible
ML models to yield predictions that deviate from estab-
lished domain knowledge in underrepresented areas. The
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proposed PGML framework integrates geotechnical
domain knowledge into ML paradigms, ensuring predic-
tions are both empirically grounded and theoretically
consistent.

A key innovation of this approach is the introduction of
performance metrics based on physics consistency, which
complements the commonly used data science model
evaluation metrics and helps quantify the extent to which
model predictions adhere to physical principles, providing
an essential measure of reliability in geoscientific appli-
cations. Additionally, a cross-validation strategy that
accounts for the inherent structural dependencies within the
data was employed, demonstrating its effectiveness in
enhancing model performance assessment at a regional
scale. The performance of the proposed PGML framework
was evaluated through a case study in the Colorado Front
Range, employing a well-documented debris flow inven-
tory to compare its effectiveness with both a physics-based
infinite slope model and a purely data-driven MLPNN
model.

The proposed PGML framework is not only pivotal for
LSM but also offers a generic solution applicable to vari-
ous challenges within geotechnical engineering and geo-
science. For example, it can be extended to issues
involving data with temporal, spatial, hierarchical, or
phylogenetic structures, such as hydrological modeling,
soil erosion modeling, etc. These applications, like LSM,
require predictions that align closely with domain knowl-
edge to ensure the validity and applicability of outcomes.
By enhancing the integration and utility of domain-specific
knowledge, the proposed framework can substantially
improve the accuracy and generalizability of predictive
models across extensive geoscientific domains.

It should be noted that the present study conducted the
physics-based analysis using detailed landslide reconnais-
sance and previous studies that reveal the general envi-
ronmental conditions for the study area. Such information
may not be readily available for LSM in other regions.
Therefore, exploring various strategies to incorporate
geotechnical domain knowledge into ML models and
examining the effects of sample size warrant further
investigation in future research. For example, innovative
approaches such as differentiable modeling [83], which
aims to unify physics and ML by embedding learnable
parameters within process-based modeling, offer promising
pathways for enhancing LSM frameworks. Furthermore,
the use of unsupervised pretext task learning [35, 89] might
be a viable approach to develop foundation models for
geospatial features, which can then be used for downstream
tasks in landslide hazard modeling.

14 Conclusion

The findings from this study underscore the effectiveness
of the proposed PGML framework in enhancing model
performance and reliability. Key conclusions drawn from
this study can be summarized as follows:

1. The random CV approach may produce overly opti-
mistic and sometimes misleading results that may not
reflect the actual generalization performance of the
model, and spatial CV is a more suitable approach for
geospatial applications.

2. By using existing domain knowledge in geotechnical
engineering to identify appropriate input parameters
and models, the physics-based infinite slope model can
effectively predict regional-scale landslide
susceptibility.

3. The pure data-driven model (i.e., MLPNN) model
generally performs poorly on unseen ecoregions and
exhibits significant uncertainties in model predictions
for regions lacking sufficient debris flow inventory.

4. By integrating geotechnical domain knowledge into

pure data-driven models, the PGML model exhibits
significant improvements in generalization perfor-
mance, better physics consistency, and reduced
uncertainties.
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