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Abstract

Interest in oral delivery of biological drug products, commonly prepared through
lyophilization, is surging. Typically, low solid content solutions are employed for lyophilization to
enhance mass transfer and minimize drying time. Yet, this approach often results in lyophilized
powders with low bulk density and poor flowability, challenging downstream processing steps that
are required for oral product development. Increasing solid content in a starting solution can, in
theory, increase the density of lyophilized cakes and powders with higher bulk density post-milling.
However, the effectiveness of improving powder density and flowability using a higher solid
content has not been experimentally verified. In addition, the impact of using a higher solid content
on other physicochemical properties of lyophilized materials remains uncertain. To address the
knowledge gaps, we lyophilized three common bulk cryoprotectants at two different solid contents
(5% and 10%) and systematically evaluated their solid-state properties, bulk density, flowability,
compaction characteristics, and physical stability. We found that powders prepared at a higher solid
content (10%) exhibited higher bulk density, but they still failed to meet the requirements for easy
oral product development. A change in solid content also leads to different solid-state properties,
compaction behaviors, and stability, highlighting the importance of thorough characterization of
lyophilized materials when solid content is changed in the course of oral solid dosage formulation

development.

Key words: Lyophilization, solid content, density, flowability, compaction properties, physical

stability, mannitol, sucrose, trehalose
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1 Introduction

The lyophilization process is frequently used in solidifying delicate drug substances for
improved stability, particularly in the production of biologicals (Allmendinger et al., 2023). The
concentration of solids in a solution prior to lyophilization, termed solid content, significantly
influences both the design of the lyophilization process and the performance of final lyophilized
cakes (Tang and Pikal, 2004). For a specified formulation and lyophilization process, using a low
solid content leads to larger pores, faster mass transfer, and shorter drying times. However, the
resultant lyophilized cake of a drug substance is highly porous, which leads to a milled powder
with sub-optimal bulk density and poor flowability. For example, most lyophilized powders

incorporating soluble excipients exhibit a bulk density under 0.2 g/mL (Table S1).

Low bulk density and poor flowability of the lyophilized powders limit drug dose attainable
by direct encapsulation and prevent successful commercial tablet manufacturing on a high-speed
rotary press (Leane et al., 2015; Leane et al., 2018). This poses a challenge to the oral delivery of
biological drug product development. Intuitively, a higher solid content in the starting solution is
expected to form a proportionally denser cake and a milled powder with higher bulk density and
better flowability. However, the effectiveness of this strategy for improving powder density and
flowability has not been demonstrated. In addition, the structure and properties of a lyophilized
product are impacted by size distribution and morphologies of ice crystal in the frozen solution,
which are affected by solid contents. Therefore, the impact of increasing solid content on other
physicochemical properties remains unknown. These knowledge gaps present a barrier for
successful development of oral drug products (both capsules and tablets) for biologicals using

lyophilized drug powders.

According to the Materials Science Tetrahedron (Sun, 2009), gaining a thorough
understanding of the impact of solid content on various properties of lyophilized powders, e.g.,
density, flowability, compaction characteristics, and physical stability, is essential for their
successful development into oral dosage forms. This work seeks to assess the potential impact of
solid content on the properties of lyophilized powders, employing three widely used bulk

cryoprotectants, i.e., mannitol, sucrose, and trehalose.

2 Materials and methods
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2.1 Materials

Starting crystalline mannitol (Pearlitol® 50C, Roquette, Lestrem, France), sucrose (Sigma
Aldrich, St. Louis, MO, USA), and trehalose dihydrate (Swanson, Fargo, ND, USA) were used as

received.
2.2 Methods
2.2.1 Lyophilization and milling

One-liter solutions of mannitol, sucrose, and trehalose in distilled water with solid contents
of either 5% or 10% were passed through a 0.2 pm filter before being poured into trays to form a
layer with approximately 1 cm depth. Thermocouples were placed at the center bottom of each
tray to monitor product temperature throughout the freeze-drying process. Initially, samples were
equilibrated for half an hour at 4 °C on the freeze-dryer shelf. Then, they were cooled down to -
40 °C at arate of 10 °C/h and held at -40 °C for 10 min to allow completion of the ice crystallization
process (phase I). Primary drying of the frozen solution occurred at -25 °C for 75 hours to ensure
the product's temperature reached the shelf temperature. The secondary drying process was carried
out at 15 °C for the next 17 h (phase III), after which the temperature was increased to 25 °C.

Throughout the entire process, the vacuum pressure was maintained at 100 mTorr.

Lyophilized cakes were milled with a Quadro comil (model 197) equipped with a round
bar impeller and a round hole cone mill screen (4L055R1008552B) at a speed of 2200 rpm. Before
the density measurement, the powders were passed through a 35-mesh screen, and collected for
further characterization. “5%” or “10%” are embedded in sample IDs of lyophilized powders to

signify corresponding solid content used to prepare a sample.

A freeze-drying cycle for a 5% mannitol solution is shown in Figure la. In the primary
drying phase, it is crucial to maintain the product temperature below a critical temperature to avoid
cake collapsing. The collapse itself does not necessarily affect the stability of the biological
formulation, but it suggests inadequate control of the manufacturing process and can lead to
product rejections. Thus, a conservative cycle with a low temperature was used in this work to

ensure the formation of elegant cakes (Figure 1b).
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Drying time was estimated by the time taken for the shelf temperature to reach the target
temperature, and the end of the drying occurs when the product temperature matches the shelf
temperature (see Figure 1a). A solution with a lower solid content forms larger, interconnected ice
crystals, which exhibit lower resistance to water vapor transfer, leading to more efficient mass/heat
exchange during drying. At a higher solid content, a longer drying time became necessary. For
this reason, both primary and secondary drying times for the 10% solid content samples
significantly exceeded those of corresponding 5% solid content samples (Table 1). For instance,
the total drying time (primary plus secondary drying) for 5% mannitol was 18 h shorter than that
for 10% mannitol. When the solid content of mannitol exceeds 10%, the primary drying process
necessitates more than 75 hours following this conservative drying process. Hence, a higher solid
content solution was not evaluated. However, the drying time can be shortened by optimizing the

primary drying process.

(a) | | (b)

30 . T
—— Shelf Tem.

Product Tem.

Temperature (°C)

T T
0 2000 4000 6000
Time (min)

Figure 1. a) Freeze-drying cycle profile featuring three phases for a 5% mannitol solution (Phase
I — freezing; Phase II — primary drying, Phase III — secondary drying). Shelf temperature profile is
shown as black line and product temperature is shown as red line, b) resulting cake.

Table 1. Primary and secondary drying times of lyophilized samples.

5% 10% 5% 10% 5% 10%

mannitol mannitol sucrose sucrose trehalose trehalose
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Primary drying time (h) 59 72.5 51.8 57.6 61.3 71.0
Secondary drying time (h) 1.5 6.4 33 4.8 4.1 6.4

2.2.2 Powder X-ray diffractometry (PXRD)

PXRD patterns of all powders were obtained using an X-ray diffractometer (X'pert Pro;
PANalytical, Westborough, MA, USA) with Cu Ka radiation (A =1.540598 A). Samples were
scanned between 5°-35° 20 angles with step size 0.016° and a dwell time of 1 s. Tube voltage and

amperage were set as 45 kV and 40 mA, respectively.
2.2.3 Differential scanning calorimetry (DSC)

Approximately 5 mg of each powder was loaded into a Tzero hermetically sealed
aluminum pan with a pinhole for analysis using a differential scanning calorimeter (Q1000; TA
Instruments, New Castle, DE, USA) at a heating rate of 10 °C/min under continuous nitrogen
purge at a flow rate of 25 mL/min. Different ranges of experimental temperature were chosen for
the three materials based on their crystallization and melting temperatures, i.e., — 50 °C to 180 °C
for lyophilized mannitol powders; 0 °C to 200 °C for lyophilized sucrose powders, and 15 °C to
220 °C lyophilized trehalose powders (two heating cycles).

2.2.4 Polarized light microscopy (PLM)

All powder samples were dispersed in silicone oil between a glass slide and a cover glass
and observed under a polarized light microscope (Olympus BX51, Japan). Images were captured

with a digital camera (AmScope, USA) at 10X and 40X magnifications.
2.2.5 Scanning electron microscopy (SEM)

Particle size and shape were assessed using a Phenom XL desktop scanning electron
microscope (Thermal Fisher Scientific, Waltham, MA, USA) operating at an excitation voltage of
10 kV under low vacuum mode. Specimens were affixed to a copper stage and observed without

coating.
2.2.6 Water content and dynamic vapor sorption (DVS)

Water content and moisture sorption of all lyophilized powders were analyzed using an
automated vapor sorption analyzer (Intrinsic, Surface Measurement Systems Ltd., Allentown, PA,

USA) at 25 °C. Nitrogen flow rate was 50 mL/min. Approximately 10 mg of each powder was first
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equilibrated at 40% RH (mimicking ambient humidity) for 6 h. Then, the sample was exposed to
0% RH over a period of 2 h. Water content was calculated from the change in sample weight from
40% RH to 0% RH. Next, the sample was then exposed to a series of RHs from 0% to 90% with
a step size of 10% RH. At each specific RH, the equilibration criterion was dm/dt <0.002% with a
minimum equilibration time of 0.5 h and a maximum equilibration time of 6 h. The RH was

changed to the next target value when one of the criteria was met.
2.2.7 Densities

Bulk and tapped densities of all lyophilized powders were measured (n = 3) using a TD1
Tap Density Tester (SOTAX, Hopkinton, MA, USA), following method 1 in USP <616> (USP,
2024). True density (p;) of all samples was measured using a helium pycnometer (Quantachrome
Instruments, Ultrapycnometer 1000e, Byonton Beach, FL, USA). An accurately weighed sample
was placed into the sample cell, occupying approximately half to three-quarters of the cell volume.
The measurement was concluded once the standard deviation of five successive measurements
was less than 0.005% and the mean of the last five measurements was taken as the sample’s true

density.
2.2.8 Flow properties

Carr’s index and Hausner ratio were calculated from bulk density (pp.u) and tapped

density (ptqp) using Eq. (1) and (2), respectively.

Carr's index (%) = w x 100% (1)
t
Hausner ratio = 22 (2)
Pbulk

A ring shear cell tester (RST-XS, Dietmar Schulze, Wolfenbiittel, Germany), with a 30 mL
cell, was also used to conduct powder flow testing (n=3) at a pre-shear normal stress of
3 kPa, following a standard 230 method (Wang et al., 2022). The shear cell was over filled with a
powder under investigation and excess powder was gently scraped off using a spatula to obtain a
surface flush with the upper edge of the shear cell. Attention was paid to prevent compression or

agitation of the powder bed when loading powder and removing excess powder.

2.2.9 Compaction properties
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Starting crystalline sucrose was milled into smaller particles using a mortar and pestle. All
powders were passed a 125 um sieve (mesh 120) to minimize possible effects of particle size on
compaction properties. A series of tablets with approximately 150 mg of each powder were
compressed at various pressures (10 MPa to 350 MPa) on a compaction simulator (Styl’One,
Medelpharm, Beynost, France), simulating a Korsch XL100 press. Forces exerted on the upper
and lower punches were recorded using load cells, and the punch displacement was tracked using
incremental sensors. Round flat-faced punches (8mm diameter) were used for tablet compaction,
which was carried out at both low speed (dwell time of 98 ms or 21 rpm) and high speed (dwell
time of 20 ms or 101 rpm). MgSt spray (Styl’One Mist) was applied to punch tips and die wall as
an external lubricant before each compaction. Tablet dimensions were measured using a digital
caliper to calculate tablet envelope density. Tablets were broken diametrically using a texture
analyzer (TA-XT2i, Texture Technologies Corp., Scarsdale, NY, USA) at a speed of 0.002 mm/s
with a 5 g trigger force. Tablet tensile strength (o), was calculated using Eq. (3) from the breaking
force (F), tablet diameter (d), and tablet thickness (%), following a standard procedure (Fell and
Newton, 1970).

2F

= ran )

In-die elastic recovery (% IER) of tablet was determined from the minimum tablet

thickness under compression (/1) and tablet thickness at the end of the decompression (/42) using

Eq. (4).

h, —hy

IER (%) = 5
1

x 100% (4)

Tablet porosity (€) was calculated from tablet envelope density (o) and true density (p;) of
powder using Eq. (5).

p
e=1—— 5
Pt ®)

In-die Heckel analysis was conducted following a standard procedure (Vreeman and Sun,
2021), where the linear portion of the in-die tablet porosity, €, vs. P plot was analyzed based on

the Heckel Eq. (6), to obtain in-die mean yield pressure (P, ;) (Heckel, 1961a, b).
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1
—In(e) =
Py

P+A4 (6)

Strain rate sensitivity (SRS) was calculated from P, ; values obtained at low speed (P, )

and obtained at high speed (P,, ) using Eq. (7) (Roberts and Rowe, 1985).

SRS (%) = Pylp;fy” x 100% 7)

Y
2.2.10 Physical stability under storage

All lyophilized powders were stored under ambient conditions for 5 months, during which
environmental humidity varied from 10% RH to 40% RH. To assess sample stability, PXRD
patterns and PLM and SEM images of fresh samples and samples after storage were compared for
signs of instability. Additionally, changes in bulk powder appearance after storage were captured

using a digital camera (Canon EOS R50, Japan).

3 Results and discussions
3.1 Solid state characterization

The freshly lyophilized powders have a moisture content of less than 2%. However, upon
reaching equilibrium at RH 40% for 6 hours, the moisture content of lyophilized powders followed
a descending order of trehalose > sucrose >> mannitol (Figure 2). 5% lyophilized sucrose and
trehalose exhibited slightly higher water content than their corresponding 10% lyophilized samples.
This difference may be attributed to the fact that a lyophilized powder from a higher solid content
has fewer or smaller pores and smaller specific surface area, which is translated into a lower

tendency to adsorb moisture.
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Figure 2. Moisture contents of mannitol, sucrose, and trehalose powders lyophilized from 5%
and 10% solid solutions and stored at 40% RH after 6 hours (n=1).

Anhydrous crystalline mannitol can exist in three known polymorphs (a, B, and 6 forms),
with the B form being the most thermodynamically stable at room temperature (Pitkdnen et al.,
1993; Smith et al., 2017). The 20 positions of characteristic peaks for mannitol polymorphs are
identified as 13.6° and 17.3° for the a form (Fronczek et al., 2003), 14.6°, 16.8°, and 23.4° for the
B form (Berman et al., 1968), and 22.3° for the 6 form (Fronczek et al., 2003). During the freezing
stage, the only exothermic event at -4 °C is attributed to crystallization of ice (Figure 1a). The
starting crystalline mannitol used in this work is a mixture of a and B forms (Figure 3a). The
lyophilized mannitol powders remain crystalline as shown by sharp PXRD peaks (Figure 3a),
which show that the 5% lyophilized mannitol is a mixture of a, B, and 6 forms, while the 10%
lyophilized mannitol only contains the a and 6 forms. The relatively higher intensity of o
characteristic peaks in the 5% lyophilized sample suggests a higher content o form. In the DSC
thermograms, both lyophilized mannitol samples showed a small endothermic peak immediately
followed by an exothermic peak in the temperature range of 150 °C - 157 °C (Figure 4a), which is
consistent with a previous study (Yoshinari et al., 2002). These events are attributed to the events
of melting of the 6 form, followed by recrystallizing to the  form. The larger value of heat of
fusion of the 6 form for the 5% lyophilized mannitol (5.613 J/g) than the 10% lyophilized mannitol
(1.676 J/g) suggests a larger proportion of the & form in the 5% lyophilized mannitol powder. Both
the 5% and 10% lyophilized mannitol samples exhibited prominent endothermic peaks at ~167 °C,

corresponding to melting of a form, B form of mannitol, or both (Figure 4a). Melting events for
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the a and 3 forms could not be discerned solely from DSC profiles because of the close proximity
of their melting points (a: 166 °C; B: 167 °C) (Paul et al., 2015; Pitkénen et al., 1993). The different
polymorph compositions in the two lyophilized mannitol samples are expected to contribute to

disparities in their bulk properties.
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Figure 3. PXRD patterns of freshly prepared lyophilized powders and their corresponding
crystalline form, a) mannitol; b) sucrose; c) trehalose.
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Figure 4. DSC heating profiles of lyophilized powders, a) mannitol; b) sucrose; c¢) trehalose.

The PXRD patterns of all lyophilized sucrose and trehalose samples exhibited broad halos
without sharp peaks (Figure 3b, 3c), indicating an absence of detectable crystalline phases. The
amorphous nature of the sucrose and trehalose sample explains their relatively much higher
moisture contents (Iglesias et al., 1997; Yu et al., 2008) than the crystalline lyophilized mannitol
powders (Figure 2). The thermal properties of sucrose samples prepared using different solid

contents were distinct, as revealed by their DSC thermograms (Figure 4b). The lower T values of
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sucrose powders than the literature values (7 > 50 °C) (Hancock and Zografi, 1994; Imamura et
al., 2010) are attributed to the higher moisture contents within the samples in this work (Figure 2).
Moisture loss above 7 leads to a broad endotherm (or downward baseline shift) before the
crystallization event at ~ 90 °C, as evidenced by an exothermic peak. In the case of 5% sucrose,
the endothermic event at 190 °C following the crystallization event is assigned as melting since it
falls in the reported melting point range for sucrose, 160 °C - 192 °C (Beckett et al., 2006, Hurtta
et al., 2004; Okuno et al., 2003; Roos, 1993). The 10% sucrose sample exhibited complex thermal
behaviors after the crystallization event, featured as multiple thermal events in the temperature
range 105 °C - 180 °C. It was reported that multiple endothermic peaks of crystalline sucrose could
be induced by decomposition of sucrose before melting, where the decomposition products may
serve as a solvent to dissolve sucrose crystals, leading to an endothermic peak (Beckett et al., 2006;
Lee et al., 2011; Roos, 1993; Schmidt et al., 2012).

Both trehalose samples exhibited a broad endothermic peak in the 30 - 120 °C temperature
range (Figure 4c), due to the evaporation of residual water in the samples, which masked the
potential 7y of lyophilized trehalose powders. Since no crystallization or melting event was
observed up to the known melting point of 203 °C for crystalline trehalose (Sussich et al., 1998),
both dehydrated trehalose samples remained amorphous. This offers an opportunity to measure the
Ty value by performing a second thermal scan of a sample dried in situ. Indeed, distinct 7gs were
observed in both samples (91 °C for the 5% trehalose sample and 118 °C for the 10% trehalose
sample) by quenching the cell to 15 °C after the first thermal scan and then heating at 10 °C/min
(Figure 4c). The different 7, values suggest two possible amorphous states of trehalose since
different extents of plasticization by moisture can be excluded as a reason for different 7,s.
However, both values fall in the reported range of 7, (75 to 120 °C) for amorphous trehalose (Roe
and Labuza, 2005; Sussich and Cesaro, 2008). Again, no crystallization or melting events were
observed after 7, for these samples when heated to 220 °C (above the melting point of trehalose).

The PLM results showed that mannitol particles exhibited birefringence (Figure 5a), which
is a characteristic of crystalline phases. On the contrary, no birefringence was observed in sucrose
and trehalose samples (Figure 5b, c¢), which is consistent with their amorphous nature shown by
their PXRD patterns (Figure 3b, c). SEM images revealed that all lyophilized samples consisted
of thin-flakes, which is distinct from the block-shaped starting crystalline particles (Figure 6).

Notably, the rough surface of lyophilized mannitol particles (Figure 6a) is reminiscent of
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crystallization, whereas the smooth particle surfaces of lyophilized sucrose and trehalose particles

(Figure 6b, c) are consistent with an absence of crystallization.
(a) (b) (c)
5%

lyophile

10%
lyophile

50pm 50pm S50um

Figure 5. PLM images of fresh lyophilized particles, a) mannitol; b) sucrose; c) trehalose
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Figure 6. SEM images of starting crystalline and lyophilized powders from solutions of
different solid contents for a) mannitol, b) sucrose and c) trehalose.

Both lyophilized mannitol samples gradually gained ~2% weight when RH increased from
0% to 90%, indicating limited surface adsorption of moisture (Figure 7a). Two lyophilized sucrose
powders absorbed a negligible amount (~0.1%) of water up to 80% RH but gained a substantial
amount of moisture (22.0% for 5% solid content sample and 28.5% for 10% solid content sample)
at 90% RH (Figure 7b). The low moisture sorption observed at RH < 80% is unexpected for
hydrophilic amorphous materials. However, this observation is in line with the widely observed
shape of adsorption isotherms for both amorphous and crystalline sugars (Mathlouthi and Rogé,

2003).
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The 5% lyophilized trehalose sample absorbed water rapidly with increasing RH and
converted into trehalose dihydrate at 50% RH, corresponding to an approximately 10% weight
gain (Figure 7¢). The 10% trehalose sample absorbed less water than the 5% trehalose sample at
RHs <90%. The amount of water adsorbed by this sample also increased rapidly up to 50% RH
but dropped at 60% RH and then maintained relatively constant up to 80% RH. A drop in absorbed
water at a higher RH indicates crystallization of amorphous materials. Since the plateau value of
~6% water content is close to that in a monohydrate (4.75%), the crystalline phase is likely a
monohydrate (Figure 7c). The sharp increase in weight at 90% RH indicates possible
deliquescence or conversion into the dihydrate form. Although interesting, no further efforts were
made to elucidate the phase nature and phase transformation of sucrose and trehalose samples

since these aspects were outside the scope of this project.
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Figure 7. DVS plots of lyophilized a) mannitol, b) sucrose, and c) trehalose.

3.2 Densities and flowability

Bulk density is an important powder property that plays a critical role in the development
of pharmaceutical solid products. A low powder bulk density can adversely affect drug loading,
content uniformity, manufacturing efficiency, and flow properties (Leane et al., 2015). Poor flow
properties are detrimental to downstream processing, such as blending, granulation, compression,
and encapsulation (Guerin et al., 1999). Thus, a high bulk density of APIs is typically preferred
when processing pharmaceutical powders. For the three 5% solid content lyophilized powders,
bulk densities were all less than 0.171 g/cm? (Table 2), which is common for lyophilized powders
(Table S1). With increasing solid content, the bulk densities of three materials were increased to

different extents, e.g., mannitol (14.6%), sucrose (41.5%), and trehalose (59.4%). However, even
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the highest bulk density of 0.242 g/cm® (10% Sucrose) is still likely too low for efficient
downstream processing considering the role of particle density on flow. In a prior study involving
a range of mannitol solutions with variable solid contents from 1% to 15%, a linear relationship
between solid contents and bulk densities was observed (Kaialy et al., 2016). Nevertheless, the
maximum bulk density for 15% lyophilized mannitol was 0.11 g/cm?, which is notably lower than
the 5% lyophilized mannitol powder in this work. This discrepancy is likely caused by the different

freezing steps in the two research endeavors.

Powder flow initiates when the cohesive forces between particles are overcome by external
forces, such as gravitational force. Due to the low density of lyophilized powders, the cohesive
forces, consisting of van der Waals forces, electrostatic forces, and hydrogen bonding, become
stronger than the gravitational force. Consequently, particles tend to form agglomerates and resist
flowing. Additionally, the flake-shaped lyophilized particles tend to interlock with each other
during packing, further hindering powder flow. This speculation was examined by measuring

established flow parameters of these powders.

Carr’s index and Hausner ratio were used to characterize powder flowability (Table 2),
where a higher Carr’s index or Hausner ratio value suggests poorer flowability (Tan et al., 2015;
Tharanon et al., 2024). All lyophilized powders in this work, despite different bulk densities,
belong to the category of “approximately no flow” by the measure of both Carr’s index (> 38%)
and Hausner ratio (> 1.60). The poor flowability of these lyophilized powders is also confirmed
by shear cell data (Figure 8), which put them into the class of either “very cohesive” (flowability
index: 1 —2) or “cohesive” (flowability index: 2 — 4) powders. The flowability of all these powder
was also much poorer than Avicel PH102 (flowability index: ~ 8 at 3 KPa), which is considered as
a reference material exhibiting minimum flowability required for high speed tableting (Sun, 2010).
Only lyophilized trehalose powder showed a slight increase in flowability index with the 10%
solid content sample. No significant difference in flowability index between two solid contents

was observed for lyophilized mannitol and sucrose powders.

Table 2. Densities and flowability parameters of the materials studied in this work.

Material ~ Solid content  pp,ix (g/cm?®) Ptap (g/cn’)  Carr’s index (%) Hausner ratio

Mannitol 5% 0.151 (0.005) 0.258 (0.003) 41.5 1.7
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10% 0.173 (0.002) 0.303 (0.004) 43.0 1.8
5% 0.171 (0.001) 0.341 (0.001) 49.9 2.0
Sucrose
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Figure 8. Flowability index of all lyophilized powders (n=3).

3.3 Compaction properties

All lyophilized powders were able to form tablets at both slow and fast speeds with tensile
strength higher than 2 MPa (Figure 9, Table S2). Thus, they exhibit adequate tabletability for

making sufficiently strong tablets that can withstand stresses during transportation and handling

(Sun et al., 2009).
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Figure 9. Tabletability profiles of lyophilized powders compressed at two tableting speeds, a)
mannitol; b) sucrose; ¢) trehalose (n=1). Crystalline starting materials are included for comparison.

It was suggested that disordered molecular arrangement in amorphous solids allows for
greater molecular mobility and better plasticity (Rozanski and Galeski, 2013). If so, amorphous
particles can exhibit better tabletability than their crystalline counterparts since they can likely
form larger bonding area while maintaining similar bonding strengths (Sun, 2011). All amorphous
sucrose and trehalose samples in this work were indeed more plastic than their crystalline
counterparts, as indicated by their lower P, values (Table 3) and lower £ values (Table S2). This
is consistent with the better tabletability of lyophilized powders at both tableting speeds (Figure
9). Although both lyophilized mannitol samples are crystalline, they still exhibit significantly
better tabletability than the starting crystalline form. This can be, in part, explained by the flake-
shaped particles, surface roughness, and polymorph composition, which contribute to stronger

bonding between particles.

At the slow tableting speed, 5% sucrose and trehalose exhibit higher plasticity and better
tabletability than corresponding 10% samples (Figure 9b-c, Table 4). The more porous structures
of 5% lyophilized samples result in greater compressibility, which contributes to better plasticity
and tabletability than the less porous 10% lyophilized samples. However, there was no significant
difference in plasticity and tabletability between the two crystalline mannitol lyophiles (Figure 9a,
Table 3).

Table 3. Values of in-die P,and SRS of materials studied in this work.
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Material Solids P, (MPa) P, (MPa) SRS (%)
5% 107.7 (2.0) 109.9 (3.6) 4.0
Mannitol 10% 108.1 (1.7) 113.8 (2.5) 5.0
Starting 120.0 (2.3) 126.6 (1.0) 5.5
5% 82.8 (1.8) 86.6 (1.6) 4.4
Sucrose 10% 89.4 (1.5) 100.4 (1.1) 10.9
Starting 168.8 (3.0) 171.1 (2.4) 1.4
5% 57.1(0.6) 74.0 (2.2) 22.8
Trehalose 10% 89.7 (1.8) 98.8 (1.0) 9.2
Starting 106.1 (1.3) 109.0 (1.7) 2.7

Tableting speed only has a marginal impact on the tabletability of starting crystalline
powders. However, all lyophilized powders exhibited decreased tabletability with increasing
tableting speed, though the extent varied (Figure 9). Above certain pressures, tablet tensile strength
of lyophilized samples also decreased with increasing pressure, and tablet lamination was observed
in some cases. This overcompression phenomenon can be attributed to air entrapment due to the
porous structure of lyophilized samples that leads to more initial air in the sample, as indicated by
their low bulk densities and difficulty for air to escape, especially during high-speed compression.
This mechanism explains the earlier onset of the overcompression problem for each of the six
lyophilized powders than their crystalline counterpart and the more severe overcompression at a
higher tableting speed (Figure 9). For starting crystalline materials, the overcompression problem
is significantly less severe, which is consistent with their higher bulk densities and easier escape
by air from their powder beds due to the more regular particle shapes (Figure 6). Expansion of
entrapped air during decompression can break bonding between particles in a compact, which
weakens tablet and even causes tablet laminations (Hiestand et al., 1977; Mazel et al., 2015;
Vreeman and Sun, 2022). One parameter for assessing the extent of air expansion during
decompression is the in-die elastic recovery (IER) (Vreeman and Sun, 2024). As expected, IERs
were higher at a higher speed for all lyophilized powders (Figure 10). A jump in the IER profile
signifies the onset of significant air entrapment during compression, where pores are sealed due to
extensive plastic deformation at a sufficiently high pressure (Vreeman and Sun, 2022). Moreover,

compared to the 5% lyophilized samples, the less pronounced overcompression phenomenon in
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the 10% lyophilized samples is consistent with their lower IERs, resulting from their less porous

structures and higher bulk densities.

Distinct speed sensitivities in plasticity were observed among samples studied (Table 4).
The plasticity of mannitol powders is not sensitive to tableting speed, as indicated by the
comparable SRS values across the three types of mannitol powders. However, the SRS values of
starting crystalline sucrose and trehalose are much lower than those of their corresponding
lyophilized samples, i.e., the plasticity of the lyophilized powders is more sensitive to tableting
speed. The high SRS of 5% trehalose, 22.8% (Table 3) is consistent with a previous work (Hsein
et al., 2023).
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Figure 10. IER of lyophilized a) mannitol, b) sucrose, and c) trehalose tablets at two tableting
speeds.

3.4 Physical stability

Stability of all lyophilized powders under ambient conditions over a period of five months
was assessed, during which ambient humidity shifted from 40% to 10%. No evidence of form
transformation during storage was observed in both lyophilized mannitol samples since their
PXRD patterns remained essentially unchanged (Figure 11a) and no discernible change was

observed in their PLM images (Figure 12a).
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Figure 11. Comparison of PXRD patterns between fresh samples and lyophilized samples
stored for 5 months for a) mannitol; b) sucrose; c) trehalose.

Both lyophilized amorphous sucrose samples crystallized over time, as indicated by the
appearance of shape XRD peaks matching those of the starting crystalline sucrose (Figure 11b)
and the observation of birefringence in their PLM images (Figure 12b). Crystallization was further
evidenced by changes in particle morphology, where the initially flake-shaped particles with
poorly defined edges in both lyophilized sucrose samples transformed into block-shaped particles

with well-defined edges, similar to starting crystalline sucrose particles (Figures 6b, 13a).

(a) (b)
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200um e ¥ 2 L
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Figure 12. PLM images of lyophilized a) mannitol, b) sucrose, and c) trehalose particles stored
for 5 months.

After five months of storage, the 5% trehalose sample crystallized significantly, exhibiting
sharp XRD peaks that closely resembled those of crystalline trehalose dihydrate, as confirmed by

its PXRD pattern, with variations in peak intensity due to preferred orientation. (Figure 11c).
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However, the 10% trehalose sample remained amorphous. The disparity in solid-state stability
between the two samples was also apparent in their PLM and SEM images. Birefringence was
observed in the aged 5% trehalose sample but not in the aged 10% trehalose sample (Figure 12c).
Additionally, the morphology changed for 5% trehalose particles after 5-month storage but
remained unchanged for the 10% trehalose particles (Figures 6¢, 13b), indicating an absence of
crystallization. The better physical stability of the 10% trehalose sample may be attributed to its
significantly higher 7, than 5% trehalose (Figure 4c).

5% lyophile (5 months) 10% lyophile (5 months)

Figure 13. SEM images of lyophilized powders stored for 5 months, a) sucrose; b)
trehalose.

The bulk powders of stored lyophilized samples exhibited varied appearances (Figure 14).
Initially, all freshly milled freeze-dried samples were loose powders without any agglomeration.
For samples that retained their initial solid form, such as 5% and 10% mannitol and 10% trehalose,
the appearance of powders remained visually unchanged. Although a few loose agglomerates

formed in lyophilized mannitol bulk powders, they could be easily broken by applying a gentle
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external force. However, lyophilized powders that underwent solid form transformation during
storage, i.e., 5% and 10% sucrose and 5% trehalose, formed strong and dense cakes, an indication
of solid bridge formation. One mechanism for the formation of solid bridges is a three-step process:
1) form liquid brideges at the contact point between particles due to initially high mositure uptake,
2) dissolution of sugar into liquid water, and 3) crystallization of sugar upon evaporation of water
with decreasing humidity (Dupas-Langlet et al., 2015; Leaper et al., 2012). Another possible
mechanism for the formation of solid bridges is solid-state transformation (Hartmann and Palzer,
2011), where the recrystallization of amorphous powders leads to formation of solid bridges.
Hence the 10% trehalose powder, initially contained high water content, did not form a large lump
after storage (Figure 14c), solid-state transformation is likely the principal mechanism for powder

caking observed in this study.

5%
lyophile

10%
lyophile

Figure 14. Powder appearance of lyophilized powders stored for 5 months, a) mannitol; b)
sucrose; c) trehalose.

4 Conclusions

Increasing the solid content during lyophilization can increase cake density and bulk density of
milled powders. However, even with a doubled solid content (from 5% to 10%), lyophilized
powders still demonstrate inadequate bulk density and flowability required for direct encapsulation
or tableting. Importantly, altering the solid content can yield lyophilized powders with distinct bulk

properties, which require careful characterization and assessment on their impact on stability in
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addition to processability. Impact of solid content on properties of lyophilized powders also varied,
resulting in different polymorph compositions for mannitol, different and complex thermal
behaviors and water sorption properties for sucrose, and different glass transition temperatures and
stabilities for trehalose. For all three sugars, samples prepared with a lower solid content tend to
possess more porous structures, contributing to better compressibility and higher plasticity.
However, these porous structures may result in tablet defects or lamination at high tableting speeds
and pressures due to air entrapment. This comprehensive investigation into the impact of solid
content on lyophilized powders of three common cryoprotectants provides valuable baseline

knowledge for the preparation and formulation development of future lyophilized products.
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