

Impact of route of particle engineering on dissolution performance of posaconazole

Tianyi Xiang ¹#, Zijian Wang ¹#, Marina Solomos ², Stephanus Axnanda ³, Chienhung Chen ³, Margaret Figus ³, Luke Schenck ^{2,*} and Changquan Calvin Sun ^{1,*}

These authors contributed to this work equally

¹ Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

² Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA

³ Analytical Research & Development Merck & Co., Inc., Rahway, NJ 07065, USA

**Corresponding authors:*

Changquan Calvin Sun (sunx0053@umn.edu)

Luke Schenck (luke.schenck@merck.com)

1 **Abstract**

2 Even when they have similar particle size, micron sized drug crystals prepared via different
3 process routes may still exhibit considerable variability in pharmaceutical properties, due to the
4 anisotropy of molecular crystals. This study aims to evaluate the dissolution performance of
5 micronized posaconazole obtained through both milling and precipitation, with and without
6 polymer coating. To overcome the problem of pressure-induced amorphization of posaconazole,
7 powder dissolution was performed instead of intrinsic dissolution, which requires compressing
8 powder into pellets. However, direct powder dissolution was challenged by the poor dispersibility
9 of micronized posaconazole powders because of their extremely poor wettability. To solve this
10 problem, we pretreated powders by dispersing them in an aqueous solution with a surfactant.
11 Despite posaconazole forming a hydrate after pretreatment, differences in measured powder
12 dissolution rates are meaningful in predicting impact of routes of API engineering on
13 biopharmaceutical performance since hydration of posaconazole also occurs *in vivo*. This case
14 study presents a systematic approach in addressing challenges when characterizing dissolution
15 performance of drug powders.

16

17 **Keywords:** Posaconazole, dissolution, agglomeration, stability, micronization

18 **1. Introduction**

19 Oral solid dosage forms dominate the pharmaceutical market due to their excellent stability,
20 good patient compliance, low manufacturing cost, and large production volume (Sun, 2009). For
21 poorly soluble active pharmaceutical ingredients (API), achieving a high bioavailability of oral
22 solid dosage forms is a challenge. This challenge can be addressed by several API engineering
23 techniques, such as using a more soluble solid form (Li et al., 2022), using solubilizing agents in
24 the formulation (Lalge et al., 2022), and using micronized API powders (Perumalla and Sun, 2014).
25 The latter approach improves bioavailability by enhancing dissolution rate of APIs due to
26 increased total surface area of API (Shekunov et al., 2007) (Yao et al., 2023).

27 Among common processing techniques, the "top-down" milling approach entails producing
28 micron-sized particles through physical impacts and collisions (Wang et al., 2022). In contrast, the
29 "bottom-up" fast precipitation approach obtains micronized particles through fast phase separation
30 of API from solution. Due to the anisotropy of molecular crystals (Chung and Buessem, 1967)
31 (Modi et al., 2014), different processing routes can lead to API batches with different bulk
32 properties, even when particle sizes are comparable and the solid form is the same, if different
33 crystal surfaces are presented (Wang et al., 2022). Varied breakage planes during milling and
34 solvent interactions during precipitation could lead to the presence of different functional groups
35 on crystal surfaces (Heng et al., 2006) (Bade et al., 2024). Meanwhile, fine particles (<10 microns)
36 of a hydrophobic API can form agglomerates both in a dry powder and in aqueous media (Kendall,
37 1994), which can negate the potential dissolution advantages of micronized API. To overcome the
38 problems of poor wettability (Gui et al., 2019) and weak bonding during tableting (Shi and Sun,
39 2010), particle coating has been employed. This versatile particle engineering technique can be
40 accomplished through multiple routes, such as surface-controlled polymer precipitation (Wang et
41 al., 2002) (Tirkkonen et al., 1994) (Lu et al., 2007), fluidized bed coating (Teunou and Poncelet,
42 2002) (Osei-Yeboah and Sun, 2015), and atomic layer deposition (Gui et al., 2019) (Li et al., 2019),
43 spray-drying (Shi and Sun, 2011), mechanical dry coating (Yang et al., 2005) (Zhou et al., 2012).
44 Here, the coating was applied during isolation, where material dissolved in the mother liquors is
45 deposited on surfaces during drying (Coelho et al., 2022) (Hiew et al., 2023). It is also of practical
46 importance to understand how API particle coating affects dissolution.

47 Posaconazole, an antifungal agent, is a fluorine-containing triazole molecule that has been
48 marketed as amorphous solid dispersion-based tablets (Huang et al., 2019). We chose

49 posaconazole as a model compound to study the influence of processing routes on dissolution
50 behaviors since *in vivo* data showed different bioavailability for batches delivered as an oral
51 suspension of micronized API. The observation of slight changes in API properties resulting in *in*
52 *vivo* exposure that was not bio-equivalent is similar to that reported in a previous publication
53 (Wang et al., 2022). A likely reason for such variability in bioavailability is different dissolution
54 behaviors of API batches. Hence, we sought to identify *in vitro* characterization that would have
55 been predictive of the *in vivo* results. This involved systematically investigating the dissolution
56 behavior of posaconazole batches prepared using different processing routes. This proved to be
57 challenging using conventional techniques due to: 1) pressure-induced amorphization of
58 posaconazole (Huang et al., 2019), which prevented the application of the intrinsic dissolution
59 method using a rotating disc; 2) agglomeration of API particles due to poor wettability; and 3)
60 hydration during the course of dissolution.

61

62 **2. Materials and methods**

63 2.1. Materials

64 Various lots of posaconazole were obtained from Merck & Co., Inc. (Rahway, NJ, USA).
65 Sodium lauryl sulfate was purchased from Ward's Science (Rochester, NY). **Poloxamer (Pluronic**
66 **F127, Sigma-Aldrich, Milwaukee, WI, USA) was used as received.** Hydrochloric acid (36.5%-
67 38%; VWR International, Eagan, MN), acetone, sodium phosphate monobasic monohydrate, and
68 sodium phosphate dibasic heptahydrate (Fisher Scientific International, Inc., Fair Lawn, NJ) were
69 used as received to prepare buffer solutions.

70

71 **2.2. Methods**

72 2.2.1. Preparation of Samples

73 Lots M019 and M015 were obtained from production scale jet milling. **Lot B1-1** was
74 generated through a high shear direct precipitation (HSDP) process using the same solvent system
75 employed in the crystallization of the parent, un-milled material used to generate M019 and M015.
76 The HSDP utilized 40 g/L of posaconazole heated in acetone to dissolve. This was held at 50 °C
77 and added to cooled de-ionized water (DIW). The DIW was recirculated through a jacketed vessel
78 to maintain the batch temperature below 30 °C after addition, using the natural draw of a high
79 shear rotor-stator mill (Quadro HV0 homogenizer, Quadro Engineering Corp., Waterloo, ON,

80 Canada), running at 70 m/s with the emulsion, which was approximately 18 L/min. The API in
81 acetone was added at approximately 1.8 L/min (Harter et al., 2013). The final mother liquor
82 composition was 2:1 water: acetone (13.3 g/L API concentration). The material was displacement
83 washed with water, wherein water was used to rinse off residual acetone in the wet cake. This
84 process ensures minimized the risk of particle agglomeration by taking advantage of the extremely
85 low solubility of the API in water. After washing, the material was vacuum dried at 40°C to remove
86 all residual solvent.

87 Coating of the API crystals relied on material dissolved in capillary bound water in the wet
88 cake post batch filtration. Following vacuum drying, solids dissolved in the water would be
89 deposited onto the surfaces of the crystals. Here, previously dried API was re-suspended at 100
90 g/L and Poloxamer was suspended at 28 g/L in DI water, then homogenized with an IKA T25
91 Ultra-Turrax homogenizer (IKA Works, Inc., Wilmington, NC) mill at approximately 15 m/s to
92 fully disperse any API aggregates but not break primary particles (Schenck et al., 2021). The batch
93 was filtered on a medium-fit funnel. The loss-on-drying (LOD) at this point was approximately
94 52 wt%. The poloxamer was not expected to solubilize the posaconazole because its concentration
95 (28 g/L) was significantly lower than the critical micelle concentration (50 g/L). Hence, physical
96 losses of the API were minimal due to the low solubility of posaconazole (Yao et al., 2022). The
97 approximate loading of poloxamer on the final dried API was determined to be approximately 3.0%
98 in the case of lots M015 and M019 and 3.9% for batch 1-1. This could be calculated from the
99 initial API quantity added, the poloxamer concentration in the mother liquors, the initial moisture
100 content of the filtered wet cake before drying, and the final mass of the dried coated solids.

101
102 **2.2.2. Particle Size Distribution**

103 Particle size distribution (PSD) measurements were made using a laser ($\lambda = 780$ nm)
104 diffraction particle size analyzer (Microtrac S3500, York, PA, USA), with scattered light ranging
105 from 0.02° to 45° angle. The instrument was set for measuring irregular solid API particles, using
106 a refractive index of 1.51. The circulating media was Isopar-G with refractive index of 1.42.
107 particle size data was reported in volume distribution of particles . For each measurement, the
108 sample was sonicated at 30 W for 120 s to disperse particle aggregates.

109
110 **2.2.3. Powder X-ray Diffraction**

111 Powder X-ray diffractograms (PXRD) were obtained using a powder X-ray diffractometer
112 (PANalytical X'pert Pro, Westborough, MA, USA), using Cu K α radiation (1.54056 Å). Samples
113 were scanned with a step size of 0.02° and 1 s dwell time from 5° to 35° 2 θ . The tube voltage and
114 amperage were 45 kV and 40 mA, respectively.

115

116 **2.2.4. Surface Area Analysis**

117 The specific surface area of each API lot was obtained from analyzing nitrogen adsorption-
118 isotherms at 77 K collected using a TriStar II analyzer (Micromeritics Instrument Corp., Norcross,
119 GA, USA). Each material was loaded into a sample tube and degassed under nitrogen purge at
120 35 °C for 1 h before analysis. After cooling to room temperature, the tube was weighed and placed
121 into the adsorption port of the instrument. A static adsorption mode was used including full
122 equilibration after each adsorbate load, **where a sufficient time was allowed for the pressure to**
123 **stabilize and attain equilibrium. This process ensures the accuracy of measured adsorption volume,**
124 **which is critical for calculating accurate surface area.** The adsorption isotherms were measured
125 over a relative pressure, p/p_0 , range of 0.001–0.995. The surface area was calculated via the
126 Brunauer–Emmett–Teller (BET) method using data in the relative pressure range from 0.10 to 0.30
127 (Brunauer et al., 1938).

128

129 **2.2.5. Intrinsic Dissolution Rate by Rotating Disc Method**

130 Intrinsic dissolution rate (IDR) was measured using a rotating disc method (Yao et al.,
131 2024). Each powder was compressed at pressures of both 200 MPa and 400 MPa by a Universal
132 Material Testing Machine (model 1485; Zwick/Roell, Ulm, Germany) with a custom-made
133 stainless-steel die, against a flat stainless-steel disc for 2 min to prepare a pellet (6.39 mm in
134 diameter). Compacts made at a lower compaction pressure had particles shedding during the IDR
135 experiment, which **resulted in an uncontrolled increase in surface area for dissolution, leading to**
136 **under estimated IDR values.**

137 The obtained pellets had a visually smooth surface that was coplanar with the surface of
138 the die. While rotating at 300 rpm, the die was immersed in 300 mL pure ethanol in a water-
139 jacketed beaker, controlled at 37 °C. A UV-vis fiber optic probe (Ocean Optics, Dunedin, FL, USA)
140 was used to continuously monitor the UV absorbance of the solution at 257 nm **corresponding to**
141 **the absorbance peak.** Absorbance was converted to a concentration-time profile based on a

142 previously constructed concentration–absorbance standard curve (Figure S1). The initial linear
143 part of the dissolution curve was used for calculating the dissolution rate (Figure S2). Ethanol was
144 used because reliable IDR values could not be obtained in aqueous media due to the low solubility
145 of posaconazole.

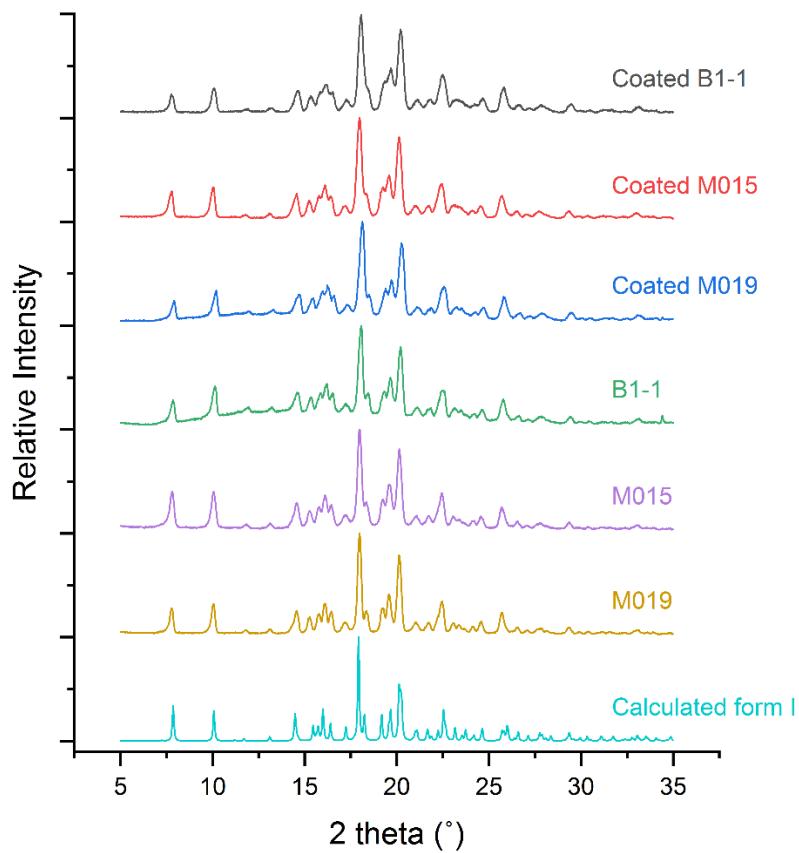
146

147 **2.2.6. Intrinsic Dissolution Rate by Powder Dissolution**

148 A total of 1.0 mL of fully dispersed pretreated suspensions was pipetted into 300 mL
149 dissolution medium (0.7 mM SDS with pH adjusted to 3) at 37 °C and stirred by an overhead
150 stirring paddle at 100 rpm. Temperature was controlled using a circulating water bath. The
151 concentration in the medium was monitored *in situ* by a UV–Vis fiber optic dip probe (Ocean
152 Optics, Dunedin, FL) and converted to a concentration-time profile.

153 To overcome the problem of poor dispersibility of micronized posaconazole in water, due
154 to its poor wettability, and to ensure complete dispersion of particles during powder dissolution,
155 ~60 mg of sample was dispersed in 20 mL SDS solution in water (6 mM) in a glass vial under
156 stirring by a magnetic stirring bar at 100 rpm. To determine an optimum pretreatment method,
157 pretreated suspension (1 mL) after 0 min, 15 min, 60 min, 24 h, and 72 h was pipetted to the
158 medium for measuring dissolution rate. Because the solubility of posaconazole in this medium is
159 negligible (0.20 µg/mL) (Mudie et al., 2020), no change in dissolution profile is expected once a
160 powder has been fully dispersed. Still, the medium was saturated by posaconazole, through
161 dispersing powders of posaconazole in SDS aqueous solutions overnight and passed through a
162 0.45 µm membrane, to eliminate the possibility of any dissolution of posaconazole before the
163 powder dissolution experiment. Pretreated samples at different time points were examined under
164 a polarized light microscope (PLM) (Nikon Eclipse E200, Nikon, Tokyo, Japan). Digital images
165 were captured using a DS-Fi1 microscope camera and analyzed to qualitatively assess
166 dispersibility.

167


168 **2.2.7. Statistical Analysis**

169 To assess the statistical significance of difference, one-way analysis of variance (ANOVA)
170 and Tukey’s multiple comparisons test were performed using R Studio software (version 1.4.1564,
171 Posit PBC, MA) for all API samples, at $p < 0.05$ level.

172

173 **3. Results and Discussions**

174 **3.1 Solid form of samples**

175

176 **Figure 1.** Powder X-ray diffraction patterns of coated and uncoated B1-1, M015, and M019,
177 and the calculated pattern of Posaconazole form I.

178

179 The powder X-ray diffraction (PXRD) patterns of M019, M015, and B1-1 are substantially
180 similar. They also matched the pattern calculated from the single crystal structure of posaconazole
181 form I. Thus, these powders, despite being manufactured under different conditions, are all form
182 I posaconazole. The PXRD patterns of the three coated samples also matched well with the PXRD
183 patterns of corresponding uncoated powders. Thus, **a qualitative comparison of the PXRD patterns**
184 **suggests that the coating process did not induce any detectable changes in the solid form.**

185

186 **3.2 Agglomeration tendency**

187 All posaconazole powders are highly cohesive, as expected for very fine powders. Visual
188 inspection revealed the presence of large agglomerates of fine particles. Among the three uncoated

189 samples, B1-1 (prepared using precipitation method) showed the highest tendency for
190 agglomeration, as indicated by a larger number of large chunks (Figure 2). Agglomerates in B1-1
191 are larger and harder to break compared to M015 and M019. The different agglomeration behavior
192 of B1-1 cannot be attributed to larger surface area as its surface area is in between those of M019
193 and M015 (produced by jet milling), i.e., M015 > B1-1 > M019 (Table 1). It is likely that
194 agglomerates formed in B1-1 during the filtration and drying, since there was no mechanical de-
195 lumping step.

196
197 **Figure 2.** Photographs of different lots of posaconazole.
198

199 **Table 1.** Specific surface area and particle size distribution (PSD) of different batches of samples
200 by BET measurement. Standard deviations are in parentheses.

Sample batch #	Specific surface area (m ² /g)	PSD (D50) (μm)
M019	2.8 (0.09)	5.0 (0.01)
M015	6.8 (0.05)	4.1 (0.01)
Batch 1-1	4.3 (0.03)	5.2 (0.01)

201
202 All coated samples have a lower agglomeration tendency than their corresponding uncoated
203 samples, as indicated by the presence of fewer lumps (Figure 2). We attribute the lower
204 agglomeration tendency of coated samples to the lower surface energy of the coating material,
205 poloxamer, than posaconazole.

206

207 3.3. IDR by Rotating Disc Method

208 As an important solid-state property to distinguish varied solid forms (Yao et al., 2024) or
209 different batches of the same API form (Wang et al., 2022), IDR is commonly measured by the
210 rotating disc method, which is both material-sparing and convenient (Yu et al., 2004). However,
211 the determination of IDR of posaconazole batches by the rotating disc method, which required
212 compressing a powder into a pellet to generate a flat smooth surface with a defined exposed surface
213 area, was hindered by its pressure-induced amorphization. It was estimated that ~23% of
214 crystalline posaconazole would be amorphized after compaction at 400 MPa based on solid-state
215 NMR results (Huang et al., 2019), which was also observed in this work when posaconazole was
216 compressed under both 400 and 1000 MPa (Figure S3, Table S1 and S2). For this reason, IDR
217 results of POS by this method were highly variable. For example, the IDR results of M019
218 measured by the rotating disc method in ethanol were both sensitive to pressure used to prepare a
219 pellet and highly variable (Table 2). Due to the unreliability of the data, no conclusions or
220 comparisons regarding the IDR between the two conditions can be made.

221

222 **Table 2.** Intrinsic dissolution rate (IDR) of M019 after compaction by the rotating disk method in
223 ethanol (n = 5).

Pressure (MPa)	IDR ($\mu\text{g}\cdot\text{cm}^{-2}\cdot\text{s}^{-1}$)	RSD (%)
200	0.92 ± 0.26	28.3
400	0.56 ± 0.20	35.7

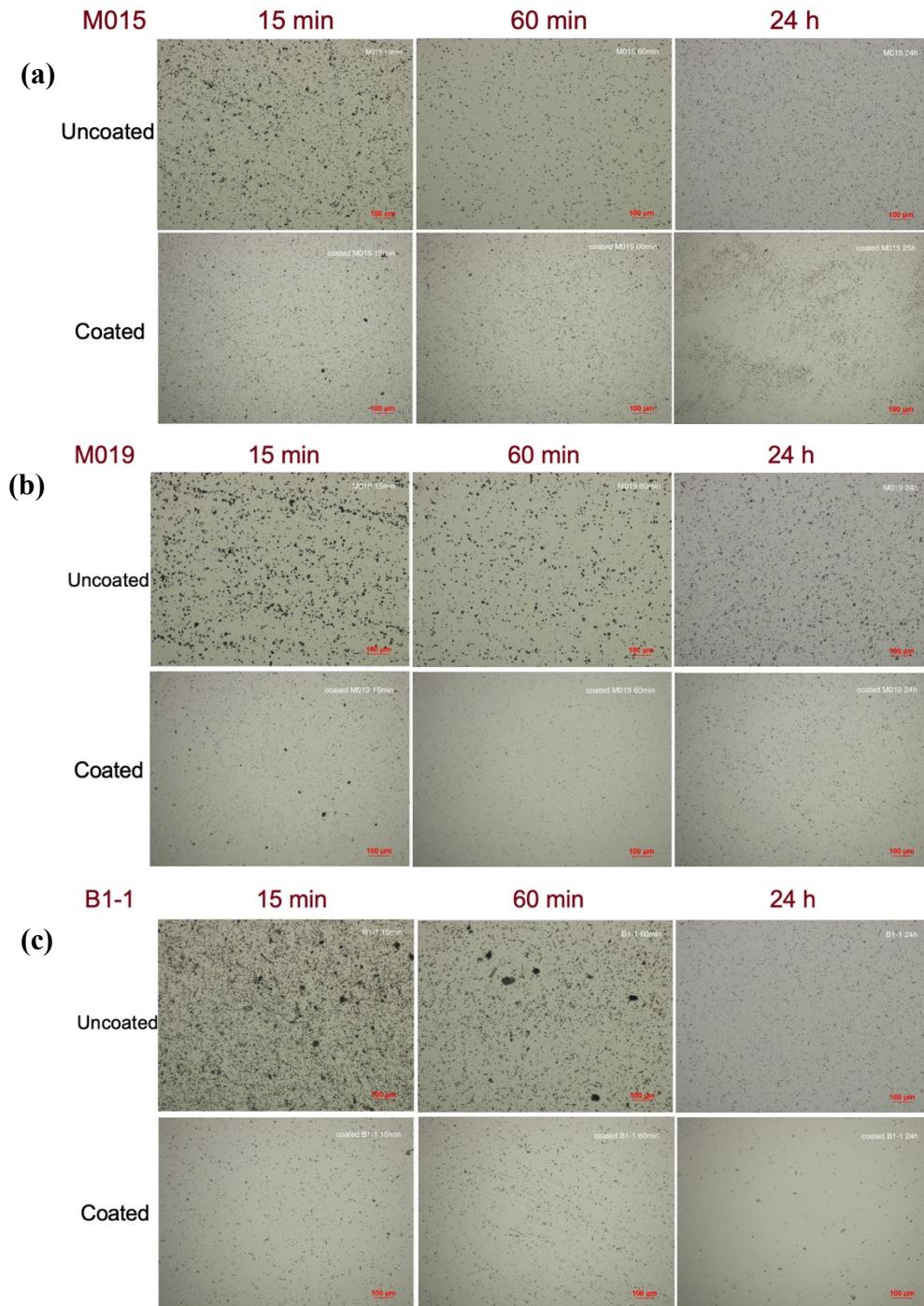
224

225 3.4. Dispersibility and Powder Dissolution

226 The stress sensitivity of posaconazole rendered IDR measurement by the rotating disc
227 method inappropriate for comparing surface energetics among different batches since phase
228 changes may be sample dependent. It was also expected that the majority of the phase change
229 could be happening at the particle surfaces, with the resulting amorphous material confounding
230 the assessment of the impact of preferred crystal orientation on dissolution behavior. Hence, we
231 employed powder dissolution to measure IDR. In this approach, dissolution rate can be normalized
232 by surface area of the sample to obtain IDR without needing to make a pellet with a known surface
233 area (Tsinman et al., 2009). A prerequisite for obtaining an accurate IDR value by this method is
234 to ensure complete dispersion of particles, i.e. absence of particle aggregation, in dissolution

235 medium. However, due to the high hydrophobicity, all batches of posaconazole underwent
236 significant agglomeration during direct powder dissolution, regardless of whether or not they were
237 coated (Figure 3). Therefore, the actual contact area between particles and dissolution medium is
238 smaller than the surface area of the powder. In fact, no dissolution of posaconazole could be
239 observed in 0.7 mM SDS aqueous solution at pH 3 at 37 °C. Despite the excellent aqueous
240 solubility of poloxamers that should facilitate particle wetting, dissolution rates of all coated
241 samples also remained nearly non-measurable, again due to limited surface area in contact with
242 the medium.

243



244

245 **Figure 3.** Poor wettability of micronized Posaconazole in a dissolution media of 0.7 mM SDS
246 water solution at pH 3.

247

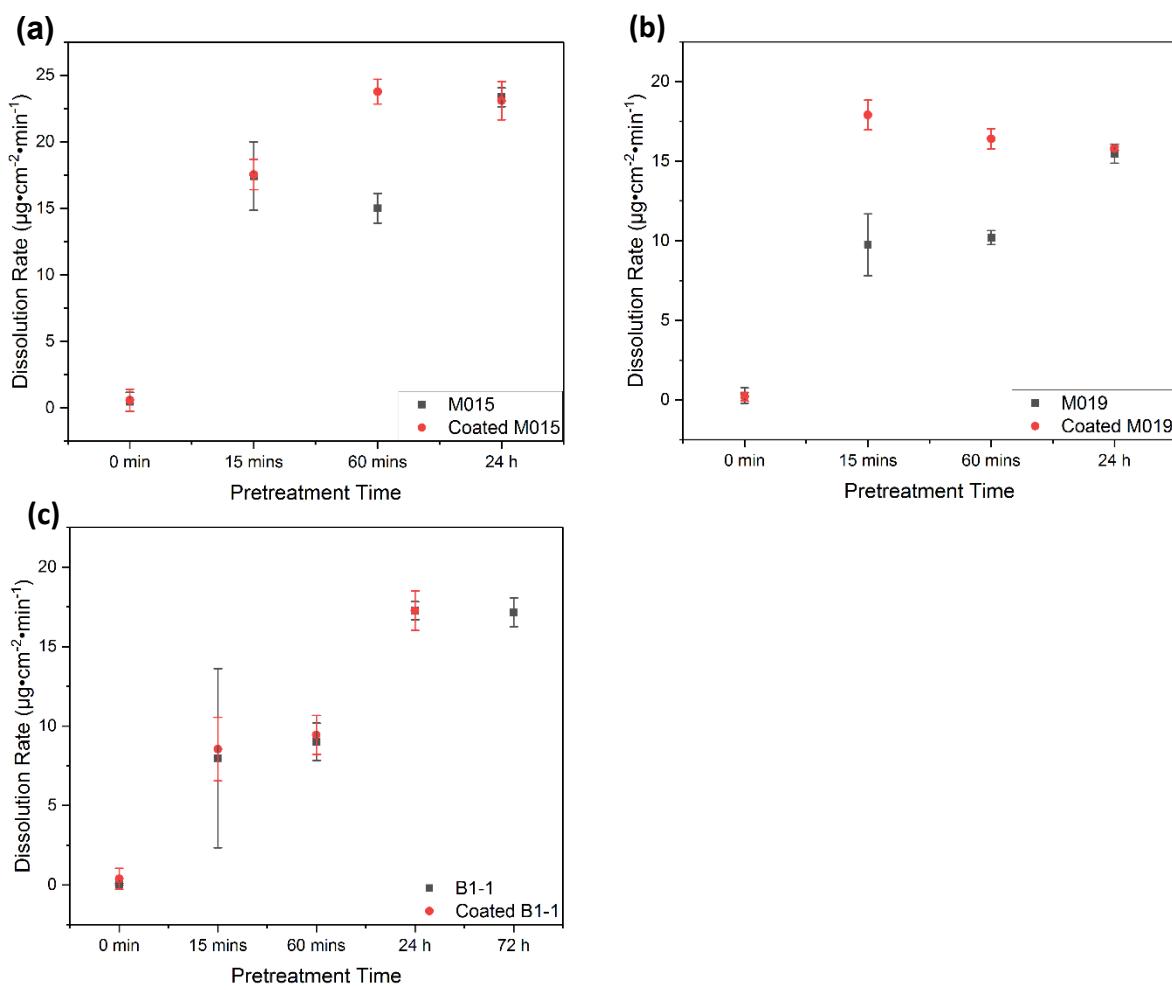

248 To resolve this issue, powders must be fully dispersed before dissolution testing. This was
249 achieved in this work by pretreating powders in an SDS aqueous solution (1.73%, w/v, 6 mmol/L),
250 saturated with posaconazole.

Figure 4. Polarized light microscopic images of suspended powders with different pretreatment times of a) M015; b) M019; and c) B1-1 of micronized posaconazole.

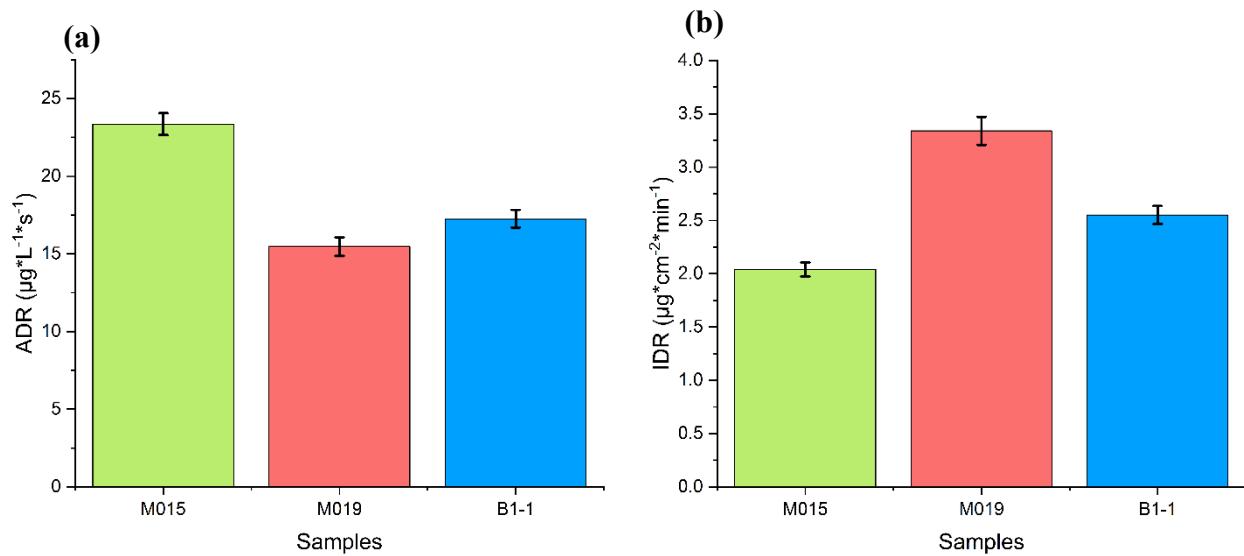
With increasing dispersion time of up to 24 hr during pretreatment, agglomerates disappeared completely in all samples. Samples coated by poloxamers could be more easily

257 dispersed than corresponding uncoated posaconazole powders. When observed under PLM,
 258 dispersions of coated samples had no visible agglomerates after 60 min pretreatment, but
 259 agglomerates could be seen in dispersion of uncoated samples (Figure 4). Effectiveness of
 260 pretreatment at different time points is also assessed from IDR measured. It is fair to conclude
 261 that 60 minutes is sufficient to achieve full dispersion for coated M015 and M019. However, this
 262 process requires up to 24 hours for uncoated M015 and M019. For B1-1, both coated and uncoated
 263 samples require 24 hours to complete dispersion during the pretreatment. This conclusion was also
 264 echoed by the **dissolution rate data discussed below**.

265
 266 **Figure 5.** Dissolution rates of coated and uncoated posaconazole batches **after different**
 267 **pretreatment times**, a) M015; b) M019; c) B1-1.

268

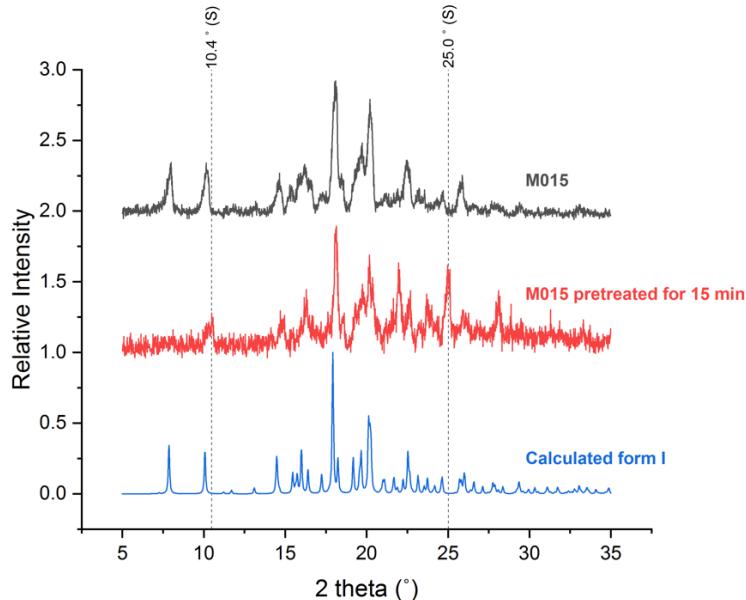
269 An inspection of the IDR vs. pretreatment time profiles suggests that all powders were
270 better dispersed over time, given the increase in IDR with time. For coated M015, the dissolution
271 rate of the coated sample increases with increasing pretreatment time, but remains unchanged
272 between 60 min and 24 hr (Figure 5a). This suggests complete dispersion of particles after 60 min.
273 However, 60 min of pretreatment was not enough to completely disperse uncoated M015 batch
274 since the IDR is significantly higher after 24 hr of pretreatment. The identical IDR of both coated
275 and uncoated after 24 hr of pretreatment suggests that 1) both powders were fully dispersed after
276 24 hr of pretreatment and 2) coating did not change surface area of posaconazole. We note here
277 that the small amount of poloxamer coating is expected to be fully dissolved in the pretreatment
278 medium, exposing core posaconazole in subsequent powder dissolution process.


279 For M019, trends similar to M015 were observed (Figure 5b). The only difference is that
280 the IDR of coated M019 reaches a plateau after 15 min of pretreatment, which is significantly
281 shorter than that for coated M019 (60 min). Again, the identical IDR for the coated and uncoated
282 samples after 24 hr of pretreatment confirms full dispersion and identical surface area between the
283 two samples. For B1-1, poloxamer coating did not significantly affect dispersion effectiveness of
284 pretreatment since the IDR – pretreatment time profiles are identical between the coated and
285 uncoated samples (Figure 6c); both increased with time up to 24 hr. In order to confirm that
286 complete dispersion was achieved at 24 hr, IDR of an uncoated B1-1 sample after 72 hr of
287 pretreatment was also measured. The identical IDR values at 24 hr and 72 hr confirm no further
288 change in surface area after 48 hr additional pretreatment, affirming complete dispersion after 24
289 hr.

290

291 3.5. Effects of Processing Route on Intrinsic Dissolution Rate

292 The apparent powder dissolution rates (ADR) of the three posaconazole batches are
293 significantly different, following the descending order of M015 > B1-1 > M019 (Figure 6a). ADR
294 was determined by taking the slopes of concentration-time powder dissolution profiles within the
295 initial 20 s after suspensions were administrated (Figure S2). Their IDR values (after 24 hr of
296 pretreatment) are also significantly different, following the descending order of M019 > B1-1 >
297 M015 (Figure 6b). The different rank orders of the three API batches based on ADR and IDR were
298 caused by the different specific surface areas (Table 1). Thus, both the different surface energetics


299 and surface area contribute to different biopharmaceutical performances among different batches
300 of posaconazole.

301
302 **Figure 6.** The powder dissolution rates of fully dispersed posaconazole batches, a) as measured;
303 b) normalized by surface area.
304

305 3.6. Further complication by hydrate formation

306 As detailed in preceding sections, prolonged pretreatment is required in order to measure
307 IDR of micron-sized posaconazole to understand process-induced differences in surface energetics
308 of API. Such a pretreatment strategy should be valid for many other APIs. However, IDR values
309 could also be affected by any phase conversion during pretreatment. For posaconazole, form I was
310 observed to form a channel hydrate (form S) after sonicating an aqueous dispersion for 10 min
311 (Lykouras et al., 2023) (Guidetti et al., 2024). This hydrate is thought to be isostructural to form I
312 based on known crystallographic information of the two crystal forms (Table 3) (Lykouras et al.,
313 2023), which means similar PXRD patterns. Fortunately, form S has characteristic peaks at around
314 10 ° and 25 °. We evaluated this potential phase conversion by examining uncoated M015 powder
315 with PXRD after 15 min pretreatment (Figure 7), which confirmed the conversion into form S.
316 Given the 24 hr of pretreatment required to attain full particle dispersion, it is likely that all
317 powders had converted into form S in the powder dissolution study. Thus, the IDR values
318 determined are those of the posaconazole hydrate of each starting material instead of form I.
319

320

321 **Figure 7.** PXRD of M015, pretreated M015 for 15 min, and calculated posaconazole form I.

322

323 **Table 3.** Crystallographic parameters of Form I and Form S of posaconazole (regenerated from
324 Lykouras et al., 2024) and (Lykouras et al., 2023).

Crystallographic Data	Form I	Form-S
Crystal System	Monoclinic	Monoclinic
Bravais Crystal Lattice	Simple Monoclinic	Simple Monoclinic
<i>a</i> (Å)	12.536 (0.001)	12.380 (0.005)
<i>b</i> (Å)	6.348 (0.0001)	6.305 (0.003)
<i>c</i> (Å)	22.780 (0.001)	23.126 (0.016)
β (°)	96.387 (0.002)	93.140 (0.034)
Unit Cell Volume (Å³)	1801.48 (0.10)	1802.47 (1.68)

325

326 However, since the same phase conversion during powder dissolution would have also
 327 occurred *in vivo*, the IDR values measured in this work remain useful for understanding the impact
 328 of processing route on biopharmaceutical performance of posaconazole.

329

330 **4. Conclusions**

331 Variability in bioavailability for various lots of API meeting size specifications suggests the
 332 potential impact of crystal surface anisotropy on critical quality attributes, including dissolution
 333 and *in vivo* exposure. This work sought to identify *in vitro* characterization routes to discriminate

334 differences in properties of micronized API. This involved systematically studying the dissolution
335 performance of micronized posaconazole produced by different processing routes, overcoming the
336 challenges of 1) pressure-induced amorphization, and 2) agglomeration of particles during
337 dissolution due to the poor wettability. The coating layer of poloxamer **both** improved the
338 dispersibility **and partially prevented the pressure-induced amorphization** of jet milled samples but
339 had no impact on precipitated samples. The IDR values, determined from the powder dissolution
340 experiments, followed a descending order of M019 (jet milled) > B1-1 (precipitated) > M015 (jet
341 milled). This, along with different surface areas of these batches, leads to apparent dissolution rates
342 in the descending order of M015 > B1-1 > M019. Approaches taken in this work to measure the
343 IDR for poorly water soluble posaconazole may benefit future dissolution characterization of other
344 poorly soluble APIs.

345

Acknowledgements

C.C.S. thanks the National Science Foundation for support through the Industry University Collaborative Research Center grant IIP-2137264, Center for Integrated Materials Science and Engineering for Pharmaceutical Products (CIMSEPP).

Author Contributions

Conceptualization, L.S. and C.C.S.; Formal analysis, T.X., Z.W., C.C. and M.F.; Investigation, T.X., Z.W., M.S., S.A., C.C. and M.F.; Methodology, T.X., Z.W. and C.C.; Project administration, C.C.S., S.A. and L.S.; Resources, C.C.S., M.S., C.C. and M.F.; Writing—original draft, T.X.; Writing—review & editing, Z.W., M.S., S.A., L.S. and C.C.S. All authors have read and agreed to the published version of the manuscript.

References

Bade, I., Karde, V., Schenck, L., Solomos, M., Figus, M., Chen, C., Axnanda, S., Heng, J.Y.Y., 2024. Process-Induced Crystal Surface Anisotropy and the Impact on the Powder Properties of Odanacatib. *Pharmaceutics* 16.
<https://doi.org/10.3390/pharmaceutics16070883>

Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. *J. Am. Chem. Soc.* 60, 309–319.

Chung, D.H., Buessem, W.R., 1967. The Elastic Anisotropy of Crystals. *J. Appl. Phys.* 38, 2010–2012. <https://doi.org/10.1063/1.1709819>

Coelho, A., Schenck, L., Guner, G., Punia, A., Bilgili, E., 2022. A Combined Isolation and Formulation Approach to Convert Nanomilled Suspensions into High Drug-Loaded Composite Particles That Readily Reconstitute. *Powders* 1, 88–110. <https://doi.org/10.3390/powders1020008>

Gui, Y., Chen, Y., Chen, Z., Jones, K.J., Yu, L., 2019. Improving Stability and Dissolution of Amorphous Clofazimine by Polymer Nano-Coating. *Pharm. Res.* 36, 67. <https://doi.org/10.1007/s11095-019-2584-9>

Guidetti, M., Hilfiker, R., Kuentz, M., Bauer-Brandl, A., Blatter, F., 2024. Water-mediated phase transformations of posaconazole: An intricate jungle of crystal forms. *Eur. J. Pharm. Sci.* 195, 106722.

Harter, A., Schenck, L., Lee, I., Cote, A., 2013. High-Shear Rotor–Stator Wet Milling for Drug Substances: Expanding Capability with Improved Scalability. *Org. Process Res. Dev.* 17, 1335–1344. <https://doi.org/10.1021/op4001143>

Heng, J.Y.Y., Thielmann, F., Williams, D.R., 2006. The Effects of Milling on the Surface Properties of Form I Paracetamol Crystals. *Pharm. Res.* 23, 1918–1927. <https://doi.org/10.1007/s11095-006-9042-1>

Hiew, T.N., Saboo, S., Zemlyanov, D.Y., Punia, A., Wang, M., Smith, D., Lowinger, M., Solomos, M.A., Schenck, L., Taylor, L.S., 2023. Improving Dissolution Performance and Drug Loading of Amorphous Dispersions Through a Hierarchical Particle Approach. *J. Pharm. Sci.* 112, 2057–2068. <https://doi.org/10.1016/j.xphs.2022.12.019>

Huang, C., Klinzing, G., Procopio, A., Yang, F., Ren, J., Burlage, R., Zhu, L., Su, Y., 2019. Understanding Compression-Induced Amorphization of Crystalline Posaconazole. *Mol. Pharm.* 16, 825–833. <https://doi.org/10.1021/acs.molpharmaceut.8b01122>

Kendall, K., 1994. Adhesion: Molecules and Mechanics. *Science* 263, 1720–1725. <https://doi.org/10.1126/science.263.5154.1720>

Lalge, R., Kaur, N., Duggirala, N.K., Suryanarayanan, R., 2022. Dual Functionality of Bile Acid: Physical Stabilization of Drugs in the Amorphous Form and Solubility Enhancement in Solution. *Mol. Pharm.* 19, 2595–2606.

Li, J., Duggirala, N.K., Kumar, N.S.K., Su, Y., Suryanarayanan, R., 2022. Design of Ternary Amorphous Solid Dispersions for Enhanced Dissolution of Drug Combinations. *Mol. Pharm.* 19, 2950–2961. <https://doi.org/10.1021/acs.molpharmaceut.2c00307>

Li, Y., Yu, J., Hu, S., Chen, Z., Sacchetti, M., Sun, C.C., Yu, L., 2019. Polymer Nanocoating of Amorphous Drugs for Improving Stability, Dissolution, Powder Flow, and Tabletability: The Case of Chitosan-Coated Indomethacin. *Mol. Pharm.* 16, 1305–1311. <https://doi.org/10.1021/acs.molpharmaceut.8b01237>

Lu, B., Wen, R., Yang, H., He, Y., 2007. Sustained-release tablets of indomethacin-loaded microcapsules: Preparation, *in vitro* and *in vivo* characterization. *Int. J. Pharm.* 333, 87–94. <https://doi.org/10.1016/j.ijpharm.2006.10.002>

Lykouras, M., Orkoula, M., Kontoyannis, C., 2023. Formation and Characterisation of Posaconazole Hydrate Form. *Pharmaceutics* 16. <https://doi.org/10.3390/ph16010065>

Modi, S.R., Dantuluri, A.K.R., Perumalla, S.R., Sun, C.C., Bansal, A.K., 2014. Effect of Crystal Habit on Intrinsic Dissolution Behavior of Celecoxib Due to Differential Wettability. *Cryst. Growth Des.* 14, 5283–5292. <https://doi.org/10.1021/cg501084a>

Mudie, D.M., Stewart, A.M., Biswas, N., Brodeur, T.J., Shepard, K.B., Smith, A., Morgen, M.M., Baumann, J.M., Vodak, D.T., 2020. Novel High-Drug-Loaded Amorphous

Dispersion Tablets of Posaconazole; In Vivo and In Vitro Assessment. *Mol. Pharm.* 17, 4463–4472. <https://doi.org/10.1021/acs.molpharmaceut.0c00471>

Osei-Yeboah, F., Sun, C.C., 2015. Tabletability Modulation Through Surface Engineering. *J. Pharm. Sci.* 104, 2645–2648. <https://doi.org/10.1002/jps.24532>

Perumalla, S.R., Sun, C.C., 2014. Enabling Tablet Product Development of 5-Fluorocytosine Through Integrated Crystal and Particle Engineering. *J. Pharm. Sci.* 103, 1126–1132. <https://doi.org/10.1002/jps.23876>

Schenck, L., Neri, C., Jia, X., Schafer, W., Axnanda, S., Canfield, N., Li, F., Shah, V., 2021. A Co-Processed API Approach for a Shear Sensitive Compound Affording Improved Chemical Stability and Streamlined Drug Product Processing. *J. Pharm. Sci.* 110, 3238–3245. <https://doi.org/10.1016/j.xphs.2021.05.013>

Shekunov, B.Y., Chattopadhyay, P., Tong, H.H.Y., Chow, A.H.L., 2007. Particle Size Analysis in Pharmaceutics: Principles, Methods and Applications. *Pharm. Res.* 24, 203–227. <https://doi.org/10.1007/s11095-006-9146-7>

Shi, L., Sun, C.C., 2011. Overcoming Poor Tabletability of Pharmaceutical Crystals by Surface Modification. *Pharm. Res.* 28, 3248–3255. <https://doi.org/10.1007/s11095-011-0518-2>

Shi, L., Sun, C.C., 2010. Transforming powder mechanical properties by core/shell structure: compressible sand. *J. Pharm. Sci.* 99, 4458–4462.

Sun, C.C., 2009. Materials Science Tetrahedron—A Useful Tool for Pharmaceutical Research and Development. *J. Pharm. Sci.* 98, 1671–1687. <https://doi.org/10.1002/jps.21552>

Teunou, E., Poncelet, D., 2002. Batch and continuous fluid bed coating – review and state of the art. *J. Food Eng.* 53, 325–340. [https://doi.org/10.1016/S0260-8774\(01\)00173-X](https://doi.org/10.1016/S0260-8774(01)00173-X)

Tirkkonen, S., Turakka, L., Paronen, P., 1994. Microencapsulation of indomethacin by gelatin-acacia complex coacervation in the presence of surfactants. *J. Microencapsul.* 11, 615–626. <https://doi.org/10.3109/02652049409051111>

Tsinman, K., Avdeef, A., Tsinman, O., Voloboy, D., 2009. Powder Dissolution Method for Estimating Rotating Disk Intrinsic Dissolution Rates of Low Solubility Drugs. *Pharm. Res.* 26, 2093–2100. <https://doi.org/10.1007/s11095-009-9921-3>

Wang, Y., Wei, D., Dave, R., Pfeffer, R., Sauceau, M., Letourneau, J.-J., Fages, J., 2002. Extraction and precipitation particle coating using supercritical CO₂. *Powder Technol.* 127, 32–44. [https://doi.org/10.1016/S0032-5910\(02\)00102-X](https://doi.org/10.1016/S0032-5910(02)00102-X)

Wang, Z., Solomos, M., Axnanda, S., Chen, C., Figus, M., Schenck, L., Sun, C.C., 2022. Varied Bulk Powder Properties of Micro-Sized API within Size Specifications as a Result of Particle Engineering Methods. *Pharmaceutics* 14. <https://doi.org/10.3390/pharmaceutics14091901>

Yang, J., Sliva, A., Banerjee, A., Dave, R.N., Pfeffer, R., 2005. Dry particle coating for improving the flowability of cohesive powders. *Prof Dr-Ing Otto Molerus 70th Birthd.* 158, 21–33. <https://doi.org/10.1016/j.powtec.2005.04.032>

Yao, X., Borchardt, K.A., Gui, Y., Guzei, I.A., Zhang, G.G., Yu, L., 2022. Surface-enhanced crystal nucleation and polymorph selection in amorphous posaconazole. *J. Chem. Phys.* 157.

Yao, X., Xiang, T., Chen, S., Alagbe, B.D., Zhang, G.G.Z., Hong, R.S., Sun, C.C., Yu, L., Sheikh, A.Y., 2024. Efficient determination of critical water activity and classification of hydrate-anhydrate stability relationship. *J. Pharm. Sci.* <https://doi.org/10.1016/j.xphs.2024.06.012>

Yao, X., Yu, L., Zhang, G.G.Z., 2023. Impact of Crystal Nuclei on Dissolution of Amorphous Drugs. *Mol. Pharm.* 20, 1796–1805. <https://doi.org/10.1021/acs.molpharmaceut.2c00989>

Yu, L.X., Carlin, A.S., Amidon, G.L., Hussain, A.S., 2004. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. *Int. J. Pharm.* 270, 221–227. <https://doi.org/10.1016/j.ijpharm.2003.10.016>

Zhou, Q., Shi, L., Chattoraj, S., Sun, C.C., 2012. Preparation and Characterization of Surface-Engineered Coarse Microcrystalline Cellulose Through Dry Coating with Silica Nanoparticles. *J. Pharm. Sci.* 101, 4258–4266. <https://doi.org/10.1002/jps.23301>