

International Journal of Pharmaceutics
Impact of Solid Content on the Bulk Properties of Lyophilized Powders
--Manuscript Draft--

Manuscript Number:	IJPHARM-D-24-04669R1
Article Type:	Research Paper
Section/Category:	
Keywords:	Lyophilization; solid content; density; flowability; compaction properties; physical stability
Corresponding Author:	Chenguang Wang Evelo Biosciences Maple Grove, Minnesota UNITED STATES
First Author:	Zijian Wang
Order of Authors:	Zijian Wang Sichen Song, Ph.D Hongwei Zhang, Ph.D Xiaohong Liu, Ph.D Ronald A. Siegel, Sc.D Changquan Calvin Sun, Ph.D Chenguang Wang, Ph.D
Abstract:	Interest in oral delivery of biological drug products, commonly prepared through lyophilization, is surging. Typically, low solid content solutions are employed for lyophilization to enhance mass transfer and minimize drying time. Yet, this approach often results in lyophilized powders with low bulk density and poor flowability, challenging downstream processing steps that are required for oral product development. Increasing solid content in a starting solution can, in theory, increase the density of lyophilized cakes and powders with higher bulk density post-milling. However, the effectiveness of improving powder density and flowability using a higher solid content has not been experimentally verified. In addition, the impact of using a higher solid content on other physicochemical properties of lyophilized materials remains uncertain. To address the knowledge gaps, we lyophilized three common bulk cryoprotectants at two different solid contents (5% and 10%) and systematically evaluated their solid-state properties, bulk density, flowability, compaction characteristics, and physical stability. We found that powders prepared at a higher solid content (10%) exhibited higher bulk density, but they still failed to meet the requirements for easy oral product development. A change in solid content also leads to different solid-state properties, compaction behaviors, and stability, highlighting the importance of thorough characterization of lyophilized materials when solid content is changed in the course of oral solid dosage formulation development.
Suggested Reviewers:	Shubhajit Paul, Ph.D Senior Principal Scientist, Boehringer Ingelheim Corp USA shubhajit.paul@boehringer-ingelheim.com Renowned expert in compaction and tabletting studies. Qi Tony Zhou, Ph.D Associate Professor, Purdue University tonyzhou@purdue.edu Expert in pharmaceutical solid dosage forms, particle engineering, and powder technology. Tze Ning Hiew, Ph.D Assistant Professor, University of Iowa tzening-hiew@uiowa.edu Expert on oral dosage forms design and physicochemical properties of the excipients

Aditya Singaraju, Ph.D
Senior advisor, Eli Lilly and Company
aditya.singaraju@lilly.com
He is an expert in compaction and solid-state characterization.

All changes in the manuscript text are highlighted in red for easy identification.

Reviewer #1:

Reviewer's comment: 1. Graphical abstract misleading and low-effort. Lyophilization AND milling result in the different bulk density properties, not lyophilization alone.

Author's response: The milling step was added to the GA.

Reviewer's comment: 2. Line 50-52 inaccurate. Solid content not primary way to influence supercooling/nucleation temperature. Also, larger pores enable faster mass transfer, not heat transfer.

Author's response: In the main text, we have revised this sentence. "For a specified formulation and lyophilization process, using a low solid content leads to larger pores, faster mass transfer, and shorter drying times."

Reviewer's comment: 3. Table 1 and much of the introduction on biologics and biologic products is not relevant to the content of the manuscript. Table 1 also includes several products that are not orally delivered as stated in table caption.

Author's response: Table 1 and the introductory section on oral biologics were removed from the manuscript.

Reviewer's comment: 4. Line 94 Need many more details on the milling of lyophilized powders. How did you mill? Was an automated system used or by hand? What determined when a powder was sufficiently milled?

Author's response: The milling process parameters were added.

Reviewer's comment: 5. Line 111-113 It is fine to only evaluate up to 10% solid content, but it is not accurate to say the lyophilization process is too resource intensive above that. You have already said this is a conservative FD cycle. It is very possible optimize for higher solid content mannitol within 75 hours.

Author's response: Agreed. It has been revised accordingly. "When the solid content of mannitol exceeds 10%, the primary drying process necessitates more than 75 hours following this drying process. Hence, a higher solid content solution was not evaluated. However, the drying time can be shortened by optimizing the primary drying process."

Reviewer's comment: 6. Figure 2 caption should include that moisture measured after 6 hours at 40% rh.

Author's response: Revised as suggested.

Reviewer's comment: 7. Line 246-247 Different polymorph compositions is interesting! There is no discussion of this later or theories given for why different polymorph composition was observed.

Author's response: We concur with the reviewer that the variations in mannitol's polymorphic compositions due to solid content are intriguing. However, literature has extensively documented how these compositions are influenced by the lyophilization process (*Pharm Res* **30**, 131–139 (2013); *J Pharm Sci*, **87**, 931-935 (1998); PDA J Pharm Sci Technol, **54**, 13-22 (2000)). Although our current study reveals that polymorph formation is influenced by solid content, factors like cooling rate, annealing conditions, drying temperatures, and the presence of additives such as excipients and drug substances can change the outcomes. A more detailed discussion of is observation is outside the scope of our current study.

Reviewer's comment: 8. Line 251-253 Why does amorphous SUC/TRE explain higher moisture content? Source?

Author's response: The references have been added to the manuscript.

Reviewer's comment: 9. The interpretation and analysis of the experimental data in the results and discussion is excellent, but I am missing how all the details of the various solid state characterizations influence your conclusions. Spend more time on the characteristics that end up connecting to the desired powder properties like crystalline/amorphous in Fig. 9 / Table 4.

Author's response: In conclusion, solid content impacts the properties of lyophilized powders: mannitol shows varied polymorph compositions, sucrose exhibits complex thermal behaviors and water sorption properties, and trehalose displays distinct glass transition temperatures and stabilities, according to solid state characterization studies. Figure 9 and Table 4 illustrate the compaction properties of these powders compared to their crystalline counterparts. The enhanced tableability of lyophilized sucrose and trehalose stems from their amorphous states. For mannitol, the improved tableability is linked to particle morphology changes or polymorphic transformations. Considering the complexity of their compaction behaviors, we prefer not to correlate these observations further with solid state properties. Please add any suggestions or comments to expand on this discussion.

Reviewer's comment: 10. Line 467 Still not sure what biologics have to do with this manuscript.

Author's response: replaced the 'biologics' with 'lyophilized products'.

Reviewer #2:

Reviewer's comment: 1. The manuscript is very well written addressing the gaps in understanding the bulk properties and processing of solids obtained through lyophilization.

The manuscript in its current form is acceptable in my perspective.

Author's response: We thank the reviewer for the positive comments.

Reviewer #4:

Reviewer's comment: 1. Table 1: even though the table caption mentions orally delivered pharmaceutical peptides and other biological drugs, there are products that are delivered through the rectal and vaginal routes too. Suggest to either modify heading or remove those irrelevant examples

Author's response: Removed Table 1.

Reviewer's comment: 2. Line 90, "which ensured the product's temperature to reach the shelf temperature", please check for English

Author's response: Primary drying of the frozen solution occurred at -25 °C for 75 hours to ensure the product's temperature reached the shelf temperature.

Reviewer's comment: 3. Line 94, please elaborate on the milling process, including type of mill used, milling time, rpm etc.

Author's response: Added as suggested.

Reviewer's comment: 4. Fig 2, how many repeats were performed for each sample? Was n=1?

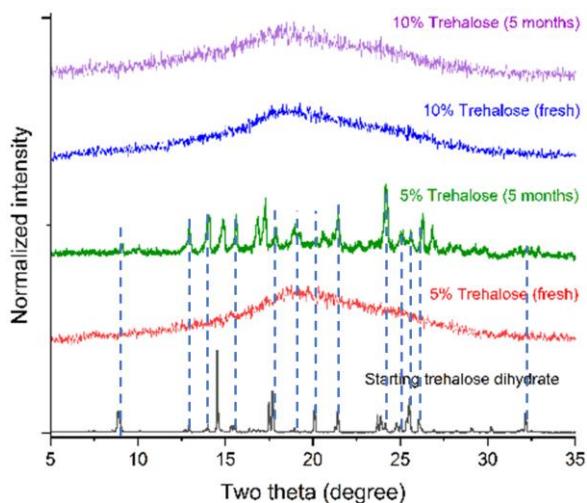
Author's response: Yes, N=1 for the presented data. We tested the lyophilized sucrose powders in triplicate and obtained consistent results.

Reviewer's comment: 5. Line 235, "lyophilized sample may indicates the presence of a higher fraction", please fix grammar

Author's response: Revised.

Reviewer's comment: 6. Line 268-280, (1) if the authors want to find the Tg during the 1st heating cycle but do not have modulated DSC, what can be done is to seal the pan

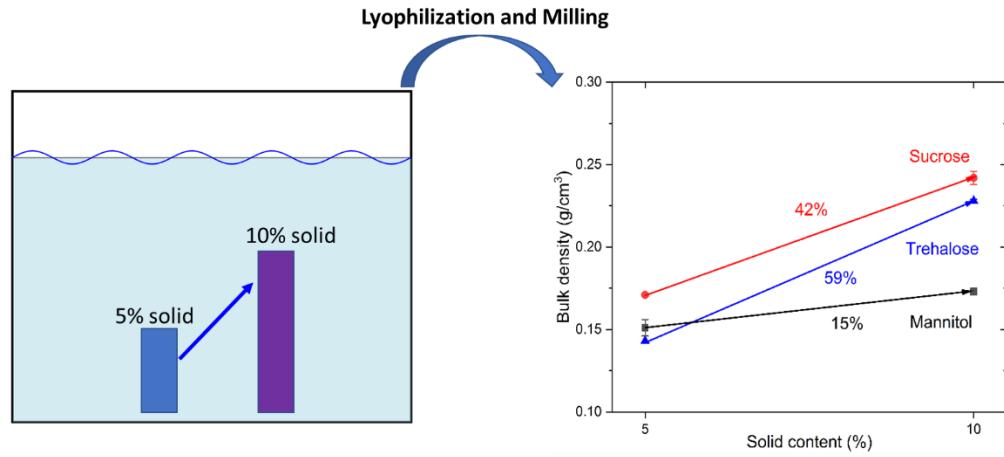
hermetically - that way, no moisture can escape and the Tg of the 1st cycle can be determined, but it would be the "wet" Tg. (2) I am very intrigued by the different Tgs obtained during the second heating cycle. Please explain how the pans were quenched to 15°C and if possible, provide the thermogram of the cooling cycle. Tg can be observed both during heating and cooling - what was the cooling Tgs for these 2 samples?


Author's response: In the first heating cycle, a pinhole was introduced to eliminate water, ensuring accurate measurements of the dry Tg. The samples cooled from 40 °C to target temperatures (0°C or 15°C) at a rate of 10 °C/min, but no distinct Tg was observed due to the baseline fluctuation.

Reviewer's comment: 7. Fig 6 and 13, the resolution of the scale bar needs to be improved.

Author's response: The scale bar has been added to Figure 6 and 13.

Reviewer's comment: 8. Fig 11, the PXRD patterns for trehalose dihydrate and the 5 month 5% sample do not exactly look very similar. Please explain how the conclusion that it's the dihydrate polymorph was made.


Author's response: The 5% trehalose sample showed significant crystallization, as evidenced by sharp XRD peaks similar to those of trehalose dihydrate, according to its PXRD pattern. Variations in peak intensity were due to preferred orientation, exacerbated by the large size of the initial trehalose dihydrate crystals.

Reviewer's comment: 9. For tabletting studies, how many repeats were performed? Both Fig 9 and 10 don't have (visible) error bars.

Author's response: Each point in Figures 9 and 10 represents a single tablet.

Graphic abstract

Solid-state properties, compaction properties and physical stability are also changed!

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

C Wang and H Zhang report a relationship with Evelo Biosciences Inc that includes: employment. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

1 Impact of Solid Content on the Bulk Properties of Lyophilized Powders

2 Zijian Wang¹, Sichen Song^{1,2}, Hongwei Zhang^{3,†}, Xiaohong Liu⁴, Ronald A. Siegel^{1,5},
3 Changquan Calvin Sun^{1,*}, Chenguang Wang^{3,*,‡}

4 ¹. Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis,
5 MN 55455, USA

6 ². School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, USA

7 ³. Evelo Biosciences, Cambridge, MA, 02139, USA

8 ⁴. College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China

9 ⁵. Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455,
10 USA

11

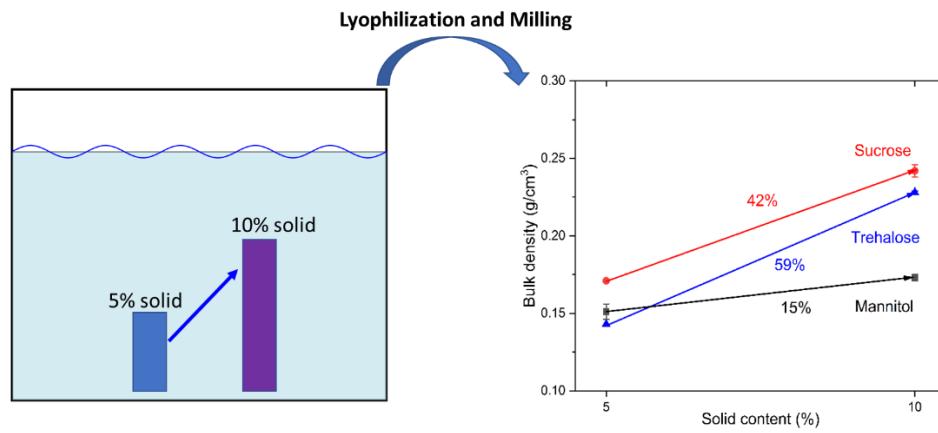
12 Current address:

13 [†] Vertex Pharmaceuticals, Boston, MA, 02210, USA.

14 [‡] Boston Scientific, Maple Grove, MN, 55311 USA.

15
16 *Corresponding author

17 Chenguang Wang
18 620 Memorial Drive
19 Cambridge, MA, 02139
20 Email: wangchenguang6@gmail.com


21 Changquan Calvin Sun, Ph.D.
22 9-127B Weaver-Densford Hall
23 308 Harvard Street S.E.
24 Minneapolis, MN 55455
25 Email: sunx0053@umn.edu
26 Tel: 612-624-3722
27 Fax: 612-626-2125

1
2
3
4 17 **Abstract**
5
6 18 Interest in oral delivery of biological drug products, commonly prepared through
7 lyophilization, is surging. Typically, low solid content solutions are employed for lyophilization to
8 enhance mass transfer and minimize drying time. Yet, this approach often results in lyophilized
9 powders with low bulk density and poor flowability, challenging downstream processing steps that
10 are required for oral product development. Increasing solid content in a starting solution can, in
11 theory, increase the density of lyophilized cakes and powders with higher bulk density post-milling.
12
13 22
14 23
15 24
16 25
17 26
18 27
19 28
20 29
21 30
22 31
23 32
24 33
25 34
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

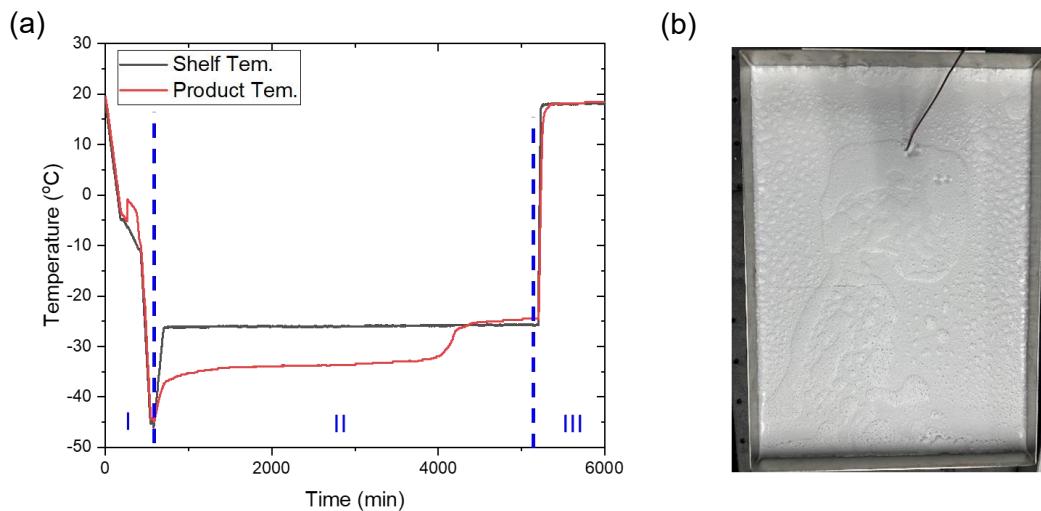
Interest in oral delivery of biological drug products, commonly prepared through lyophilization, is surging. Typically, low solid content solutions are employed for lyophilization to enhance mass transfer and minimize drying time. Yet, this approach often results in lyophilized powders with low bulk density and poor flowability, challenging downstream processing steps that are required for oral product development. Increasing solid content in a starting solution can, in theory, increase the density of lyophilized cakes and powders with higher bulk density post-milling. However, the effectiveness of improving powder density and flowability using a higher solid content has not been experimentally verified. In addition, the impact of using a higher solid content on other physicochemical properties of lyophilized materials remains uncertain. To address the knowledge gaps, we lyophilized three common bulk cryoprotectants at two different solid contents (5% and 10%) and systematically evaluated their solid-state properties, bulk density, flowability, compaction characteristics, and physical stability. We found that powders prepared at a higher solid content (10%) exhibited higher bulk density, but they still failed to meet the requirements for easy oral product development. A change in solid content also leads to different solid-state properties, compaction behaviors, and stability, highlighting the importance of thorough characterization of lyophilized materials when solid content is changed in the course of oral solid dosage formulation development.

Key words: Lyophilization, solid content, density, flowability, compaction properties, physical stability, mannitol, sucrose, trehalose

1
2
3
4 37 **Graphic abstract**
5
6

1
2
3
4 39 **1 Introduction**
5
6

7 40 The lyophilization process is frequently used in solidifying delicate drug substances for
8 improved stability, particularly in the production of biologicals (Allmendinger et al., 2023). The
9 concentration of solids in a solution prior to lyophilization, termed solid content, significantly
10 influences both the design of the lyophilization process and the performance of final lyophilized
11 cakes (Tang and Pikal, 2004). **For a specified formulation and lyophilization process, using a low**
12 **solid content leads to larger pores, faster mass transfer, and shorter drying times.** However, the
13 resultant lyophilized cake of a drug substance is highly porous, which leads to a milled powder
14 with sub-optimal bulk density and poor flowability. For example, most lyophilized powders
15 incorporating soluble excipients exhibit a bulk density under 0.2 g/mL (Table S1).
16
17


18 49 Low bulk density and poor flowability of the lyophilized powders limit drug dose attainable
19 by direct encapsulation and prevent successful commercial tablet manufacturing on a high-speed
20 rotary press (Leane et al., 2015; Leane et al., 2018). **This poses a challenge to the oral delivery of**
21 **biological drug product development.** Intuitively, a higher solid content in the starting solution is
22 expected to form a proportionally denser cake and a milled powder with higher bulk density and
23 better flowability. However, the effectiveness of this strategy for improving powder density and
24 flowability has not been demonstrated. In addition, the structure and properties of a lyophilized
25 product are impacted by size distribution and morphologies of ice crystal in the frozen solution,
26 which are affected by solid contents. Therefore, the impact of increasing solid content on other
27 physicochemical properties remains unknown. These knowledge gaps present a barrier for
28 successful development of oral drug products (both capsules and tablets) for biologicals using
29 lyophilized drug powders.
30
31

32 61 According to the Materials Science Tetrahedron (Sun, 2009), gaining a thorough
33 understanding of the impact of solid content on various properties of lyophilized powders, e.g.,
34 density, flowability, compaction characteristics, and physical stability, is essential for their
35 successful development into oral dosage forms. This work seeks to assess **the** potential impact of
36 solid content on the properties of lyophilized powders, employing three widely used bulk
37 cryoprotectants, i.e., mannitol, sucrose, and trehalose.
38
39

40 67 **2 Materials and methods**
41
42

1
2
3
4 68 **2.1 Materials**
5
6
7 69 Starting crystalline mannitol (Pearlitol® 50C, Roquette, Lestrem, France), sucrose (Sigma
8
9 70 Aldrich, St. Louis, MO, USA), and trehalose dihydrate (Swanson, Fargo, ND, USA) were used as
10
11 received.
12
13 72 **2.2 Methods**
14
15
16 73 **2.2.1 Lyophilization and milling**
17
18
19 74 One-liter solutions of mannitol, sucrose, and trehalose in distilled water with solid contents
20 of either 5% or 10% were passed through a 0.2 μ m filter before being poured into trays to form a
21 layer with approximately 1 cm depth. Thermocouples were placed at the center bottom of each
22 tray to monitor product temperature throughout the freeze-drying process. Initially, samples were
23 equilibrated for half an hour at 4 °C on the freeze-dryer shelf. Then, they were cooled down to -
24 40 °C at a rate of 10 °C/h and held at -40 °C for 10 min to allow completion of the ice crystallization
25 process (phase I). **Primary drying of the frozen solution occurred at -25 °C for 75 hours to ensure**
26 **the product's temperature reached the shelf temperature.** The secondary drying process was carried
27 out at 15 °C for the next 17 h (phase III), after which the temperature was increased to 25 °C.
28
29 80 Throughout the entire process, the vacuum pressure was maintained at 100 mTorr.
30
31 81
32
33 82
34
35 83
36
37 84 Lyophilized cakes were milled **with a Quadro comil (model 197) equipped with a round**
38 **bar impeller and a round hole cone mill screen (4L055R1008552B) at a speed of 2200 rpm. Before**
39 **the density measurement, the powders were** passed through a 35-mesh screen, and collected for
40 further characterization. “5%” or “10%” are embedded in sample IDs of lyophilized powders to
41 signify corresponding solid content used to prepare a sample.
42
43
44
45
46
47 89 A freeze-drying cycle for a 5% mannitol solution is shown in Figure 1a. In the primary
48 drying phase, it is crucial to maintain the product temperature below a critical temperature to avoid
49
50 91 cake collapsing. The collapse itself does not necessarily affect the stability of the biological
51 formulation, but it suggests inadequate control of the manufacturing process and can lead to
52 product rejections. Thus, a conservative cycle with a low temperature was used in this work to
53 ensure the formation of elegant cakes (Figure 1b).
54
55
56
57
58
59
60
61
62
63
64
65

1
 2
 3
 4 95 Drying time was estimated by the time taken for the shelf temperature to reach the target
 5 temperature, and the end of the drying occurs when the product temperature matches the shelf
 6 temperature (see Figure 1a). A solution with a lower solid content forms larger, interconnected ice
 7 crystals, which exhibit lower resistance to water vapor transfer, leading to more efficient mass/heat
 8 exchange during drying. At a higher solid content, a longer drying time became necessary. For
 9 this reason, both primary and secondary drying times for the 10% solid content samples
 10 significantly exceeded those of corresponding 5% solid content samples (Table 1). For instance,
 11 the total drying time (primary plus secondary drying) for 5% mannitol was 18 h shorter than that
 12 for 10% mannitol. When the solid content of mannitol exceeds 10%, the primary drying process
 13 necessitates more than 75 hours **following this conservative drying process**. Hence, a higher solid
 14 content solution was not evaluated. **However, the drying time can be shortened by optimizing the**
 15 **primary drying process.**
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

44
 45 107
 46
 47 108 **Figure 1.** a) Freeze-drying cycle profile featuring three phases for a 5% mannitol solution (Phase
 48 109 I – freezing; Phase II – primary drying, Phase III – secondary drying). Shelf temperature profile is
 49 110 shown as black line and product temperature is shown as red line, b) resulting cake.
 51
 52
 53
 54 111
 55
 56
 57
 58
 59

60
 61 **Table 1.** Primary and secondary drying times of lyophilized samples.
 62
 63
 64
 65

	5%	10%	5%	10%	5%	10%
	mannitol	mannitol	sucrose	sucrose	trehalose	trehalose

Primary drying time (h)	59	72.5	51.8	57.6	61.3	71.0
Secondary drying time (h)	1.5	6.4	3.3	4.8	4.1	6.4

2.2.2 Powder X-ray diffractometry (PXRD)

PXRD patterns of all powders were obtained using an X-ray diffractometer (X'pert Pro; PANalytical, Westborough, MA, USA) with Cu K α radiation ($\lambda = 1.540598 \text{ \AA}$). Samples were scanned between 5°–35° 2 θ angles with step size 0.016° and a dwell time of 1 s. Tube voltage and amperage were set as 45 kV and 40 mA, respectively.

2.2.3 Differential scanning calorimetry (DSC)

Approximately 5 mg of each powder was loaded into a Tzero hermetically sealed aluminum pan **with a pinhole** for analysis using a differential scanning calorimeter (Q1000; TA Instruments, New Castle, DE, USA) at a heating rate of 10 °C/min under continuous nitrogen purge at a flow rate of 25 mL/min. Different ranges of experimental temperature were chosen for the three materials based on their crystallization and melting temperatures, i.e., –50 °C to 180 °C for lyophilized mannitol powders; 0 °C to 200 °C for lyophilized sucrose powders, and 15 °C to 220 °C lyophilized trehalose powders (two heating cycles).

2.2.4 Polarized light microscopy (PLM)

All powder samples were dispersed in silicone oil between a glass slide and a cover glass and observed under a polarized light microscope (Olympus BX51, Japan). Images were captured with a digital camera (AmScope, USA) at 10X and 40X magnifications.

2.2.5 Scanning electron microscopy (SEM)

Particle size and shape were assessed using a Phenom XL desktop scanning electron microscope (Thermal Fisher Scientific, Waltham, MA, USA) operating at an excitation voltage of 10 kV under low vacuum mode. Specimens were affixed to a copper stage and observed without coating.

2.2.6 Water content and dynamic vapor sorption (DVS)

Water content and moisture sorption of all lyophilized powders were analyzed using an automated vapor sorption analyzer (Intrinsic, Surface Measurement Systems Ltd., Allentown, PA, USA) at 25 °C. Nitrogen flow rate was 50 mL/min. Approximately 10 mg of each powder was first

1
2
3
4 139 equilibrated at 40% RH (mimicking ambient humidity) for 6 h. Then, the sample was exposed to
5
6 140 0% RH over a period of 2 h. Water content was calculated from the change in sample weight from
7
8 141 40% RH to 0% RH. Next, the sample was then exposed to a series of RHs from 0% to 90% with
9
10 142 a step size of 10% RH. At each specific RH, the equilibration criterion was $dm/dt \leq 0.002\%$ with a
11
12 143 minimum equilibration time of 0.5 h and a maximum equilibration time of 6 h. The RH was
13
14 144 changed to the next target value when one of the criteria was met.

15
16 145 **2.2.7 Densities**

17
18 146 Bulk and tapped densities of all lyophilized powders were measured ($n = 3$) using a TD1
19
20 147 Tap Density Tester (SOTAX, Hopkinton, MA, USA), following method 1 in USP <616> (USP,
21
22 148 2024). True density (ρ_t) of all samples was measured using a helium pycnometer (Quantachrome
23
24 149 Instruments, Ultrapycnometer 1000e, Bynton Beach, FL, USA). An accurately weighed sample
25
26 150 was placed into the sample cell, occupying approximately half to three-quarters of the cell volume.
27
28 151 The measurement was concluded once the standard deviation of five successive measurements
29
30 152 was less than 0.005% and the mean of the last five measurements was taken as the sample's true
31
32 153 density.

33
34 154 **2.2.8 Flow properties**

35
36 155 Carr's index and Hausner ratio were calculated from bulk density (ρ_{bulk}) and tapped
37
38 156 density (ρ_{tap}) using Eq. (1) and (2), respectively.

40
41 157
$$Carr's\ index\ (\%) = \frac{\rho_{tap} - \rho_{bulk}}{\rho_t} \times 100\% \quad (1)$$

43
44 158
$$Hausner\ ratio = \frac{\rho_{tap}}{\rho_{bulk}} \quad (2)$$

47 159 A ring shear cell tester (RST-XS, Dietmar Schulze, Wolfenbüttel, Germany), with a 30 mL
48
49 160 cell, was also used to conduct powder flow testing ($n = 3$) at a pre-shear normal stress of
50
51 161 3 kPa, following a standard 230 method (Wang et al., 2022). The shear cell was over filled with a
52
53 162 powder under investigation and excess powder was gently scraped off using a spatula to obtain a
54
55 163 surface flush with the upper edge of the shear cell. Attention was paid to prevent compression or
56
57 164 agitation of the powder bed when loading powder and removing excess powder.

58
59 165 **2.2.9 Compaction properties**

1
 2
 3
 4 166 Starting crystalline sucrose was milled into smaller particles using a mortar and pestle. All
 5 powders were passed a 125 μm sieve (mesh 120) to minimize possible effects of particle size on
 6 compaction properties. A series of tablets with approximately 150 mg of each powder were
 7 compressed at various pressures (10 MPa to 350 MPa) on a compaction simulator (Styl'One,
 8 Medelpharm, Beynost, France), simulating a Korsch XL100 press. Forces exerted on the upper
 9 and lower punches were recorded using load cells, and the punch displacement was tracked using
 10 incremental sensors. Round flat-faced punches (8mm diameter) were used for tablet compaction,
 11 which was carried out at both low speed (dwell time of 98 ms or 21 rpm) and high speed (dwell
 12 time of 20 ms or 101 rpm). MgSt spray (Styl'One Mist) was applied to punch tips and die wall as
 13 an external lubricant before each compaction. Tablet dimensions were measured using a digital
 14 caliper to calculate tablet envelope density. Tablets were broken diametrically using a texture
 15 analyzer (TA-XT2i, Texture Technologies Corp., Scarsdale, NY, USA) at a speed of 0.002 mm/s
 16 with a 5 g trigger force. Tablet tensile strength (σ), was calculated using Eq. (3) from the breaking
 17 force (F), tablet diameter (d), and tablet thickness (h), following a standard procedure (Fell and
 18 Newton, 1970).
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33 181
$$\sigma = \frac{2F}{\pi dh} \quad (3)$$

 34
 35
 36
 37 182 In-die elastic recovery (% IER) of tablet was determined from the minimum tablet
 38 thickness under compression (h_1) and tablet thickness at the end of the decompression (h_2) using
 39
 40 184 Eq. (4).
 41
 42
 43
 44 185
$$IER (\%) = \frac{h_2 - h_1}{h_1} \times 100\% \quad (4)$$

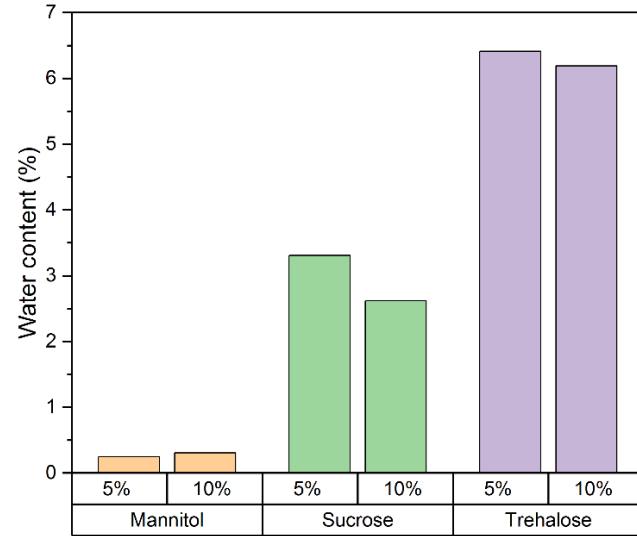
 45
 46
 47
 48 186 Tablet porosity (ε) was calculated from tablet envelope density (ρ) and true density (ρ_t) of
 49 powder using Eq. (5).
 50
 51
 52
 53 188
$$\varepsilon = 1 - \frac{\rho}{\rho_t} \quad (5)$$

 54
 55
 56
 57 189 In-die Heckel analysis was conducted following a standard procedure (Vreeman and Sun,
 58 2021), where the linear portion of the in-die tablet porosity, ε , vs. P plot was analyzed based on
 59
 60 191 the Heckel Eq. (6), to obtain in-die mean yield pressure ($P_{y,i}$) (Heckel, 1961a, b).
 61
 62
 63
 64
 65

$$-\ln(\varepsilon) = \frac{1}{P_{y,i}} P + A \quad (6)$$

Strain rate sensitivity (SRS) was calculated from $P_{y,i}$ values obtained at low speed ($P_{y,l}$) and obtained at high speed ($P_{y,h}$) using Eq. (7) (Roberts and Rowe, 1985).

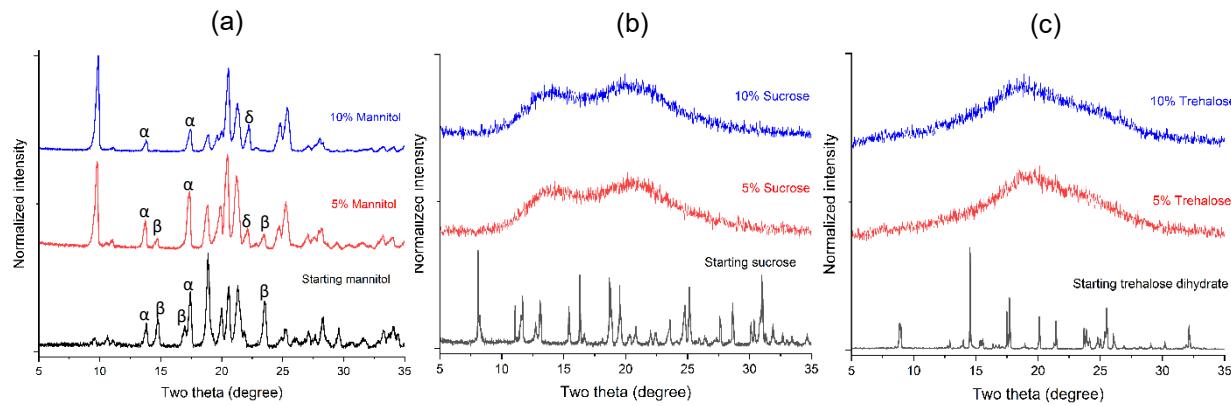
$$SRS (\%) = \frac{P_{y,l} - P_{y,h}}{P_{y,l}} \times 100\% \quad (7)$$

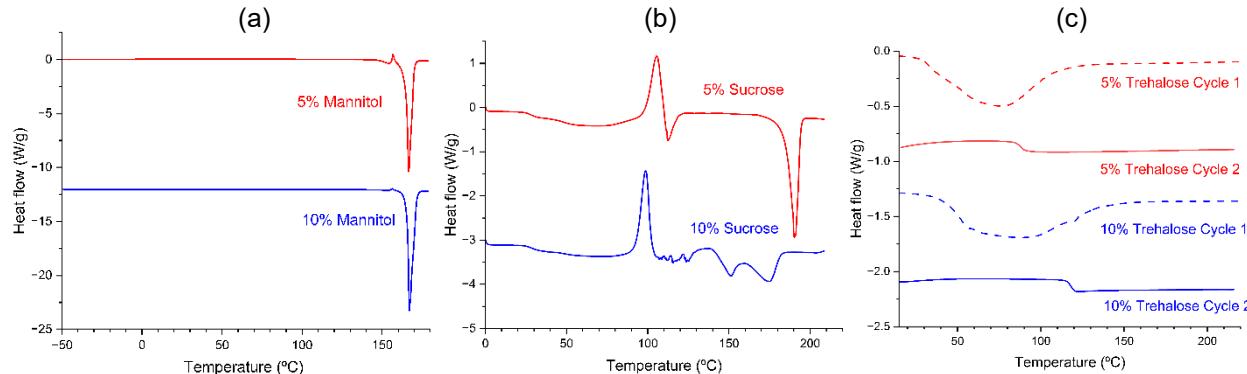

2.2.10 Physical stability under storage

All lyophilized powders were stored under ambient conditions for 5 months, during which environmental humidity varied from 10% RH to 40% RH. To assess sample stability, PXRD patterns and PLM and SEM images of fresh samples and samples after storage were compared for signs of instability. Additionally, changes in bulk powder appearance after storage were captured using a digital camera (Canon EOS R50, Japan).

3 Results and discussions

3.1 Solid state characterization


The freshly lyophilized powders have a moisture content of less than 2%. However, upon reaching equilibrium at RH 40% for 6 hours, the moisture content of lyophilized powders followed a descending order of trehalose > sucrose >> mannitol (Figure 2). 5% lyophilized sucrose and trehalose exhibited slightly higher water content than their corresponding 10% lyophilized samples. This difference may be attributed to the fact that a lyophilized powder from a higher solid content has fewer or smaller pores and smaller specific surface area, which is translated into a lower tendency to adsorb moisture.

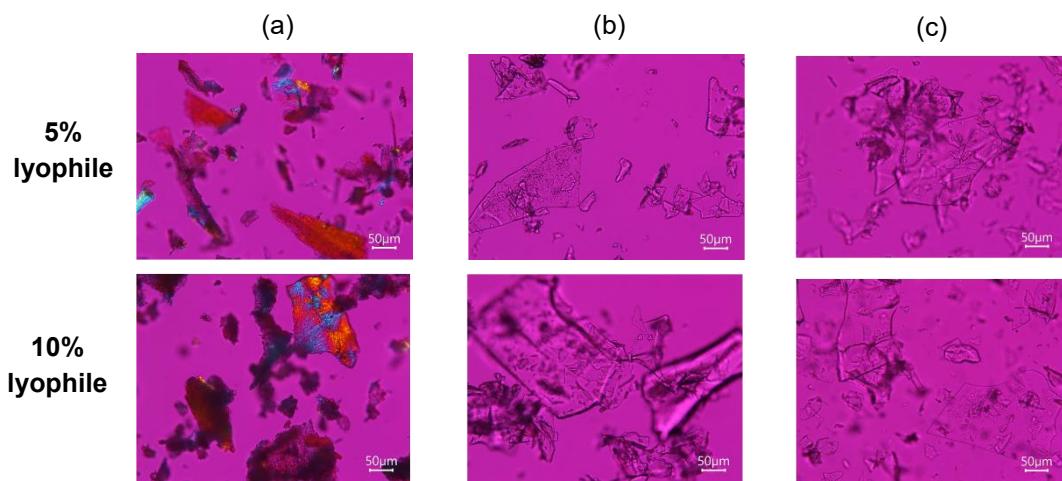

Figure 2. Moisture contents of mannitol, sucrose, and trehalose powders lyophilized from 5% and 10% solid solutions and stored at 40% RH after 6 hours (n=1).

Anhydrous crystalline mannitol can exist in three known polymorphs (α , β , and δ forms), with the β form being the most thermodynamically stable at room temperature (Pitkänen et al., 1993; Smith et al., 2017). The 2θ positions of characteristic peaks for mannitol polymorphs are identified as 13.6° and 17.3° for the α form (Fronczek et al., 2003), 14.6° , 16.8° , and 23.4° for the β form (Berman et al., 1968), and 22.3° for the δ form (Fronczek et al., 2003). During the freezing stage, the only exothermic event at -4°C is attributed to crystallization of ice (Figure 1a). The starting crystalline mannitol used in this work is a mixture of α and β forms (Figure 3a). The lyophilized mannitol powders remain crystalline as shown by sharp PXRD peaks (Figure 3a), which show that the 5% lyophilized mannitol is a mixture of α , β , and δ forms, while the 10% lyophilized mannitol only contains the α and δ forms. **The relatively higher intensity of α characteristic peaks in the 5% lyophilized sample suggests a higher content α form.** In the DSC thermograms, both lyophilized mannitol samples showed a small endothermic peak immediately followed by an exothermic peak in the temperature range of 150°C - 157°C (Figure 4a), which is consistent with a previous study (Yoshinari et al., 2002). These events are attributed to the events of melting of the δ form, followed by recrystallizing to the β form. The larger value of heat of fusion of the δ form for the 5% lyophilized mannitol (5.613 J/g) than the 10% lyophilized mannitol (1.676 J/g) suggests a larger proportion of the δ form in the 5% lyophilized mannitol powder. Both the 5% and 10% lyophilized mannitol samples exhibited prominent endothermic peaks at $\sim 167^\circ\text{C}$, corresponding to melting of α form, β form of mannitol, or both (Figure 4a). Melting events for

the α and β forms could not be discerned solely from DSC profiles because of the close proximity of their melting points (α : 166 °C; β : 167 °C) (Paul et al., 2015; Pitkänen et al., 1993). The different polymorph compositions in the two lyophilized mannitol samples are expected to contribute to disparities in their bulk properties.

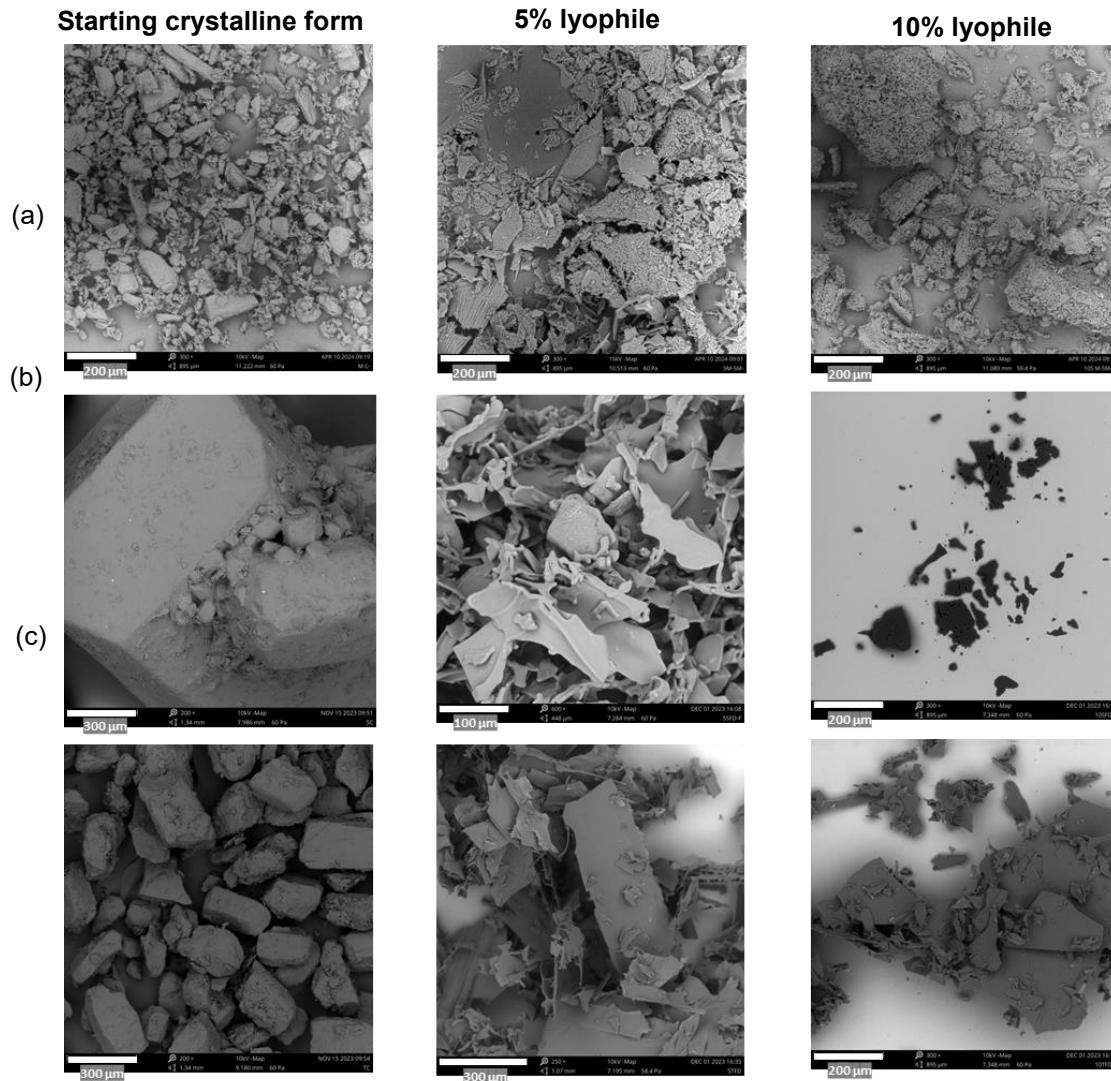
Figure 3. PXRD patterns of freshly prepared lyophilized powders and their corresponding crystalline form, a) mannitol; b) sucrose; c) trehalose.

Figure 4. DSC heating profiles of lyophilized powders, a) mannitol; b) sucrose; c) trehalose.


The PXRD patterns of all lyophilized sucrose and trehalose samples exhibited broad halos without sharp peaks (Figure 3b, 3c), indicating an absence of detectable crystalline phases. The amorphous nature of the sucrose and trehalose sample explains their relatively much higher moisture contents (Iglesias et al., 1997; Yu et al., 2008) than the crystalline lyophilized mannitol powders (Figure 2). The thermal properties of sucrose samples prepared using different solid contents were distinct, as revealed by their DSC thermograms (Figure 4b). The lower T_g values of

1
2
3
4 246 sucrose powders than the literature values ($T_g > 50$ °C) (Hancock and Zografi, 1994; Imamura et
5 al., 2010) are attributed to the higher moisture contents within the samples in this work (Figure 2).
6
7 248 Moisture loss above T_g leads to a broad endotherm (or downward baseline shift) before the
8 crystallization event at ~ 90 °C, as evidenced by an exothermic peak. In the case of 5% sucrose,
9 249 the endothermic event at 190 °C following the crystallization event is assigned as melting since it
10 falls in the reported melting point range for sucrose, 160 °C - 192 °C (Beckett et al., 2006; Hurtta
11 et al., 2004; Okuno et al., 2003; Roos, 1993). The 10% sucrose sample exhibited complex thermal
12 behaviors after the crystallization event, featured as multiple thermal events in the temperature
13 range 105 °C - 180 °C. It was reported that multiple endothermic peaks of crystalline sucrose could
14 251 be induced by decomposition of sucrose before melting, where the decomposition products may
15 252 serve as a solvent to dissolve sucrose crystals, leading to an endothermic peak (Beckett et al., 2006;
16 253 Lee et al., 2011; Roos, 1993; Schmidt et al., 2012).
17 257

18 258 Both trehalose samples exhibited a broad endothermic peak in the 30 - 120 °C temperature
19 range (Figure 4c), due to the evaporation of residual water in the samples, which masked the
20 potential T_g of lyophilized trehalose powders. Since no crystallization or melting event was
21 260 observed up to the known melting point of 203 °C for crystalline trehalose (Sussich et al., 1998),
22 261 both dehydrated trehalose samples remained amorphous. This offers an opportunity to measure the
23 262 T_g value by performing a second thermal scan of a sample dried *in situ*. Indeed, distinct T_g s were
24 263 observed in both samples (91 °C for the 5% trehalose sample and 118 °C for the 10% trehalose
25 264 sample) by quenching the cell to 15 °C after the first thermal scan and then heating at 10 °C/min
26 265 (Figure 4c). The different T_g values suggest two possible amorphous states of trehalose since
27 266 different extents of plasticization by moisture can be excluded as a reason for different T_g s.
28 267 However, both values fall in the reported range of T_g (75 to 120 °C) for amorphous trehalose (Roe
29 268 and Labuza, 2005; Sussich and Cesàro, 2008). Again, no crystallization or melting events were
30 269 observed after T_g for these samples when heated to 220 °C (above the melting point of trehalose).
31 270


32 271 The PLM results showed that mannitol particles exhibited birefringence (Figure 5a), which
33 272 is a characteristic of crystalline phases. On the contrary, no birefringence was observed in sucrose
34 273 and trehalose samples (Figure 5b, c), which is consistent with their amorphous nature shown by
35 274 their PXRD patterns (Figure 3b, c). SEM images revealed that all lyophilized samples consisted
36 275 of thin-flakes, which is distinct from the block-shaped starting crystalline particles (Figure 6).
37 276 Notably, the rough surface of lyophilized mannitol particles (Figure 6a) is reminiscent of
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 277 crystallization, whereas the smooth particle surfaces of lyophilized sucrose and trehalose particles
5
6 278 (Figure 6b, c) are consistent with an absence of crystallization.
7

24
25 **Figure 5.** PLM images of fresh lyophilized particles, a) mannitol; b) sucrose; c) trehalose
26 279

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 6. SEM images of starting crystalline and lyophilized powders from solutions of different solid contents for a) mannitol, b) sucrose and c) trehalose.

Both lyophilized mannitol samples gradually gained ~2% weight when RH increased from 0% to 90%, indicating limited surface adsorption of moisture (Figure 7a). Two lyophilized sucrose powders absorbed a negligible amount (~0.1%) of water up to 80% RH but gained a substantial amount of moisture (22.0% for 5% solid content sample and 28.5% for 10% solid content sample) at 90% RH (Figure 7b). The low moisture sorption observed at RH < 80% is unexpected for hydrophilic amorphous materials. However, this observation is in line with the widely observed shape of adsorption isotherms for both amorphous and crystalline sugars (Mathlouthi and Rogé, 2003).

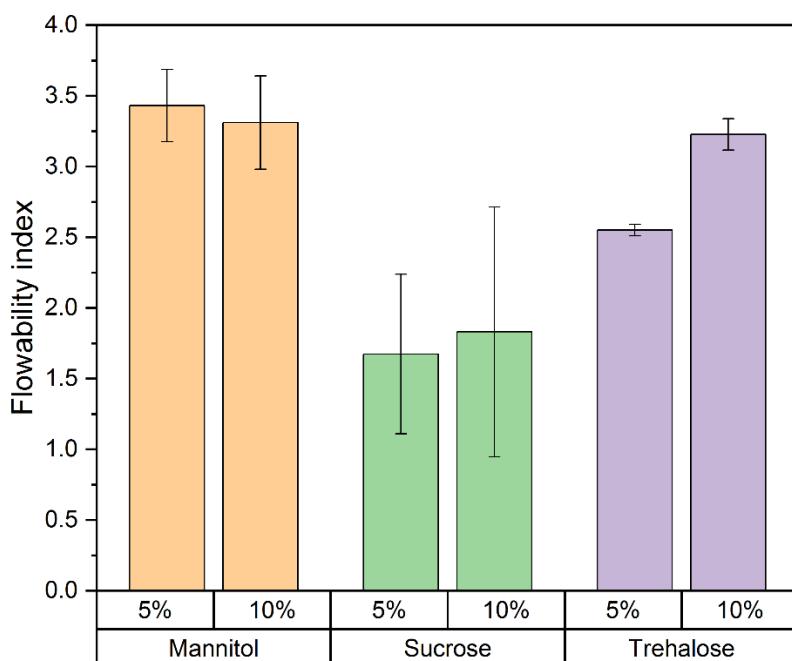
1
 2
 3
 4 289 The 5% lyophilized trehalose sample absorbed water rapidly with increasing RH and
 5 converted into trehalose dihydrate at 50% RH, corresponding to an approximately 10% weight
 6 gain (Figure 7c). The 10% trehalose sample absorbed less water than the 5% trehalose sample at
 7 RHs <90%. The amount of water adsorbed by this sample also increased rapidly up to 50% RH
 8 but dropped at 60% RH and then maintained relatively constant up to 80% RH. A drop in absorbed
 9 water at a higher RH indicates crystallization of amorphous materials. Since the plateau value of
 10 ~6% water content is close to that in a monohydrate (4.75%), the crystalline phase is likely a
 11 monohydrate (Figure 7c). The sharp increase in weight at 90% RH indicates possible
 12 deliquescence or conversion into the dihydrate form. Although interesting, no further efforts were
 13 made to elucidate the phase nature and phase transformation of sucrose and trehalose samples
 14 since these aspects were outside the scope of this project.
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25 (a) (b) (c)
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

38
 39
 40 **Figure 7.** DVS plots of lyophilized a) mannitol, b) sucrose, and c) trehalose.
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

3.2 Densities and flowability

300
 301 Bulk density is an important powder property that plays a critical role in the development
 302 of pharmaceutical solid products. A low powder bulk density can adversely affect drug loading,
 303 content uniformity, manufacturing efficiency, and flow properties (Leane et al., 2015). Poor flow
 304 properties are detrimental to downstream processing, such as blending, granulation, compression,
 305 and encapsulation (Guerin et al., 1999). Thus, a high bulk density of APIs is typically preferred
 306 when processing pharmaceutical powders. For the three 5% solid content lyophilized powders,
 307 bulk densities were all less than 0.171 g/cm^3 (Table 2), which is common for lyophilized powders
 308 (Table S1). With increasing solid content, the bulk densities of three materials were increased to
 309 different extents, e.g., mannitol (14.6%), sucrose (41.5%), and trehalose (59.4%). However, even

1
2
3
4 311 the highest bulk density of 0.242 g/cm³ (10% Sucrose) is still likely too low for efficient
5 downstream processing considering the role of particle density on flow. In a prior study involving
6 a range of mannitol solutions with variable solid contents from 1% to 15%, a linear relationship
7 between solid contents and bulk densities was observed (Kaialy et al., 2016). Nevertheless, the
8 maximum bulk density for 15% lyophilized mannitol was 0.11 g/cm³, which is notably lower than
9 the 5% lyophilized mannitol powder in this work. This discrepancy is likely caused by the different
10 freezing steps in the two research endeavors.
11
12
13
14
15
16
17


18 318 Powder flow initiates when the cohesive forces between particles are overcome by external
19 forces, such as gravitational force. Due to the low density of lyophilized powders, the cohesive
20 forces, consisting of *van der* Waals forces, electrostatic forces, and hydrogen bonding, become
21 stronger than the gravitational force. Consequently, particles tend to form agglomerates and resist
22 flowing. Additionally, the flake-shaped lyophilized particles tend to interlock with each other
23 during packing, further hindering powder flow. This speculation was examined by measuring
24 established flow parameters of these powders.
25
26
27
28
29
30

31 325 Carr's index and Hausner ratio were used to characterize powder flowability (Table 2),
32 where a higher Carr's index or Hausner ratio value suggests poorer flowability (Tan et al., 2015;
33 Tharanon et al., 2024). All lyophilized powders in this work, despite different bulk densities,
34 belong to the category of "approximately no flow" by the measure of both Carr's index (> 38%)
35 and Hausner ratio (> 1.60). The poor flowability of these lyophilized powders is also confirmed
36 by shear cell data (Figure 8), which put them into the class of either "very cohesive" (flowability
37 index: 1 – 2) or "cohesive" (flowability index: 2 – 4) powders. The flowability of all these powder
38 was also much poorer than Avicel PH102 (flowability index: ~ 8 at 3 KPa), which is considered as
39 a reference material exhibiting minimum flowability required for high speed tabletting (Sun, 2010).
40 Only lyophilized trehalose powder showed a slight increase in flowability index with the 10%
41 solid content sample. No significant difference in flowability index between two solid contents
42 was observed for lyophilized mannitol and sucrose powders.
43
44
45
46
47
48
49
50
51
52
53
54 337 **Table 2.** Densities and flowability parameters of the materials studied in this work.
55
56

Material	Solid content	ρ_{bulk} (g/cm ³)	ρ_{tap} (g/cm ³)	Carr's index (%)	Hausner ratio
Mannitol	5%	0.151 (0.005)	0.258 (0.003)	41.5	1.7

	10%	0.173 (0.002)	0.303 (0.004)	43.0	1.8
Sucrose	5%	0.171 (0.001)	0.341 (0.001)	49.9	2.0
	10%	0.242 (0.004)	0.443 (0.012)	45.4	1.8
	5%	0.143 (0.000)	0.278 (0.002)	48.6	1.9
Trehalose	10%	0.228 (0.001)	0.419 (0.002)	45.6	1.8

338

339

340 **Figure 8.** Flowability index of all lyophilized powders (n=3).

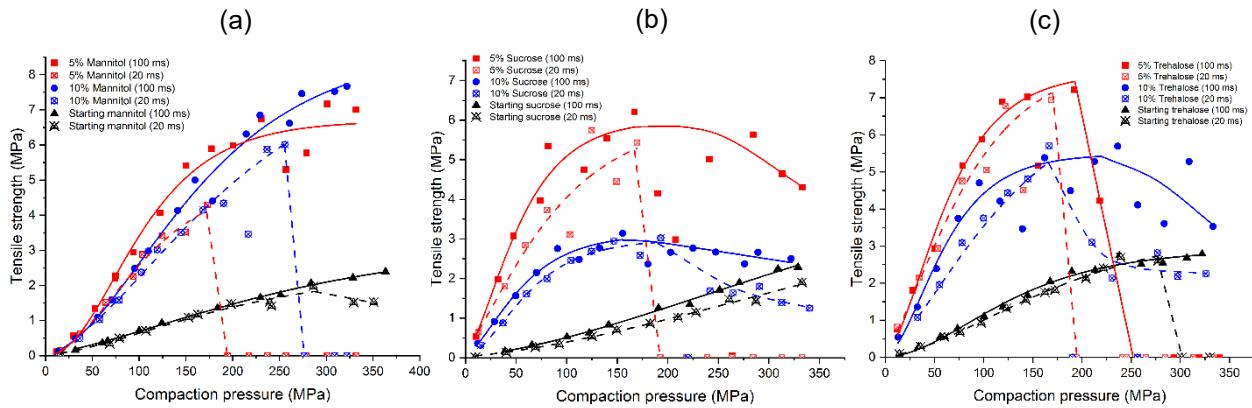
341

342 3.3 Compaction properties

343

All lyophilized powders were able to form tablets at both slow and fast speeds with tensile

344


strength higher than 2 MPa (Figure 9, Table S2). Thus, they exhibit adequate tabletability for

345

making sufficiently strong tablets that can withstand stresses during transportation and handling

346

(Sun et al., 2009).

347 **Figure 9.** Tableting profiles of lyophilized powders compressed at two tabletting speeds, a) 348 mannitol; b) sucrose; c) trehalose (n=1). Crystalline starting materials are included for comparison. 349

350
 351 It was suggested that disordered molecular arrangement in amorphous solids allows for
 352 greater molecular mobility and better plasticity (Rozanski and Galeski, 2013). If so, amorphous
 353 particles can exhibit better tabletability than their crystalline counterparts since they can likely
 354 form larger bonding area while maintaining similar bonding strengths (Sun, 2011). All amorphous
 355 sucrose and trehalose samples in this work were indeed more plastic than their crystalline
 356 counterparts, as indicated by their lower P_y values (Table 3) and lower β values (Table S2). This
 357 is consistent with the better tabletability of lyophilized powders at both tabletting speeds (Figure
 358 9). Although both lyophilized mannitol samples are crystalline, they still exhibit significantly
 359 better tabletability than the starting crystalline form. This can be, in part, explained by the flake-
 360 shaped particles, surface roughness, and polymorph composition, which contribute to stronger
 361 bonding between particles.

362 At the slow tabletting speed, 5% sucrose and trehalose exhibit higher plasticity and better
 363 tabletability than corresponding 10% samples (Figure 9b-c, Table 4). The more porous structures
 364 of 5% lyophilized samples result in greater compressibility, which contributes to better plasticity
 365 and tabletability than the less porous 10% lyophilized samples. However, there was no significant
 366 difference in plasticity and tabletability between the two crystalline mannitol lyophiles (Figure 9a,
 367 Table 3).

368
 369 **Table 3.** Values of in-die P_y and SRS of materials studied in this work.

Material	Solids	$P_{y,l}$ (MPa)	$P_{y,h}$ (MPa)	SRS (%)
Mannitol	5%	107.7 (2.0)	109.9 (3.6)	4.0
	10%	108.1 (1.7)	113.8 (2.5)	5.0
	Starting	120.0 (2.3)	126.6 (1.0)	5.5
Sucrose	5%	82.8 (1.8)	86.6 (1.6)	4.4
	10%	89.4 (1.5)	100.4 (1.1)	10.9
	Starting	168.8 (3.0)	171.1 (2.4)	1.4
Trehalose	5%	57.1 (0.6)	74.0 (2.2)	22.8
	10%	89.7 (1.8)	98.8 (1.0)	9.2
	Starting	106.1 (1.3)	109.0 (1.7)	2.7

Tableting speed only has a marginal impact on the tabletingability of starting crystalline powders. However, all lyophilized powders exhibited decreased tabletingability with increasing tableting speed, though the extent varied (Figure 9). Above certain pressures, tablet tensile strength of lyophilized samples also decreased with increasing pressure, and tablet lamination was observed in some cases. This overcompression phenomenon can be attributed to air entrapment due to the porous structure of lyophilized samples that leads to more initial air in the sample, as indicated by their low bulk densities and difficulty for air to escape, especially during high-speed compression. This mechanism explains the earlier onset of the overcompression problem for each of the six lyophilized powders than their crystalline counterpart and the more severe overcompression at a higher tableting speed (Figure 9). For starting crystalline materials, the overcompression problem is significantly less severe, which is consistent with their higher bulk densities and easier escape by air from their powder beds due to the more regular particle shapes (Figure 6). Expansion of entrapped air during decompression can break bonding between particles in a compact, which weakens tablet and even causes tablet laminations (Hiestand et al., 1977; Mazel et al., 2015; Vreeman and Sun, 2022). One parameter for assessing the extent of air expansion during decompression is the in-die elastic recovery (IER) (Vreeman and Sun, 2024). As expected, IERs were higher at a higher speed for all lyophilized powders (Figure 10). A jump in the IER profile signifies the onset of significant air entrapment during compression, where pores are sealed due to extensive plastic deformation at a sufficiently high pressure (Vreeman and Sun, 2022). Moreover, compared to the 5% lyophilized samples, the less pronounced overcompression phenomenon in

1
2
3
4 391 the 10% lyophilized samples is consistent with their lower IERs, resulting from their less porous
5 structures and higher bulk densities.
6
7
8 393 Distinct speed sensitivities in plasticity were observed among samples studied (Table 4).
9
10 394 The plasticity of mannitol powders is not sensitive to tableting speed, as indicated by the
11 comparable SRS values across the three types of mannitol powders. However, the SRS values of
12 starting crystalline sucrose and trehalose are much lower than those of their corresponding
13 lyophilized samples, i.e., the plasticity of the lyophilized powders is more sensitive to tableting
14 speed. The high SRS of 5% trehalose, 22.8% (Table 3) is consistent with a previous work (Hsein
15 et al., 2023).
16
17
18 398
19 399
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 400
40
41
42
43
44 401
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

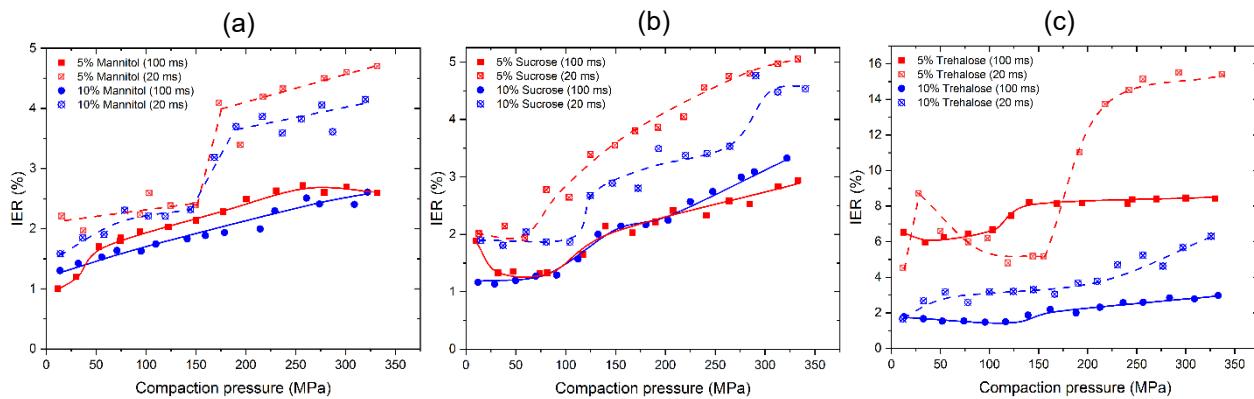
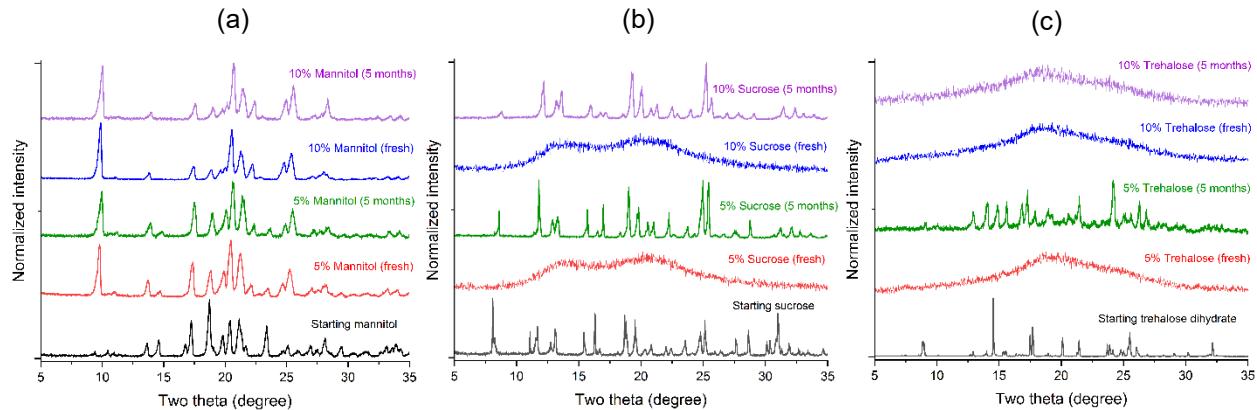
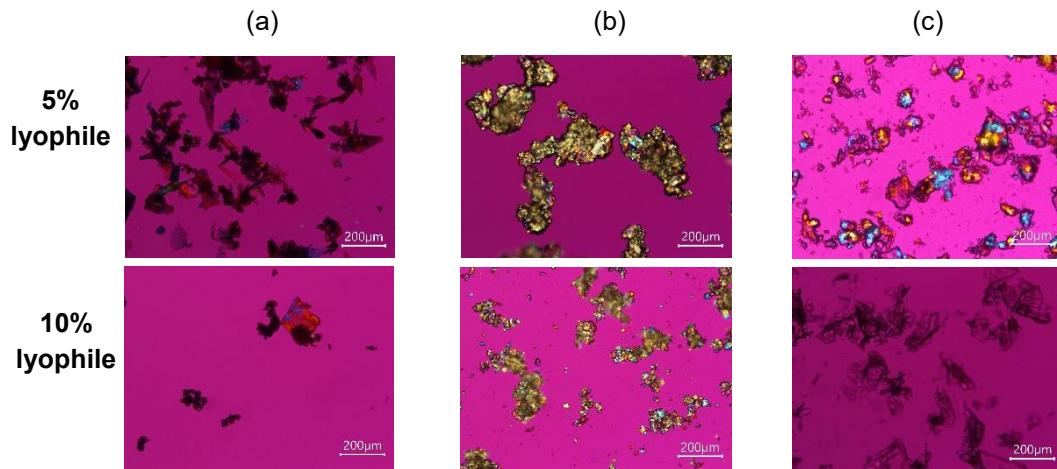



Figure 10. IER of lyophilized a) mannitol, b) sucrose, and c) trehalose tablets at two tableting speeds.


3.4 Physical stability

Stability of all lyophilized powders under ambient conditions over a period of five months was assessed, during which ambient humidity shifted from 40% to 10%. No evidence of form transformation during storage was observed in both lyophilized mannitol samples since their PXRD patterns remained essentially unchanged (Figure 11a) and no discernible change was observed in their PLM images (Figure 12a).

Figure 11. Comparison of PXRD patterns between fresh samples and lyophilized samples stored for 5 months for a) mannitol; b) sucrose; c) trehalose.

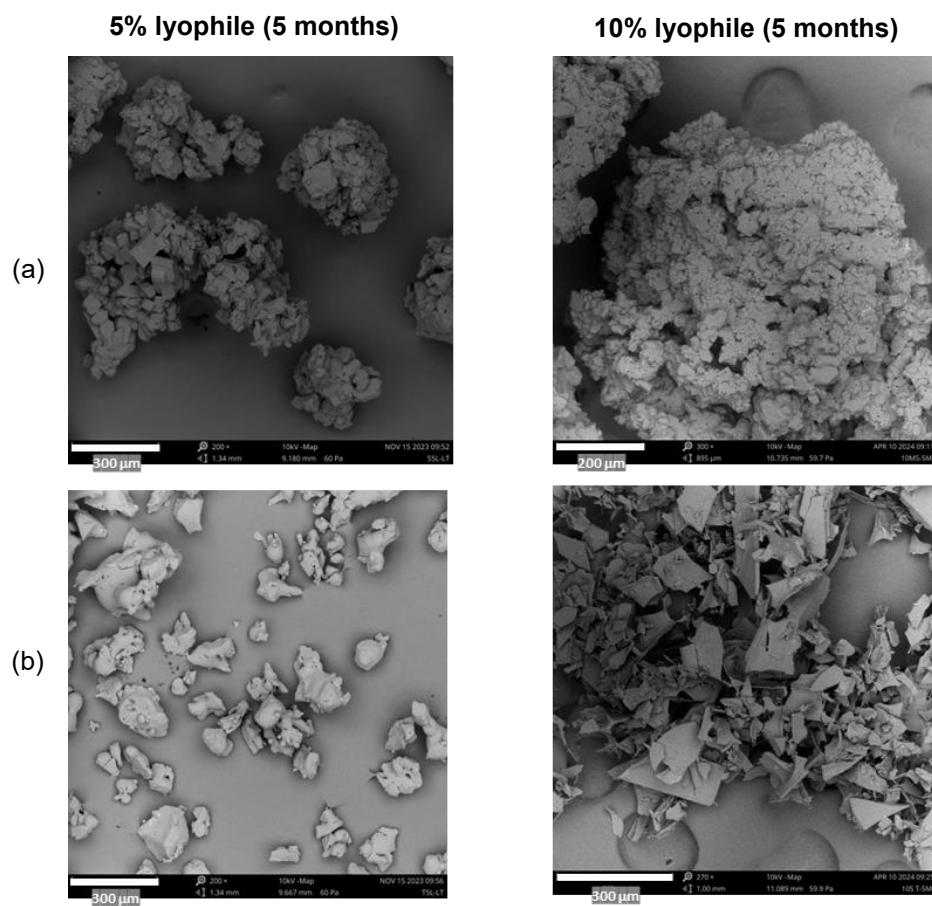
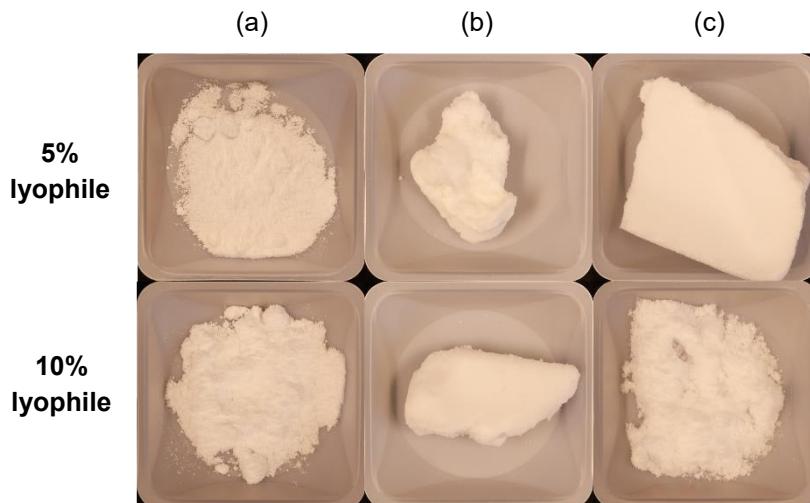

Both lyophilized amorphous sucrose samples crystallized over time, as indicated by the appearance of sharp XRD peaks matching those of the starting crystalline sucrose (Figure 11b) and the observation of birefringence in their PLM images (Figure 12b). Crystallization was further evidenced by changes in particle morphology, where the initially flake-shaped particles with poorly defined edges in both lyophilized sucrose samples transformed into block-shaped particles with well-defined edges, similar to starting crystalline sucrose particles (Figures 6b, 13a).

Figure 12. PLM images of lyophilized a) mannitol, b) sucrose, and c) trehalose particles stored for 5 months.

After five months of storage, the 5% trehalose sample crystallized significantly, exhibiting sharp XRD peaks that closely resembled those of crystalline trehalose dihydrate, as confirmed by its PXRD pattern, with variations in peak intensity due to preferred orientation. (Figure 11c).


1
2
3
4 418 However, the 10% trehalose sample remained amorphous. The disparity in solid-state stability
5 between the two samples was also apparent in their PLM and SEM images. Birefringence was
6 observed in the aged 5% trehalose sample but not in the aged 10% trehalose sample (Figure 12c).
7
8 420 Additionally, the morphology changed for 5% trehalose particles after 5-month storage but
9 remained unchanged for the 10% trehalose particles (Figures 6c, 13b), indicating an absence of
10 422 crystallization. The better physical stability of the 10% trehalose sample may be attributed to its
11 424 significantly higher T_g than 5% trehalose (Figure 4c).
12
13
14
15
16
17

48
49
50 425 **Figure 13.** SEM images of lyophilized powders stored for 5 months, a) sucrose; b)
51 trehalose.
52
53

54 The bulk powders of stored lyophilized samples exhibited varied appearances (Figure 14).
55 Initially, all freshly milled freeze-dried samples were loose powders without any agglomeration.
56 For samples that retained their initial solid form, such as 5% and 10% mannitol and 10% trehalose,
57 the appearance of powders remained visually unchanged. Although a few loose agglomerates
58 formed in lyophilized mannitol bulk powders, they could be easily broken by applying a gentle
59
60 430 force.
61
62
63
64
65

431 external force. However, lyophilized powders that underwent solid form transformation during
432 storage, i.e., 5% and 10% sucrose and 5% trehalose, formed strong and dense cakes, an indication
433 of solid bridge formation. One mechanism for the formation of solid bridges is a three-step process:
434 1) form liquid bridges at the contact point between particles due to initially high moisture uptake,
435 2) dissolution of sugar into liquid water, and 3) crystallization of sugar upon evaporation of water
436 with decreasing humidity (Dupas-Langlet et al., 2015; Leaper et al., 2012). Another possible
437 mechanism for the formation of solid bridges is solid-state transformation (Hartmann and Palzer,
438 2011), where the recrystallization of amorphous powders leads to formation of solid bridges.
439 Hence the 10% trehalose powder, initially contained high water content, did not form a large lump
440 after storage (Figure 14c), solid-state transformation is likely the principal mechanism for powder
441 caking observed in this study.

442 **Figure 14.** Powder appearance of lyophilized powders stored for 5 months, a) mannitol; b)
443 sucrose; c) trehalose.

444 **4 Conclusions**

445 Increasing the solid content during lyophilization can increase cake density and bulk density of
446 milled powders. However, even with a doubled solid content (from 5% to 10%), lyophilized
447 powders still demonstrate inadequate bulk density and flowability required for direct encapsulation
448 or tableting. Importantly, altering the solid content can yield lyophilized powders with distinct bulk
449 properties, which **require** careful characterization and assessment on their impact on stability in

1
2
3
4 450 addition to processability. Impact of solid content on properties of lyophilized powders also varied,
5 resulting in different polymorph compositions for mannitol, different and complex thermal
6 behaviors and water sorption properties for sucrose, and different glass transition temperatures and
7 stabilities for trehalose. For all three sugars, samples prepared with a lower solid content tend to
8 possess more porous structures, contributing to better compressibility and higher plasticity.
9 However, these porous structures may result in tablet defects or lamination at high tableting speeds
10 and pressures due to air entrapment. This comprehensive investigation into the impact of solid
11 content on lyophilized powders of three common cryoprotectants provides valuable baseline
12 knowledge for the preparation and formulation development of future lyophilized products.
13
14
15
16
17
18
19
20
21
22
23
24

CRediT Authorship Contribution Statement

25
26 **Zijian Wang**: data curation, formal analysis, writing – original draft, writing – review &
27 editing, visualization. **Sichen Song**: data curation, review and editing. **Hongwei Zhang**: data
28 curation, review and editing. **Xiaohong Liu**: data curation, review and editing. **Ronald A. Siegel**:
29 writing – review & editing. **Changquan Calvin Sun**: Conceptualization, supervision, writing –
30 review & editing. **Chenguang Wang**: conceptualization, data curation, supervision, formal
31 analysis, writing – original draft, writing – review & editing.
32
33
34
35
36
37
38
39
40
41
42

Declaration of Competing Interest

43 The work was initiated while C.W. and H.Z. were employed at Evelo Biosciences and
44 completed at the Department of Pharmaceutics, University of Minnesota. The authors state that
45 this research was carried out without any commercial or financial interests that might be interpreted
46 as a potential conflict of interest. Parts of the data were presented at the 6th David Grant
47 Symposium held in June 2023 at the University of Minnesota – Twin Cities.
48
49
50
51
52
53
54

Acknowledgement

55 C.C.S thanks the National Science Foundation for support through the Industry University
56 Collaborative Research Center grant IIP-2137264, Center for Integrated Materials Science and
57 Engineering for Pharmaceutical Products (CIMSEPP).
58
59
60
61
62
63
64
65

References

Allmendinger, A., Häuser, C., Kumar, L., Vollrath, I., 2023. Formulation Design for Freeze-Drying: Case Studies of Stabilization of Proteins, Principles and Practices of Lyophilization in Product Development and Manufacturing. Springer, pp. 83-101.

Beckett, S.T., Francesconi, M.G., Geary, P.M., Mackenzie, G., Maulny, A.P., 2006. DSC study of sucrose melting. *Carbohydr. Res.* 341, 2591-2599.

Berman, H.M., Jeffrey, G.A., Rosenstein, R.D., 1968. The crystal structures of the α ' and β forms of d-mannitol. *Acta Crystallogr., Sect. B: Struct. Sci.* 24, 442-449.

Dupas-Langlet, M., Benali, M., Pezron, I., Saleh, K., Metlas-Komunjer, L., 2015. The impact of deliquescence lowering on the caking of powder mixtures. *Powder Technol.* 270, 502-509.

Fell, J., Newton, J., 1970. Determination of tablet strength by the diametral-compression test. *J. Pharm. Sci.* 59, 688-691.

Fronczek, F.R., Kamel, H.N., Slattery, M., 2003. Three polymorphs (α , β , and δ) of D-mannitol at 100 K. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* 59, o567-o570.

Guerin, E., Tchoreloff, P., Leclerc, B., Tanguy, D., Deleuil, M., Couaraze, G., 1999. Rheological characterization of pharmaceutical powders using tap testing, shear cell and mercury porosimeter. *Int. J. Pharm.* 189, 91-103.

Hancock, B.C., Zografi, G., 1994. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. *Pharm. Res.* 11, 471-477.

Hartmann, M., Palzer, S., 2011. Caking of amorphous powders—Material aspects, modelling and applications. *Powder Technol.* 206, 112-121.

Heckel, R., 1961a. An analysis of powder compaction phenomena. *Trans. Metall. Soc. AIME* 221, 1001-1008.

Heckel, R., 1961b. Density-pressure relationships in powder compaction. *Trans. Metal. Soc. AIME* 221, 671-675.

Hiestand, E., Wells, J., Peot, C., Ochs, J., 1977. Physical processes of tabletting. *J. Pharm. Sci.* 66, 510-519.

Hsein, H., Madi, C., Mazel, V., Tchoreloff, P., Busignies, V., 2023. Tableting properties of freeze-dried trehalose: Physico-chemical and mechanical investigation. *Int. J. Pharm.* 648, 123598.

Hurtta, M., Pitkänen, I., Knuutinen, J., 2004. Melting behaviour of D-sucrose, D-glucose and D-fructose. *Carbohydr. Res.* 339, 2267-2273.

Iglesias, H.A., Chirife, J., Bueras, M.P., 1997. Adsorption isotherm of amorphous trehalose. *Journal of the Science of Food and Agriculture* 75, 183-186.

Imamura, K., Nomura, M., Tanaka, K., Kataoka, N., Oshitani, J., Imanaka, H., Nakanishi, K., 2010. Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose. *J. Pharm. Sci.* 99, 1452-1463.

Kaialy, W., Khan, U., Mawlud, S., 2016. Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol. *Int. J. Pharm.* 510, 73-85.

Leane, M., Pitt, K., Reynolds, G., 2015. A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms. *Pharm. Dev. Technol.* 20, 12-21.

Leane, M., Pitt, K., Reynolds, G.K., Dawson, N., Ziegler, I., Szepes, A., Crean, A.M., Dall Agnol, R., The Manufacturing Classification System Working, G., 2018. Manufacturing

classification system in the real world: factors influencing manufacturing process choices for filed commercial oral solid dosage formulations, case studies from industry and considerations for continuous processing. *Pharm. Dev. Technol.* 23, 964-977.

Leaper, M.C., Prime, D., Taylor, P., Leach, V., 2012. Solid bridge formation between spray-dried sodium carbonate particles. *Dry. Technol.* 30, 1008-1013.

Lee, J.W., Thomas, L.C., Schmidt, S.J., 2011. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). *J. Agric. Food Chem.* 59, 684-701.

Mathlouthi, M., Rogé, B., 2003. Water vapour sorption isotherms and the caking of food powders. *Food Chem.* 82, 61-71.

Mazel, V., Busignies, V., Diarra, H., Tchoreloff, P., 2015. Lamination of pharmaceutical tablets due to air entrapment: Direct visualization and influence of the compact thickness. *Int. J. Pharm.* 478, 702-704.

Okuno, M., Kishihara, S., Otsuka, M., Fujii, S., Kawasaki, K., 2003. Variability of melting behavior of commercial granulated sugar measured by differential scanning calorimetry.

Paul, A., Shi, L., Bielawski, C.W., 2015. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage. *Energy Convers. Manag.* 103, 139-146.

Pitkänen, I., Perkkiläinen, P., Rautiainen, H., 1993. Thermoanalytical studies on phases of D-mannitol. *Thermochim. Acta* 214, 157-162.

Roberts, R., Rowe, R., 1985. The effect of punch velocity on the compaction of a variety of materials. *J. Pharm. Pharmacol.* 37, 377-384.

Roe, K., Labuza, T., 2005. Glass transition and crystallization of amorphous trehalose-sucrose mixtures. *Int. J. Pharm.* 8, 559-574.

Roos, Y., 1993. Melting and glass transitions of low molecular weight carbohydrates. *Carbohydr. Res.* 238, 39-48.

Rozanski, A., Galeski, A., 2013. Plastic yielding of semicrystalline polymers affected by amorphous phase. *Int. J. Plast.* 41, 14-29.

Schmidt, S.J., Thomas, L.C., Lee, J.W., 2012. Response to comment on the melting and decomposition of sugars. *J. Agric. Food Chem.* 60, 10363-10371.

Smith, R.R., Shah, U.V., Parambil, J.V., Burnett, D.J., Thielmann, F., Heng, J.Y., 2017. The effect of polymorphism on surface energetics of D-mannitol polymorphs. *AAPS J.* 19, 103-109.

Sun, C.C., 2009. Materials Science Tetrahedron—A Useful Tool for Pharmaceutical Research and Development. *J. Pharm. Sci.* 98, 1671-1687.

Sun, C.C., 2010. Setting the bar for powder flow properties in successful high speed tabletting. *Powder Technol.* 201, 106-108.

Sun, C.C., 2011. Decoding powder tabletability: roles of particle adhesion and plasticity. *J. Adhes. Sci. Technol.* 25, 483-499.

Sun, C.C., Hou, H., Gao, P., Ma, C., Medina, C., Alvarez, F.J., 2009. Development of a high drug load tablet formulation based on assessment of powder manufacturability: moving towards quality by design. *J. Pharm. Sci.* 98, 239-247.

Sussich, F., Cesàro, A., 2008. Trehalose amorphization and recrystallization. *Carbohydr. Res.* 343, 2667-2674.

Sussich, F., Urbani, R., Princivalle, F., Cesàro, A., 1998. Polymorphic Amorphous and Crystalline Forms of Trehalose. *J. Am. Chem. Soc.* 120, 7893-7899.

Tan, G., AV Morton, D., Larson, I., 2015. On the methods to measure powder flow. *Curr. Pharm. Des.* 21, 5751-5765.

1
2
3
4 Tang, X., Pikal, M.J., 2004. Design of Freeze-Drying Processes for Pharmaceuticals: Practical
5 Advice. *Pharm. Res.* 21, 191-200.
6
7 Tharanon, W., Guo, Y., Peerapattana, J., Sun, C.C., 2024. A systematic comparison of four
8 pharmacopoeial methods for measuring powder flowability. *Int. J. Pharm.*, 124454.
9
10 USP, 2024. Chapter 616. Bulk density and tapped density of powders, Rockville, MD.
11
12 Vreeman, G., Sun, C.C., 2022. Air entrapment during tablet compression—Diagnosis, impact on
13 tableting performance, and mitigation strategies. *Int. J. Pharm.* 615, 121514.
14
15 Vreeman, G., Sun, C.C., 2024. A strategy to optimize precompression pressure for tablet
16 manufacturing based on in-die elastic recovery. *Int. J. Pharm.* 654, 123981.
17
18 Wang, C., Song, S., Gunawardana, C.A., Sun, D.J., Sun, C.C., 2022. Effects of shear cell size on
19 flowability of powders measured using a ring shear tester. *Powder Technol.* 396, 555-564.
20
21 Yoshinari, T., Forbes, R.T., York, P., Kawashima, Y., 2002. Moisture induced polymorphic
22 transition of mannitol and its morphological transformation. *Int. J. Pharm.* 247, 69-77.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dear Dr. Zhengrong Cui,

Thank you for arranging the review process regarding our manuscript titled **Impact of Solid Content on the Bulk Properties of Lyophilized Powders**. We deeply appreciate the time and effort the reviewers invested in evaluating our manuscript. We have carefully considered their feedback and have revised the manuscript accordingly.

We are pleased to submit the revised version of our manuscript for further consideration by *IJP*. The revision has addressed each point raised by the reviewers, and we believe that these changes have significantly improved the manuscript.

We have attached a detailed response letter listing all the reviewers' comments and specifying the changes we made to the manuscript. We believe that these revisions have improved our manuscript and hope that the changes meet with the approval of the reviewers. We appreciate the opportunity to resubmit our work and look forward to your response.

Thank you once again for the opportunity to refine our manuscript. Please do not hesitate to contact me should you require any further information.

Sincerely,

Chenguang Wang
Evelo Bioscience