

**Efficient determination of critical water activity and classification of hydrate-anhydrate
stability relationship**

Xin Yao^{1*}, Tianyi Xiang², Shuang Chen¹, Busayo D. Alagbe¹, Richard S. Hong¹, Geoff G.Z. Zhang¹, Changquan Calvin Sun², Lian Yu³, Ahmad Y. Sheikh¹

1. Research & Development, AbbVie Inc., North Chicago, IL 60064, United States
2. Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, MN 55455, United States
3. School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States

1 Abstract

2 For a pair of hydrated and anhydrous crystals, the hydrate is more stable than the anhydrate when
3 the water activity is above the critical water activity (a_{wc}). Conventional methods to determine
4 a_{wc} are based on either hydrate-anhydrate competitive slurries at different a_w or solubilities
5 measured at different temperatures. However, these methods are typically resource-intensive and
6 time-consuming. Here, we present simple and complementary solution- and solid-based methods
7 for rapid determination of a_{wc} , using carbamazepine and theophylline as examples. In the
8 solution-based method, a_{wc} can be predicted using intrinsic dissolution rate (IDR) ratio or
9 solubility ratio of the hydrate-anhydrate pair measured at a known water activity. In the solid-
10 based method, a_{wc} is predicted as a function of temperature from the dehydration temperature
11 and enthalpy obtained by differential scanning calorimetry (DSC) near a water activity of unity.
12 For carbamazepine and theophylline, the methods yielded a_{wc} values in good agreement with
13 those from the conventional methods. By incorporating a_{wc} as an additional variable, the hydrate-
14 anhydrate relationship is categorized into four classes based on their dehydration temperature
15 (T_d) and enthalpy (ΔH_d) in analogy with the monotropy/enantiotropy classification for crystal
16 polymorphs. In Class 1 ($\Delta H_d < 0$ and $T_d \geq 373$ K), no a_{wc} exists. In Class 2 ($\Delta H_d > 0$ and $T_d \geq$
17 373 K), a_{wc} always exists under conventional crystallization conditions. In Class 3 ($\Delta H_d < 0$ and
18 $T_d < 373$ K), a_{wc} exists when $T > T_d$. In Class 4 ($\Delta H_d > 0$ and $T_d < 373$ K), a_{wc} exists only when
19 $T < T_d$. The hydrate-anhydrate pairs of carbamazepine and theophylline belong to Class 4.

21 **Introduction**

22 Hydrates of active pharmaceutical ingredients (APIs) are prevalent in drug development,
23 accounting for 20% of the top 100 best-selling drugs from 2005-2015.¹ In a survey by a contract
24 research organization (CRO), 38% of solid-form screens (180 in total) observed hydrates.² The
25 general existence of hydrates is attributed to the small size of water molecule and its ability to
26 stabilize crystal lattice by efficiently forming H-bonds.^{2,3} Given the different physical properties
27 of hydrates relative to anhydrides,^{3,4,5,6} e.g., generally lower water solubility in the
28 pharmaceutically relevant temperature range, understanding their stability and transformation is
29 important in drug development.

30

31 Critical to the characterization of a hydrate-anhydrite pair is their critical water activity (a_{wc}).
32 This is akin to establishing the thermodynamic stability relationship of crystal polymorphs as a
33 function of temperature,^{7,8,9,10,11,12} but for a hydrate-anhydrite system, the water activity (a_w) is
34 an additional variable.^{7,13,14} By incorporating a_{wc} , it is interesting to discuss the hydrate-
35 anhydrate stability relationship in analogy with the monotropy/enantiotropy classification for
36 crystal polymorphs.^{7,8} To measure a_{wc} , the competitive slurry method is considered the gold
37 standard.¹³ However, it only brackets a_{wc} without giving a numeric value¹⁵ and form conversion
38 can be extremely slow near the a_{wc} .¹⁶ To reach the precision of the second decimal place,
39 typically 15-20 slurries are required at a single temperature.^{16,17,18,19,20} Extrapolating solubility of
40 a hydrate and an anhydrate at multiple temperatures based on the Van't Hoff equation, the
41 transition temperature can be determined.²¹ Both methods described above require intensive
42 work and grams of materials, making them impractical in the early stage of drug development.

43 More recently, a_{wc} determinations based on the intersection of IDR against T or a_w data¹⁵ and an
44 equation of solubility ratio derived from equilibrium constant have been reported¹⁷ to reduce
45 materials and experimental time. In-silico capabilities are also emerging as powerful tools to
46 understand the complex dehydration behavior of hydrates,²² and predict hydrate structures^{23,24}
47 with predicted a_{wc} within one standard deviation (σ) of error.²⁴

48

49 This work demonstrates a material-sparing and expedited experimental methodology to
50 determine the a_{wc} of a hydrate-anhydride pair. The methods utilize the IDR (or solubility) ratio of
51 a hydrate-anhydride pair measured at a known water activity or the dehydration temperature and
52 enthalpy measured by DSC near a water activity (a_w) of unity. For carbamazepine (CBZ) and
53 theophylline (TPL), the results of these methods agree with those of the conventional methods.
54 **By incorporating a_{wc} as an additional variable, the hydrate-anhydride relationship is categorized**
55 **into four classes based on their dehydration temperature and enthalpy in analogy with the**
56 **monotropy/enantiotropy classification for polymorphs.**

57

58 **Theoretical Section**

59 For a pair of hydrate-anhydride, $W_mB(s)$ and $B(s)$, equilibrated at a given critical water activity
60 (a_{wc}) and temperature (T), $W_mB(s) \rightleftharpoons B(s) + mW_c$, where W_c is water molecules at a_{wc} , B is the
61 compound of interest, m is the stoichiometry, and s denotes solid, Eq. 1 stands:

$$62 \Delta G_d = \mu_{B(s)} + m\mu_{wc} - \mu_{W_mB(s)} = 0 \quad \text{Eq. 1}$$

63 where $\mu_{W_mB(s)}$, $\mu_{B(s)}$, and μ_{wc} are the chemical potentials of $W_mB(s)$, $B(s)$, and water molecules
64 at a_{wc} , respectively.

65 By expanding $\mu_{wc} = RT \ln a_{wc} + \mu_{w0}$, we get:

66 $mRT \ln a_{wc} = \mu_{W_mB(s)} - \mu_{B(s)} - m\mu_{w0} = -\Delta G_{d0}$ Eq. 2

67 where μ_{w0} is the chemical potential of pure water.

68 Thus, finding the a_{wc} is equivalent to determining the standard free energy change, ΔG_{d0} , for the
69 reaction, $W_mB(s) \rightarrow B(s) + mW_0$, where W_0 denotes pure water.

70 The derivation can be unfolded for a pair of two anhydrides if needed.

71 **Solution-based method**

72 If the solubilities of $W_mB(s)$ and $B(s)$ have been measured at the same a_w and T , it can be
73 shown:¹⁷

74 $\ln a_{wc} = \frac{1}{m} \times \ln \frac{x_{B(mW)}}{x_B} + \ln a_w$ Eq. 3

75 where $x_{B(mW)}$ and x_B are the solubilities of $W_mB(s)$ and $B(s)$. In deriving Eq. 3, it is assumed that
76 the activity coefficients for B are identical in the saturated solutions of the $W_mB(s)$ and $B(s)$.

77 If the solubilities or IDRs are measured in (nearly) pure water, i.e., $a_w \sim 1$, Eq. 3 is simplified to:

78 $\ln a_{wc} \approx \frac{1}{m} \times \ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}}$ Eq. 4

79 The assumption of $a_w \sim 1$ is generally valid except for highly water-soluble drugs (e.g., small
80 sugar molecules). A high drug solubility in water can only cause overestimated a_{wc} because
81 $\ln a_w \leq 0$.

82 We can also replace the solubility ratio in Eqs. 3, 4 by the ratio of intrinsic dissolution rates

83 (IDRs),¹⁵
$$\frac{x_{B(mW)}}{x_B} \approx \frac{IDR_{B(mW)}}{IDR_B}.$$

84

85 **Solid-based method**

86 We now consider an alternative approach to determine a_{wc} , where the ΔG_{d0} is calculated as a
87 function of temperature. Assuming that we can measure the dehydration process of $W_mB(s)$ in
88 *pure water under an equilibrium condition*, we have $\Delta G_{d0} = 0$ at the equilibrium dehydration
89 temperature, T_d . We can obtain ΔG_{d0} at a lower temperature T by integration:

90
$$\Delta G_{d0} = \Delta H_d \left(\frac{T_d - T}{T_d} \right) + \int_{T_d}^T \Delta C_p \cdot dT - T \times \int_{T_d}^T \Delta C_p \cdot d\ln T \quad \text{Eq. 5}$$

91 where ΔH_d is the enthalpy of dehydration and ΔC_p is the specific heat capacity change of
92 dehydration, $\Delta C_p = C_{p,B(s)} + mC_{p,W_0} - C_{p,w_mB(s)}$. Thus, one can get:

93
$$\ln a_{wc} = \frac{-\left[\Delta H_d \left(\frac{T_d - T}{T_d} \right) + \int_{T_d}^T \Delta C_p \cdot dT - T \times \int_{T_d}^T \Delta C_p \cdot d\ln T \right]}{mRT} \quad \text{Eq. 6}$$

94 Assuming ΔC_p is a constant, we obtain:

95
$$\ln a_{wc} \approx \frac{-\Delta H_d}{mR} \left(\frac{1}{T} - \frac{1}{T_d} \right) + \frac{\Delta C_p}{mR} \times \left(\frac{T_d}{T} + \ln \frac{T}{T_d} - 1 \right) \quad \text{Eq. 7}$$

96 Assuming $\Delta C_p = 0$, the equation can be simplified to:

97
$$\ln a_{wc} \approx \frac{-\Delta H_d}{mR} \left(\frac{1}{T} - \frac{1}{T_d} \right) \quad \text{Eq. 8}$$

98 In practice, this method entails measuring T_d and ΔH_d by DSC using water-saturated $W_mB(s)$ in a
99 hermetically sealed pan. Furthermore, $W_mB(s)$ and $B(s)$ should be sparingly water soluble at

100 T_d so that the surrounding water activity is maintained near unity. Deviation from this condition
101 (e.g., leakage of water vapor during measurement) would lead to erroneous results.

102

103 Classification of hydrate-anhydrate stability relationship

104 Based on Eq. 8, there are four different situations according to $T_d \geq T_b$ (boiling point of water \approx
105 373 K at 1 atm pressure) or not, and $\Delta H_d > 0$
106 or $\Delta H_d < 0$, as depicted in Figure 1. Under
107 atmospheric pressure, the physical meaning
108 exists only when $a_{wc} \leq 1$ and $T \leq 373$ K (the
109 experimental quadrant is marked in red).

110 In Class 1 ($\Delta H_d < 0$ and $T_d \geq 373$ K), no a_{wc}
111 exists. The hydrate $W_m B(s)$ is always less
112 stable than the anhydrate $B(s)$.

113 In Class 2 ($\Delta H_d > 0$ and $T_d \geq 373$ K), a_{wc}
114 always exists below 373 K.

115 In Class 3 ($\Delta H_d < 0$ and $T_d < 373$ K), a_{wc} exists when $T > T_d$. It is counterintuitive that a hydrate
116 can be more stable than its anhydrate at higher temperatures and less stable at lower
117 temperatures. However, there is no theoretical reason to rule it out.

118 In Class 4 ($\Delta H_d > 0$ and $T_d < 373$ K), a_{wc} exists only when $T < T_d$.

119 The classification can be determined if a_{wc} is measured at multiple temperatures, as demonstrated
120 using CBZ and TPL in this work.

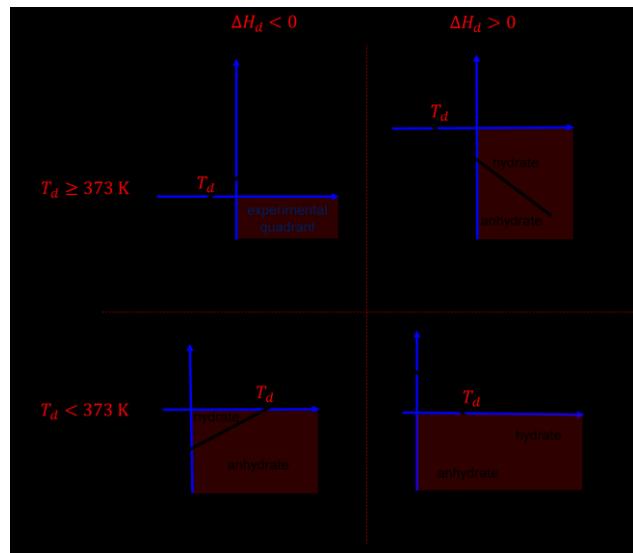


Figure 1. Four theoretical classes of $\ln a_{wc}$ vs. $1/T$ based on $T_d \geq T_b$ (boiling point of water ≈ 373 K at 1 atm pressure) or not, and $\Delta H_d \geq 0$ or not. Under 1 atm pressure, the physical meaning exists only when $a_{wc} \leq 1$ and $T \leq 373$ K (the quadrant is marked in red). Thus, in Class 1, no a_{wc} exists. In Class 2, a_{wc} always exists. In Class 3, a_{wc} exists when $T > T_d$. In Class 4, a_{wc} exists when $T < T_d$.

121 **Materials and Methods**

122 **Materials**

123 CBZ anhydrate Form III and TPL anhydrate Form II were purchased from Sigma-Aldrich. CBZ
124 dihydrate and TPL monohydrate were prepared by slurring the purchased solids in pure water at
125 room temperature for one week. The hydrates were recovered by filtration and air-dried at 21 °C
126 and ~40% RH for two days.

127

128 **Intrinsic Dissolution Rate**

129 The intrinsic dissolution rate (IDR) was measured using the rotating disc method.²⁵ Each powder
130 was compressed at a force of 1000 lb, using a custom-made stainless-steel die, against a flat
131 stainless steel disc for 2 min to prepare a pellet (6.39 mm in diameter). The obtained pellet had a
132 visually smooth surface that was coplanar with the surface of the die. While rotating at 300 rpm,
133 the die was immersed in 300 mL of the dissolution medium at different temperatures in a water-
134 jacketed beaker. A UV-vis fiber optic probe (Ocean Optics, Dunedin, FL) was used to
135 continuously monitor the UV absorbance of the solution at $\lambda = 287$ nm, which was converted to a
136 concentration-time profile based on a previously constructed concentration-absorbance standard
137 curve. The initial linear part of the dissolution curve was used for calculating IDR.

138

139 **Powder X-ray Diffractometry**

140 PXRD data were collected using an ARL EQUINOX 3500 (Thermo Fisher Scientific Inc.,
141 Waltham, MA) equipped with a CPS 590 detector and a Cu microfocus source. The

142 diffractometer was operated with a copper anode tube at 40 kV and 30 mA. XRD data were
143 collected from 0–90° 2θ with an integration time of 600 s.

144

145 Differential Scanning Calorimetry (DSC)

146 DSC experiments were performed with a TA DSC2500 under 50 mL/min N₂ purge. For
147 measuring the enthalpy of dehydration (ΔH_d), CBZ dihydrate or TPL monohydrate crystals (3-7
148 mg) were placed in a T-zero pan. After the mass of each sample was measured, 0.5 μ L water was
149 added into the pan, and the pan was hermetically sealed. The samples were heated to 90 °C at 1
150 K/min. T_d and ΔH_d are measured as the very onset and the integration of the dehydration peak.
151 We tested the amounts of 2, 1, 0.5 and 0 μ L water and the difference in measured ΔH_d and T_d is
152 negligible.

153

154 The change in specific heat capacity (ΔC_p) of dehydration was measured using the modulated
155 mode. The sample preparation is similar to the normal DSC samples except that after the dry
156 powders of CBZ dihydrate and TPL monohydrate were loaded in T-zero pans, the powder was
157 pressed with a stainless-steel punch to ensure good contact with the pan and flat surface of the
158 powder bed. After that, 0.5 μ L water was added into each sample and the pan was hermetically
159 sealed. The ΔC_p before and after dehydration were measured using the modulated DSC
160 (sinusoidal temperature modulation with an amplitude of 0.25 K and a period of 60 s) with a
161 heating or cooling rate of 1 K/min. The samples were cooled and heated by multiple cycles
162 before dehydration temperature and after dehydration. After dehydration, rehydration has not

163 been observed during the heat-cool cycles. The reversing heat capacities are repeatable at
164 different cycles, indicating the reliability of measured ΔC_p data.

165

166 Solubility determination

167 The solubility of CBZ Form III and TPL Form II was measured by plotting the concentration vs.
168 dissolution time and averaging the plateau region before solids fully converted to hydrates. Since
169 the two anhydrides convert to hydrates quickly at low temperatures relative to the transit
170 temperature, the water or water solutions need to be preequilibrated at the targeted temperature.
171 The solutions were drawn out every ~60 s and passed through a 0.45 μm syringe filter, which is
172 pre-equilibrated at the targeted temperature as well. The filtrate was collected in a heated vial at
173 60 °C to avoid recrystallization due to temperature drop. The filtrates then were diluted 10 times
174 in acetonitrile (ACN) for CBZ and in water/ACN (1 : 1, v/v) for TPL. The samples were
175 analyzed using HPLC. The solubility of hydrates is measured conventionally. The slurries of
176 hydrates were kept at the targeted temperature while being stirred. Samples were collected after 1
177 day equilibrium. The filtrates were treated and analyzed in the same way as described above.

178

179 Single-point DFT calculation of relevant energies of dehydration

180 The interaction energies of both the host molecules and water were evaluated using single-point
181 dispersion-corrected density functional theory (DFT-D) calculations on the optimized
182 experimental structures of CBZ Form III (CBMZPN01),²⁶ CBZ dihydrate (FEFNOT02),²⁷ TPL
183 Form II (BAPLOT06),²⁸ and TPL monohydrate (THEOPH05).²⁹ Single point energetics were
184 evaluated on the optimized experimental structures, the optimized structures with water

185 molecules removed, as well as the conformers of host molecules and water molecules from the
186 crystal structure. The optimizations and energy calculations were performed using the PBE
187 functional³⁰ with the Neumann-Perrin (NP) dispersion correction,³¹ a plane wave basis set (520
188 eV, $2\pi \times 0.07 \text{ \AA}$ -1 k-point grid) and default PAW pseudopotentials, as implemented in VASP
189 6.2.1.^{32,33,34} The single point calculation of the individual water and host molecules was
190 performed using a 30 \AA x 30 \AA x 30 \AA cell such that only the atomic and intramolecular energies
191 of the individual molecules are captured. The methodology utilized to determine the data
192 reported in Table 3. is as follows:

193
$$\text{Host only energy} = \frac{E_{\text{crys_no_water}}}{N_{\text{host}}}$$

194
$$\text{Water_involved energy} = \frac{E_{\text{opt_crys}} - E_{\text{crys_no_water}}}{N_{\text{water}}}$$

195
$$\text{Single host molecule} = E_{\text{host_molecule}}$$

196
$$\text{Host_host Interactions} = \frac{E_{\text{crys_no_water}}}{N_{\text{host}}} - E_{\text{host_molecule}}$$

197
$$\text{Water_involved interactions} = \frac{E_{\text{opt_crys}} - E_{\text{crys_no_water}}}{N_{\text{water}}} - E_{\text{water}}$$

198 Where,

199 $E_{\text{crys_no_water}}$ = energy of optimized experimental structure with no waters

200 N_{host} = number of host molecules in unit cell

201 $E_{\text{opt_crys}}$ = energy of optimized experimental structure

202 N_{water} = number of water molecules in unit cell

203 $E_{\text{host_molecule}}$ = energy of single host molecule

204 E_{water} = energy of single water molecule

205

Results

206 *Solution-based method*

207 The solubility of CBZ Form III and
208 monohydrate in pure water is plotted
209 against T in Figure 1(a). CBZ Form III
210 exhibits higher solubility than CBZ
211 dihydrate below 340 K in pure water,
212 indicating dihydrate is more stable than
213 Form III within this temperature range.

214 The IDR_s of TPL Form II and
215 monohydrate were measured in
216 water/methanol (8/2 molar ratio) against

217 T . The a_w of water/methanol solution at
218 multiple temperatures is reported,^{35,36,37}
219 and summarized in Table S2. The IDR of TPL Form II is higher than that of TPL monohydrate at
220 and below 313 K but lower at 333 K, indicating the transition temperature is within 313-333 K in
221 the water/methanol solution.

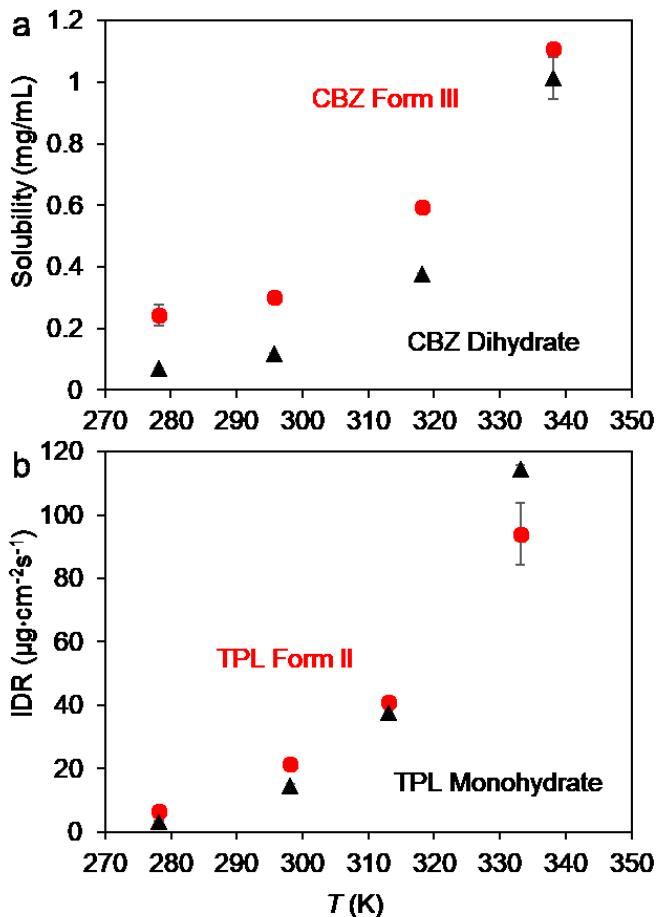
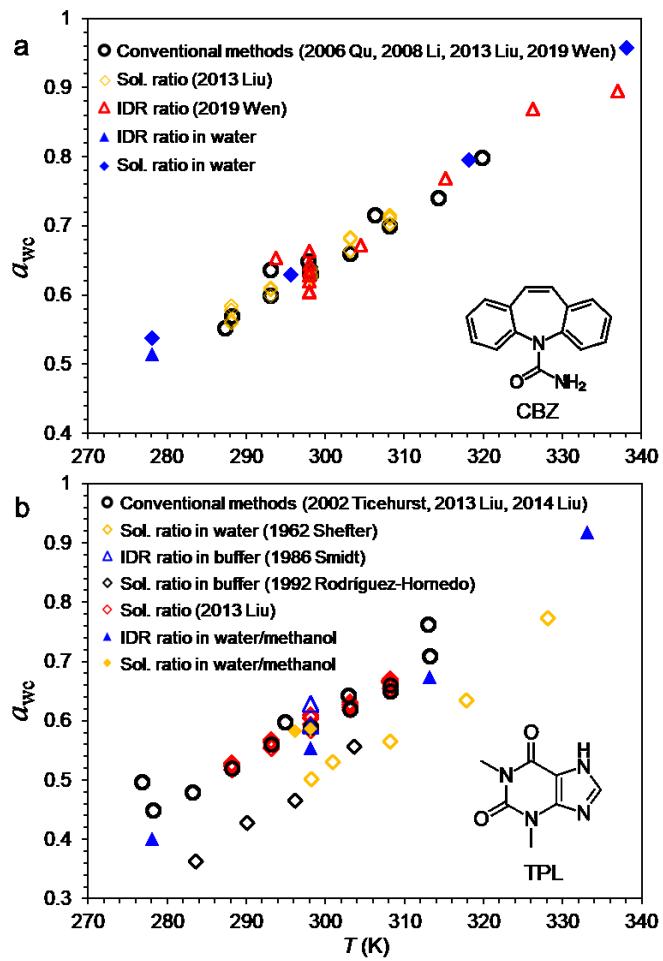



Figure 1. (a) Solubility of CBZ Form III and dihydrate in water vs. temperature and (b) IDR of TPL Form II and monohydrate in water/methanol at 8/2 molar ratio.

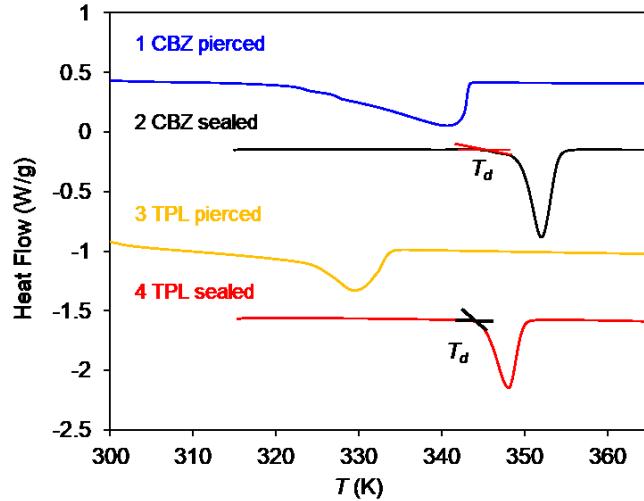
223 Using Eq. 3 or 4, the critical water activity (a_{wc}) is determined by inputting the solubility or IDR
 224 ratio measured in this work or from the
 225 literature for CBZ^{15,17} and TPL,^{17,38,39,40}
 226 which is summarized in Table S2. The
 227 a_{wc} values are plotted as a function of
 228 temperature in Figure 2 with the values
 229 measured by conventional methods of
 230 competitive slurry^{16,17,18,19,20,21} and
 231 extrapolating solubility (IDR)
 232 temperature profiles,^{15,21} which are
 233 provided in Table S1. The a_{wc} values
 234 measured by conventional methods from
 235 different labs are consistent. For CBZ,
 236 the a_{wc} is between dihydrate and
 237 anhydrate Form III,^{15,16,17} while it is
 238 between monohydrate and anhydrate
 239 Form II for TPL.^{17,18}

Figure 2. a_{wc} calculated by the solution-state methods of CBZ (a) and TPL (b) vs. temperature, compared with that of conventional methods. a_{wc} values (black open circles) determined by conventional methods (slurry, solubility and IDR extrapolation) in different labs are consistent within error. The calculated a_{wc} based on IDR (triangles) or solubility (diamonds) ratio agrees with that of the conventional methods within an error of ± 0.03 for CBZ. The bigger error on TPL is likely caused by significant change of activity coefficient and its low water stoichiometry (monohydrate).

240
 241 The a_{wc} values determined using IDR
 242 (solubility) ratios for CBZ agree with the values within an error of 0.03, which is comparable to
 243 the error of conventional methods. However, in the case of TPL, the error is relatively larger,
 244 where the prediction from the solubility data in water or buffer shows a systematically negative
 245 deviation (~ -0.1). This discrepancy is likely due to the significant difference in activity

246 coefficient of TPL in aqueous solutions saturated with monohydrate and Form II. Likely, the
247 significant change of activity coefficient happens when solute molecules start to self-assemble
248 into molecular complexes.

249 The decrease of water activity in pure water by dissolved CBZ or TPL can be ignored. The
250 solubility of CBZ is lower than that of TPL. The molar concentration of TPL is ~0.3% (~30
251 mg/mL) at 323 K in water, falling within the water-soluble category. The decrease of a_w caused
252 by TPL should be within 0.01.


253 A significant factor contributing to the bigger error in TPL is its low water stoichiometry.
254 Assuming the errors in solubility or IDR are similar for different drugs, the errors will directly
255 transfer to the a_{wc} in the monohydrate case, but will decrease significantly for higher hydrates,
256 based on Eqs. 3 and 4. For example, if the error of the solubility and IDR ratio is 10%, the error
257 of a_{wc} is also 10% in the monohydrate case but will be only 5% in the dihydrate case.

258 Since CBZ and TPL are not strong acids or bases, the pH change caused by solubility difference
259 is negligible. For ionizable drugs, their solubility depends on pH, but the solubility ratio is
260 independent of pH because the ionic species have the same distribution at a given pH. The
261 consistent solubility ratio in water and pH buffer of CBZ and TPL confirms this. However, using
262 a buffer, instead of water, to maintain a constant pH of the solutions saturated by different solids
263 would likely yield more accurate results for ionizable drugs.

264

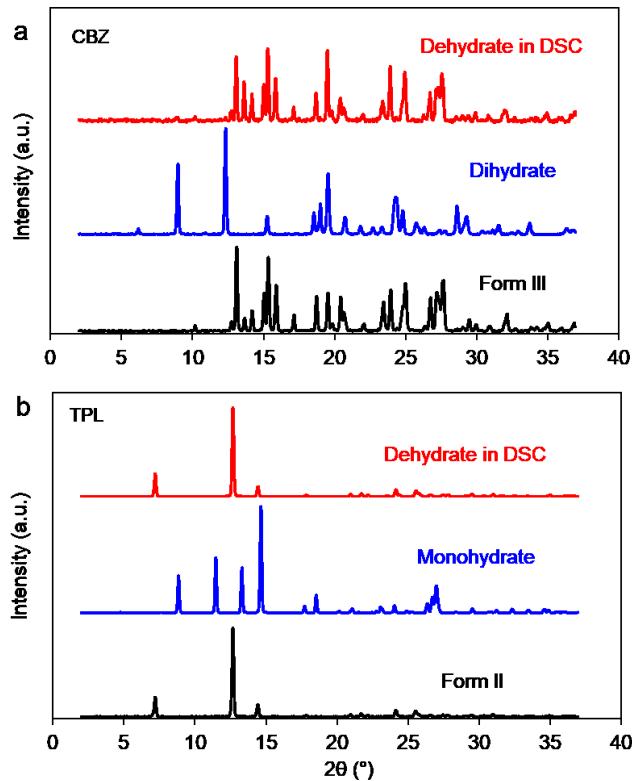
265 *Solid-based method*

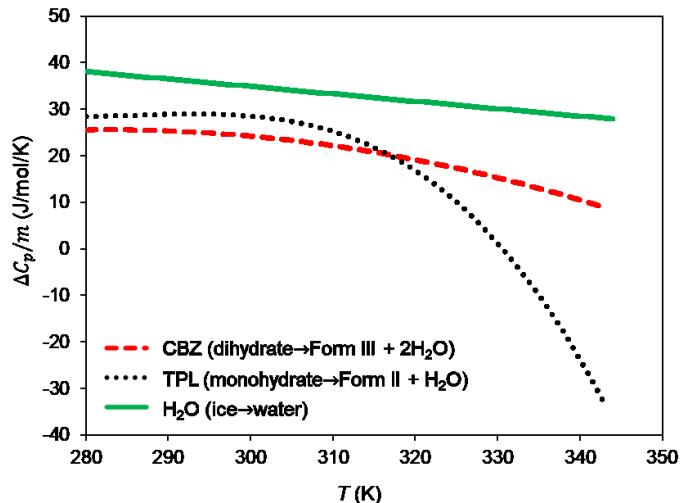
266 Here, we demonstrate that a_{wc} can be determined by measuring the dehydration temperature (T_d)
 267 and enthalpy (ΔH_d) in DSC, based on Eqs. 6-8. Recall that T_d and ΔH_d are specified values in
 268 pure water ($a_w = 1$). Therefore, hydrates
 269 were hermetically sealed in DSC pans
 270 with a small amount of water. As shown
 271 in Figure 3, dehydration of CBZ and
 272 TPL happens with a sharp endothermic
 273 peak in a hermetically sealed pan but a
 274 very broad peak in a pierced pan. In a
 275 sealed pan, T_d is the onset and ΔH_d is the
 276 integration of the endothermic peak, as
 277 shown in Figure 3. The values are
 278 summarized in Table 1. In a pierced pan,
 279 the physical meaning of the onset temperature is ambiguous because the surrounding RH is
 280 unknown due to N_2 flow and gas exchange. Dehydration may happen slowly at the beginning
 281 indicated by the slope of the baseline of the pierced samples. Additionally, the heat change in a
 282 pierced pan includes the enthalpy of water evaporation. Consequently, the heat change in a
 283 pierced pan is several times that of the sealed pan, as shown in Table 1.

Figure 3. DSC heating traces of dihydrate CBZ and monohydrate TPL in pierced and hermetically sealed pans. Dehydration happens with an endothermic peak. T_d can be measured as the very onset, and ΔH_d is the integration of endothermic peak using the traces in sealed pans. In pierced pans, the dehydration peaks are much broader and happens much earlier.

284 The phases of CBZ and TPL after
285 dehydration are identified using
286 PXRD, as shown in Figure 4. The
287 dehydrated solid in DSC pans are
288 Form III for CBZ and Form II for TPL.
289 The measured hydrate-anhydrate pairs
290 in DSC match the transition pairs in
291 the solution-based method.

292 The measured T_d s of TPL and CBZ are
293 lower than 373 K and their ΔH_d s are
294 positive (see Table 1), indicating the
295 hydrate-anhydrate pairs of CBZ and
296 TPL are Class 4, which is consistent
297 with the $a_{wc} - T$ profiles measured by
298 the solution-based method. The positive relationship between a_{wc} and T is equivalent to $\Delta H_d > 0$,
299 and the extrapolation to $a_{wc} = 1$ indicates $T_d < 373$ K (Figure 2).




Figure 4. PXRD patterns of the CBZ (a) and TPL (b) anhydrides, hydrates, and their dehydrate forms in DSC, from bottom to top. PXRD results indicate that CBZ dihydrate converts to Form III, and TPL monohydrate converts to Form II after dehydration.

300

301 The heat capacity change of dehydration (ΔC_p), measured by modulated DSC, is plotted as the
302 ΔC_p per mole water ($\Delta C_p/m$) against temperature and compared with that of ice melting linearly
303 extrapolated from subzero data (Figure 5). It is worth noting that the $\Delta C_p/m$ of dehydration is
304 less than that of ice melting. The ΔC_p of dehydration can be taken as the sum of the heat capacity
305 change of molecule (B) at different solid states and that of water liquefying from hydrates. Since

306 the heat capacity change of the organic
 307 molecule (B) at different solid states is
 308 usually small, the ΔC_p of dehydration
 309 mainly depends on the heat capacity
 310 change of water. It can be understood
 311 that the ΔC_p of dehydration is less than
 312 that of ice melting, considering water
 313 molecules in ice have the lowest
 314 freedom among all the solid states of
 315 water molecule by forming 4 ideal
 316 hydrogen bonds per molecule. In the crystal lattice of dihydrate CBZ and monohydrate
 317 TPL,^{26,27,28,29} the H-bonds formed by H₂O are summarized in Table 2. The H-bonds have unideal
 318 angles, and the average H-bonds per H₂O is 3.5 in CBZ dihydrate and 3 in TPL monohydrate,
 319 indicating higher freedom and thus higher heat capacity than ice. The averaged $\Delta C_p/m$ was
 320 calculated as 20 J/mol/K for CBZ and 14 J/mol/K for TPL within the temperature range of 278-
 321 348 K.

322 **Table 1.** T_d and ΔH_d of CBZ and TPL measured from DSC heating traces in hermetically sealed
 323 pans with the peak range ($T_{pierced}$) and enthalpy change $\Delta H_{pierced}$ of dehydration in pierced pans.

Figure 5. Heat capacity change per mole water ($\Delta C_p/m$) of the dehydration of CBZ and TPL in a common process temperature range, compared with that of ice melting extrapolated from subzero data. The $\Delta C_p/m$ of dehydration is less than that of ice melting.

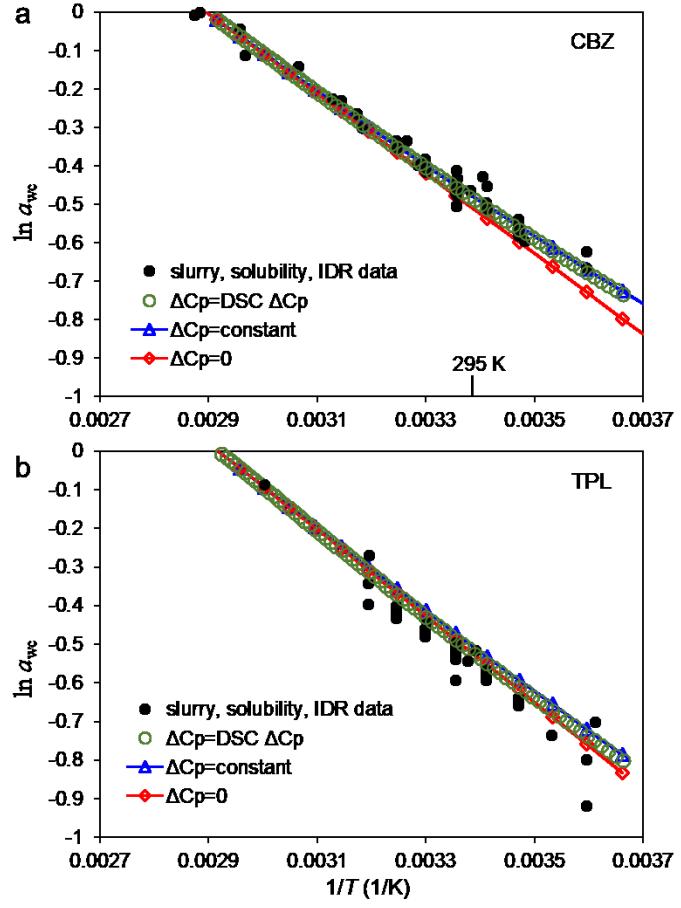
325

326 **Table 2.** H-bonds of water molecules in CBZ dihydrate and TPL monohydrate.

	H-bond with water involved	The donor and acceptor of H-bonds	Angle (°)	O-O distance (Å)
CBZ dihydrate (FEFNOT02)	H-bond1	O1-H···O=C-R (CBZ)	158.02	2.831
	H-bond2	O1-H···O2	176.97	2.886
	H-bond3	O2-H···O1	166.12	2.936
	H-bond4	O2-H···O1	172.09	2.815
TPL monohydrate (THEOPH05)	H-Bond1	O-H···N (TPL)	167.72	2.898
	H-Bond2	O-H···O	168.36	2.724
	H-Bond3	O-H···O	162.38	2.744

327

328


329 **Table 3.** Host-host interactions and water-involved interactions of CBZ and TPL crystals from

330 Single-Point DFT-D Calculations.

	Host only energy (kJ/mol)	Water-involved energy (kJ/mol water)	Single host molecule energy (kJ/mol)	Host-host Interactions (kJ/mol)	Water-involved interactions (kJ/mol water)
CBZ Form III	-19741.9	N.A.	-19590.7	-151.2	N.A.
CBZ dihydrate	-19717.4	-1456.0	-19587.7	-129.7	-87.1
TPL Form II	-13675.8	N.A.	-13524.4	-151.4	N.A.
TPL monohydrate	-13660.7	-1440.5	-13526.9	-133.8	-71.6

331

332 The a_{wc} was calculated by substituting
 333 the DSC data (T_d , ΔH_d , and ΔC_p) into
 334 Eqs. 6-8, and compared to the values
 335 from other methods by plotting $\ln(a_{wc})$
 336 against inverse temperature, as shown in
 337 Figure 6. The black dots are a_{wc} values
 338 determined from slurry, solubility, and
 339 IDR data. The open green circles are
 340 calculated using Eq. 6 with measured
 341 ΔC_p . The blue lines with open triangles
 342 are plotted using Eq. 7 by considering
 343 ΔC_p as a constant, and the red lines with
 344 open diamonds are plotted using Eq. 8
 345 by assuming ΔC_p as 0. The three
 346 equations coincide at temperatures close
 347 to the T_d and diverge slightly with
 348 decreasing temperature, but the
 349 difference of a_{wc} is still within 0.3 around 295 K. Thus, the assumption of ignoring the heat
 350 capacity change is reasonable for CBZ and TPL. The linear relationship has also been observed
 351 for gabapentin.¹⁴ The assumption should be generally valid because the heat capacity change is
 352 capped by that of ice melting (<35 J/mol/K). The a_{wc} values determined by Eq. 6-8 using DSC
 353 data agree well with that from the slurry, solubility, and IDR data within experimental error along
 354 the whole temperature range as shown in Figure 6.

Figure 6. Predicted a_{wc} using DSC data (T_d , ΔH_d , and ΔC_p) of CBZ (a) and TPL (b), plotted with a_{wc} from slurry, solubility, and IDR data. The TPL solubility data in water is excluded for its systematic deviation. The green open circles are the predicted a_{wc} using Eq. 6 and the measured ΔC_p by modulated DSC, the blue curves with open triangles are plotted using Eq. 7 by considering ΔC_p as a constant, and the red curves with open diamonds are plotted using Eq. 8 by assuming $\Delta C_p = 0$.

356 To understand the enthalpy change during dehydration, single-point DFT-D calculation²² was
357 conducted. The host-host interactions and water-involved interactions (the sum of host-water and
358 water-water interactions) were calculated (See Table 3). The ratio of water-involved interactions
359 between the CBZ dihydrate and TPL monohydrate (-87.1 (kJ/mol) /-71.6 (kJ/mol)) is very close
360 to the ratio of their average H-bonds number per water molecule (3.5/3). The host-host
361 interactions of the hydrates are lower than that of the anhydrides for both CBZ and TPL because
362 the host molecules pack less densely in hydrates due to the voids occupied by water molecules.
363 The single-molecular energy is similar between hydrates and anhydrides, consistent with their
364 crystal structures.^{26,27,28,29} Thus, during dehydration, the host molecules repack to lower their
365 enthalpy without significant conformation change. However, the dehydration process is an
366 endothermic process. Thus, the water-involved enthalpy increase must compensate for the
367 enthalpy decrease of the host-only part during dehydration, indicating the importance of water
368 molecules in stabilizing the hydrates.

369 **Discussion**

370 We compare the methods for determining a_{wc} in this work (Table 4). The competitive slurry
371 method is considered the gold standard with the lowest limitation. However, it requires a few
372 grams of material and intensive work to achieve reasonable precision. The DSC method is the
373 most material sparing and fastest, but also requires dehydration to the interested anhydrous form.

374 **This limitation can be mitigated by incorporating the free energy difference of two anhydrides,
375 which has been demonstrated previously.^{7,8,13}**

376 The solubility ratio and IDR ratio methods require a higher workload than the DSC method but
377 still much lower than the competitive slurry method. They are particularly useful for studying the
378 full thermodynamic landscape of multiple solid forms. The workload of these two methods
379 increases proportionally with the number of solid forms (N). In comparison, the slurry method
380 requires C_N^2 pairs of slurry series and the DSC method likely cannot work due to uncontrolled
381 forms after dehydration.

382 For solids having fast conversion in solution, the solubility ratio method can only work near the
383 transition point, while IDR ratio method has less limitation. Since the IDR can be measured from
384 the beginning of dissolution, even the a_{wc} of labile crystals in solution can be determined using
385 this method. However, the accuracy of IDR is typically lower than that of solubility, and this
386 method is only suitable for stable crystals upon compression. Overall, the complementary
387 methods offer diverse strategies based on data quality requirements and project timelines in drug
388 development.

389 The methods described in this work are for determining a_{wc} between a hydrate and an anhydrate,
390 not between mixed-solvate hydrate and anhydrate. Hence, it is important to note the criticality of

391 identifying whether a hydrate is formed by desolvating an intermediate unstable mixed-solvate
392 hydrate when applying the methods for crystallization process development. However, if needed,
393 it is possible to incorporate the chemical potential of a third component into Eq. 1 to study
394 mixed-solvate hydrates.

395

396 **Table 4.** Comparison of the methods in this work with the competitive slurry method.

Method	Solubility ratio	IDR ratio	DSC data of dehydration	Competitive slurry
Material required	~200 mg	~500 mg	~10 mg	grams
Result type	Numerical	Numerical	Numerical	Bracket
Time	days	days	hours	weeks
Limitation level & Requirements	Level 2 Slow form conversion in solution	Level 1 Stable solids under compression	Level 3 Dehydration to the target anhydrous form	Level 0 Significant amount of material and workload
Workload for N number of solid forms	N solubility measurements	N IDR measurements	Likely cannot work for any pair of two solids	C_N^2 pairs of slurry series

397

398

399

400

401 The solubility (IDR) ratio of a hydrate-
 402 anhydrate pair in water can identify whether a_{wc}
 403 exists. We plot $\ln \frac{x_{B(mW)}}{x_B} = \ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}} - m \ln a_w$
 404 derived from Eqs. 3 and 4, see Figure 7.
 405 According to the equation, a straight line with a
 406 slope of m can be observed. $\ln a_{wc}$ is the
 407 intercept on x -axis, and $\ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}}$ is the intercept
 408 on y -axis. At a given temperature, $\ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}} \leq$
 409 0 (Figure 8a) or $\ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}} > 0$ (Figure 8b).
 410 Since only negative value of $\ln(a_w)$ is
 411 physically meaningful, a_{wc} exists only if the
 412 anhydrate has higher solubility (IDR) than the
 413 hydrate in water, just like the cases of CBZ and TPL below T_d .

Figure 7. The diagram of the two cases of solubility (IDR) ratio in water at a given temperature. In Case 1 (a), $\ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}} \leq 0$ and a_{wc} exists. In Case 2 (b), $\ln \frac{x_{B(mW)}^{a_w=1}}{x_B^{a_w=1}} > 0$ and a_{wc} does not exist.

414
 415 As described in the theoretical section, the stability relationship of a hydrate-anhydrate pair can
 416 be categorized into 4 classes. The specific pairs of CBZ and TPL in this work fall into Class 4
 417 ($\Delta H_d > 0$ and $T_d < 373$ K), where a_{wc} exists when $T < T_d$. Likely, Class 4 is the most common
 418 situation for hydrate-anhydrate pairs where a relative stable hydrate exists. If the enthalpy
 419 contribution from host molecules is similar between the hydrate and anhydrate, their energy
 420 difference is relatively small compared with the water-involved enthalpy increase during

421 dehydration (see Table 3 for CBZ and TPL). Thus, the dehydration process is endothermic. The
422 hydrates in Class 4 are more stable at lower temperatures and their drying at elevated
423 temperature often requires humidification above their a_{wc} .

424 Dasabuvir⁴¹ and morphine⁴² are two examples of Class 2 hydrate-anhydride pairs ($\Delta H_d >$
425 0 and $T_d \geq 373$ K), where a_{wc} always exists under conventional crystallization conditions (< 373
426 K, 1 atm). Class 2 is relevant for highly
427 stable hydrates with relatively low a_{wc} at
428 room temperature; e.g., monohydrate
429 morphine ($\Delta H_d > 0$ and $T_d \geq 373$ K) barely
430 dehydrates even at 0 RH and 298 K in
431 dynamic vapor sorption (DVS),⁴² indicating
432 its relatively low a_{wc} at 298 K. A Class 2
433 hydrate would be suitable for development
434 from the solid form physical stability

435 perspective. For example, a very stable monohydrate of Dasabuvir ($\Delta H_d > 0$ and $T_d > 383$ K)⁴¹
436 was chosen as the commercial form, allowing simple drying without humidity control.

437 Classes 1 and 3 have exothermic dehydration reaction, which is not common. The negative ΔH_d
438 can happen when the hydrate has very loose packing or high disorder relative to the anhydride.
439 The enthalpy released from host molecules during dehydration must compensate for the enthalpy
440 absorbed for water liquefying. In Class 1 ($\Delta H_d < 0$ and $T_d \geq 373$ K), no a_{wc} exists under
441 conventional crystallization conditions (< 373 K, 1 atm). The Class 1 hydrate is always less
442 stable than the anhydride. Such labile hydrates may exist as kinetic forms or desolvated forms
443 from mixed-solvate hydrates and would exhibit even higher solubility than the anhydride in

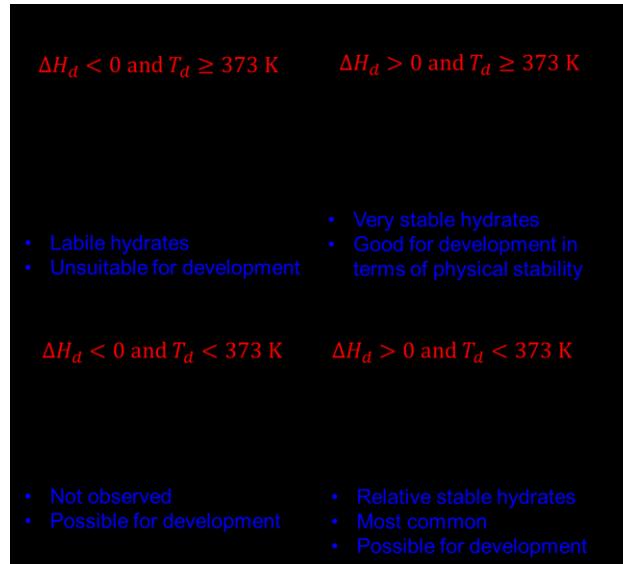


Figure 9. Four classes of hydrate-anhydride pairs.

444 water below 373 K, indicating they are less stable independent of a_w . A few Class 1 hydrates
445 have been observed in our internal form screening. Such labile hydrates are unsuitable for
446 development and have rarely been studied for a good reason.

447 In Class 3 ($\Delta H_d < 0$ and $T_d < 373$ K), a_{wc} exists when $T > T_d$. Such hydrates are more stable at
448 higher temperatures. To the best of our knowledge, hydrate-anhydride pairs in Class 3 have not
449 been previously reported. It will be very interesting to find a Class-3 example, as a Class 3
450 hydrate is suitable for solid-form development if its T_d is low.

451

452 Conclusions

453 Simple and complementary methods and a thermodynamic model for determining a_{wc} are
454 illustrated using carbamazepine and theophylline. In the solution-based method, a_{wc} can be
455 determined using intrinsic dissolution rate (IDR) ratio or solubility ratio of a hydrate-anhydride
456 pair measured at a known a_w . In the solid-based method, a_{wc} is predicted as a function of
457 temperature from the dehydration temperature and enthalpy obtained by DSC. These methods
458 yielded a_{wc} values in good agreement with those from the conventional methods. Overall, the
459 complementary methods offer diverse strategies based on data quality requirements and project
460 timelines in drug development. Hydrate-anhydride pairs are categorized into four classes with
461 examples based on whether $T_d \geq 373$ K and $\Delta H_d > 0$. It will be interesting to study whether the
462 thermodynamic model can be modified for non-stoichiometric hydrates or mixed-solvate
463 hydrates. It will also be enticing to unfold the solid-based method for a hydrate-anhydride pair
464 whose T_d and ΔH_d cannot be directly measured. More insights may be gained of an example of
465 Class 3 hydrate is discovered in drug development by applying the analysis in this .

Supplementary Materials

The a_{wc} values measured by conventional methods are summarized in Table S1 and the IDR and solubility data used for calculating a_{wc} are summarized in Table S2.

Acknowledgements

AbbVie funded the study and participated in study design, research, data collection, analysis and interpretation of data, writing, reviewing, and approving the publication. All authors have no additional conflicts of interest to report. X.Y., S.C., B.D.S., R.S.H., G.G.Z.Z. and A.Y.S. are employees of AbbVie and may own AbbVie stocks. CCS thanks the National Science Foundation for support through the Industry University Collaborative Research Center (IUCRC) grant IIP-2137264, Center for Integrated Materials Science and Engineering for Pharmaceutical Products (CIMSEPP).

References:

¹ Damron, J.T., Kersten, K.M., Pandey, M.K., Nishiyama, Y., Matzger, A. and Ramamoorthy, A., 2017. Role of Anomalous Water Constraints in the Efficacy of Pharmaceuticals Probed by ¹H Solid-State NMR. *ChemistrySelect*, 2(23), pp.6797-6800.

² Brini, E., Fennell, C.J., Fernandez-Serra, M., Hribar-Lee, B., Luksic, M. and Dill, K.A., 2017. How water's properties are encoded in its molecular structure and energies. *Chemical reviews*, 117(19), pp.12385-12414.

³ Khankari, R.K. and Grant, D.J., 1995. Pharmaceutical hydrates. *Thermochimica acta*, 248, pp.61-79.

⁴ Hong, R.S., Mattei, A., Sheikh, A.Y. and Tuckerman, M.E., 2022. A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates. *Proceedings of the National Academy of Sciences*, 119(43), p.e2204414119.

⁵ Schneider-Rauber, G., Arhangelskis, M., Bond, A.D., Ho, R., Nere, N., Bordawekar, S., Sheikh, A.Y. and Jones, W., 2021. Polymorphism and surface diversity arising from stress-induced transformations—the case of multicomponent forms of carbamazepine. *Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials*, 77(1), pp.54-67.

⁶ Schneider-Rauber, G., Arhangelskis, M., Goh, W.P., Cattle, J., Hondow, N., Drummond-Brydson, R., Ghadiri, M., Sinha, K., Ho, R., Nere, N.K. and Bordawekar, S., 2021. Understanding stress-induced disorder and breakage in organic crystals: beyond crystal structure anisotropy. *Chemical Science*, 12(42), pp.14270-14280.

⁷ Gu, C.H. and Grant, D.J., 2001. Estimating the relative stability of polymorphs and hydrates from heats of solution and solubility data. *Journal of pharmaceutical sciences*, 90(9), pp.1277-1287.

⁸ Yu, L., 1995. Inferring thermodynamic stability relationship of polymorphs from melting data. *Journal of pharmaceutical sciences*, 84(8), pp.966-974.

⁹ Yao, C., Guzei, I.A., Jin, Y., Ruan, S., Sun, G., Gui, Y., Wang, L. and Yu, L., 2020. Polymorphism of piroxicam: new polymorphs by melt crystallization and crystal structure prediction. *Crystal Growth & Design*, 20(12), pp.7874-7881.

¹⁰ Gui, Y., Yao, X., Guzei, I.A., Aristov, M.M., Yu, J. and Yu, L., 2020. A mechanism for reversible solid-state transitions involving nitro torsion. *Chemistry of Materials*, 32(18), pp.7754-7765.

¹¹ Almeida e Sousa, L., Reutzel-Edens, S.M., Stephenson, G.A. and Taylor, L.S., 2015. Assessment of the amorphous “solubility” of a group of diverse drugs using new experimental and theoretical approaches. *Molecular pharmaceutics*, 12(2), pp.484-495.

¹² Yao, X., Henry, R.F. and Zhang, G.G., 2023. Ritonavir form III: A new polymorph after 24 years. *Journal of pharmaceutical sciences*, 112(1), pp.237-242.

¹³ Qiu, Y., Chen, Y., Zhang, G.G., Yu, L. and Mantri, R.V. eds., 2016. *Developing solid oral dosage forms: pharmaceutical theory and practice*. Academic press.

¹⁴ Wang, Y., Du, S., Wu, S., Li, L., Zhang, D., Yu, B., Zhou, L., kiflegiorgis Bekele, H. and Gong, J., 2017. Thermodynamic and molecular investigation into the solubility, stability and self-assembly of gabapentin anhydrate and hydrate. *The Journal of Chemical Thermodynamics*, 113, pp.132-143.

¹⁵ Wen, H., Wang, C. and Sun, C.C., 2019. Fast determination of phase stability of hydrates using intrinsic dissolution rate measurements. *Crystal Growth & Design*, 19(10), pp.5471-5476.

¹⁶ Li, Y., Chow, P.S., Tan, R.B. and Black, S.N., 2008. Effect of water activity on the transformation between hydrate and anhydrate of carbamazepine. *Organic Process Research & Development*, 12(2), pp.264-270.

¹⁷ Liu, C., Dang, L., Bai, W. and Wei, H., 2013. Facile method for the prediction of anhydrate/hydrate transformation point. *Industrial & Engineering Chemistry Research*, 52(46), pp.16506-16512.

¹⁸ Ticehurst, M.D., Storey, R.A. and Watt, C., 2002. Application of slurry bridging experiments at controlled water activities to predict the solid-state conversion between anhydrous and hydrated forms using theophylline as a model drug. *International journal of pharmaceutics*, 247(1-2), pp.1-10.

¹⁹ Liu, C., Dang, L., Tong, Y. and Wei, H., 2013. Influence of polymorphs on the transformation water activity of theophylline. *Industrial & Engineering Chemistry Research*, 52(42), pp.14979-14983.

²⁰ Liu, C., Dang, L., Bai, W., Wang, R. and Wei, H., 2014. Solid–liquid equilibrium of theophylline in solvent mixtures. *Journal of Chemical & Engineering Data*, 59(2), pp.263-268.

²¹ Qu, H., Louhi-Kultanen, M. and Kallas, J., 2006. Solubility and stability of anhydrate/hydrate in solvent mixtures. *International journal of pharmaceutics*, 321(1-2), pp.101-107.

²² Hong, R.S., Miglani Bhardwaj, R., Henry, R., Mattei, A., Diwan, M., Thomas, A., Danzer, G.D. and Sheikh, A.Y., 2021. Distinct hybrid hydrates of paritaprevir: Combined experimental and computational assessment of their hydration–dehydration behavior and implications for regulatory controls. *Crystal Growth & Design*, 22(1), pp.726-737.

²³ Hong, R.S., Mattei, A., Sheikh, A.Y. and Tuckerman, M.E., 2022. A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates. *Proceedings of the National Academy of Sciences*, 119(43), p.e2204414119.

²⁴ Firaha, D., Liu, Y.M., van de Streek, J., Sasikumar, K., Dietrich, H., Helfferich, J., Aerts, L., Braun, D.E., Broo, A., DiPasquale, A.G. and Lee, A.Y., 2023. Predicting crystal form stability under real-world conditions. *Nature*, 623(7986), pp.324-328.

²⁵ Lawrence, X.Y., Carlin, A.S., Amidon, G.L. and Hussain, A.S., 2004. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. *International journal of pharmaceutics*, 270(1-2), pp.221-227.

²⁶ Reboul, J.P., Cristau, B., Soyfer, J.C. and Astier, J.P., 1981. 5H-Dibenz [b, f] azepinecarboxamide-5 (carbamazepine). *Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry*, 37(10), pp.1844-1848.

²⁷ Harris, R.K., Ghi, P.Y., Puschmann, H., Apperley, D.C., Griesser, U.J., Hammond, R.B., Ma, C., Roberts, K.J., Pearce, G.J., Yates, J.R. and Pickard, C.J., 2005. Structural studies of the polymorphs of carbamazepine, its dihydrate, and two solvates. *Organic process research & development*, 9(6), pp.902-910.

²⁸ Fucke, K., McIntyre, G.J., Wilkinson, C., Henry, M., Howard, J.A. and Steed, J.W., 2012. New insights into an old molecule: interaction energies of theophylline crystal forms. *Crystal growth & design*, 12(3), pp.1395-1401.

²⁹ Majodina, S., Ndima, L., Abosede, O.O., Hosten, E.C., Lorentino, C.M., Frota, H.F., Sangenito, L.S., Branquinha, M.H., Santos, A.L. and Ogunlaja, A.S., 2021. Physical stability enhancement and antimicrobial properties of a sodium ionic cocrystal with theophylline. *CrystEngComm*, 23(2), pp.335-352.

³⁰ Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 1996, 77 (18), 3865–3868.

³¹ Neumann, M. A.; Perrin, M.-A. Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. *J. Phys. Chem. B* 2005, 109 (32), 15531–15541.

³² Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1996, 54 (16), 11169.

³³ Kresse, G.; Hafner, J. Ab-initio molecular-dynamics for liquidmetals. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1993, 47 (1), 558–561.

³⁴ Kresse, G.; Hafner, J. Ab-initio molecular-dynamics simulationof the liquid-metal amorphous-semiconductor transition in germanium. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1994, 49 (20),14251.

³⁵H.J. Zhu, Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. 1. Theophylline

³⁶ F. Golles, *Monatsh. Chem.* 1961, 92, 981-991. Title: Examination and calculation of thermodynamic data from experimental data. I. The numerical integration of the vapor-pressure curves of the system methanol-water

³⁷ international crystal tables of numerical data, physics, chemistry, and technology, vol 3, p290

³⁸ Shefter, E. and Higuchi, T., 1963. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. *Journal of Pharmaceutical Sciences*, 52(8), pp.781-791.

³⁹ De Smidt, J.H., Fokkens, J.G., Grijseels, H. and Crommelin, D.J., 1986. Dissolution of theophylline monohydrate and anhydrous theophylline in buffer solutions. *Journal of pharmaceutical sciences*, 75(5), pp.497-501.

⁴⁰ Rodríguez-Hornedo, N., Lechuga-Ballesteros, D. and Wu, H.J., 1992. Phase transition and heterogeneous epitaxial nucleation of hydrated and anhydrous theophylline crystals. *International journal of pharmaceuticals*, 85(1-3), pp.149-162.

⁴¹ Chen, S., Gao, Y., Lou, X., Henry, R.F., Stolarik, D.F., Lipert, M.P., Sheikh, A.Y. and Zhang, G.G., 2022. Overcoming Bioavailability Challenges of Dasabuvir and Enabling a Triple-Combination Direct-Acting Antiviral HCV Regimen through a Salt of Very Weak Acid for Oral Delivery. *Molecular Pharmaceutics*, 19(7), pp.2367-2379.

⁴² Braun, D.E., Gelbrich, T., Kahlenberg, V. and Griesser, U.J., 2014. Insights into hydrate formation and stability of morphinananes from a combination of experimental and computational approaches. *Molecular pharmaceutics*, 11(9), pp.3145-3163.