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Abstract
Landslides are common geohazards worldwide, resulting in significant losses to economies and human lives. Data-driven

approaches, especially machine learning (ML) models, have been widely used recently for landslide susceptibility mapping

(LSM) by extracting features from geospatial variables based on their contribution to landslide occurrences using known

distributions of landslides as the training dataset. However, challenges remain in applying ML models for LSM models due

to the scarcity and uneven spatial distribution of landslide data coupled with the spatial heterogeneity of hillslope

conditions. Moreover, ML models developed with limited data often exhibit unexpected behaviors, resulting in poor

interpretability and predictions that deviate from intuitive expectations and established domain knowledge. To overcome

these challenges, this study proposes a physics-guided machine learning (PGML) framework that integrates landslide

domain knowledge into ML models for LSM. The PGML framework was developed and assessed using a detailed debris

flow inventory from a storm event in the Colorado Front Range. Based on the infinite slope model, the factor of safety for

the study area was first determined and was subsequently used to constrain the prediction of ML models through a modified

loss function and measure the physics consistency of model predictions. To evaluate the robustness and generalizability of

the models, this study uses geographical sample selections for model performance evaluation, where ML models are

trained and tested across heterogeneous ecoregions. The results of this study demonstrated the efficacy of both physics-

based and data-driven methods in determining landslide susceptibility in the study area; however, pure data-driven ML

models produced physically unrealistic results and poor generalization performance in new ecoregions. With the incor-

poration of physical constraints, the PGML model demonstrated notable enhancements in physics consistency and gen-

eralization capability, along with reduced model uncertainties across various ecoregions, surpassing the performance of

benchmark ML models.
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1 Introduction

Landslides represent a major natural hazard, causing sub-

stantial economic and human losses globally [22, 36]. In

the USA, landslides occur in nearly all states and are a

recurrent and significant issue, primarily in coastal and

mountainous regions such as the Pacific Northwest, Cali-

fornia, and the Appalachian Mountains. These events result

in approximately 25–50 fatalities and exceed one billion

dollars in losses annually [53]. In addition, more frequent

extreme climate events, such as heavy rainfall and wild-

fires, are expected under current climate projections

[21, 108], which may result in more frequent landslides and

related damages. As urban expansion progresses into

mountainous regions, many infrastructures are becoming

susceptible to the threats posed by landslides [29]. Con-

sequently, pinpointing potential landslide zones becomes

pivotal in elevating public awareness and lessening fore-

seeable repercussions.
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Landslide susceptibility mapping (LSM) is a systematic

process that identifies and quantifies the susceptibility of

landslide occurrences in specified geographic regions based

on the analysis of various contributing factors such as

geologic formations, topographic characteristics, and cli-

matic conditions. It answers the question of where land-

slides are likely to occur [24]. As outlined by Reichenbach

et al. [72] and Merghadi et al. [52], strategies to identify

zones prone to landslides primarily fall into three cate-

gories: physics-based, heuristic, and statistical methods.

The physics-based strategies depend heavily on the limit

equilibrium analysis grounded in soil mechanics, which

defines the limiting state where the shear stress along a

potential failure surface in the slope has reached the shear

strength of the slope materials. Notably, methodologies

such as the infinite slope model, along with its variations,

have become popular tools in assessing landslide risk for

rainfall-induced shallow landslides (e.g.,

[7, 33, 49, 55, 57, 91]). The physics-based methods can

provide physically consistent results that align with

geotechnical domain knowledge on landslide mechanism;

however, their implementation in LSM is often confined to

small-scale analysis due to simplified physical assumptions

embedded in physical models and the challenges of

obtaining precise and comprehensive data on soil and

hydrological attributes. Due to these limitations, physics-

based methods for LSM are typically employed to provide

early warning for impending slope failures [61, 90], where

detailed site characterization can be obtained. Heuristic

approaches use opinion-driven models that conduct land-

slide susceptibility zonation by ranking and weighting

instability factors based on expert opinion and expertise

(e.g., [12, 60, 70]). However, results based on heuristic

approaches are challenging to evaluate and quantify

objectively as they rely on investigators’ understanding and

judgments on the actual causes of landslides in the study

area [72]. Statistically based approaches create functional

correlations between landslide susceptibility and various

geo-environmental determinants based on the analysis of

historic and ongoing landslide location observations. The

recent developments in remote sensing and data science

have been steering the research focus toward these statis-

tically based methodologies [72]. Methods for statistically

based approaches include classic statistical analysis and

machine learning (ML), and substantial progress has been

made using various techniques and algorithms. Detailed

reviews of statistical and ML methods for landslide sus-

ceptibility modeling and associated terrain zonations can

be found in [43, 52, 72].

Although statistically based approaches, particularly ML

models, have made tremendous progress in recent LSM

studies, they encounter two inherent challenges that limit

their effectiveness: data availability and model reliability.

Moreover, it should be noted that these issues are not

unique to LSM but are prevalent in general ML applica-

tions across various disciplines (e.g., [56, 58]). For the data

availability challenges, data-driven LSM models heavily

depend on data availability and quality, which presents

significant obstacles for regional and broader-scale appli-

cations. Existing landslide inventories are often sparse and

unevenly distributed (i.e., they have bias and insufficient

representation), and substantial environmental variations

exist between hillslopes and different regions [53, 95].

Landslide inventories that are consistent, accurate, repre-

sentative, and cover extensive regions remain very limited

[53]. Despite some recent advancements in automating

landslide inventory mapping from remote sensing images

(e.g., [59, 64, 106]), these challenges persist in effectively

applying data-driven LSM models on a larger scale. The

model reliability challenge is another critical but often

overlooked issue. The inherent flexibility of ML models

(e.g., deep neural networks or tree-based models) enables

them to capture nuances in large datasets; however, this

flexibility can also lead to unexpected behaviors in parts of

the input space not covered by the training and validation

datasets (e.g., [28, 67, 94, 104]), potentially failing to

reflect the fundamental physics behind mass movements of

landslides (e.g., [67, 81, 103]). This issue is especially

problematic when learning from small datasets, which can

lead to overfitting and poor generalization. Importantly,

these problems remain undetected during the development

phase due to dataset limitations [104].

Therefore, there is a critical need to develop robust

models and comprehensive model evaluation frameworks

that can navigate through these challenges, thereby ensur-

ing the reliability and applicability of data-driven LSM

models across regional or larger scales. In response to these

challenges, recent progress in the community has included

the adoption of ensemble methods [19] and knowledge

transfer strategies such as transfer learning [105] and few-

shot learning [92]. Ensemble methods help improve model

stability and accuracy by aggregating predictions from

multiple models, thereby reducing the risk of overfitting by

improving statistical robustness in LSM applications (e.g.,

[20, 23, 42, 107]). Meanwhile, transfer learning has been

utilized to effectively improve LSM model performance by

transferring knowledge learned from source regions to

target regions where data may be limited (e.g.,

[93, 96, 103]). Few-shot learning, on the other hand,

enables rapid model adaptation to new, often scarcely

sampled areas, thus addressing the data availability chal-

lenge [16]. Despite these advances, these methodologies

are primarily focused on improving model performance

based on accuracy metrics [78]; they often overlook the

integration of domain-specific knowledge and physical

laws, which is crucial for accurately modeling
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susceptibility for complex geological processes like land-

slides. This oversight is significant because of the afore-

mentioned challenges. Limited, non-representative data

and unconstrained ML flexibility can lead to overfitting and

models that poorly reflect actual landslide susceptibility

during deployment. For example, Pei et al. [66] and Pei and

Qiu [67] evaluated commonly used ML models for pre-

dicting slope stabilities using case histories for circular

failure slope; their results showed that ML models with

good performance based on data science accuracy metrics

could behave poorly in terms of physics consistency, which

highlights the need for innovative approaches that combine

data-driven approaches with domain knowledge.

Physics-based models can estimate landslide suscepti-

bility without the need for labeled data, relying solely on

established domain knowledge to interpret geological

conditions and predict potential landslide areas. However,

data-driven approaches often overlook the insights offered

by these physics-based models, leaving a significant gap in

harnessing the potential of domain knowledge within these

systems. Bridging this gap represents a substantial oppor-

tunity to enhance the accuracy and robustness of LSM

models by integrating empirical data with theoretical

understanding. Incorporating domain-specific knowledge

into data-driven models has gained traction in various

fields, including computer vision and natural language

processing, and some regulated domains that require high-

stakes predictions, such as healthcare, criminal justice, and

finance, as detailed in comprehensive surveys by Carvalho

et al. [15] and von Rueden et al. [88]. In the case of

modeling physics processes, ML models that integrate

physics principles are generally termed physics-guided

machine learning (PGML), as mentioned in several studies

(e.g., [30, 38, 45, 63, 66, 74]). PGML aims to use ML

techniques to model physical phenomena while incorpo-

rating the underlying physical laws and constraints into the

model. This approach can help improve the model per-

formance and make predictions more physically meaning-

ful. Figure 1 presents a schematic comparison of the uses

of data and theory among different models. PGML has

been applied in various fields, including geoscience

applications, to improve the accuracy and interpretability

of ML models and uncover new physical insights.

There are several different ways that physics can be

incorporated into ML models. For example, hybrid physics

and data-driven (HPD) models with data augmentations

and feature enhancements based on physics-based models

have been used to predict various scientific problems, and

improvements in model performances have been observed

in multiple studies (e.g., [18, 26, 99, 100, 102]). Apart from

HPD models, physics-based models can also provide

foundations for initializing and informing data-driven

models [46, 66, 67]. For example, Read et al. [73] and Jia

et al. [30] enhanced the accuracy and robustness of their

deep learning (DL) models for lake temperature forecasting

using pre-trained models based on simulated data from

physics-based models. Moreover, Ma et al. [54] demon-

strated the significance of knowledge transfer; they applied

weights learned from a comprehensive USA dataset to

regions with less data availability, such as China and Chile.

In addition, physics-based model architectures can be used

to constrain data-driven model behaviors. For example,

Rahmani et al. [76] and Tsai et al. [85] implemented pro-

cess-based models as differentiable modules into the deep

learning framework for hydrological modeling, and per-

formance improvement was observed on various metrics.

Moreover, physics-based regularization can be used to

impose physical constraints on the model to ensure the

model behaves in a physically meaningful way. For

instance, Daw et al. [18] implemented a physics-guided

loss in their ML model to predict lake temperatures across

different depths. They aimed to ensure that the model

predictions adhered to the monotonic relationship between

water depth and density (i.e., denser water should reside at

deeper depths). Subsequent works by Read et al. [73] and

Jia et al. [30] refined this framework to incorporate energy

conservation principles for temporal lake temperature

predictions. Furthermore, in the field of LSM, there are also

some studies that can be broadly classified under the

PGML modeling strategy. Stanley et al. [81, 82] applied

monotonic constraints to their ML models for LSM, in

which a direction was assigned to model response for each

input variable using prior knowledge based on their con-

tribution to landslide risk (e.g., non-decreasing mono-

tonicity between soil moisture and landslide risk). Wei

et al. [97, 98] developed HPD models for LSM, wherein

results from the infinite slope model were used as addi-

tional input features for ML models. This integration led to

observed improvements in both model performance and

generalization capability across different regions. Khabiri

et al. [39] and Liu et al. [44] used physics-based models for

negative sample selection. Their LSM models trained on

datasets filtered through these physics-based models

demonstrated higher performance and improved
Fig. 1 Comparison of model development strategies across varying

data scales (after Pei et al. [66])

Acta Geotechnica

123



interpretability. However, it should be noted that while

these studies demonstrate advancements in model perfor-

mance and interpretability, they remain either too restric-

tive or do not consistently guarantee physics consistency.

The present study proposed a PGML modeling frame-

work that utilizes physics-based model regularizations to

model landslide susceptibility. A well-documented debris

flow inventory from a debris flow event in the Colorado

Front Range was used to develop and evaluate the per-

formance of the proposed PGML model. In the following

sections, the study area and debris flow inventory are first

described, followed by descriptions of the physics models,

baseline ML models, PGML models, and the design of ML

experiments. Last, the performance of these models was

compared and evaluated. It should be noted that debris flow

is a type of landslide [11]; in the subsequent discussions,

the term debris flow is used to describe what actually

occurred in the Colorado Front Range, whereas the term

landslide is used in the context of LSM and downslope

movement of soil in general. In addition, it should be noted

that the landslide contributing factors used and the LSM

models developed in this study are independent of

dynamic, time-specific events such as rainfall. They aim to

provide long-term, static assessments of areas inherently

susceptible to landslides due to geological and environ-

mental factors.

2 Study area and debris flow inventory

The generalizability of LSM models is fundamental for

their effectiveness in estimating landslide susceptibility

across diverse environmental conditions. To evaluate the

generalization capability of LSM models, an area encom-

passing a wide range of ecological, topographical, and

climatic conditions is necessary. The Colorado Front

Range, a key segment of the Southern Rocky Mountains in

North America, was selected as the study area due to its

pronounced environmental diversity and historical preva-

lence of landslides.

Centrally located in the state of Colorado, this mountain

range originated from the orogenic uplift caused by

regional compression during the Laramide Orogeny in the

Late Cretaceous to early Tertiary periods [17]. The range

showcases a substantial elevation variation ranging

between 1500 and 4300 m; it encompasses four major

topographic elements and five distinct ecosystem zones

[1, 14]. The vegetation density, soil development, and

regolith production are dependent on the slope aspect,

especially in the montane zones. The north-facing hill-

slopes are covered by dense coniferous forests and have

more leached, colder soils compared to the south-facing

slopes, which predominantly support grass with a few

small shrubs [5, 47]. An ecoregion defines areas with

similar types, quality, and quantity of environmental

resources, such as biomes and topography [48]. Based on

level IV ecoregions of the Conterminous U.S., the study

area in the present study consists of seven distinct ecore-

gions, including Flat to Rolling Plains (FRP), Front Range

Fans (FRF), Foothill Shrublands (FS), Crystalline Mid-

Elevation Forests (CMEF), Crystalline Subalpine Forests

(CSF), Sedimentary Mid-Elevation Forests (SMEF), and

Alpine Zone (AZ) in the order of rising elevation. The

location and extent of the study area and the ecoregion

partitions within the study area are shown in Fig. 2.

The accuracy and extensiveness of landslide inventories

are essential for the efficacy of data-driven LSM models. In

this study, a comprehensive debris flow inventory with

precise location was used to develop LSM models to dis-

cover connections between landslide contributing factors

and landslide susceptibility within the study area. The

inventory was mapped by Coe et al. [14] and is publicly

available from the USGS Landslide Inventory, which can

be accessed at https://www.usgs.gov/tools/us-landslide-

inventory. It encompasses a broad range of debris flows

mobilized from discrete sliding masses of colluvial soil

(i.e., shallow landslides), spanning an area of 3430 km2 in

the northern portion of the Colorado Front Range. These

debris flows are located across five ecoregions in the study

area: FRF, FS, CMEF, CSF, and AZ. The origin of 97% of

these shallow landslides can be traced back to open slopes

(48%) or swales (49%), with channels only contributing to

3% of the initiations [14]. The inventory provides accurate

coordinates for the initiation points of 1138 debris flows

and 212 slides, which were mapped through field recon-

naissance and the analysis of high-definition orthorectified

satellite imagery [14]. This extensive debris flow inventory

provides a rich dataset foundation to assess the perfor-

mance of LSM models. The locations of these debris flows

are presented in Fig. 2.

3 Landslide contributing factors

For statistically based LSM, landslide contributing factors

need to be carefully selected to ensure they can reflect the

effects of soil properties, hydrologic conditions, and terrain

geometries that correspond to landslide formation. Given

the data accessibility and the nature of landslides that

occurred in the study area, nine landslide contributing

factors were selected for the present study, ensuring a

relevant and robust data foundation for training ML models

to predict landslide susceptibility accurately [68]: eleva-

tion, slope, aspect, topographic wetness index (TWI),

normalized difference vegetation index (NDVI), sand

content, clay content, bulk density, and field capacity.
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Among these factors, elevation is based on the high-reso-

lution digital elevation model (DEM) provided by the 3D

Elevation Program (3DEP) [86] with a spatial resolution of

10 m, which is a reasonable value to represent the size of a

typical landslide detachment area while also capturing

local topographic gradients. Slope and aspect were calcu-

lated from the DEM, representing the local gradient of the

hillslope and its cardinal directions. TWI was derived from

the DEM to quantify topographic control on hydrological

processes, which is calculated as:

TWI ¼ ln
As

tan b

� �
ð1Þ

where As is the specific catchment area and b is the hill-

slope angle. NDVI was used to represent surface vegetation

coverage and was calculated based on near-infrared and red

bands from Landsat-7 satellite images:

NDVI ¼ NIR� R

NIRþ R
ð2Þ

where NIR is the near-infrared portion and R is the red

portion of the electromagnetic spectrum. In the present

study, Landsat-7 satellite images taken within half a year

before the September storm event were used to calculate

the average NDVI for the study area. The soil information

(i.e., sand/clay content, soil bulk density, and field capac-

ity) was obtained from SoilGrids [34], which provides a

global estimation of a wide range of soil, land cover,

hydrology, geology, climate, and relief characteristics with

a spatial resolution of 250 m. These soil properties are

provided for six standard depths up to 200 cm produced by

ML algorithms trained on global soil profiles. The present

study used the depth-weighted average to obtain soil

properties at each location. These landslide contributing

factors were stored as georeferenced raster images. The

respective values at various locations can be retrieved by

extracting the corresponding pixel values from these ima-

ges. Figure 3 presents a visualization of these landslide

contributing factors for the study area. All data used in this

study, including landslide inventory and landslide con-

tributing factors, are summarized in Table 1. To facilitate

subsequent modeling and analysis, all the landslide con-

tributing factors were resampled to the same resolution as

the DEM (i.e., elevation).

Fig. 2 Summary of the study area and debris flow locations: a continental United States; b State of Colorado; c overview of the study area,

including debris flow locations and ecoregion partitions
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Fig. 3 Thematic maps of landslide contributing factors for the study area: a elevation; b slope; c aspect; d TWI; e NDVI; f sand content; g clay

content; h bulk density; i field capacity
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4 Physics-based model

In this study, the infinite slope model was selected as the

physics-based model owing to its suitability for predicting

shallow landslides and its simplicity and compatibility with

Geographic Information Systems (GIS) for grid-based

analysis on regional scales [101]. The factor of safety (FoS)

for the infinite slope model is calculated as the ratio of the

soil shear strength to the shear stress imposed by the slope

material:

FoS ¼ cþ ðcd � cwhÞ cos2 b tan/
cd sin b cos b

ð3Þ

where h represents the height of the groundwater table, d

denotes the depth of the potential sliding plane, b is the

slope angle. The terms c and cw correspond to the unit

weight of soil and the unit weight of water, respectively.

And / and c are the soil friction angle and cohesion,

respectively. For simplicity and to ensure hydrological

consistency, submerged slopes with seepage parallel to the

slope were assumed when calculating the FoS (i.e., h ¼ d).

This approach represents a conservative scenario and

allows for a uniform assessment of landslide susceptibility

across the study area rather than modeling the response to

specific rainfall events. The input parameters for the infi-

nite slope model were estimated based on landslide con-

tributing factors using empirical relationships and previous

studies in the study area [65]. For example, b is based on

the hillslope angle from DEM. d is estimated based on an

elevation-dependent relationship [77] as:

di ¼ dmax �
zi � zmin

zmax � zmin

ðdmax � dminÞ ð4Þ

where di and zi are local soil layer thickness and terrain

elevation, respectively; zmin and zmax are the minimum and

the maximum terrain elevation, respectively; and dmin and

dmax are the minimum and the maximum soil layer

thickness, respectively. The elevation-dependent soil

thickness relationship assumes that the elevation and soil

thickness are inversely related. This assumption suggests

that soil erosion increases with elevation, resulting in

shallower soils, while sedimentation occurs at lower ele-

vations, forming thick colluvial and alluvial soils [40]. As

summarized in several previous studies (e.g., [2, 9, 50]),

the soil thickness in the study area is generally thin and

exposed bedrock is observed in some areas. The estimated

soil thickness for landslide source areas clustered between

0.4 and 1.3 m, with a few thicker than 2.0 m on less steep

slopes, based on the reconnaissance by Coe et al. [14]. In

the present study, dmin ¼ 0:1 m and dmax ¼ 1:5 m were

used to reflect the decreasing trend of soil layer thickness

as elevation increases for the study area. Tiwari and Marui

[84] reported soil residual friction angle versus clay con-

tents for 82 natural disasters associated with slope stability

problems. This study used curve fitting (R2 ¼ 0:49) to

correlate soil clay content with residual friction angle based

on these 82 samples:

tan/ ¼ �0:0978 lnðclay contentÞ þ 0:575 ð5Þ

For estimating c, the soil was assumed to be cohesion-

less; however, an apparent cohesion due to root rein-

forcement in slope stability was considered. The values of

c were estimated by applying a linear transformation to the

full spectrum values of NDVI using the following equation

[31]:

c ¼ cmin þ cint �
NDVIþ 1

2
ð6Þ

where cmin and cint are constants controlling the minimum

value and range of the cohesion. In the present study,

cmin ¼ 0 kPa and cint ¼ 8 kPa produce apparent cohesions

within the same range as previous studies (e.g., [9, 50]).

The soil unit weight is based on bulk density and field

capacity from SoilGrids. Assuming the initial volumetric

Table 1 Summary of data used in the present study

Data Unit Type Resolution Data source

Landslide inventory – Point – USGS landslide inventory

Elevation m Raster 10 m USGS 3DEP

Slope deg Raster 10 m Derived from elevation

Aspect deg Raster 10 m Derived from elevation

Topographic Wetness Index (TWI) – Raster 10 m Derived from elevation

Normalized difference vegetation index (NDVI) – Raster 30 m Landsat 7

Sand content % Raster 250 m SoilGrids

Clay content % Raster 250 m SoilGrids

Bulk density 10 kg/m3 Raster 250 m SoilGrids

Field capacity % Raster 250 m SoilGrids
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water content of the soil is at the field capacity, which is the

moisture content above which the soil layer is drained by

gravity. Then, the saturated unit weight of soils can be

calculated as:

csat ¼ cb þ ðn� #FCÞcw ð7Þ

where cb is the bulk density; #FC is the field capacity,

which is reported as the volumetric water content [34]; and

n is the soil porosity, which can be estimated using the

following equation:

n ¼ 1� cb
cwGs

ð8Þ

where Gs is the specific gravity of soil particles and is

assumed to be 2.65 in this study.

5 ML model

This study used the multi-layer perceptron neural network

(MLPNN) to develop models for predicting landslide sus-

ceptibility for the study area. MLPNNs consist of multiple

layers of interconnected nodes or neurons and are capable

of learning nonlinear relationships between input features

and target outputs, making them suitable for modeling

complex natural processes. In this study, the MLPNN was

designed to have three hidden layers, each containing 24

neurons; the rectified linear unit (ReLU) activation func-

tion [3] was applied in the hidden layers, providing better

training efficiency and mitigating the vanishing gradient

problem. The sigmoid activation function was applied to

the output layer for the binary classification task, and the

binary cross-entropy loss function was employed to mea-

sure the error between the network’s predictions and

ground truth labels. The Adam optimization algorithm was

chosen for optimizing the weights and biases for the net-

work with a learning rate of 0.001. In addition, all the

models were trained for 50 epochs with a batch size of 16

during the model development procedure. A detailed

description of MLPNN can be found in Kuhn and Johnson

[37] and Goodfellow et al. [27].

6 PGML framework

Traditional machine learning (ML) models (e.g., MLPNN)

often struggle to accurately represent complex scientific

relationships derived directly from data, particularly when

the available training data are insufficient [94]. Recently,

researchers have adopted physics-guided loss functions to

address challenges encountered by traditional ML models

for various applications (e.g., [30, 66, 73]). The PGML

framework integrates domain-specific scientific

relationships into the loss functions during the model

training process, serving as regularization terms that guide

the model toward physical consistency and enhanced per-

formance. A generic form of the physics-guided loss

function Lpg can be expressed as:

Lpg ¼ Ldata þ krR|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
standard loss for ML models

þ kphyLphy|fflfflfflffl{zfflfflfflffl}
physics�based loss

ð9Þ

where Ldata represents the supervised error between the

prediction and the ground truth, R is the regularization loss

that optimizes model simplicity, and Lphy is the physics-

based loss that measures the consistency of model predic-

tions with respect to domain-specific scientific relation-

ships. These three terms optimize three aspects of model

performance in terms of accuracy, simplicity, and consis-

tency. Parameters kr and kphy are hyperparameters that

control the respective weights of R and Lphy in the physics-

guided loss function, respectively. Note that the first two

terms are the standard loss for traditional ML models. For

slope stability analysis, there is a generally accepted

monotonic relationship between the landslide susceptibility

and the FoS. The FoS measures the ratio between the

resisting force and the driving force along a potential

failure surface. A higher FoS value generally indicates

decreased landslide susceptibility, establishing a founda-

tional physics-based relationship that the model can learn

and respect. However, ML models trained solely with data

may not reflect this physical relationship, yielding less

scientifically interpretable predictions. Therefore, guiding

the model toward physics consistency is desirable during

the training process. The monotonic relationship between

landslide susceptibility based on model predictions ŷ and

FoS values for any two samples can be expressed as:

ŷ1 � ŷ2 � 0 if FoS1 � FoS2 ð10Þ

If samples in each training batch are sorted based on

their FoS values in a descending manner

(i.e.,FoSi �FoSiþ1), a difference in model predictions can

be computed for any pair of sequential samples as:

Dŷ ¼ ŷiþ1 � ŷi ð11Þ

Hence, a negative value of Dŷ can be considered a

violation of physics. Similar to the approach proposed by

Daw et al. [18] and Pei et al. [66], a physics-based loss

term Lphy that measures the average value of these viola-

tions of physics (i.e., physics inconsistency) can be

expressed as:

Lphy ¼
1

n� 1

Xn�1

i¼1

maxð�Dŷ; 0Þ ð12Þ

where n is the number of training samples. Landslide

susceptibility prediction can be considered a binary
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classification problem. The binary cross-entropy loss [10]

is typically used as the standard loss and can be expressed

as:

Ldata ¼
1

n

Xn
i¼1

yi logðŷiÞ þ ð1� yiÞ logð1� ŷiÞ ð13Þ

where y and ŷ are labels and model predictions, respec-

tively. It should be noted that various regularization

methods have been extensively explored in the data science

community to implement different measures of regular-

ization; however, these approaches often neglect the

physical plausibility of trained models, potentially leading

to predictions that lack physical consistency [38]. There-

fore, the model complexity loss may inadvertently dilute

the emphasis on physical consistency and was not con-

sidered in this study. Based on Ldata and Lphy, a complete

form of the physics-guided loss function for this study can

be expressed as:

Lpg ¼ Ldata þ kphyLphy ð14Þ

For the PGML model, the physics-based loss term in

Eq. (14) steers the model toward a monotonic relationship

between the model prediction and the calculated FoS based

on the physics-based model. A detailed illustration of the

PGML model training process can be found in Algorithm

1. The PGML model structure and hyperparameters remain

the same as the baseline MLPNN model except for the loss

function, and the same validation procedure was used to

evaluate the model performance, which will be discussed in

the following sections.

Algorithm 1 PGML model training process

7 Model performance evaluation

In this study, the receiver operating characteristic (ROC)

curve was used to evaluate the model performance. The

ROC curve is a two-dimensional graphical representation

that illustrates the performance of a classification model by

depicting the relationship between the false positive rate

(FPR) and the true positive rate (TPR) at various classifi-

cation thresholds. The area under the ROC curve (AUC)

can be calculated, offering an aggregate measure of model

performance. The AUC score is a prominent single-value

metric utilized in classification model evaluations, quanti-

fying the model’s proficiency in distinguishing between

two classes. A model that merely predicts at random would

yield an AUC of 0.5, whereas a model with perfect clas-

sification capabilities would achieve an AUC of 1.0.

Additionally, the confusion matrix reports four possible

outcomes of model predictions at a given classification

threshold: (1) true positive (TP), which represents correctly

predicted landslide samples; (2) true negative (TN), which

represents the number of correctly predicted non-landslide

samples; (3) false positive (FP), which denotes misclassi-

fied landslide samples; and (4) false negative (FN), which

denotes misclassified non-landslide samples. After identi-

fying the optimal classification threshold from the ROC

curve, four commonly used model performance evaluation

metrics can be calculated based on the confusion matrix:

Accuracy, Precision, Recall, and F1. These performance

evaluation metrics, including FPR and TPR, can be cal-

culated using the following equations:

Accuracy ¼ TPþ TN

TPþ FNþ TNþ FP
ð15Þ

Precision ¼ TP

TPþ FP
ð16Þ

Recall ¼ TP

TPþ FN
ð17Þ

F1 ¼
2� precision� recall

precisionþ recall
ð18Þ

TPR ¼ TP

TPþ FN
ð19Þ

FPR ¼ FP

FPþ TN
ð20Þ

The Accuracy metric provides a holistic view of the

model’s predictions, representing the fraction of all correct

predictions. Precision focuses on the model’s ability to

correctly identify landslides, while Recall emphasizes the

model’s capability to capture all actual landslide events.

Note that the F1 score provides an aggregate measure of the

model performance score by calculating the harmonic

mean of Precision and Recall. Besides the above-
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mentioned metrics, a distinctive feature of the evaluation

framework used in this study is the incorporation of a

metric assessing the model’s adherence to physics princi-

ples, termed Physics Inconsistency (PI). As described in the

previous section, the calculation of PI is the same as Lphy
using Eq. (12). In this study, the calculated FoS values

based on the physics-based model were used as the refer-

ence (i.e., ground truth) to evaluate PI and guide model

training. In light of the evaluation metrics outlined above,

this study employed six key metrics for a comprehensive

model performance evaluation, including Accuracy, Pre-

cision, Recall, F1, AUC, and PI.

8 Dataset preparation

In the context of LSM, employing ML techniques formu-

lates the problem into a binary classification task. In this

study, the 1350 mapped debris flow locations in the study

area and their corresponding values of landslide con-

tributing factors were used as positive samples. Based on

information reported in the USGS landslide inventory,

these debris flow locations were mapped from the after-

math of an intense storm event in September 2013 [14].

Figure 4 presents a map of cumulative rainfall during the

storm event for the study area. Figure 4 shows that the

mapped debris flow locations were all in the areas with an

cumulative rainfall more than 120 mm; a plausible

interpretation of this phenomenon is that it takes more than

120 mm cumulative rainfall to fully saturate the slopes in

the study area to initiate debris flows. Negative samples

were strategically selected from regions experiencing

cumulative rainfall exceeding 120 mm to force the ML

models to learn why debris flows were not triggered despite

having sufficient rainfall. These negative samples were also

positioned at least 100 m away from any known debris

flow locations to ensure they represent true non-debris flow

areas. Figure 4 shows the distribution of debris flows and

non-debris flows within the study area, overlaid on a map

of cumulative rainfall for the September 2013 storm event.

In Fig. 4, red triangles represent debris flow locations,

black dots indicate non-debris flow areas, and isolines

represent different levels of cumulative event rainfall.

Besides sample selection, ensuring a balanced dataset is

crucial for preventing model bias toward the predominant

class and enhancing predictive accuracy; an equivalent

number of negative and positive samples were drawn for

each ecoregion, resulting in a dataset of 2700 samples for

developing LSM models. Each sample was characterized

by nine input features and a singular output/target (i.e., 1

for debris flow or 0 for non-debris flow). Table 2 presents

the summary of the dataset size for each ecoregion and

shows that most debris flows occurred in the CMEF,

whereas very few occurred in the CSF and AZ. Given the

substantial variations in the values of landslide contributing

factors, as shown in Fig. 3, standardization of each feature

was used in this study to facilitate effective model training.

Additionally, the t-distributed stochastic neighbor

embedding (t-SNE) was used to examine the distribution of

input datasets in this study. t-SNE is a dimensionality

reduction technique that creates a low-dimensional repre-

sentation of high-dimensional data [87]. A t-SNE plot

visually displays the structure and relationships within the

data by grouping similar data points close together and

dissimilar data points further apart in a two- or three-di-

mensional space. This visualization can help reveal pat-

terns, clusters, and potential outliers, making it a valuable

Fig. 4 Spatial distribution of debris flows and non-debris flows within

the study area overlaid on a map of cumulative rainfall for the

September 2013 storm event

Table 2 Summary of dataset size for each ecoregion

Ecoregion Number of positive, negative, and

total samples

Front Range Fans (FRF) 127, 127, 254

Foothill Shrublands (FS) 192, 192, 384

Crystalline Mid-Elevation

Forests (CMEF)

976, 976, 1952

Crystalline Subalpine Forests

(CSF)

27, 27, 54

Alpine Zone (AZ) 28, 28, 56
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tool for exploratory data analysis and assessing the quality

of features or representations learned by ML models. Fig-

ure 5 presents the two-dimensional t-SNE visualization of

input datasets based on nine landslide contributing factors

for all five ecoregions. As shown in Fig. 5, the input

datasets exhibit different distributions among ecoregions,

especially for the AZ, where data distribution significantly

differs from the other ecoregions. The difference in data

distribution can be attributed to the fact that these ecore-

gions contain unique ecological and geological character-

istics distinct from each other. For example, the AZ is

characterized by steep slopes and shallow soil to exposed

rock, which is significantly different than the FRF.

9 Model development

The model development procedure in this study includes

data preparation, model training and performance evalua-

tion, ensemble model formulation, and final deployment

for generating landslide susceptibility maps for the study

area. The Python package PyTorch [62] was used to

develop MLPNN and PGML models. To facilitate the

illustration of the model development procedure, Fig. 6

shows a workflow chart for developing the PGML.

During the development of LSM models, ensuring that

models possess strong generalization capabilities across

diverse geographical regions is crucial. Given the inherent

differences between hillslopes and ecoregions, it is essen-

tial to assess how well these models can extrapolate to

areas not represented in the training data, which requires a

robust validation technique that effectively evaluates the

model’s generalization performance.

Cross-validation (CV) is a commonly used model vali-

dation technique to evaluate ML model performance, and it

is particularly beneficial when working with limited data.

In this process, the dataset is divided into k subsets (i.e.,

folds). Each subset serves as a validation set, while the

model is trained on the remaining k � 1 subsets (or folds).

This process repeats k times, each with a different subset

serving as the validation fold. The final model performance

is derived by averaging the performance metrics across all

k iterations, ensuring a robust assessment of the model

performance and stability on unseen data.

However, generic CV methodologies based on random

sampling, such as random CV, often assume that data

samples are independently and identically distributed. This

assumption can result in overly optimistic performance

estimates when applied to data with inherent temporal,

spatial, hierarchical, or phylogenetic structures commonly

found in fields like ecology and geotech/geoscience. To

address this, it is preferable to sample data into blocks that

reflect their intrinsic structure (e.g., spatial autocorrelation

in landslide data [6, 8, 69, 80]). This approach helps ensure

the training and validation datasets are independent and

more accurately represent the complexities of the data.

[71]. As an alternative, spatial CV is a method used to

evaluate the performance of predictive models in geospa-

tial applications (e.g., [51, 71]), including landslide

detection and prediction (e.g., [41, 69, 79]), which gives a

more realistic assessment of the model performance by

ensuring that the training and validation sets are spatially

independent. In spatial CV, the dataset is divided into

multiple spatially disjoint subsets (folds); for each fold, the

model is trained on the remaining folds and then tested on

the target fold. The extent of ecoregions was used in this

study as the dataset partition strategy for spatial CV, which

aims to evaluate the model’s generalization capability

across heterogeneous environments. It should be noted that

the spatial CV framework used in this study is a generic

approach applicable for evaluating various models,

including both physics-based and data-driven (e.g., ML)

models. Moreover, the entire spatial CV procedure was

repeated five times with varying random seeds to accom-

modate and evaluate data and model uncertainties.

After model training and validation, one spatial CV was

randomly chosen from the five spatial CV repetitions. The

five candidate models produced from this single spatial CV

were then aggregated using the average ensembling

method [32] to generate a landslide susceptibility map for

the entire study area. This method not only enhances the

robustness and generalization of the final model by utiliz-

ing models trained on different ecoregion blocks but also

retains the structured nature of different ecoregions in the

individual models. The preservation of ecoregional struc-

tures in each individual model provides a more accurate

estimation of the prediction uncertainty for the ensemble

model across the entire study area. This approach can

effectively reflect model uncertainty due to geographical

and environmental diversity, providing a way to evaluate

Fig. 5 Two-dimensional t-SNE visualization of input datasets
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the reliability of the LSM model predictions in varied

landscapes.

10 Performance of physics-based model

Figure 7 presents the landslide susceptibility map based on

the physics-based model overlaid with mapped debris flow

locations, where the calculated FoS at each location is

shown as a contour for the study area. As shown in Fig. 7,

the concurrence of predicted low FoS areas and mapped

debris flow locations suggests that the geotechnical domain

knowledge, such as the infinite slope model and estimated

soil parameters, can effectively estimate regional-scale

debris flow risks when appropriately applied. The perfor-

mance of the physics-based model was evaluated using the

same spatial CV procedure as ML models based on the

dataset summarized in Table 2 to assess its performance on

each ecoregion and its generalization capability across the

ecoregions. It is important to note that, unlike ML models,

the physics-based model does not require training, and its

performance is independent of dataset variability. Figure 8

presents the ROC curves for the physics-based model for

each ecoregion. These curves are generated by converting

the continuous output of the physics-based model (i.e.,

FoS) into binary classifications through the application of

various threshold values. By mapping through a range of

FoS threshold values, continuous measures are transformed

into discrete categories that indicate susceptibility. Sam-

ples with a FoS below the threshold are classified as sus-

ceptible to landslides (i.e., 1), while those above are

classified as not susceptible (i.e., 0). The TPR and FPR are

then calculated to construct the ROC curve. It is note-

worthy that this method of generating ROC curves by

mapping through thresholds is the same as the approach

used in ML. The primary difference is the nature of the

Fig. 6 Schematic overview of the PGML model development process for LSM

Acta Geotechnica

123



thresholds used: physics-based models apply thresholds

based on FoS values, whereas ML models typically employ

probability thresholds ranging from 0 to 1. As shown in

Fig. 8, the physics-based model generally performs well in

distinguishing between landslide and non-landslide classes

in these ecoregions, with an average AUC score of 0.856.

However, the performance of the physics-based model

varies across different ecoregions. For example, the phy-

sics-based model achieved excellent performance for the

FRF and FS ecoregions with AUC scores above 0.9,

whereas the performance for the AZ was relatively low

with an AUC score below 0.8. These discrepancies may be

attributed to the empirical relationships used to determine

input parameters (e.g., Eqs. (4) to (6)) and the applicability

of the infinite slope model for different ecoregions. For

example, the infinite slope model may not be applicable to

areas with exposed rock in the AZ, resulting in a low AUC

score for the ecoregion.

Based on reviews of case histories, Bowles [4] sum-

marized that a slope is generally deemed unstable and

prone to failure if FoS\ 1.07, a moderate risk of failure if

1.07\ FoS\ 1.25, and relatively stable if FoS[ 1.25.

Thus, FoS = 1.25 was often used as the default threshold

for the binary classification of slope stability for physics-

based models. The optimal classification threshold can be

obtained from the ROC curve as the FoS value corre-

sponding to the point on the ROC curve closest to the top-

left corner (0, 1) that represents perfect classification.

These points are marked on Fig. 8 as circles and the cor-

responding optimal threshold FoS values are reported in

Table 3. Figure 9 compares the classification performance

for the physics-based model using optimal thresholds

determined from the ROC curves for each ecoregion versus

a default threshold of FoS = 1.25. As shown in Fig. 9, the

optimal thresholds generally yield better classification

performance with less variation compared to the fixed

threshold value of 1.25, which can be attributed to the fact

that the optimal threshold considers the trade-off between

different types of misclassifications and is adjusted

according to the specific characteristics of the data and

task. Consequently, a more balanced and improved per-

formance can be achieved using the optimal threshold FoS

value.

Table 3 presents detailed classification scores based on

the optimal threshold value for each ecoregion. In addition,

Table 3 also presents classification scores based on the

five-fold random CV, for which stratified random sampling

was used for dataset partition, and non-debris flow samples

were randomly selected within the entire study area, dis-

regarding the ecoregions. As shown in Table 3, the optimal

classification threshold varies among these ecoregions,

which indicates that the generalized empirical relationships

used to determine input parameters and the infinite slope

model may not produce optimal values for all ecoregions,

and region-specific analysis should be used for calibrating

the physics-based model. Notably, Table 3 also shows that

the random CV yielded better performance scores than the

spatial CV. However, random CV ignores spatial depen-

dencies in the dataset and may not provide a rigorous and

realistic assessment of a model’s ability to generalize to

unseen data or from one ecoregion to another, which will

be further discussed.

Fig. 7 Landslide susceptibility map for the study area based on the

physics-based model

Fig. 8 ROC curve for the physics-based model based on spatial CV

(diagonal line represents a random classifier)
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11 Performance of MLPNN model

In this study, the spatial CV procedure was repeated five

times with different random seeds. Figure 10 presents ROC

curves for the MLPNN model for each ecoregion based on

spatial CV, with the lines representing mean values and

shaded areas representing standard deviations. As shown in

Fig. 10, the performance of MLPNN models is generally

worse than the physics-based model (see Fig. 8), with an

average AUC score of 0.805. It should be noted that spatial

CV tests the model’s generalization capability on distinct

environments from one region to another, using the extent

of ecoregions as the sampling strategy. The relatively low

AUC score of the MLPNN model during validation can be

attributed to the fact that the traditional ML models (i.e.,

the MLPNN model) rely significantly on patterns in the

training data, limiting their adaptability to new scenarios.

In addition, unlike physics-based models grounded by

well-established physical rules, traditional ML models do

not have inherent rules or principles guiding their predic-

tions. They rely solely on identifying patterns in data, and

the model’s performance can degrade if these patterns do

not hold in new data; in other words, applying the ML

model trained based on the data from one ecoregion to

another may have significantly worse performance. In

particular, this is observed in the case of the AZ ecoregion,

where the MLPNN model had a low validation AUC score

of 0.580, similar to the performance of a random classifier,

which can be expected as the AZ ecoregion is drastically

different from the rest of the ecoregions (see Fig. 5). In

addition, Fig. 10 also shows significant variation between

spatial CV repetitions, which can be attributed to uncer-

tainties in data sampling and model development. Fig-

ure 11 compares classification performance between the
Fig. 9 Effect of classification thresholds on the physics-based model

performance based on spatial CV

Fig. 10 ROC curve for the MLPNN model based on spatial CV

Fig. 11 Comparison of classification performance between the

MLPNN and the physics-based model based on spatial CV

Table 3 Validation performance of the physics-based model across ecoregions

Ecoregion Accuracy Precision Recall F1 AUC Optimal classification threshold

FRF 0.850 0.868 0.827 0.847 0.916 1.821

FS 0.841 0.810 0.891 0.849 0.901 1.259

CMEF 0.813 0.800 0.835 0.817 0.852 1.110

CSF 0.759 0.769 0.741 0.755 0.833 1.482

AZ 0.714 0.750 0.643 0.692 0.779 1.815

Avg 0.796 0.799 0.787 0.792 0.856 1.498

Random CV 0.833 0.837 0.828 0.832 0.885 1.196
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MLPNN and the physics-based model based on their cor-

responding optimal classification thresholds. It is evident

from Fig. 11 that the MLPNN model generally underper-

forms when compared to the physics-based model in terms

of binary classification performance. Detailed classification

scores and optimal classification thresholds for the

MLPNN model across validation ecoregions are shown in

Table 4. It can be noted from Table 4 that the optimal

thresholds for MLPNN models across validation ecore-

gions exhibit significant variations, which are markedly

different from the standard 0.5. This variation is due to the

distinct characteristics and data distributions in each

ecoregion, which influence the model’s TPR and FPR

differently. Therefore, it is necessary to conduct region-

specific threshold adjustments to accurately reflect the

unique environmental and geological factors influencing

landslide susceptibility in different areas.

Table 4 also presents the corresponding results using the

fivefold random CV and PI scores. As shown in Table 4,

the MLPNN model based on random CV showed signifi-

cantly higher classification scores than those based on

spatial CV. However, these numbers can be misleading as

spatial autocorrelation was ignored during model training

and evaluation, and the actual generalization capability of

the model might be low, which is evident from the spatial

CV results. By comparing Tables 3 and 4, it is also evident

that the MLPNN showed better performance scores than

the physics-based model using random CV. This indicates

that the MLPNN model can effectively extract features

from training data and perform well on validation data with

similar distributions; however, its generalization perfor-

mance could be less reliable than the physics-based model.

Additionally, the MLPNN model showed a PI score of

0.178 for the spatial CV and 0.194 for the random CV,

respectively. These PI scores indicate that pure data-driven

MLPNN models may produce results that disobey the

underlying physical relationship contributing to landslide

susceptibility, such as monotonic relationships between

landslide susceptibility and FoS, which will be further

discussed in the following sections.

After MLPNN models were trained and evaluated, one

spatial CV repetition was randomly chosen, and the five

candidate models produced from this repetition were

aggregated to create an ensemble model, referred to as the

MLPNN ensemble model, using the average ensembling

approach described in the Model Development sec-

tion. This MLPNN ensemble model was then used to

generate the landslide susceptibility map depicted in

Fig. 12, which is essentially a contour of ML model pre-

diction/output, ranging from 0 (non-debris flow locations)

to 1 (debris flow locations); hence, the model output can be

interpreted as landslide susceptibility. As shown in Fig. 12,

the predicted areas of high landslide susceptibility closely

align with the mapped locations on the eastern side of the

Fig. 12 Landslide susceptibility map for the study area based on the

MLPNN ensemble model from one spatial CV repetition

Table 4 Validation performance of the MLPNN model across ecoregions

Ecoregion Accuracy Precision Recall F1 AUC PI Optimal classification threshold

FRF 0.854 0.861 0.844 0.852 0.905 0.133 0.117

FS 0.818 0.835 0.793 0.813 0.878 0.222 0.454

CMEF 0.777 0.786 0.762 0.774 0.833 0.227 0.747

CSF 0.752 0.791 0.696 0.737 0.828 0.171 0.196

AZ 0.621 0.673 0.464 0.547 0.580 0.139 0.169

Avg 0.765 0.789 0.712 0.745 0.805 0.178 0.337

Random CV 0.867 0.873 0.859 0.866 0.932 0.194 0.486
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study area (i.e., FRF, FS, and CMEF ecoregions) where

mapped debris flows are clustered. However, despite lim-

ited numbers of mapped debris flow locations, the MLPNN

ensemble model predicted high landslide susceptibility for

the western part of the study area (i.e., CSF and AZ

ecoregions) with steep slopes and shallow soils. This

overprediction can be attributed to the model’s reliance on

dominant features such as slope, which were heavily

weighted due to their strong correlation with landslide

susceptibility in the training data. Notably, these western

regions are underrepresented in the training dataset, and

their environmental and geological distributions differ

significantly from those in the data-rich eastern regions.

Consequently, the model’s learning has skewed toward

leveraging slope as a primary predictor without adequate

contextual adaptation to the unique characteristics of the

less represented areas, leading to overprediction. More-

over, this overprediction of landslide susceptibility for the

western area contradicts our domain knowledge. The CSF

and AZ ecoregions, known for their rocky terrain (i.e.,

shallow soil with exposed rock), are typically associated

with low shallow landslide risk on soil-mantled landscapes.

The physics-based model, on the other hand, more accu-

rately reflects this domain knowledge (comparing the

landslide susceptibility of the western area in Figs. 7 and

12), using elevation-dependent sliding layer thickness (see

Eq. (4)) to generate input parameters for the infinite slope

model to calculate FoS values. It should be noted that the

alpine environments in the Colorado Front Range are

susceptible to debris flows; however, they are primarily

nurtured by erosive processes (e.g., [13, 25, 75]), a trig-

gering mechanism that is different from the landslide

inventory used in the present study.

Based on the results discussed in this section (i.e.,

Figs. 10, 11 and 12 and Table 4), it is evident that data-

driven ML models for LSM may generate predictions that

do not align with our domain knowledge and generalize

poorly to different ecoregions, hindering the scaling up of

pure data-driven ML models.

12 Performance of PGML model

12.1 Effect of physics-guided loss function

In this study, kphy in Eq. (14) is a critical parameter that

controls the influence of the physics-based loss term in

regularizing PGML models. Figure 13 illustrates the rela-

tionship between PI and classification scores obtained

through the spatial CV procedure, highlighting the impact

of kphy on the efficacy of the physics-guided loss function

for PGML models. Note that when kphy ¼ 0:0, the PGML

model is equivalent to the pure data-driven MLPNN model

and a larger kphy value imposes a more stringent regular-

ization from the physics-guided loss term. As shown in

Fig. 13, an increase in kphy leads to a marked reduction in

PI scores. This observed trend underscores the effective-

ness of the physics-based loss term in guiding model pre-

dictions to follow the expected monotonic relationship

where a higher calculated FoS value is associated with a

lower landslide susceptibility. The model classification

performance (i.e., Accuracy, F1, and AUC scores) also

improves with kphy, peaking at an optimum kphy value of

0.5. Beyond kphy ¼ 0:5, the influence of the physics-based

loss term becomes less pronounced, and the performance

starts resembling that of the physics-based model (i.e.,

approaching the average values in Table 3). This observed

effect can be attributed to the fact that the rule imposed by

the physics-based loss term, while generally beneficial,

may conflict with the actual class labels. For instance, some

locations labeled as debris flows may exhibit high FoS

values, which contradicts the constraints imposed by the

model. Therefore, finding an appropriate trade-off between

prediction accuracy and physics consistency is essential.

Fig. 13 Effect of physics-based loss function on PGML model performance
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Figure 14. presents scatter plots with marginal his-

tograms showing the predicted landslide susceptibility

based on the PGML model versus calculated FoS using the

physics-based model for validation ecoregions. To facili-

tate explanation, each subplot in Fig. 14 is divided into

four quadrants to demonstrate the physics consistency of

model predictions based on a default classification thresh-

old of 0.5 for the PGML model and 1.25 for the physics-

based model, respectively. These quadrants are: true posi-

tive (TP, landslide susceptibility[ 0.5 and FoS\ 1.25),

true negative (TN, landslide susceptibility\ 0.5 and

FoS[ 1.25), false positive (FP, landslide susceptibil-

ity[ 0.5 and FoS[ 1.25), and false negative (FN, land-

slide susceptibility\ 0.5 and FoS\ 1.25). As shown in

Fig. 14a, at kphy ¼ 0:0, the model without any constraints

can distinguish debris flow and non-debris flow samples.

However, the model predictions demonstrate significant

physics inconsistency, as a clear monotonic relationship

between the model predictions and FoS based on the

physics-based model is difficult to observe. This lack of

monotonicity violates our domain knowledge and indicates

a misalignment between the ML model’s predictions and

the physics-based expectations. For example, the model

incorrectly predicts low landslide susceptibilities for a

substantial number of debris flow samples in the validation

ecoregion that exhibit low FoS values (i.e., FN predic-

tions). Conversely, it assigns high landslide susceptibilities

to many non-debris flow samples in regions with compar-

atively high FoS values (i.e., FP predictions). By compar-

ing Fig. 14a with Fig. 14b and c, it is evident that

increasing the weight of kphy can significantly enhance the

monotonicity of model predictions relative to the calcu-

lated FoS, making the PGML model behavior align better

with our domain knowledge and reducing FP and FN

predictions with respect to the physics-based model. The

effects of kphy demonstrated in Figs. 13 and 14 suggest that

the PGML model can harness the complementary strength

Fig. 14 Effect of physics-based loss function on enforcing physics consistency: a kphy ¼ 0:0; b kphy ¼ 0:2; and c kphy ¼ 0:5
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of the ML and the physics-based models. This allows the

PGML model to excel in classification performance while

maintaining high physics consistency. In addition, the

discrepancies between ML and physics-based models

shown in Fig. 14 highlight a critical issue: data-driven

models can produce predictions that contradict established

domain knowledge. Therefore, it is essential to incorporate

an additional dimension, such as physics consistency

metrics, to evaluate model performance and guide the

training process effectively.

12.2 Performance of PGML model
with optimized kphy

Figure 15 presents ROC curves for the PGML model

(kphy ¼ 0:5) for each validation ecoregion based on the

spatial CV procedure with five repetitions. Lines in Fig. 15

represent mean values, while shaded areas represent stan-

dard deviations. As shown in Fig. 15, the PGML model

effectively distinguishes between debris flow and non-de-

bris flow classes within these ecoregions, with an average

AUC score of 0.872. In addition, the PGML model out-

performs both the physics-based model and the MLPNN

model (refer to Figs. 8 and 10) in terms of classification

performance. It also exhibits less fluctuation across spatial

CV repetitions and demonstrates enhanced stability across

different ecoregions.

Detailed classification scores can be found in Table 5,

which also includes PI scores, optimal thresholds, and

results based on the random CV procedure. By comparing

Table 5 with Table 4, it can be noted that the PGML model

showed significantly higher classification performance than

the MLPNN model based on spatial CV, albeit a slight

decrease in classification performance in terms of random

CV. However, regardless of different CV procedures, the

PGML model consistently presents a significant reduction

in PI scores compared to the MLPNN model. The perfor-

mance drop observed from the random CV procedure can

be attributed to the physics-based loss term, which acts as a

regularization factor. This term limits the model’s capacity

to fit the dataset by enforcing adherence to simple, domain

knowledge rules. This also implies that the random CV

procedure may yield misleading results when it comes to

geospatial analysis, such as LSM, where the assessment of

the generalization capability of the model is essential.

Moreover, Table 5 also shows the optimal threshold values

for the PGML model in various validation ecoregions,

which are consistently closer to 0.5 compared to those for

the MLPNN model in Table 4. This proximity to the

conventional threshold of 0.5 also indicates the PGML

model’s ability to generalize more effectively across

diverse ecoregions. The results in Fig. 15 and Table 5

suggest that the physics-based loss term performs effec-

tively in steering the model toward physics consistency and

reduces uncertainty in model predictions, which makes the

PGML model more generalizable and robust.

Similar to the MLPNN ensemble model, the PGML

ensemble model was created using the same average

ensembling approach by five candidate models produced

from one spatial CV repetition. This PGML ensemble

model was then used to generate the landslide suscepti-

bility map for the study area as shown in Fig. 16, which

compares the landslide susceptibility map for the study

area produced by the MLPNN ensemble and the PGML

ensemble model. In addition, Fig. 16 also presents the

Fig. 15 ROC curve for the PGML model based on spatial CV

Table 5 Performance of the PGML model (kphy ¼ 0:5) based on the cross-validation procedure

Ecoregion Accuracy Precision Recall F1 AUC PI Optimal classification threshold

FRF 0.847 0.861 0.828 0.844 0.923 0.038 0.160

FS 0.849 0.856 0.840 0.847 0.912 0.049 0.517

CMEF 0.819 0.821 0.817 0.819 0.873 0.054 0.764

CSF 0.763 0.791 0.719 0.752 0.834 0.044 0.201

AZ 0.782 0.843 0.693 0.760 0.819 0.039 0.174

Avg 0.812 0.834 0.779 0.804 0.872 0.045 0.363

Random CV 0.855 0.870 0.837 0.853 0.905 0.042 0.504
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standard deviation of model predictions for both the PGML

and the MLPNN ensemble models. As shown in Fig. 16a

and b, the MLPNN model overestimated landslide sus-

ceptibility for the western part of the study area encom-

passing the CSF and AZ ecoregions, and its predictions

also reveal substantial uncertainties for these two ecore-

gions (note the high standard deviation in Fig. 16b). This

raises concerns about the reliance on pure data-driven

models (e.g., the MLPNN model) for predicting landslide

susceptibility in varied environments with limited landslide

inventory. In contrast, Fig. 16c and d shows that the PGML

model considerably reduced overpredictions in the western

part of the study area and significantly reduced prediction

uncertainties across the entire study area (note the low

standard deviation in Fig. 16d), which highlights the value

of incorporating geotechnical domain knowledge via the

physics-guide loss function in facilitating regional-scale

LSM using PGML.

12.3 Generalization capability to heterogeneous
ecoregions

Generalization capability is essential for LSM using ML

models. This section adopted a modified spatial CV pro-

cedure to further assess the generalization capability of the

PGML model across diverse ecoregions. Unlike the spatial

CV procedure illustrated in Fig. 6, the training phase for

the modified spatial CV procedure was executed solely on

one ecoregion at a time, and the model validation was

independently performed on the remaining four ecoregions.

This configuration allows each model trained on a single

ecoregion to be rigorously tested in other ecoregions with

different environments, thereby providing a more com-

prehensive analysis of its generalization capabilities. It

should be noted that this modified spatial CV procedure is

only used in this section for model performance evaluation

and is not suitable for generating landslide susceptibility

maps. Using the modified spatial CV procedure, Fig. 17

compares the generalization performance between MLPNN

and PGML models trained solely on the FRF ecoregion.

For validation within the FRF ecoregion, the performance

was evaluated using a fivefold stratified random CV, which

should adequately evaluate the model’s performance as

data distribution within a single ecoregion is relatively

uniform. For validation across different ecoregions, the

outputs from these five models were aggregated into an

average ensemble model. This ensemble model was sub-

sequently utilized to assess the generalization capability

across the remaining four ecoregions. As shown in Fig. 17,

while both MLPNN and PGML models perform optimally

in their training ecoregion (i.e., FRF), their performance

deteriorates in other ecoregions, particularly as validation

ecoregions become increasingly distant from the training

ecoregion (i.e., the ecoregions are listed in ascending order

Fig. 16 Comparison of landslide susceptibility predicted by the MLPNN model and the PGML model: a mean value of MLPNN ensemble model

outputs; b std. of MLPNN ensemble model outputs; c mean value of PGML ensemble model outputs; and d std. value of PGML ensemble model

outputs (kphy ¼ 0:5 was used for the PGML model)
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in terms of elevation range in Fig. 17). However, the

PGML model showed significantly less performance

deterioration in all the validation ecoregions than the

MLPNN models and consistently exhibited significantly

low PI scores. Table 6 compares the model generalization

performance between the MLPNN and the PGML models

based on the modified spatial CV procedure. As shown in

Table 6, the PGML model showed substantial improve-

ments in classification performance and physics consis-

tency compared to the MLPNN model. Based on the results

presented in this section, it can be concluded that the

PGML model with integrated domain knowledge can

improve performance in landslide susceptibility prediction

compared to the MLPNN model with better generalization

capabilities across diverse ecoregions. This is validated by

both the spatial CV and modified spatial CV procedures, in

which less fluctuation, fewer overpredictions, and reduced

prediction uncertainties can be observed for the PGML

model compared to the MLPNN model.

13 Discussion and future work

This study confronts two prevalent challenges in LSM: the

scarcity of data and variable conditions across diverse

hillslope environments, alongside the tendency of flexible

ML models to yield predictions that deviate from estab-

lished domain knowledge in underrepresented areas. The

Fig. 17 Comparison of generalization performance between MLPNN and PGML models across different ecoregions: a accuracy; b F1; c AUC;
and d PI (kphy ¼ 0:5 was used for the PGML model)

Table 6 Summary of generalization performance of ML models across different ecoregions (kphy ¼ 0:5 was used for the PGML model)

Ecoregions Accuracy F1 AUC PI

MLPNN PGML Diff MLPNN PGML Diff MLPNN PGML Diff MLPNN PGML Diff

FRF 0.811 0.838 3.4% 0.807 0.834 3.4% 0.856 0.884 3.3% 0.098 0.051 - 47.8%

FS 0.767 0.819 6.7% 0.772 0.821 6.4% 0.815 0.874 7.2% 0.160 0.073 - 54.5%

CMEF 0.660 0.754 14.3% 0.639 0.754 18.0% 0.700 0.806 15.2% 0.200 0.104 - 48.1%

CSF 0.678 0.752 11.0% 0.654 0.744 13.7% 0.700 0.813 16.1% 0.138 0.081 - 41.5%

AZ 0.621 0.733 18.1% 0.526 0.727 38.4% 0.638 0.767 20.2% 0.094 0.080 - 15.4%

Avg 0.707 0.779 10.7% 0.679 0.776 16.0% 0.742 0.829 12.4% 0.138 0.078 - 41.5%
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proposed PGML framework integrates geotechnical

domain knowledge into ML paradigms, ensuring predic-

tions are both empirically grounded and theoretically

consistent.

A key innovation of this approach is the introduction of

performance metrics based on physics consistency, which

complements the commonly used data science model

evaluation metrics and helps quantify the extent to which

model predictions adhere to physical principles, providing

an essential measure of reliability in geoscientific appli-

cations. Additionally, a cross-validation strategy that

accounts for the inherent structural dependencies within the

data was employed, demonstrating its effectiveness in

enhancing model performance assessment at a regional

scale. The performance of the proposed PGML framework

was evaluated through a case study in the Colorado Front

Range, employing a well-documented debris flow inven-

tory to compare its effectiveness with both a physics-based

infinite slope model and a purely data-driven MLPNN

model.

The proposed PGML framework is not only pivotal for

LSM but also offers a generic solution applicable to vari-

ous challenges within geotechnical engineering and geo-

science. For example, it can be extended to issues

involving data with temporal, spatial, hierarchical, or

phylogenetic structures, such as hydrological modeling,

soil erosion modeling, etc. These applications, like LSM,

require predictions that align closely with domain knowl-

edge to ensure the validity and applicability of outcomes.

By enhancing the integration and utility of domain-specific

knowledge, the proposed framework can substantially

improve the accuracy and generalizability of predictive

models across extensive geoscientific domains.

It should be noted that the present study conducted the

physics-based analysis using detailed landslide reconnais-

sance and previous studies that reveal the general envi-

ronmental conditions for the study area. Such information

may not be readily available for LSM in other regions.

Therefore, exploring various strategies to incorporate

geotechnical domain knowledge into ML models and

examining the effects of sample size warrant further

investigation in future research. For example, innovative

approaches such as differentiable modeling [83], which

aims to unify physics and ML by embedding learnable

parameters within process-based modeling, offer promising

pathways for enhancing LSM frameworks. Furthermore,

the use of unsupervised pretext task learning [35, 89] might

be a viable approach to develop foundation models for

geospatial features, which can then be used for downstream

tasks in landslide hazard modeling.

14 Conclusion

The findings from this study underscore the effectiveness

of the proposed PGML framework in enhancing model

performance and reliability. Key conclusions drawn from

this study can be summarized as follows:

1. The random CV approach may produce overly opti-

mistic and sometimes misleading results that may not

reflect the actual generalization performance of the

model, and spatial CV is a more suitable approach for

geospatial applications.

2. By using existing domain knowledge in geotechnical

engineering to identify appropriate input parameters

and models, the physics-based infinite slope model can

effectively predict regional-scale landslide

susceptibility.

3. The pure data-driven model (i.e., MLPNN) model

generally performs poorly on unseen ecoregions and

exhibits significant uncertainties in model predictions

for regions lacking sufficient debris flow inventory.

4. By integrating geotechnical domain knowledge into

pure data-driven models, the PGML model exhibits

significant improvements in generalization perfor-

mance, better physics consistency, and reduced

uncertainties.
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