

An evaluation of six techniques for measuring porosity of ribbons produced by roller compaction

*Yiwang Guo¹, Lizbeth Martinez², Arnesh Palanisamy², Bindhu Gururajan^{2,3}
and Changquan Calvin Sun^{1,*}*

¹. *Department of pharmaceutics, College of pharmacy, University of Minnesota, 308 Harvard St. S.E. Minneapolis, MN 55455*

². *Novartis Pharma AG, Novartis Campus, Basel, 4056, Switzerland*

³. *School of Engineering, University of Edinburgh, Edinburgh, EH8 9YL, United Kingdom*

**Corresponding author*

Changquan Calvin Sun, Ph.D.

9-127B Weaver-Densford Hall

308 Harvard Street S.E.

Minneapolis, MN 55455

Email: sunx0053@umn.edu

Tel: 612-624-3722

Fax: 612-626-212

1 **Abstract**

2 Ribbon porosity is a critical parameter to monitor in the roller compaction process. In this
3 study, six techniques for measuring the porosity of solid compacts, i.e., manually by caliper
4 (Caliper), X-ray microtomography (μ CT), off-line near-infrared spectroscopy (NIR), laser
5 triangulation (Laser), mercury intrusion porosimetry (MIP), and GeoPyc, were compared using a
6 set of rectangular ribblets of microcrystalline cellulose (MCC). These ribblets, which were
7 compressed at 8 - 130 MPa on a compaction simulator, exhibited porosities over the range of
8 0.09 – 0.52. Subsequently, porosities of MCC ribbons made on a roller compactor at specific roll
9 forces of 1.8 kN/cm and 8.8 kN/cm were measured. The Caliper method is convenient for samples
10 with a simple shape but not suitable for real ribbons. The accuracy of GeoPyc measurement
11 relies on accurate conversion factor (unit in cm^3/mm), sample shape and size, and sufficient
12 sample volume percentage in the medium. The μ CT data is more accurate at lower porosities (<
13 0.2), while the MIP data is more accurate at higher porosities (> 0.4). The Laser method has good
14 accuracy and is more reproducible compared to other methods in the ribblets measurement. The
15 NIR method is fast, which makes it suitable for in-line monitoring of changes in ribbon quality, but
16 porosity quantification is sensitive to sample presentation, such as surface curvature and
17 roughness. These insights could assist in the choice of the most appropriate method for
18 monitoring ribbon porosity to guide the development and optimization of a roller compaction
19 process for a given formulation.

20

21 **Keywords:** roller compaction, ribbon density, porosity, Geopyc, laser triangulation, X-ray
22 microtomography, mercury intrusion porosimetry, near-infrared spectroscopy.

23 **1. Introduction**

24 Ribbon porosity, ε , represents the fraction of voids in a specimen. It is a critical quality
25 attribute (CQA) for ribbons produced in roller compaction (RC) because it directly affects the
26 subsequent granule and tablet properties (Yu et al., 2014). Since ε is calculated from the
27 knowledge of a solid sample density (ρ_{bulk}) and true density (ρ_{true}) using Eq. (1), ribbon density
28 monitoring and control is an important consideration during scale-up (Boersen et al., 2016),
29 processes transfer (Souhi et al., 2015), and modeling and simulations of a RC process (Nesarikar
30 et al., 2012; Reimer and Kleinebudde, 2019).

31

32
$$\varepsilon = 1 - \frac{\rho_{bulk}}{\rho_{true}} \quad (1)$$

33 Where ρ_{bulk}/ρ_{true} is the solid fraction of the solid compacts, in which true density of the
34 material, ρ_{true} , may be determined using different methods (Richards and Lindley, 2006), including
35 calculation from single crystal structures (Elsergany et al., 2023), helium pycnometry (Chang et
36 al., 2019), buoyancy method (Goldenberg et al., 2023), the Sun method (Sun, 2004), and in-die
37 stress transmission method (Elsergany et al., 2023). The density of a solid sample, ρ_{bulk} , is
38 calculated from sample mass, m , and envelop volume, V , (Eq. 2).

39
$$\rho_{bulk} = \frac{m}{V} \quad (2)$$

40 Since m can be accurately measured using a suitable analytical balance, ρ_{bulk} can be
41 determined if V is known. Currently, several techniques are available for determining the V of
42 samples, such as GeoPyc (Zinchuk et al., 2004), laser triangulation (Laser) (Lillotte et al., 2021),
43 or caliper for samples with a simple geometry, e.g., rectangular (Keizer and Kleinebudde, 2020)
44 or cylindrical tablets (Osei-Yeboah and Sun, 2015). Porosity can also be directly measured by
45 mercury intrusion porosimetry (Khorasani et al., 2015a; Lu et al., 2000) or predicted from a
46 measurable physical property based on a known calibration curve with density. The latter includes
47 X-ray microtomography (μ CT) (Mahmah et al., 2019; Miguélez-Morán et al., 2009), near-infrared
48 spectroscopy (NIR) (Crowley et al., 2017a; Khorasani et al., 2015b; Lim et al., 2011), and terahertz
49 spectroscopy (Bawuah et al., 2020; Zhang et al., 2016).

50 Each of these methods has its advantages and limitations in terms of accuracy, precision,
51 sensitivity, measurement speed, ease of operation, sample preparation and amount, and
52 capability for mapping. Thus, a suitable measurement method needs to be judicially selected
53 according to application scenarios, such as at -, on -, or in - line process monitoring to overcome
54 limitations of end product testing and to guide continuous manufacturing, or mapping to
55 understand the density/porosity distribution inside a ribbon. In this study, six commonly used

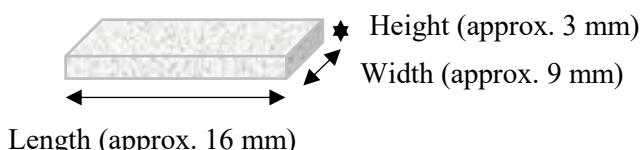
56 techniques for measuring porosity of ribbons in the context of dry granulation were compared,
57 including Caliper, GeoPyc, Laser, μ CT, MIP, and off-line NIR methods, and both simulated ribbons
58 (ribblets, a combination of the words ribbon and tablet) (Keizer, 2021)) from a compaction
59 simulator and ribbons prepared using a roller compactor were used. To our best knowledge, there
60 are similar studies, however with fewer number of techniques, such as comparing a laser
61 triangulation technique to an oil intrusion method (Allesø et al., 2016), a laser triangulation
62 technique to GeoPyc method and a manual caliper method (Iyer et al., 2014), terahertz imaging
63 method to a section method where small pieces cut from a ribbon by a bandsaw was manually
64 measured by a caliper (Zhang et al., 2016), and μ CT method to laser triangulation technique and
65 GeoPyc method (Lillotte et al., 2021). Along with these studies, this work is aimed **at** better
66 **understandinging** the pros and cons of these methods, and facilitates the selection of the most
67 appropriate technique for ribbon porosity measurement to guide RC process development.

68

69 **2. Materials and Methods**

70 **2.1. Materials**

71 Microcrystalline cellulose (MCC, Avicel 105, International Flavors & Fragrances,
72 Philadelphia, PA) was used as received.


73

74 **2.2. Methods**

75 **2.2.1. Sample preparation**

76 Ribblets were prepared by a uniaxial compaction simulator (Styl'One Evolution,
77 MedelPharm, Beynost, France), using rectangular shaped flat faced tooling (16 x 9 mm). Ribblets
78 were compressed at seven compaction pressures in the range of 8 - 130 MPa under a force
79 control mode, resulting porosities covering a range of 0.09 - 0.52. The thickness of ribbons was
80 maintained at ~3 mm by adjusting the weight of powder being compacted, i.e., ribblet dimensions
81 were maintained at approximately 16 mm x 9 mm x 3 mm (Figure 1).

82

83

84 **Figure 1.** Schematic of a ribblet made by compaction simulator.

85 Real ribbons were prepared by a pilot-scale roller compactor (Alexanderwerk WP 120,
86 Remscheid, Germany). A vertical feeding hopper discharged powder to a horizontal single screw

87 feeding system, which conveyed the powder forward into the compaction zone. The two counter-
88 rotating rolls (knurled surface for upper roll and smooth surface for lower roll) were aligned
89 vertically. The roll width (40 mm) and roll diameter (120 mm), roll speed (3.4 rpm), and roll gap
90 (2.2 cm) were kept unchanged during the process. Two roll forces were applied to prepare ribbons
91 with different porosities (~0.36 at 1.8 kN/cm and ~0.09 at 8.8 kN/cm). Ribbons were collected
92 immediately after exiting the rolls after the machine reached a steady state.

93

94 **2.2.2. Porosity measurement**

95 Samples, either ribblets or ribbons, were stored for at least 48 hrs before porosity
96 measurement. Six porosity measurement techniques were evaluated, among which, MIP
97 measures sample porosity directly; NIR and μ CT determine sample porosity through absorption
98 spectra and gray value, respectively; while the Caliper, GeoPyc and Laser methods measure
99 sample envelop density (ρ_{bulk}), which was used to calculate porosity using Eq. (1) with the true
100 density value of 1.46 g/cm³ for MCC (Sun, 2005).

101

102 **2.2.3. Caliper method**

103 A caliper (iGaging iP54 Fastener Cal Digital Calipers, CA, USA) with resolution of 0.01
104 mm was used to measure the length, width, and thickness of ribblets, which were used to calculate
105 sample volume, V , and ρ_{bulk} by Eq. (2). The reported porosity at each pressure was a mean of the
106 porosity from three independent samples. The Caliper method was not used to measure the
107 porosity of real ribbons due to their bent shape and knurled surface pattern.

108

109 **2.2.4. GeoPyc method**

110 An envelope density analyzer (GeoPyc 1365, Micromeritics Inc., Norcross, GA) was used
111 to measure envelop volume of ribblets or ribbons. This technique employs a dry powder medium
112 (DryFlo), composed of micro-sized, nonhazardous, rigid spheres that do not fill sample's external
113 or internal pores (Micromeritics, 2013). The GeoPyc measures sample volume change, before
114 and after introducing a sample into the DryFlo medium. This was achieved by measuring the
115 displacement of the piston in a glass cylinder with a constant inner diameter. For reliable results,
116 about 4 g of sample (corresponding to 9 ribblets and ~25% of the final volume) were placed inside
117 a bed of DryFlo in a glass cylindrical chamber with a diameter of 25.4 mm. The chamber was
118 rotated and consolidated under a force of 51 N, and results were generated after 10 consecutive
119 measurement cycles. The increase in volume over the sample-free DryFlo measured under the
120 same condition was taken as sample volume. For each set of samples, measured volume was

121 used to calculate porosity ($n = 3$). Mean and standard deviation of measured porosity were
122 calculated.

123

124 **2.2.5. Laser triangulation technique (Laser)**

125 A solid fraction analyzer (Solid Fraction Rapid Analyzer, V2, Solid Fraction Measurement
126 Systems, Centerbrook, CT) was used to measure samples envelop volume based on laser
127 triangulation technique, in which, a sample with certain size (Table 1) was scanned between dual
128 opposed line-scan laser beams when moved on a computer-controlled translation stage to obtain
129 sample volume. The entire volume of each sample was calculated by integrating thickness
130 measurements over the sample surface on a 40 μm by 14 μm grid. Sample was then transferred
131 to an internally equipped Mettler balance to determine sample mass. Based on the true density
132 of the material input into the system, the solid fraction of the compacts was automatically
133 calculated and displayed on the screen after each measurement (SolidFraction). Mean and
134 standard deviation of porosity ($= 1 - \text{solid fraction}$) were calculated from three independent
135 samples ($n = 3$).

136

137 **2.2.6. X-ray microtomography (μCT)**

138 Ribblets and ribbons were evaluated using a μCT machine (XT H 225, Nikon Metrology
139 Inc., Brighton, MI, USA). The following parameters were used: 110 KV, 90A, 708 ms of exposure,
140 720 projections, 4 frames per projection, and a voxel size of 32 μm . The total image acquisition
141 time was approximately 34 min for each run. 2D images were processed to reconstruct a three-
142 dimensional image of the sample by CT Pro software (Nikon Metrology, Belgium). Visualization
143 and analysis of the reconstructed 3D images was performed using the VG Studio 3.4 software
144 (Volume Graphics GmbH, Germany). In each measurement, several pieces of ribblets or ribbons
145 were stacked and scanned simultaneously. However, each sample was separately analyzed by
146 selecting appropriate region of interest to determine porosity based on a previously established
147 calibration curve (Figure S3). Three independent samples from each sample set were measured
148 and the mean and standard deviation were calculated ($n = 3$).

149 The μCT method is a non-destructive method for measuring sample density, based on the
150 attenuation of X-rays that pass through an object, i.e., intensity of the incident X-ray beam
151 diminishes according to

152
$$I_x = I_0 e^{-\mu x} \quad \text{Eq. (3)}$$

153 Where x is the distance of object to the source, I_x is the intensity of the beam after passing
154 through the object at distance x , and μ is the linear attenuation coefficient, which is the product of

155 mass attenuation coefficient and sample density (Pawar, 2011). For a given material, the mass
156 attenuation coefficient is constant, thus μ is linearly dependent on the sample density. The
157 measure intensity I_x is a function of sample density, which is estimated by assuming a linear
158 relationship between density and the degree of X-ray attenuation (Akseli et al., 2011; Sun et al.,
159 2018), which is represented by gray value of the region of interest (Athanasios et al., 2017). In
160 this study, the linear relationship (Figure S3) between gray value and sample density was first
161 established by a set of cylindrical MCC tablets prepared under a set of pressures. Porosity of the
162 tablets was obtained through the Caliper method. During the image analysis, the entire
163 tablet/ribblet was selected as the region of interest (ROI). Therefore, the measured porosity by
164 μ CT method in this work is the average value.

165

166 **2.2.7. Mercury intrusion porosimetry (MIP)**

167 A mercury intrusion pore size analyzer (Poremaster 60 GT, Anton Paar Switzerland AG)
168 was used to measure ribbon porosity. A ribblet or ribbon sample was degassed under a 7 Pa
169 vacuum before being immersed in mercury, which was subject to increasing pressures. The
170 volume of mercury intruding into the sample as a function of pressure was measured. Pore size
171 corresponding to each pressure was calculated according to Washburn's equation (Washburn,
172 1921). The total mercury intrusion volume above pore diameter of 0.003 μ m (corresponding to an
173 intrusion pressure of 400 MPa) was taken as porosity. Porosity values of two separate samples
174 from each set were averaged ($n = 2$). Unlike the four previously mentioned methods, MIP
175 measures samples porosity directly. In this measurement, mercury intrudes into voids under
176 pressure, with the pressure inversely proportional to the size of the pores (Berodier et al., 2016).
177 Consequently, the volume of pores with a certain size could be estimated by measuring the
178 additional volume of mercury intruding into a sample upon applying a higher pressure.

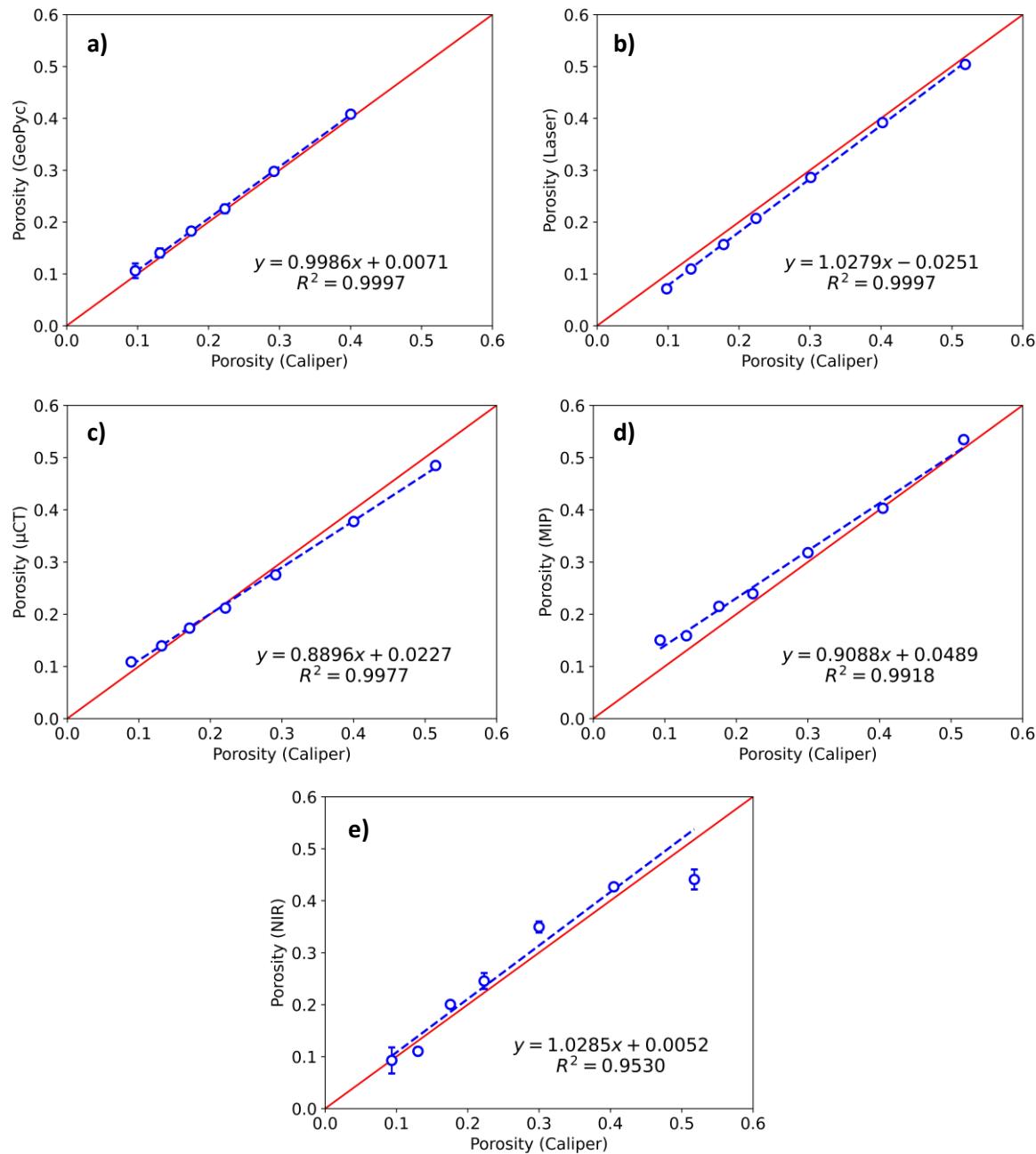
179

180 **2.2.8. Near infrared spectroscopy (NIR)**

181 Samples were placed in specially designed and 3D printed sample holders for collecting
182 FT-NIR spectra in diffuse reflectance mode using an off-line MPA I spectrometer (Bruker Optik
183 GmbH, Ettlingen Germany). Sample positioning for ribblets was relatively easy, since the surfaces
184 of the ribblets were flat. However, it was difficult for real ribbons since they were slightly curved
185 and one side had knurled pattern. To ensure good contact with the measuring window, only the
186 flat side of the ribbon was evaluated. Samples were scanned over a spectral range of 12,000 to
187 4,000 cm^{-1} with a 16 cm^{-1} spectral resolution. Acquired spectra were analyzed using the software
188 OPUS (Bruker Optik GmbH, Ettlingen Germany) and the average of 32 scans was reported. The

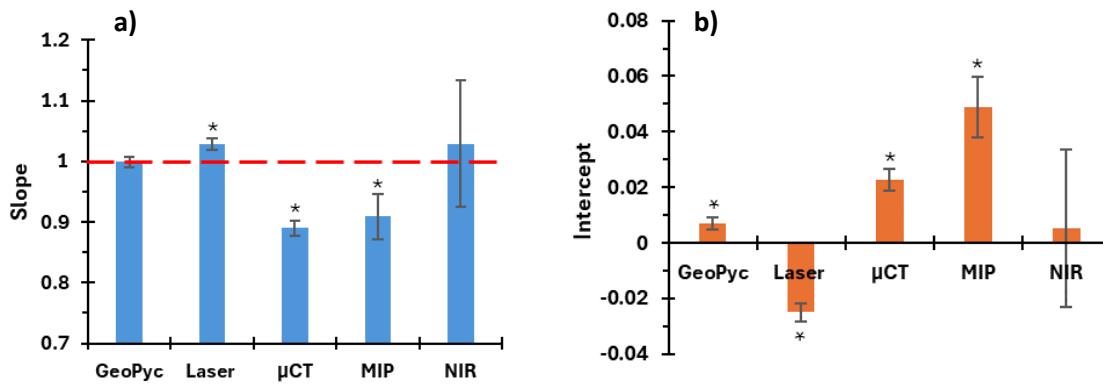
189 sampling spot had a diameter of 4.5 mm, corresponding to approximately an area of 16 mm².
190 Each sample (n = 1) was scanned 6 times at the center with slight sample repositioning in between
191 each measurement. Porosity from each scan was determined from a previously established
192 calibration curve (Figure S5). The mean and standard deviation of each sample were calculated
193 from the 6 measurements.

194 Since the NIR absorption of a material is affected by the density of the material being
195 analyzed, it offers the potential of measuring the density/porosity of a solid compact. A higher NIR
196 absorbance corresponds to a higher sample density and a lower porosity, following a linear
197 relationship (Donoso et al., 2003; Khorasani et al., 2016). Similar to μ CT, the NIR method requires
198 the construction of a calibration curve (Figure S5). This was done by using ribblets (n=2 at each
199 pressure) with a range of porosities measured by the Caliper method. Partial least squares (PLS)
200 regression model was developed using spectral data in the 9403.8 cm⁻¹ - 5538.9 cm⁻¹ wavelength
201 region. The accuracy of the PLS model was verified using a new set of ribblets.


202

203 **3. Results and discussion**

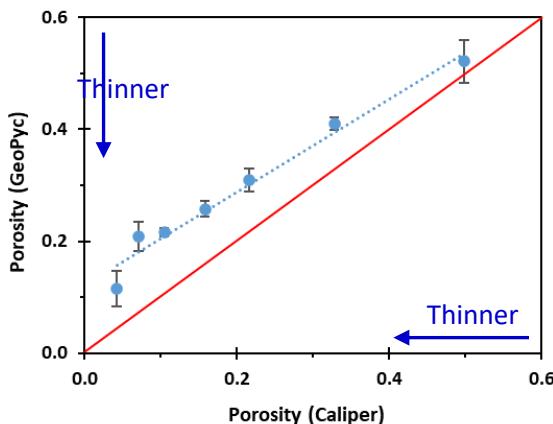
204 **3.1. Ribblets from the compaction simulator**


205 The initial comparison among the six methods was carried out using rectangular ribblets
206 (Figure 1). Given that the volume of rectangular-shaped ribblets can be reliably determined by a
207 caliper, the Caliper method was used as a reference for evaluating the accuracy of five other
208 methods, i.e., GeoPyc, Laser, μ CT, MIP, and off-line NIR methods (Figure 2).

209 Figure 2 summarizes orthogonal distance regression (ODR) analysis performed for data
210 from each technique using SciPy (SciPy v1.6.2, Python v3.12.4). Standard deviations in both x
211 and y were incorporated as weights for fitting except MIP, where standard deviations were not
212 calculated since measurements were only duplicated (n = 2). The results indicate that all five
213 methods led to porosity results well correlated with that from the Caliper method (Figure 2 a-e,
214 Table S1). Specifically, estimates of the regressions (Figure 3) showed that GeoPyc provided both

216 **Figure 2.** Comparison of five porosity measurement techniques to the Caliper method a) GeoPyc
 217 method, ribblets prepared at ~8 MPa were excluded from this test due to its low mechanical
 218 strength; b) Laser method; c) μ CT; d) MIP, and e) NIR method. Except for MIP, error bars in both
 219 x and y directions are presented but some are hidden by the symbols. The solid red line in each
 220 figure is the line of identity.

222 good accuracy ($p > 0.05$ for slope = 1 and intercept close to 0) and precision (small error bar for
 223 both slope and intercept), indicating excellent agreement with that of the Caliper method (Figure
 224 2a). The off-line NIR had large error bars for both slope and intercept. Therefore, despite a lack
 225 of statistically significant difference, its accuracy and precision are poorer. The other three
 226 methods showed significant differences to Caliper results for both slope and intercept. The Laser
 227 method demonstrated slightly lower accuracy ($p < 0.05$ for both slope and intercept), but good
 228 precision (small error bars for both slope and intercept). Both μ CT and MIP had relatively lower
 229 accuracy, but μ CT exhibited slightly better precision (smaller error bars) than MIP.



230
 231 **Figure 3.** Results from the ODR analysis for five different measurement techniques, a) slope of
 232 the equation, b) intercept of the equation. Asterisk (*) indicates significant difference ($p < 0.05$)
 233 from 1 for the slope and from 0 for the intercept.

234
 235 The accuracy of GeoPyc measurement also depends on three factors: 1) correct
 236 **conversion** factor (in cm^3/mm) that converts a change in displacement of the piston position (in
 237 mm) to a change in powder volume (in cm^3), 2) sample shape and size, and 3) sufficient sample
 238 volume percentage in the final powder bed, where $\geq 25\%$ of the final bed volume was
 239 recommended in the instrument manual (Micromeritics, 2013).

240 A theoretical value for the conversion factor can be calculated from the diameter of the
 241 chamber, which is $0.5065 \text{ cm}^3/\text{mm}$ for a 25.4 mm diameter chamber. However, calibration for each
 242 measurement chamber is strongly recommended to ensure accuracy of measured values
 243 (Micromeritics, 2013). A default value of $0.5153 \text{ cm}^3/\text{mm}$ for the test chamber used in this work
 244 was provided by the manufacturer. However, calibration performed using ribblets prepared at
 245 $\sim 130 \text{ MPa}$ yielded a conversion factor of $0.5067 \text{ cm}^3/\text{mm}$, which is close to the theoretical value
 246 but lower than the default value. If the default value ($0.5153 \text{ cm}^3/\text{mm}$) **were** used, the measured
 247 volume by GeoPyc would result in a higher porosity (Figure S1). The impact of sample shape

248 and size on measured porosity is clearly seen in Figure 4, where cylindrical tablets with different
 249 thicknesses prepared under different pressures were used. Here, porosity of all cylindrical tablets
 250 measured by GeoPyc is higher than that by the Caliper method. In addition, the deviation tends
 251 to be larger for thinner tablets (i.e., higher surface area/volume ratio). Furthermore, even when
 252 an accurate **conversion** factor is used and sample size and shape have been kept unchanged,
 253 precision of measured porosity by GeoPyc is still affected by total sample volume. For example,
 254 when a single ribblet with a porosity of ~0.09 by Caliper method and volume ~4% of the final bed
 255 volume was measured by GeoPyc, RSD of 9 consecutive porosity measurements was 26.6%.
 256 However, RSD was reduced to 9.7% when the total sample volume was 20-25% of the final
 257 powder bed volume (Figure S2). **Hence, it is critical to maintain sample volume to be sufficiently**
 258 **large, as suggested by the instrument manufacturer (Micromeritics, 2013), to ensure more precise**
 259 **and accurate ribbon porosity results by GeoPyc.**

260
 261 **Figure 4.** Porosity of cylindrical tablets (diameter of 11.28 mm) with the same weight but different
 262 thicknesses (2.5 - 4.7 mm) measured by GeoPyc method (conversion factor is 0.5067 cm³/mm)
 263 and the Caliper method. The red **solid** line is the line of identity.

264
 265 In summary, the good agreement between the GeoPyc measurement and the Caliper
 266 method in this portion of the study (Figures 2a & 3) is attributed to a) the use of an accurate
 267 **conversation** factor, determined using samples with nearly identical dimensions and physical
 268 presentations (ribblets prepared at ~130 MPa) to the testing samples, and b) the use of sufficient
 269 sample to attain 20-25% volume of the final powder bed.

270
 271 Compared to the GeoPyc method, the Laser method directly measures the sample
 272 envelop volume through the scanning of sample's contour by the lasers (Iyer et al., 2014; Lillotte

273 et al., 2021; SolidFraction). The Laser method yielded porosity values slightly lower than that by
274 the Caliper method (Figure 2b). The absolute difference is greater for ribblets compressed at a
275 higher pressure. This may be due to the tablet flashing phenomenon (Paul et al., 2017) that leads
276 to overestimated porosity by the Caliper method, which is to a higher extent for tablets
277 compressed at a higher pressure. The precision of the Laser method is good, as suggested by
278 the small error bars for both the slope and intercept of the ORD regression (Figure 3) and the
279 small standard error for each measurement (Table S1). This observation is consistent with the
280 observed in a previous study (Lillotte et al., 2021).

281 One advantage of the Laser method is its fast measuring speed, which is only 15 s from
282 loading sample to reporting the results by the instrument (SolidFraction) (Table 1). Moreover,
283 compared to the Caliper method, the Laser method is adaptable for samples with patterned and
284 curved surfaces, typically encountered in ribbons manufactured during RC. These make it a
285 possible process analytical technology (PAT) tool to monitor stability of RC process or guide RC
286 process optimization (Lillotte et al., 2021). It is worth noting that as an envelope volume
287 measurement technique, e.g., the Laser method and the GeoPyc method cannot detect internal
288 cracks or distribution of pores within a sample. This limitation should be taken into account when
289 measuring samples with such internal features (Lillotte et al., 2021).

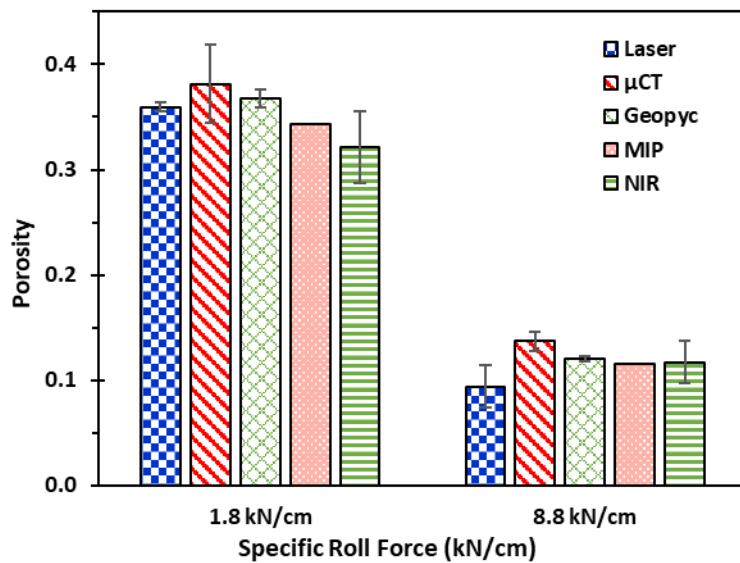
290 Compared to the envelop volume measurement methods, such as the Caliper, GeoPyc,
291 and Laser methods, the μ CT can be used to map the density distribution within a sample and
292 internal cracks and other defects in a sample can be excluded by the analyst (Lillotte et al., 2021).
293 Thus, it exhibits distinct advantages when density distribution is not uniform, which is common in
294 real ribbons, and when sample is in poor quality. In the current study, μ CT method generated
295 porosity values nearly identical to that by the Caliper method when porosity of ribblets was < 0.2 .
296 However, μ CT porosity values were lower than the Caliper method for more porous ribblets
297 (Figure 2c).

298 Porosity values from the MIP method also reasonably matched well with those by the
299 Caliper method (Figure 2d). In contrast to the trend observed in the μ CT data, deviation from the
300 caliper data is greater with decreasing ribblet porosity. This may be attributed to the fact that the
301 volume of pores smaller than 0.003 μ m diameter were ignored in the method. Errors caused by
302 this approximation had no detectable impact on measured values when porosity was > 0.4 , but
303 were more significant when porosity was < 0.4 . An advantage of the MIP method is the ability to
304 profile pore size distribution, in addition to the overall porosity. Although the MIP is effective in
305 characterizing porous materials, good laboratory practices must be implemented to minimize any
306 potential health risks by exposure to mercury.

307 The NIR method yielded reasonable predictions of porosity, which linearly correlates with
308 porosity measured by the Caliper method (Figure 2e). However, the correlation with the Caliper
309 method is weaker ($R^2 = 0.9530$) compared to other four methods ($R^2 = 0.99$).

310

311 **3.2. Ribbons from roller compactor**


312 Real ribbons are significantly different from the ribblets in terms of the physical presence.
313 Real MCC ribbons are irregular in shape, and slightly curved. The knurled pattern, uneven ribbon
314 thickness, and occasional defects due to cracks and ribbon splitting make the Caliper method
315 unfit for measuring ribbon porosity. In addition, the density distribution was not uniform for ribbons
316 prepared by RC. For example, ribbons prepared at 8.8 kN/cm exhibited clear non-uniform density
317 distribution, with center portion in darker color (“burnt”), indicating a higher density (Figure S4a).

318 NIR has been extensively studied as an off-line or in-line tool to determine or monitor the
319 porosity of ribbons prepared by RC (Acevedo et al., 2012; Khorasani et al., 2015b). While
320 performing well for intact ribbons with a smooth surface, the NIR technique encounters problems
321 with measuring porosity of broken, split, or curved ribbons. However, these practical issues facing
322 NIR technique for ribbon porosity measurement are rarely investigated (Crowley et al., 2017b).
323 Assessing the performance of the NIR method is further complicated by the fact that NIR only
324 measures local porosity at the region covered by the laser spot. If needed, this issue could be
325 mitigated by using multiple in-line NIR probes or measuring several spots in a sample using an
326 off-line NIR method.

327 Given the limitations with the Caliper method, only the Laser, μ CT, GeoPyc, MIP and NIR
328 methods were compared for their performance in measuring porosity of real ribbons prepared at
329 two specific roll forces (1.8 kN/cm and 8.8 kN/cm). In the ribblet study, although GeoPyc provides
330 highest accuracy because of the strictly controlled dimensions and physical presences of the
331 calibration sample and the testing samples, the accuracy of the GeoPyc results is expected to
332 decrease when measuring irregular RC ribbon pieces. Ribblet porosity values measured by the
333 Laser method were close to the Caliper method while exhibiting higher precision than other
334 methods. Therefore, the laser porosity values were used as a reference for assessing the
335 performance of other methods in the RC ribbon measurements.

336 In the RC ribbon study, the conversion factor of $0.5067 \text{ cm}^3/\text{mm}$ obtained from the ribblets
337 ($\sim 16 \text{ mm} \times 9 \text{ mm} \times 3 \text{ mm}$, L^*W^*H), was used in the GeoPyc method. Therefore, large RC ribbons
338 were broken into pieces with size closer to that of the ribblets for more accurate results. For μ CT
339 analysis, the ROI spanned the entire ribbon width so that the average porosity is more
340 representative of the entire ribbon (Figure S6). The ROI along the length of ribbons ($\sim 10 \text{ mm}$)

341 was not precisely controlled, assuming negligible porosity variation along that direction for ribbons
342 prepared under a steady state. For the NIR method, only “non-burned” area for 8.8 kN/cm ribbons
343 were measured for the porosity evaluation. Therefore, the average porosity for the 8.8 kN/cm
344 ribbon should have a lower value than that measured by NIR in Figure 5. The results indicate
345 that, for ribbons compressed at 8.8 kN/cm, all other methods yield porosity values higher than
346 that by the Laser method (Figure 5, Table S2). For the more porous ribbons made at 1.8 kN/cm,
347 the GeoPyc methods yielded values closest to the Laser method, followed by the MIP method,
348 the μ CT method, and then the NIR method (Figure 5, Table S2).

349
350 **Figure 5.** Relationship between porosity measured by the Laser method and 4 other techniques
351 for ribbons prepared by roller compactor (n=3 for the Laser, μ CT, and GeoPyc methods; n=2 for
352 the MIP method; n=1 with 6 replicates for the NIR method). The blue dashed line is the line of
353 identity.

354

355 **3.3. Comparison among methods**

356 The six methods were based on distinct physical principles for measuring different
357 properties, e.g., envelope volume, density, pore volume (Table 1). They differ in sample
358 requirement, where the Caliper method is most stringent as a simple geometry and smooth
359 surface are essential for obtaining accurate sample volume. When such requirements are met,
360 the Caliper method is a good choice as it is widely accessible, fast, and accurate. For irregular
361 sample, other methods should be sought instead. The Caliper, Geopyc, and Laser methods only
362 measure average porosity. Hence, they are not appropriate for samples that contain internal
363 defects. In this regard, the MIP method holds advantages. However, the use of the MIP method

364 is limited by the potential health risks due to **exposure to** mercury, long measurement time, and
 365 less accessibility of an instrument. The sensitivity of GeoPyc to sample size and shape makes it
 366 more difficult to attain reproducible results, as it is not practical to demand similar shape and size
 367 between calibration sample and measurement samples. Compared to the GeoPyc method the
 368 Laser method is more flexible regarding sample shape and size, faster, and more repeatable. The
 369 μ CT method is capable of modeling porosity distribution, instead of just measuring an average
 370 porosity. Thus, it provides more structural information of a ribbon, which may prove to be critical
 371 for understanding the RC process and guide its optimization. The NIR method does not generate
 372 porosity data as accurate as other methods, but its speed makes it suitable for in-line monitoring
 373 of a RC process, where detecting changes in ribbon properties is more important than measuring
 374 accurate porosity. In **this** regard, the Laser method also holds promise for potential PAT
 375 applications. **Finally, both MIP and GeoPyc methods are destructive and require more extensive**
 376 **sample handling while applying stresses to samples during measurement. Thus, they are not**
 377 **suitable for fragile ribbon samples. In contrast, the non-destructive Laser, μ CT, and NIR methods**
 378 **are suitable for fragile ribbon samples.**

379

380 **Table 1.** Overview of the characteristics of six methods.

Method	Sample presentation	Measured property	Destructive ?	PAT?	Mapping ?	Total time ^a
Caliper	Simple shape, smooth surface	Envelop volume	N	N	N	30 s
	Shape and size	Envelop volume				
GeoPyc	Similar to samples used for calibration	Density	Y	N	N	20 min
μ CT	No	Density	N	N	Y ¹	1 hr
NIR	Flat, smooth surface	Density	N	Y ^{2,3}	N	1 min
MIP	No	Porosity & Pore size distribution	Y	N	N	30 min
		Envelop volume				
Laser	No (Length < 42 mm, Thickness <8 mm, Width <10 mm) ⁴	Envelop volume	N	Y ^{5,6}	N	15 s

381 ^aEstimated time includes sample preparation, data acquisition, data processing

382 References: 1.(Miguélez-Morán et al., 2009); 2,3 (Acevedo et al., 2012; Khorasani et al., 2015b); 4,
383 (SolidFraction, 2022); 5,6 (Lillotte et al., 2021; Lück et al., 2024).

384 **Results in this study confirm those in an earlier paper (Lillotte et al., 2021) when there is**
385 **an overlap. The systematic comparison of six common methods for ribbon porosity**
386 **determination lays a useful foundation for researchers to select most suitable methods for**
387 **analyzing ribbons according to sample characteristics, desired accuracy and precision, speed,**
388 **and information provided by each method.**

389

390 **4. Conclusion**

391 Using ideal specimens, i.e., ribblets with a range of porosities prepared at different
392 pressures on a compaction simulator, we found that the six methods produced globally similar
393 ribbon porosity. Among them, the Caliper method is the most convenient and accessible for
394 samples with a simple shape. However, this method is not suitable for real ribbons. The Laser
395 method yielded data with accuracy and precision comparable to that from the Caliper method.
396 The GeoPyc method gives reliable results for samples with regular shape, if appropriate
397 conversion factor is used and the requirement of a sufficient sample volume percentage in the
398 final powder bed is met. The μ CT method yields more accurate results at lower porosities, while
399 the MIP method yields more accurate results at higher porosities. The NIR method requires a
400 calibration curve that covers the expected variability of the samples and a reliable sample
401 presentation. Hence, while a promising non-destructive PAT tool for detecting changes in ribbons
402 in real-time during a RC process, it is sensitive to several factors, such as composition variation,
403 ribbons integrity, surface roughness, or flatness. Insights gained in this study can facilitate the
404 choice of a suitable measurement method for characterizing ribbon porosity, which contributes to
405 the optimization of ribbon quality and development of a robust tablet manufacturing process
406 through dry granulation.

407

Acknowledgement

CCS thanks the National Science Foundation for support through the Industry University Collaborative Research Center (IUCRC) grant IIP-2137264, Center for Integrated Materials Science and Engineering for Pharmaceutical Products (CIMSEPP). YG thanks Gerrit Vreeman for ODR plotting and Vikram Joshi for discussions on the linear regression analysis.

References

Acevedo, D., Muliadi, A., Giridhar, A., Litster, J.D., Romañach, R.J., 2012. Evaluation of Three Approaches for Real-Time Monitoring of Roller Compaction with Near-Infrared Spectroscopy. *AAPS PharmSciTech* 13, 1005-1012.

Akseli, I., Iyer, S., Lee, H.P., Cuitiño, A.M., 2011. A Quantitative Correlation of the Effect of Density Distributions in Roller-Compacted Ribbons on the Mechanical Properties of Tablets Using Ultrasonics and X-ray Tomography. *AAPS PharmSciTech* 12, 834-853.

Allesø, M., Holm, R., Holm, P., 2016. Roller compaction scale-up using roll width as scale factor and laser-based determined ribbon porosity as critical material attribute. *European Journal of Pharmaceutical Sciences* 87, 69-78.

Athanasiou, L.S., Fotiadis, D.I., Michalis, L.K., 2017. *Principles of Coronary Imaging Techniques*. Academic Press, Oxford.

Bawuah, P., Markl, D., Farrell, D., Evans, M., Portieri, A., Anderson, A., Goodwin, D., Lucas, R., Zeitler, J.A., 2020. Terahertz-based porosity measurement of pharmaceutical tablets: a tutorial. *Journal of Infrared, Millimeter, and Terahertz Waves* 41, 450-469.

Berodier, E., Bizzozero, J., Muller, A.C., 2016. *Mercury intrusion porosimetry*, 1st Edition ed.

Boersen, N., Belair, D., Peck, G.E., Pinal, R., 2016. A dimensionless variable for the scale up and transfer of a roller compaction formulation. *Drug Development and Industrial Pharmacy* 42, 60-69.

Chang, S.-Y., Wang, C., Sun, C.C., 2019. Relationship between hydrate stability and accuracy of true density measured by helium pycnometry. *International Journal of Pharmaceutics* 567, 118444.

Crowley, M.E., Hegarty, A., McAuliffe, M.A., O'Mahony, G.E., Kiernan, L., Hayes, K., Crean, A.M., 2017a. Near-infrared monitoring of roller compacted ribbon density: Investigating sources of variation contributing to noisy spectral data. *European Journal of Pharmaceutical Sciences* 102, 103-114.

Crowley, M.E., Hegarty, A., McAuliffe, M.A.P., O'Mahony, G.E., Kiernan, L., Hayes, K., Crean, A.M., 2017b. Near-infrared monitoring of roller compacted ribbon density: Investigating sources of variation contributing to noisy spectral data. *European Journal of Pharmaceutical Sciences* 102, 103-114.

Donoso, M., Kildsig, D.O., Ghaly, E.S., 2003. Prediction of tablet hardness and porosity using near-infrared diffuse reflectance spectroscopy as a nondestructive method. *Pharmaceutical development and technology* 8, 357-366.

Elsergany, R.N., Vreeman, G., Sun, C.C., 2023. An approach for predicting the true density of powders based on in-die compression data. *International journal of pharmaceutics* 637, 122875.

Goldenberg, M., Vreeman, G., Sun, D.J., Moffit, M., Li, M., Zernik, M., Ahuja, S., Kim, Y., Semin, D., Sun, C.C., 2023. A material-sparing simplified buoyancy method for determining the true density of solids. *International Journal of Pharmaceutics* 635, 122694.

Iyer, R.M., Hegde, S., Singhal, D., Malick, W., 2014. A novel approach to determine solid fraction using a laser-based direct volume measurement device. *Pharmaceutical development and technology* 19, 577-582.

Keizer, H.L., 2021. title.

Keizer, H.L., Kleinebusch, P., 2020. Elastic recovery in roll compaction simulation. *International Journal of Pharmaceutics* 573, 118810.

Khorasani, M., Amigo, J.M., Bertelsen, P., Sun, C.C., Rantanen, J., 2016. Process optimization of dry granulation based tabletting line: Extracting physical material characteristics from granules, ribbons and tablets using near-IR (NIR) spectroscopic measurement. *Powder Technology* 300, 120-125.

Khorasani, M., Amigo, J.M., Sonnergaard, J., Olsen, P., Bertelsen, P., Rantanen, J., 2015a. Visualization and prediction of porosity in roller compacted ribbons with near-infrared chemical imaging (NIR-CI). *Journal of pharmaceutical and biomedical analysis* 109, 11-17.

Khorasani, M., Amigo, J.M., Sun, C.C., Bertelsen, P., Rantanen, J., 2015b. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tabletting. *European Journal of Pharmaceutics and Biopharmaceutics* 93, 293-302.

Lillotte, T.D., Bebernik, P., Keck, J., Bommer, M., Schröder, D., Wagner, K.G., 2021. Laser triangulation as a fast and reliable method for determining ribbon solid fraction; focus on accuracy, precision, and measurement time. *International Journal of Pharmaceutics* 610, 121241.

Lim, H., Dave, V.S., Kidder, L., Neil Lewis, E., Fahmy, R., Hoag, S.W., 2011. Assessment of the critical factors affecting the porosity of roller compacted ribbons and the feasibility of using NIR chemical imaging to evaluate the porosity distribution. *International Journal of Pharmaceutics* 410, 1-8.

Lu, P., Lannutti, J.J., Klobes, P., Meyer, K., 2000. X-ray Computed Tomography and Mercury Porosimetry for Evaluation of Density Evolution and Porosity Distribution. *Journal of the American Ceramic Society* 83, 518-522.

Lück, M., Klinken, S., Kleinebudde, P., 2024. Laser Triangulation Based In-Line Elastic Recovery Measurement for the Determination of Ribbon Solid Fraction in Roll Compaction. *Journal of Pharmaceutical Sciences* 113, 1020-1028.

Mahmah, O., Adams, M.J., Omar, C.S., Gururajan, B., Salman, A.D., 2019. Roller compaction: Ribbon splitting and sticking. *International Journal of Pharmaceutics* 559, 156-172.

Micromeritics, 2013. GeoPyc 1365 Envelope Density Analyzer.

Miguélez-Morán, A.M., Wu, C.-Y., Dong, H., Seville, J.P.K., 2009. Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography. *European Journal of Pharmaceutics and Biopharmaceutics* 72, 173-182.

Nesarikar, V.V., Patel, C., Early, W., Vatsaraj, N., Srockel, O., Jerzweski, R., 2012. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data. *International journal of pharmaceutics* 436, 486-507.

Osei-Yeboah, F., Sun, C.C., 2015. Validation and applications of an expedited tablet friability method. *International Journal of Pharmaceutics* 484, 146-155.

Paul, S., Chang, S.-Y., Sun, C.C., 2017. The phenomenon of tablet flashing — Its impact on tabletting data analysis and a method to eliminate it. *Powder Technology* 305, 117-124.

Pawar, P.P., 2011. Measurement of mass and linear attenuation coefficients of gamma-rays of AL for 514, 662 and 1280 keV photons. *J Chem Pharm Res* 3, 899-903.

Reimer, H.L., Kleinebudde, P., 2019. Hybrid modeling of roll compaction processes with the StylOne Evolution. *Powder technology* 341, 66-74.

Richards, F., Lindley, P., 2006. Determination of the density of solids. *International tables for crystallography* 100, 156-159.

SolidFraction, The New Solid Fraction Rapid Analyzer.

SolidFraction, 2022. Solid Fraction Rapid Analyzer Brochure

Souihi, N., Reynolds, G., Tajarobi, P., Wikström, H., Haeffler, G., Josefson, M., Trygg, J., 2015. Roll compaction process modeling: Transfer between equipment and impact of process parameters. *International Journal of Pharmaceutics* 484, 192-206.

Sun, C., 2004. A novel method for deriving true density of pharmaceutical solids including hydrates and water-containing powders. *Journal of pharmaceutical sciences* 93, 646-653.

Sun, C., 2005. True Density of Microcrystalline Cellulose. *Journal of pharmaceutical sciences* 94, 2132-2134.

Sun, W.-J., Rantanen, J., Sun, C.C., 2018. Ribbon density and milling parameters that determine fines fraction in a dry granulation. *Powder Technology* 338, 162-167.

Washburn, E.W., 1921. The dynamics of capillary flow. *Physical review* 17, 273.

Yu, L.X., Amidon, G., Khan, M.A., Hoag, S.W., Polli, J., Raju, G.K., Woodcock, J., 2014. Understanding pharmaceutical quality by design. *The AAPs journal* 16, 771-783.

Zhang, J., Pei, C., Schiano, S., Heaps, D., Wu, C.-Y., 2016. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons. European Journal of Pharmaceutics and Biopharmaceutics 106, 20-25.

Zinchuk, A.V., Mularney, M.P., Hancock, B.C., 2004. Simulation of roller compaction using a laboratory scale compaction simulator. International journal of pharmaceutics 269, 403-415.