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Abstract

In recent years, hardware architectures optimized for gen-
eral matrix multiplication (GEMM) have been well studied
to deliver better performance and efficiency for deep neu-
ral networks. With trends towards batched, low-precision
data, e.g., FP8 format in this work, we observe that there is
growing untapped potential for value reuse. We propose a
novel computing paradigm, value-level parallelism, whereby
unique products are computed only once, and different in-
puts subscribe to (select) their products via temporal coding.
Our architecture, Carat, employs value-level parallelism and
transforms multiplication into accumulation, performing
GEMMs with efficient multiplier-free hardware. Experiments
show that, on average, Carat improves iso-area throughput
and energy efficiency by 1.02x and 1.06X over a systolic
array and 3.2X and 4.3X when scaled up to multiple nodes.

CCS Concepts: - Computer systems organization —
Neural networks; Data flow architectures; - Hardware
— Emerging architectures; Arithmetic and datapath
circuits; Application specific integrated circuits.
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1 Introduction

With recent advances in deep learning, deep neural networks
(DNNs) have become ubiquitous in a vast array of applica-
tion domains. To improve performance and efficiency, exist-
ing DNN accelerator architectures usually focus on the most
abundant operation: general matrix multiply (GEMM). There
exist two popular data-centric optimizations to boost the
performance and efficiency for GEMM. First, data reuse min-
imizes the data movement between compute units and mem-
ory hierarchies, thus improving memory efficiency [9, 33, 71].
In particular, batch inference is leveraged to enhance the
reuse of weights in DNNs [13, 20, 35]. Second, low data pre-
cision reduces the data size, so that both the compute unit
size and the memory footprint are smaller, improving both
the compute and memory efficiency. Multiple low-precision
data formats, e.g., INT8 [33] and BF16 [34], have been well
studied to replace the standard IEEE FP32 format, with neg-
ligible DNN accuracy drop. Very recently, more aggressive
data formats, e.g., INT4[18, 31, 38, 75] and FP8 [39, 48, 53, 65],
have been proposed for DNN inference. Among these, FP8
hardware has already been commercialized for deep learn-
ing [3, 32, 54], with the relevant results given in Table 1. The
measurement results demonstrate the effectiveness of FP8,
which is significantly better than the well-studied INTS8 in
large language models.

In real-world cases, traditional DNN inference, e.g., com-
puter vision and natural language processing, has worked
towards increased batch sizes, 64~512 [10, 12, 21, 36, 63, 64],
without violating system latency requirements. Adopting
low data precision further reduces the latency and increases
the batch size under a certain latency budget [22]. There is
a recent trend for applications to go beyond this, including
financial technologies [2, 26, 41], medical diagnosis [4, 5, 62],
judicial systems [1, 8, 37], etc. These applications usually em-
phasize more on higher throughput with larger batch sizes
than traditional applications. One such example is credit scor-
ing: 149 million Chase credit cards need monthly-scheduled
credit scoring [7, 57], translating to approximately 5 mil-
lion latency-insensitive inferences per day. Even in latency-
sensitive high-frequency trading (HFT), higher throughput
is desirable as it allows more queries to be processed, yield-
ing better trading decisions and, therefore, more profits. Ex-
isting HFT systems have already fed on both batched and
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Figure 1. Illustration of value-level parallelism. (a) Value-
level parallelism synergizes two emerging trends: data are
both more abundant and lower precision. (b) Concept: A
vector input multiplies a scalar weight w. Multiplication is
transformed to accumulation. All unique products are cal-
culated only once, and product values are reused, shown in
yellow rectangles for all 4-bit inputs € [0, 15]. Each circled
input element subscribes to (selects) its product, i.e., each
unique product is reused by multiple inputs with the same
value. (c) Architecture: The weight is accumulated (ACC)
over time, and each vector input subscribes to its product
(Val) by selecting the weight accumulation result via a tem-
poral signal, whose spike timing depends on the input value.

low-precision data to achieve simultaneously high through-
put and efficiency under latency constraints [76]. Thus, our
work leverages abundant batched data and low data precision,
taking advantage of their increased popularity and utility
towards future DNN inference systems.

Insight. Though existing GEMM optimizations already demon-
strate high performance, we believe there is still untapped
potential. Our insight is that not all performed computations
are mandatory. Let us consider vector-scalar multiplication,
which can be stacked towards a complete GEMM, as an exam-
ple. Assuming an INT4 input vector of size 1024, multiplying
this vector with a scalar weight in conventional hardware
needs 1024 multiplications. However, this is fundamentally
inefficient since the final product vector only has at most
16 unique values; effectively, the multiplications are 64x
(i.e., 1024/16) more than needed. For batch processing (up
to 256 for DNN inference [13, 20, 35] and several Ks for
training [42, 45, 56]) where multiple input vectors are multi-
plied with the same weight simultaneously, such a waste of
compute is even more severe.
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Table 1. DNN evaluation with FP8 multiplication and BF16
accumulation, reported by Arm, Intel and NVIDIA in [48].
The adopted FP8 for DNN inference has a 4-bit exponent and
a 3-bit mantissa (E4M3). IC/LT/NLP denote image classifica-
tion, language translation and natural language processing,
respectively. For all metrics but perplexity, higher values are
better. Data marked with * are from [72, 73].

. . Metric measurement
Model Size | Task | Metric BF16 ‘ P3 ‘ INTS
VGG16 138M Ic Accurac 71.27 | 71.11 | 70.75*
Resnet50 26M ¥y 76.71 | 76.76 | 75.82*
GNMT 255M 24.83 | 24.65 | 24.53*
Transformer 165M LT BLEU 26.87 | 26.83 | 21.23*
BERT 110M | NLP F1 88.19 | 88.09 76.89
Transformer-XL | 0.46B 22.98 | 22.99 -
GPT 175B | NLP | Perplexity | 6.65 | 6.68 -
GPT3 6.7B 8.51 8.41 10.29

Table 2. Comparison of approaches to exploit parallelism.

‘ Parallelism level ‘ Source of opportunity ‘ Example ‘
Instruction Independent instructions
Thread Independent threads CPUs, GPUs, etc.
Memory Concurrent memory accesses Caches, etc.
Data Vectorized data SIMD, etc.
Few unique values
Value for abundant data Carat

Value-Level Parallelism. In this work, we propose value-
level parallelism that enables GEMM computations without
any multiplier in hardware.! We leverage a form of value
reuse as in Figure 1, i.e., unique products are computed only
once and reused by the entire input vector. This consists of
three steps, as shown in Figure 1 (b). First, we transform
the multiplication with the scalar (here, weight) to the ac-
cumulation of the scalar. The accumulation will traverse all
unique outputs in order, e.g., in this case, from w X0 to wXx 15
(INT4). Second, we cluster the elements of the input vector
according to their value, e.g., all input 0Os are clustered to-
gether, to prepare for value reuse. Third, all elements with an
identical value effectively subscribe to their corresponding
accumulation result (partial product), e.g., all inputs with a
value 3 simply wait until the accumulation has reached w x 3.
Figure 1 (c) gives an example architecture, where different
inputs subscribe to their products in parallel. Compared to
traditional forms of parallelism (Table 2), value-level par-
allelism is timely given the trends towards larger datasets
with lower precisions. Transforming multiplications to accu-
mulations eliminates the need for an array of multipliers in
hardware and is particularly efficient when the number of
unique values is low.

Carat Architecture. Leveraging value-level parallelism, we
propose Carat, a multiplier-free architecture for GEMMs.
The recent trends in DNN inference towards both (1) abundant

!Prior DNN accelerators require either single-cycle bit-parallel or multi-
cycle bit-serial multipliers to perform multiplications [9, 44].
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Figure 2. An example systolic array with weight station-
ary dataflow [33]. Each processing element (PE) contains
a multiply-accumulate (MAC) unit and required pipeline
buffers. Weights (W) are stationary in a PE, while inputs ()
and outputs flow in and out from the top and right of the PE.

batched data and (2) lower data precision unlock potential
for higher value reuse. First, batch processing creates more
opportunities for multiple independent inputs to interact
with the same weight, i.e., vector-scalar multiplication. Sec-
ond, low data precision can reduce the number of unique
data values. We consider commercialized FP8 in this work,
which introduces negligible accuracy loss according to Ta-
ble 1. Note that value reuse is fundamentally distinct from
data reuse; the former pertains to techniques that leverage
values common to multiple data elements, while the latter
pertains to techniques (e.g., caching) that leverage data ele-
ments reused by multiple operations. Our Carat architecture
leverages both of these orthogonal concepts for improved
performance and efficiency.

Contributions. Our contributions are as follows:

e We shed light on a growing opportunity of redundant
computations in GEMM processing that stems from
batched data and low data precision in DNNs.

e We are the first to propose multiplier-free computation
for GEMMs.

e We present and evaluate Carat with value reuse that
achieves a novel form of value-level parallelism.

This paper is organized as follows. Section 2 articulates
the motivation. Then Section 3 and Section 4 describe the
concept of value reuse via temporal coding and the details
of Carat architecture. The following Section 5 and Section 6
evaluate the implementation. Finally, Section 7 and Section 8
discuss and conclude this work.

2 Opportunities for Value Reuse

Existing GEMM hardware has leveraged data-centric tech-
niques for improved efficiency. One such technique is spatial
dataflow, with an example in Figure 2. This architecture is de-
signed to maximize data reuse in dense GEMMs [33, 60]. To
accelerate GEMMs further, sparse architectures are proposed
to skip unnecessary computation upon zero values [9].

We show the exploitable opportunity for sparse accel-
eration in Figure 3 (a). We profile the outputs of the first
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maximally 127 and 7 for BF16 and FP8. The y axis is in log scale.

Figure 3. Opportunities for GEMM acceleration. (a) Vision
models with ReLU activation [50] have high value sparsity,
which is the opposite of value density (y-axis). In contrast,
language models without ReLU have almost zero value spar-
sity. (b) Due to higher value sparsity, vision models also
exhibit higher bit sparsity, opposite of bit density, than lan-
guage models. (c) The opportunity for value reuse is the
number of inputs for each unique mantissa value. More de-
tails are explained in Section 3 and Section 4.5. From top to
bottom, three curves for each color are the maximum, aver-
age and minimum reuse opportunities in interested layers.

10 GEMM layers (using random inputs from dataset) from
two pretrained DNNs, including ResNet50 [27] on ImageNet
dataset [15] for computer vision, and BERT [16] on multiple
datasets for natural language processing. We observe that
language models do not exhibit rich value sparsity as in vi-
sion models; thus prior sparse acceleration techniques for
vision models can be considerably less effective on language
models. Moreover, as shown in Figure 3 (b), opportunities for
bit sparsity (i.e., fine-grained value sparsity) are also limited
in language models [44].

Our work is motivated by deep learning trends towards
batched, low-precision data, as exemplified in Section 1. We
show the exploitable opportunity for value reuse in Fig-
ure 3 (c) and observe that: (1) lower data precision exposes
more opportunities, which will become even richer with a
larger batch size; (2) both vision and language models exhibit
significant opportunities for value reuse.

3 Value-Level Parallelism

In this work, we explore value-level parallelism, a computing
paradigm that leverages value reuse and temporal coding
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Figure 4. A temporal signal, which is generated by compar-
ing source binary data with a deterministic counter output
at each cycle, i.e., temporal converter. In this example, as
the 3-bit binary data is 6, the temporal signal spans across
23 = 8 cycles; and a spike (logic-1) only occurs at the 6-th
cycle, when the data value equals the counter value.
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Figure 5. Value-level parallelism for vector-scalar multipli-
cation. TC denotes a temporal converter in Figure 4. ACC
denotes an accumulator. Yellow blocks are output product
registers, with Val and En referring to the write value (a
partial product) and write enable (a temporal signal). (a) Mul-
tiplication of an input i and a weight w. (b) Accumulation
of the weight w to obtain all partial products. (c) The tem-
poral converter generates a temporal signal for the input
i as in Figure 4. At the i-th cycle, a spike occurs, and the
weight is accumulated i times, i.e., the partial product is i - w.
Therefore, i - w is written/selected as the result. (d) Given
an input vector i, the temporal signal for each input i[k]
can independently select the product between i[k] and the
weight w, achieving value-level parallelism.

S

(Figure 4) for GEMM computations. Figure 5 shows how
to perform integer vector-scalar multiplication via value
reuse. It consists of three steps. First, from Figure 5 (a) to
(b), we transform the multiplication into an accumulation
over time. At each cycle, the weight accumulation result
is a partial product for a specific input value. Next, from
Figure 5 (b) to (c), we use the temporal signal for the input
to subscribe to (select) its partial product. Temporal coding
is a popular data encoding scheme in low power computing
paradigms [11, 69]. It encodes the information as time-to-
first-spike [17, 23, 46, 51, 66—70]. Figure 4 gives an example
temporal-coded datum, whose value equals the timing when
a spike occurs. Finally, from Figure 5 (c) to (d), different
elements from the input vector will perform the previous
subscription (selection) step independently to obtain their
products, with an example circuit shown in Figure 1 (c).
As multiple parallel inputs can reuse one computed output,
regardless of the input values, we coin this paradigm as
value-level parallelism.

Given the size (height here) of the input vector, H, and the
the number of bits to be temporalized, M, the opportunity
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for value reuse (i.e., the number of inputs that reuse the

. H . .
is o where 2M is the maximum rounds of

weight accumulation, i.e., the number of unique input values

same product)

or output products. Longer vectors (larger H) and lower data
precision (smaller M) expose higher opportunities for value
reuse linearly and exponentially.

4 Carat Architecture

We introduce our GEMM architecture with value reuse, named
Carat, to unlock the rich value-level parallelism in batch

DNN inference with low-precision data. This implementa-
tion adopts FP8 and BF16 format for multiplication and ac-
cumulation. In this section, we start with a high-level Carat

architecture overview. Then we describe microarchitecture

designs in Section 4.2-4.6, followed by a walkthrough ex-
ample in Section 4.7. Finally, we show how Carat can scale

up to a multi-node Network-on-Chip (NoC)-based system in

Section 4.8.

4.1 Overview

As shown in Figure 6 (a), Carat has a PE array organiza-
tion. Its memory hierarchy is similar to prior systolic array-
based DNN accelerators [33], which have off-chip memory,
e.g., HBM, on-chip SRAM for input (i) and output (o) feature
maps, and weights (w). Likewise, Carat double buffers all
FIFOs and SRAMs to hide on-chip and off-chip access latency.
The Carat compute array consists of two parts, i.e., TCs in
green and PEs in yellow. TCs generate temporal signals as in
Figure 5, using the number sequence from the counter at the
top. Then each column of PEs is responsible for vector-scalar
multiplication via value reuse on FP8 data, i.e., each column
of PEs is an instance of Figure 5 (d) to explore value-level par-
allelism. Note that each column reuses the partial products
(obtained at the top via accumulation) via both pipelining
and broadcast to optimally balance efficiency and perfor-
mance. Multiple PE columns work on the same input vector
but different scalar weights, and calculates a vector-vector
outer product. On the right-hand side of the array, a column
of BF16 adders accumulate the outer products for the GEMM
outputs.

4.2 Special Value Handling

We list the details of FP8 format in Table 3. Carat implements
three techniques and supports all special values (subnormal,
NaN and Zero) at the inputs, weights and outputs. Though
this FP8 format does not encode Infinity, the support for NaN
and Zero in Carat applies to Infinity in other FP8 formats [48].
First, if the input is subnormal, we perform subnormal adjust-
ments before generating temporal signals. This adjustment
facilitates accumulation forwarding for better performance
and efficiency, with more details given in Section 4.4. Second,
if the input is either NaN or Zero, we leverage product mask-
ing to pass the relevant flags to the output. Their impact
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Figure 6. Carat architecture. (a) Overview. CNT and ACC denote counter and accumulator. Gray components also exist in
systolic arrays (Figure 2). Green and yellow mark temporal converters (TCs) and processing elements (PEs). (b) PE. A is the
weight accumulation result (partial product) from the row above. Mr is the temporal signal generated from the mantissa Mp
in the TC. (c) TC. PR means pre-processing FP8 data. S, E, and M stand for sign, exponent and mantissa of the input from the
left, respectively; Ep and Mp are the adjusted exponent and mantissa, depending on whether the input is a subnormal number,
indicated by a flag D. N and Z are 1-bit flags indicating whether the input is NaN and Zero, respectively. G is the OR gate
selection flag for PE outputs. C is the counter number from the row above. All rectangle registers (REG in (b) and (c)) pipeline
data to either the right or bottom, either directly or after simple operations, e.g., AND or equality check (EQ). (d) PE column
for value reuse. (e) PE row for output accumulation. PO means post-processing products for correct accumulation.

Table 3. The details of the studied FP8 E4M3 format [48].
The format is given in sign(1-bit).exponent(4-bit). mantissa(3-
bit) in binary format with a subscript of 2, where the sign
is represented by S. Note that normal numbers have a full
mantissa of {1, M}, while subnormal numbers have a full
mantissa of {0, M}.

Exponent bias 7

Infinity N/A

Zero $.0000.000,

NaN S.1111.111,

Subnormal Max | S.0000.111; = 0.875 X 27°
Min | S.0000.001, =27

Normal Max | S.1111.110, = 1.75 x 28 = 448
Min | S.0001.000, = 27°

on the final products is reflected before output accumula-
tion, as described in Section 4.4. Third, for the weight, we
use exponent expansion to avoid overflow during weight
accumulation at the top, while other special values can be
handled by the accumulator itself. We elaborate on this in
Section 4.5.

4.3 Processing Element

Figure 6 (b) shows a Carat PE, the simplest, yet most impor-
tant component. Distinguishing from conventional compute-
oriented PEs that perform MAC operations, the functionality
of Carat PEs is to (1) pipeline the temporal signal rightward
and partial products downward, and (2) subscribe to (select)
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the correct PE output. The spike in temporal signal Mt se-
lects the partial product to the output port; on the other hand,
the absence of spikes will set the output to 0.

Throughout all 8 cycles for one temporal signal, the Mt
register and AND gate switch twice due to two edges of
the spike, and the A register constantly switches. Similar
to TCs, the temporal signal again reduces the power and
energy consumption by minimizing the switching activity
in all PEs.

4.4 Temporal Converter

Figure 6 (c) is a Carat TC. The TC functionality is three-fold,
including pipelining the deterministic number sequence, pre-
processing the input FP8 data, and generating the temporal
signal. The C register pipelines the number sequence, which
is sourced from the counter at the top in Figure 6 (a). This
organization eliminates the need to generate the sequence
at each row, thus saving area. The number sequence will
be later used to generate the temporal signal. Then, upon
the arrival of an input from the FIFO on the left, the TC
identifies (1) whether the input is a special value, and (2)
which output OR gate should the PE output go to. Data are
processed according to the type of special values.

Subnormal adjustment. If the input is a normal/subnormal
number, the exponent (E) and mantissa (M) are adjusted to
Ep and Mp via Equation 1. For normal numbers, {1, Mp} is set
to the full mantissa {1, M}, i.e., no adjustment; for subnormal
numbers with a full mantissa of {0, M}, the leading 1 of {0, M}
is shifted leftmost, creating {1, Mp}, where offset € [1, 2, 3].
This adjustment creates a unified data format for both cases,
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removing the need for separate subnormal handling.

E M
E — offset, M < offset

, if normal;
(1)

Ep, Mp = { , if subnormal.
Accumulation forwarding. Naively, the temporal signal
can be generated using all 4 bits of the adjusted full mantissa
{1, Mp}. This requires a total of 2¢ = 16 cycles; the weight ac-
cumulation would start at the 0-th cycle (0 X weight) and end
at the 15-th cycle (15 X weight). However, due to the leading
1in {1, Mp}, the earliest temporal spike would occur at the
8-th cycle (for Mp = 000;) and the latest at the 15-th cycle
(for Mp = 111;). This would mean that the partial products
from the 0-th to 7-th cycles would never be subscribed to (se-
lected), wasting energy. Instead, our implementation starts
the accumulation from the 8-th partial product (8 X weight),
so we only require at most 8 rounds of accumulation. Accord-
ingly, we compare the 3-bit Mp with the number sequence
to generate the temporal signal and select the correct partial
product within 8 cycles. To obtain the 8-th partial product
(8 X weight) at the beginning, we simply add 3 to the weight
exponent with a small fixed-point adder. In total, 8 such
adders are needed, one for each PE column in Figure 6 (a),
incurring minimal hardware overhead.

Product masking. When handling NaN or Zero inputs, tra-
ditional floating point multipliers directly mask the product
to NaN or Zero, and Carat also follows this strategy. TC
identifies NaN and Zero and stores N and Z flags. These flags
are passed to the post-processing block (PO) as in Figure 6 (e)
and used to mask the subscribed product accordingly before
it is accumulated into the FIFO.

In addition to handling special values, the TC also uses a
gate (G) flag to indicate which ping-pong buffer in Figure 6 (e)
this input should use. We describe details in Section 4.6.

During all 8 cycles in generating one temporal signal,
all registers remain constant, except that the C register is
pipelining accumulated partial products; the equality check
logic only produces one spike (logic-1) when the adjusted
mantissa Mp equals the counter number C. These two fea-
tures reduce the power and energy consumption in all TCs
by minimizing the switching activity.

4.5 Processing Element Column

Figure 6 (d) shows one column of PEs and TCs, which is an
implementation of value reuse for vector-scalar multiplica-
tion as in Figure 5 (d). The distinction in between is that: the
example circuit of Figure 5 (d) generates the temporal signals
of all vector inputs simultaneously, and all inputs see identi-
cal accumulated partial products at all cycles via broadcast
(Figure 1 (c)); on the contrary, Figure 6 (d) synchronously
pipelines the temporal signals and partial products down-
ward. This design choice improves the scalability of Carat
by avoiding broadcast. However, due to the simplicity of
TCs and PEs, we can locally share the same set of C and A
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registers among multiple TCs and PEs in a column, e.g., 8
in this work, without impacting the frequency significantly.
Then each group of 8 TCs and PEs is still pipelined. The
FP8 accumulator at the top accumulates the weights, and
pipelines the partial products to all PEs below in the column.
The counter at the top generates a deterministic number
sequence and pipelines it to all TCs in the rows below. The
column of TCs then processes the FP8 inputs that come from
the left. First, it temporalizes the mantissa bits to a tempo-
ral signal in red using the deterministic number sequence.
The temporal input in red subscribes to (selects) the correct
partial products at each row. Second, it extracts extra infor-
mation for output accumulation, marked by the black arrow
below the red one. The output product of a PE flows through
the port at the bottom right corner of the PE for output accu-
mulation. Based on this single PE column for vector-scalar
multiplication, we can further pipeline the temporal inputs
to more columns, e.g., appending more PE columns on the
right-hand side of Figure 6 (d). Therefore, multiple columns
calculates a vector-vector outer product. This multi-column
organization hides the latency of the temporal signal. With
8 PE columns, Carat output one set of products per cycle,
leading to no throughput loss, but improving the energy due
to reduced switching activity.

Exponent expansion. As Carat accumulates FP8 weights
for value reuse, when the weight accumulation is too much
or the weight value is too large, it is possible that partial prod-
ucts overflow for FP8 data. To eliminate accumulation over-
flow, FP8 accumulators at the top and the relevant pipeline
registers need extended exponent bits to ensure the correct-
ness. More specifically, for FP8 data with a 3 + 1 = 4-bit full
mantissa (plus 1 due to the leading 1 in the adjusted full man-
tissa), the weight accumulation increases the partial product
by up to 2% — 1 = 15X, thus requiring 4 extra exponent bits
in the accumulators. With overflow addressed, Carat yields
no accuracy degradation from Table 1. Note that for weights
that are NaN or Zero, the accumulator needs to mask the
output partial products accordingly.

4.6 Processing Element Row

Figure 6 (e) shows one PE row, which consists of 1 TC, 8 PEs,
and 2 output OR gates. It routes out and post-processes the PE
outputs for correct output accumulation. The number of PEs
matches the cycle count of the temporal signal, to enable fully
pipelined execution, i.e., a second input can immediately start
the temporalization right after a first temporal signal finishes
the generation. As the TC and PEs pipeline the temporal
spike to the right, PEs always produce their outputs for one
input from left to right in order, i.e., for one input, only one
PE among all is outputting a valid output at a time. Therefore,
we simply use an OR gate to get the valid output, as all other
outputs are 0s (disabled by the temporal spike).
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Due to the fully pipelined execution, there could be two
spikes that co-exist in a PE row, with an example in Fig-
ure 7 (k), where green and red spikes in the first row belong
to different inputs. To guarantee correctness, we use two OR
gates, with each assigned to one input. The output for an
input will go through its assigned OR gate into an assigned
ping-pong buffer, indicated by the gate flag G from TC.

Afterwards, we post-process the output of the ping-pong
buffer before starting accumulation. The post-processing
needs the corresponding information from the TC, including
the sign S, adjusted exponent (Ep), NaN (N), Zero (Z) and
gate (G) flags. We store the information in a FIFO, with each
entry assigned to one input. More specifically, asserted N
and Z flags will mask the product to NaN and Zero; signs and
exponents of the input and product are XORed and added as
the sign and exponent of the final product, respectively.

4.7 Walkthrough Example

Figure 7 gives a cycle-by-cycle walkthrough example to show
1) how the temporal signals subscribe to (select) partial prod-
ucts in (a)-(1) and 2) how to obtain full GEMM results in
(m)-(p). In this example, different PE rows do not share C
and A registers. As for each input, the sign, adjusted expo-
nent, NaN, Zero and gate flags remain constant; we ignore
their logic and focus on the registers with state transitions.
Note that in this example, we assume weights and inputs
are located in the top and left SRAMs; in real cases, their
positions can be switched to maximize the utilization and
efficiency.

How does a PE column work? At cycle 0, a new input
comes in from the left and updates the adjusted mantissa
register Mp to red 7, and the corresponding counter number
register C has an initial value of 0. Then at cycle 7, the counter
number C increases to 7, equal to Mp, and the TC generates
a temporal spike in red. During cycle 1~3, more PE rows take
in new inputs, and generate their temporal spikes, whose
timing only depends on the input value. For one PE column,
the weight accumulation needs 8 cycles, e.g., in the first
column, the partial product traverses from 8x the weight at
cycle 1 to 15% at cycle 8. When the PE column pipelines the
partial products downward, the temporal spike subscribes
to (selects) the partial product of each input. For example,
red 7 selects 15X at cycle 8, red 1 selects 9% at cycle 4, and
red Os select 8% at cycle 2 and 4. Value reuse allows different
inputs to reuse the same partial products independently and
in parallel, enabling value-level parallelism.

How does a PE row work? In one PE row, a spike flows
from left to right and selects a partial product in each column
with identical rounds of accumulation. For example, the red
input in the second row has a 0 Mp, with a temporal spike at
cycle 1; then at each cycle between cycle 2 and cycle 9, this
spike arrives at the next PE on the right-hand side, selects
8% the weight as the output and routes it out through an
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assigned OR gate. Additionally, we show how Carat simulta-
neously processes a second set of inputs in green (all zeros
for simplicity) between cycle 8 and cycle 15. We take the first
row as an example. At cycle 8, the TC accepts a new input
and immediately asserts a temporal spike in green. At cycle
9, the first and second PEs both have a spike for a different
input; and each PE individually selects its partial product
and routes it out to its assigned ping-pong buffer through the
assigned OR gate. Afterwards, the ping-pong buffer sends
the buffered results to the output accumulator and FIFO to
obtain outer products and ultimately GEMM results.

How do we obtain GEMM results? Outer products from
different input sets are added element-wise to produce full
GEMM results, with an example shown in Figure 7 (m)-(p).
By cycle 15, all subscribed products for the first row of the
red input set are now in the ping-pong buffer and ready to be
accumulated into the corresponding output FIFO. At cycle 16,
the first row accumulates and pushes the first product (which
was subscribed by the leftmost column) into its correspond-
ing FIFO (top FIFO). This accumulation is done in a circular
FIFO fashion with a feedback loop. Then in the following
cycle, the next product of the first row is also pushed into
this FIFO, while the first product of the second row is pushed
into its FIFO. This process continues across all rows. By cycle
23, the top FIFO has fully computed the outer product for
the first row of the red input set. At cycle 24, the green set of
products begins to accumulate into the FIFOs, starting from
the top. In the example, 81 is added to 15A, which is the sum
of the leftmost entries of the green and red first-row outer
products, respectively. This process continues to accumulate
the outer products, eventually producing the GEMM result.

4.8 Multi-Node Carat

The above sections introduce our proposed Carat as a single
compute node. Figure 8 shows how Carat can be scaled up
to larger multi-note systems using a 2-D mesh Network-on-
Chip (NoC) with a shared off-chip memory [24, 60]. The NoC
supports both multi-cast and uni-cast traffic to distribute and
reuse the inputs and weights across time and space, and to
perform reduction among the partial sums generated by each
node, thus reducing the off-chip memory accesses. We evenly
tile the GEMM computation across all nodes [60].

5 Experimental Setup
5.1 DNN

In this work, we focus on the GEMM operations in DNNs, and
use up to 256 batch size, which is within the best prior efforts
for DNN inference, 64~512, as described in Section 1 [10, 12,
21, 36, 63]. We evaluate the MLPerf benchmark [47], which
contains multiple industrial DNN workloads (both vision
and language models) with dedicated datasets, including
ResNet50 for image classification on ImageNet dataset [27],
UNet for image segmentation on biomedical cell datasets [59],
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Figure 7. Cycle-level Carat walkthrough example on an 8 X 8 PE array. (a) shows the key components selected from Figure 6.
The left and right clusters denote the TC column and PE array. CNT and ACC denote counter and accumulator. The C and
Mp are registers for the counter number and adjusted mantissa, that together generate the temporal signal with the equality
check logic in triangle. The A denotes the pipeline register for partial products generated by the accumulator at the top. (b)-(1)
draw the transition of cycle-level register states in the array, among which (b)-(k) are continuous in cycle. At every cycle, the
array takes in a new input and updates the Mp register. There are two sets of inputs marked with red and green, with each
set sharing the same partial products. We distinguish two corresponding sets of partial products by whether they are bold
or not. Each column works on a different weight, with the two sets of weights marked with A-H and I-P, respectively. For
each set, we fill the TC (represented by equality check logic in triangle) and the PE (represented by the A register) with the
color of this set, upon the occurrence of a temporal spike. A colored TC means a temporal spike is generated, i.e., the counter
number equals the adjusted mantissa; a colored PE mean the current partial product is selected as the output. At every cycle,
the TCs and PEs pipeline the counter number and partial products downward, and the temporal signals to the right. The
counter number begins with 0 and resets to 0 after 7, while accumulated partial products start from 8% to 15X the weights. We
mark the multiples of weights for conciseness. (m)-(p) show the output FIFOs for accumulating outer products element-wise to
compute a GEMM result. Subscribed products from each row are accumulated into their position in their corresponding FIFO.
Products are accumulated into the FIFO in a circular fashion via a feedback loop. At cycle 24 (p), 81 is added to 15A, which is
the sum of the leftmost entries of the green and red first-row outer products, respectively.
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Figure 8. Multi-node Carat architecture. iSRAM, wSRAM
and oSRAM denote on-chip input, weight and output SRAMs.
The NoC in yellow has a 2-D mesh topology. Each node is a
Carat connected to the router, and only one off-chip memory
exists at a corner. Each node only works on a subset of all
GEMM computation.

SSD for object detection on VOC dataset [43], RNNT for
speech-to-text on synthetic voice dataset [28], BERT for nat-
ural language processing on GLUE dataset [16], and DLRM
for recommendation on Terabyte dataset [52]. Among these
DNNs, most layers in ResNet50, UNet and SSD are matrix
convolution, thus compute bounded; RNNT, BERT and DLRM
contain mostly matrix multiplication, thus memory bounded.
We skip the FP8 accuracy evaluation [48], which has been
validated in Table 1.

5.2 Hardware

Considering the decreased opportunity of sparse GEMM
architectures in language models (Section 2), our evaluation
focuses on dense GEMM hardware.

Choice of baselines. We consider three baselines in this
work. The first is a conventional binary computing systolic
array (bSA) [33], which maximizes data reuse via a weight
stationary dataflow (caching weights to be reused by more
inputs). The architecture of bSA is given in Figure 2. bSA
is to emphasize the comparison between well-studied data
reuse and orthogonal value reuse. The second baseline is a
GEMM architecture that Reuses computation based on Input
Similarity [58], RIS for short. RIS organizes MAC units into
a 1-D vector array, with MAC units working on a shared in-
put and different weights. For consecutive inputs in a batch,
RIS calculates the full GEMM results for the first input, and
only computes the delta of GEMM results based on the dif-
ference between consecutive, 4-bit quantized inputs. More
similarity between inputs in a batch leads to more savings in
computation and memory accesses. The original RIS couples
its 128-MAC vector array with 40 MB on-chip memory to
minimize off-chip accesses. However, such a large memory-
to-compute ratio is no longer preferred in more recent DNN
accelerators [33, 60]. To ensure a fair comparison, we con-
figure RIS with an identical memory hierarchy to Carat and
bSA, except that no FIFO exists. The reason is that RIS cannot
use FIFOs to hide dynamic memory accesses. This baseline
is to compare Carat with prior computation reuse schemes.
The third baseline is a GEMM architecture based on temporal
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Table 4. Comparison of single-node Carat and baselines.
The off-chip bandwidth is 128 GB/s. i, w, and o refer to input,
weight, and output, respectively, with each having a SRAM
size of 128 KB. A configuration a-b means sweeping all pow-
ers of 2 from a to b.

’Conﬁguration \ Carat \ bSA\ RIS \ uSA ‘

i/w/o SRAM (KB) 128 -
Array height (H) | 32-512 | 4-16 1 16-64
Array width (W) 8 H | 16-256 H
MUL word FP8 INT38
ACC word BF16 INT24

coding, uSystolic (uSA) [70]. We compare uSA to Carat and
show different ways to leverage temporal coding. uSA only
works on fixed-point data and spends multiple cycles for
each multiplication, while our Carat supports floating-point
data and hides the temporal coding latency via pipeling. uSA
has a weight stationary systolic array architecture as bSA
in Figure 2, but directly interacts with the off-chip memory,
i.e., no SRAMs.

Configuration of compute arrays. We summarize the
single-node hardware configurations of the Carat and base-
line designs in Table 4. The off-chip memory of all designs
is HBM with 128 GB/s bandwidth. The on-chip SRAMs and
FIFOs are set to deliver sufficient bandwidth and are always
double buffered to hide the compute latency, if applicable.
We select the square systolic arrays for their best perfor-
mance and efficiency in baseline designs [33, 70]. We sweep
the array shape and ensure that Carat, bSA and RIS designs
have either a similar on-chip area (iso-area) or equal floating-
point operations per second (iso-FLOPS). In iso-area settings,
Carat has half the number of floating-point units in bSA and
RIS. Note that this setup is approximately iso-area, as Carat
employs such a drastically different architecture that exact
iso-area comparison with bSA and RIS is impractical, due
to discrete power-of-2 array shape configurations. Nonethe-
less, we try our best to ensure the fairest comparison. The
shapes of uSA are selected to have similar on-chip area to
their counterparts, as it exclusively supports fixed-point op-
erations. bSA and RIS share the same word settings as Carat
to maintain the same level of accuracy (Table 1), while uSA
needs INT8 multiplication and INT24 accumulation [60, 70].
For each multiplication, uSA needs 256 cycles, unlike the 1
cycle in bSA. Though the temporal coding needs 8 cycles
in Carat, Carat hides the latency and exhibits only 1-cycle
multiplication latency.

Network-on-Chip. For the multi-node Carat, we organize
single Carat nodes into a 2-D mesh and connect them with
NoC. We assume X-Y routing [30, 60] to avoid deadlock. We
vary the NoC shape, e.g., 4 X 4 and 8 X 8, to show the perfor-
mance and efficiency scaling. The multi-node comparison is
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Table 5. Comparison of multi-node Carat and systolic array.
Systolic array takes the Google edge TPU settings [25]. All
designs adopts FP8 multiplication and BF16 accumulation.

Configuration Carat Mesh bSA
(per node) 4x4 NoC | 8x8 NoC

i/w/o SRAM (KB) 32 128 2048
Array height (H) 512 128 64
Array width (W) 8 H

configured as in Table 5. For both NoC settings, we ensure
that their total FLOPS and total on-chip SRAM size equal to
that of the bSA with an array size of 64 X 64. We keep the
memory configuration for this 64 X 64 bSA as in Goolge Edge
TPU, which has a total of 6 MB SRAM for all tensors [25],
and we split the storage evenly among three variables, i.e.,
2048 KB each. The original RIS adopts a ring-based NoC,
which is however not scalable as we will see later, and we
exclude RIS in the multi-node evaluation.

5.3 Evaluation Methodology

In this work, we are interested in both the performance and
efficiency comparison of different designs.

Performance modeling. We build a cycle-level perfor-
mance simulator for all evaluated designs. In this simula-
tor, we consider multiple factors to ensure high simulation
accuracy. First, we tile all DNN layers, i.e., schedule data,
and obtain the compute utilization due to inefficient tiling.
The space of data schedule is constrained by the array shape
and SRAM size [30]. To obtain an optimized data schedule
for each design, we search the space under the constraints.
During the search, we maximize the utilization of both the
compute array and SRAM, and prioritize the former. Sec-
ond, we model the SRAM access contention incurred by data
schedule. Memory contention happens when the granularity
of SRAM accesses is not multiple of the SRAM block size.
We model this by aligning the SRAM accesses to the block
size to estimate the resource under-utilization. Third, we
account for the compute stalls due to insufficient off-chip
memory bandwidth. Note that we assume sufficient SRAM
bandwidth not to stall compute by default. Fourth, we simu-
late the impact of NoC. After we tile the GEMM onto NoC,
we further estimate the NoC latency. We adopt X-Y routing
to avoid deadlock and we use the routing algorithm to de-
rive the worst-case link bandwidth, which is used in latency
calculation. Note that RIS designs need to map the output
channel dimension of each GEMM to the vector MAC array,
so that two consecutive inputs can be compared and the com-
putation is skipped in case of two identical inputs [58]. RIS
is originally designed to process continuous video frames,
where temporal pixel similarity varies between 50% and 90%.
In this work, given the workload diversity, even 50% pixel
similarity is impractical. However, we conservatively assume
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Table 6. Switching activity of Carat in cost modeling. 8
cycles lead to 12.5% switching activity for most of the logic
except the subscription logic in PE (spike register and AND
gate), labeled as “Rest”, whose switching activity is doubled
to 25% as it responds to both temporal signal edges. All others
have full switching activity.

FIFO PE TC OR
i | w | o |[Creg[Rest|Areg]| Rest | gate
‘ 12.5% | 12.5% | 100% | 100% | 25% 100% | 12.5% | 12.5%

50% similarity for evaluation. To validate this simulator, we
sample multiple GEMM layers from the evaluated MLPerf
benchmark, and ensure the simulated results reflect the ar-
chitecture behavior faithfully on those sampled layers.

Cost modeling. Leveraging the above simulator, we es-
timate the cost in a pre-silicon event-based manner. This
methodology is common in prior works, including but not
limited to Aladdin [61], Accelergy [74], MAESTRO [40], and
one of our baselines, RIS [58]. First, we obtain the number
of different events through the performance simulator, in-
cluding (1) on-chip memory/SRAM/FIFO accesses, (2) the
number of multiplications and accumulations, and (3) the
number of NoC transfers. Then, we retrieve the cost of dif-
ferent events from cost modeling tools. For SRAM, we use
CACTTI7 [6] to obtain the area, leakage power, and access en-
ergy. We extrapolate HBM access energy numbers from [55].
We synthesize individual compute units with Synopsys De-
sign Compiler with SAED 32 nm technology at 400 MHz,
and aggregate them together. For 2-D mesh NoC, we fol-
low the design in [77] and assume a static network using
crossbar switches with 128 GB/s. We extrapolate the router
area and power in our evaluation. Lastly, we aggregate the
final cost by multiplying the single event cost with the event
count. We count for the switching activity due to temporal
coding, e.g., the 8-cycle temporal signal in Carat reduces the
switching activity of the relevant logic. We list the impacted
switching activity in Table 6. To validate our cost model, we
also place-and-route (P&R) the core component of Carat, i.e.,
the TC and PE array, as shown in Table 7. Notably, the area
error rate resides within 2.4%. P&R results show that Carat
can run in 370~450 MHz clock frequency; conversely, bSA
arrays can only go up to approximately 170 MHz after P&R.
In our evaluation, we configure all designs with an identical
frequency of 400 MHz. Note that this frequency increases the
bSA performance more than twice according to P&R results.
Moreover, we place-and-route Carat with a height of 64 and
vary the sharing factor (Section 4.5) from 8 to 64. We find
that the frequency fluctuates within 440~470 MHz, implying
that PEs are off the critical path.
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Table 7. Comparison of synthesis and place-and-route re-
sults for the TC and PE array, with a default sharing factor
of 8 (Section 4.5).

. Synthesis / P&R | Frequency (MHz)
Carat height area error rate | Synthesis | P&R
32 2.4% 885.0 446.4
64 0.8% 854.7 444.4
128 1.5% 408.2 440.5
256 0.9% 404.9 395.3
512 -0.7% 401.6 373.1

Table 8. Comparison of Carat and baselines, in terms of
throughput, on-chip (OC) area and on-chip/full-system (FS)
energy and power efficiency. Single-node (SN) and multi-
node (n X n NoC) settings are from Table 4 and Table 5. For
each design, the number in the “()” is the array height. The
results are for a batch size of 256. Carat (64) and (128) are
iso-area and iso-FLOPS comparisons, respectively.

Energy eff. Power eff.

Design (252;1;5') O(fn:f)a' (Gflop/s/J) (Gflop/s/W)

ocC | FS OC [ FS
Carat (64) 49.5 1.8 47.6 21.2 372.0 | 167.9
Carat (128) 98.1 2.2 139.2 67.3 571.0 | 276.1
SN bSA (8) 48.5 1.7 44.8 20.2 372.0 | 167.9
RIS (64) 72.8 1.7 30.8 219 170.3 | 121.2

uSA (32) 2.9 1.5 0.2 0.1 224 | 11.0
SN bSA (64) 1973.8 39.1 3035.6 | 2537.5 | 618.6 | 517.1
4x4 | Carat (512) 4971.7 79.5 8895.7 | 7914.7 | 719.7 | 640.3
8 x 8 | Carat (128) 6310.2 344 12900.4 | 11468.6 | 822.3 | 731.0

6 Evaluation

This section evaluates Carat’s performance (e.g., throughput
and utilization) and cost (e.g., area, energy and power effi-
ciency) for both a single node and multiple nodes.* Table 8
summarizes the evaluation results in this work.

6.1 Single-Node Carat

In general, we find that single-node Carat can perform com-
parably and in some cases outperform other implementations
in throughput and efficiency with marginal overheads.

Why does Carat outperform? For iso-area comparison,
Carat (64) with half FLOPS reaches slightly better through-
put and efficiency than bSA, as value reuse transforms mul-
tiplication into accumulation, reducing mandatory computa-
tions. Note that iso-area Carat has lower throughput than
RIS, as RIS skips 50% of computations. However, RIS requires
more memory accesses, i.e., four memory accesses per in-
put, lowering the efficiency. If higher throughput is favored
at the cost of area overhead, we can opt for an iso-FLOPS
Carat (128) implementation, which would have a similar
throughout-area trade-off compared to increasing the FLOPS

2We follow the convention in [70] and define throughput over energy and
power as energy and power efficiency, where energy efficiency is a variant
of energy-delay product.
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in bSA. Though uSA adopts hardware-friendly fixed-point
data, Carat has much higher performance and efficiency by
reducing multiplication cycles from 256 to 1.

Takeaway. Value-level parallelism at a single node offers
comparable and in some cases better throughput and effi-
ciency compared to prior GEMM optimizations, e.g., data
reuse, computation reuse and temporal coding.

6.2 Single-Node Sensitivity Study

This section shows single-node sensitivity studies on the
batch size and array shape to better understand Carat.

6.2.1 Batch Size.

Throughput guarantee. For most models and batch sizes
in Figure 9 (a), iso-FLOPS Carat has a throughput that is no
worse than those of bSA and uSA, ensuring high throughput
for general use cases. In small batch sizes, Carat can be on
par with bSA for vision models, whose GEMM operations are
mostly matrix convolution, where value reuse opportunities
are already abundant. However, language models, dominated
by matrix multiplication, require large batch size for higher
throughput. When the batch size exceeds the height of Carat
array, e.g., 128 and 256 here, Carat outperforms in through-
put consistently across all models. Iso-area Carat almost
halves the throughput of iso-FLOPS Carat at large batch
sizes, but still maintains slightly better throughput than bSA.

Large batch benefits utilization. In Figure 9 (b), we ob-
serve that Carat gradually increases its utilization as the
batch size grows, ultimately reaching or exceeding that of
bSA. The reason is that larger batch sizes expose more value
reuse opportunities, which can be exploited in Carat. One
example is that when the batch size is 128, we group all
128 inputs in a batch into one input vector for value reuse,
and iso-FLOPS Carat with 128 rows will always have 100%
utilization; iso-area Carat saturates even earlier at 64 batch
size. bSA also exhibits an ascending trend in utilization in
language models upon larger batch sizes, due to more data
reuse opportunities. However, bSA saturates at a batch size
of 8, as its array shape is 8 X 8. As a result, Carat benefits
much more from large batch. uSA also exhibits high utiliza-
tion, but does not translate to high throughput due to the
long multiplication latency.

Takeaway. Carat’s performance benefits stem from value
reuse, and larger batch sizes expose richer opportunities for
value-level parallelism.

6.2.2 Array Shape.

Shape scaling. In Figure 10 (a), the throughput of all de-
signs scales up with the array height, and Carat shows the
best throughput among all. However, the utilization degrades
for all when the array becomes larger. In Figure 10 (b), we
observe a large utilization plunge for Carat, when the ar-
ray height 512 is larger than the batch size 256. Before this
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Figure 9. Batch size study per model for MLPerf benchmark. Numbers in “()” denote the array height, as in Table 4. The x axis
is the batch size, we vary the batch size from 1 to 256. ResNet50, SSD and UNet are vision models with matrix convolution;
BERT, DLRM, RNNT are language models with matrix multiplication.

Table 9. Trade-off in iso-area and iso-FLOPS Carat. A is the
ratio of changes in Carat over others. OC is short for on-chip.
For area and throughput (thro.), higher is better; for energy
(ener.), lower is better.

Iso-area Iso-FLOPS
Baseline v‘;\;e’%{ Thro.A ‘ Ener.A ?‘:;TAT' Thro.A ‘ Ener.A
bSA (8) 18.5% 4.2% 2.2% -3.7% 137.9% | 30.6% | 102.2% | -34.9%
bSA (16) | 28.7% | 17.6% 5.0% 14.5% | 189.1% | 94.0% | 65.4% 4.4%
RIS (64) 46.3% | 6.6% | -31.9% | -55.9% | 193.8% | 33.6% | 34.7% | -70.2%
RIS (256) | 56.9% | 12.3% | 111.3% | -80.3% | 252.5% | 85.2% | 233.1% | -82.0%

point, the utilization drop is almost linear, as in uSA and
bSA. However, RIS exhibits even worse scalability, i.e., the
utilization drops earlier at an array shape of 128. The reason
is that RIS maps the output channel to a vector array, and
the fixed output channel does not increase with the batch
size, leaving MAC units underutilized. In Figure 10 (c), we
observe that due to different architectures, Carat area can
not exactly match that of bSA and RIS, which are both built
on conventional MAC units. In Figure 10 (d), the energy ad-
vantage of Carat over bSA vanishes at a large shape, e.g., 512
here. Though RIS requires less area, its excessive memory
accesses blow up the energy. uSA always consumes the most
energy due to the long latency. We further show iso-area
and iso-FLOPS comparisons in Figure 11. In both settings,
Carat effectively trades off area for performance, efficiency,
or both. We show such trade-offs in Table 9. In general, both
the area overhead and gain in iso-FLOPS Carat are higher.
Note that allowing a similar overhead in bSA (doubling the
PE count and having 4x FLOPS that of iso-area Carat) will
show similar gains.
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Breakdown comparison. In Figure 12, the area and energy
breakdown of the compute arrays is shown. For bSA, RIS
and uSA, PEs dominate the hardware, which contain costly
MAC units. On the contrary, in both iso-area (64) and iso-
FLOPS (128) Carat, PEs only acount for a small fraction (7%)
of the total area and energy, as Carat PEs are responsible for
subscription, instead of computing. The Carat accumulators
occupy half of the total area, and the remaining components
are auxiliary logic to implement value-level parallelism. Then
in Figure 13, we show the PE-level breakdown. We observe
that conventional MAC units in bSA and RIS dominate the PE,
while uSA and Carat PEs with temporal computing designs
have more diverse compositions.

Takeaway. Carat’s throughput and efficiency advantages
diminish upon larger shapes. Thus one should be mindful of
the proper shape to benefit most from value-level parallelism.

6.3 Multi-Node Carat

Via value reuse, single-node Carat can perform comparably
or outperform baselines in terms of performance and effi-
ciency. Carat can achieve further performance and efficiency
improvements with orthogonal data reuse via NoC. Figure 14
summarizes the comparison between bSA and multi-node
Carat, with two NoC configurations given in Table 5.

This evaluation is meant to show how to scale Carat to
larger systems, e.g., in the cloud. We keep bSA as a single-
node implementation and scale it up, compared to a multi-
node (scaled-out) Carat. Note that though bSA can also be
scaled out in this way, the results of multi-node bSA vs.
multi-node Carat would be very similar to the single-node
comparison between them. Here we omit the comparison
against RIS and uSA designs. RIS is skipped due to its severe
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Figure 10. Array shape study for MLPerf benchmark. The
x axis ticks, a/b/c/d, are the array height values, with a
for bSA, b for uSA, c for RIS and d for Carat; “-” means no
configuration for this tick, as we only allow square bSA and
uSA. All data points are normalized to the bSA results with
an array height of 4. The batch size is set to 256. In (c) and
(d), area and energy are broken down into SRAM and array.
The latter contains everything on-chip but SRAM.

underutilization at large batch sizes in Figure 10 (a) and (b),
which is further exacerbated when scaled out with a ring-
based NoC [58]. As RIS splits all output channels across its
vector MAC PEs, ring-based RIS will have a vector size up to
4096, which is far beyond the number of output channels in
most GEMM layers, leading to heavy underutilization. uSA
is also omitted due to its low throughput in our setup and its
lack of potential to be adopted in higher throughput settings.

Throughput improvement. Figure 14 (a) shows the through-
put improvement of multi-node Carat over bSA. With an
array height of 64, the underutilization of bSA is more se-
vere than that in Figure 10 (b). By scaling up to more nodes,
Carat speeds up the computation, thus improving through-
put. However, this scaling is not linear. Maintaining the same
total number of floating-point units, 4 X 4 and 8 X 8 NoCs
have a Carat node of height 512 and 128, respectively. How-
ever, an array height of 512 makes Carat more susceptible
to compute underutilization, as shown in Figure 10 (b).
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Figure 11. Iso-area (left) and iso-FLOPS (right) comparison.
This figure follows the legends in Figure 10, except that uSA

is omitted.
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Figure 12. Array-level breakdown. “()” labels the array

height.

Efficiency enhancement. Figure 14 (b) shows off-chip
memory access count for different designs. With NoC to
support more flexible data schedule (e.g., multi-cast, uni-cast,
and reduction), multi-node Carat is able to reduce the off-
chip memory accesses almost by half, improving the system
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Figure 13. PE-level breakdown. “()” labels the array height.
The numbers at the top of each pie are for total and indi-
vidual PEs. CTR, REG and SUB refer to control, register and
subscription logic.
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Figure 14. Multi-node Carat study for MLPerf benchmark.
Hardware configurations are listed in Table 5. Results are
normalized to that of single-node bSA. The batch size is 256.

(d) On-chip power efficiency.

efficiency as in Table 8. Furthermore, in Figure 14 (c) and
(d), we observe an increase in both energy and power effi-
ciency. The power efficiency improvement is marginal, and
the energy improvement almost follows that of throughput.

Takeaway. Leveraging orthogonal data reuse on top of value
reuse, multi-node Carat can simultaneously improve the
throughput and efficiency. Designers shall choose a proper
single-node Carat shape to obtain the best gain from both
data reuse and value-level parallelism.

7 Discussion
7.1 Limitations

This work focuses on the demonstration of value-level par-
allelism on dense GEMMs. The proposed Carat architecture
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consider the acceleration opportunities from data sparsity to
be limited, especially in the recently popular language mod-
els, as shown in Figure 3 (a) and (b). However, a lot of recent
works on DNN acceleration explore the possibility of delib-
erate structured sparsity, i.e., manually introducing sparse
data at a target granularity. Structured sparsity acceleration
in Carat is feasible but not explored in this work.

7.2 Related Work

Computation reuse. Computation reuse has been well
studied in both non-DNN and DNN workloads. Fuchs et al.
accelerated datacenter workloads by introducing one addi-
tional NVM layer to store the computed results [19]. Carat,
however, is a plug-and-play GEMM architecture, without
sophisticated system changes. In the context of DNNs, Riera
et al. reused computation based on the input similarity (RIS),
but at the cost of accuracy drop and poor scalability [58].
Kartik et al. profiled the weight distribution to identify the
cases where one input is multiplying with different weights
of the same value, and reuse the product in such cases [29].
Different from these works, value reuse is input agnostic and
works for arbitrary data distribution.

Bit-level computing. Temporal coding is a bit-level com-
puting paradigm. Other bit-level computing to accelerate
GEMMs includes bit-serial, unary, and neuromorphic com-
puting [14, 44, 49, 68-70]. While these works feed on fixed-
point data, Carat allows temporal coding to work on floating-
point data with special value handling.

8 Conclusion

In this work, we identify a waste of compute in DNN infer-
ence on batched, low-precision data, due to calculating the
same products repeatedly. To address this problem, we pro-
pose a novel computing paradigm, value-level parallelism,
via value reuse and temporal coding. Value reuse computes
unique products only once and different inputs subscribe to
their products via temporal coding. With this, we present a
multiplier-free Carat architecture with FP8 data to leverage
value-level parallelism. Our experiments with large batch
DNN inference show that Carat achieves comparable or bet-
ter performance and efficiency over well-designed baselines.
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A Artifact Appendix
A.1 Abstract

The scope of artifact evaluation covers the major results in
Section 6, i.e., Figure 9, Figure 10, Figure 11, Figure 12, and
Figure 14. The provided artifact can be run on a x86_64 ma-
chine with docker installation. We have tested the workflow
on ubuntu 20.04. To run the artifact, extract the zip file and
follow the instruction in README . md or Section A.4 and A.5.
To see the results generated from running the artifact, see
Section A.6 for detail.

A.2 Artifact check-list (meta-information)

e Model: Cycle-level performance model, event-based cost

model

Data set: MLPerf suite (included in the artifact)

Run-time environment: Docker

Hardware: x86_64 machine

Metrics: Throughput, utilization, area, energy/power effi-

ciency

Output: Figure 9, Figure 10, Figure 11, Figure 12, Figure 14

Experiments: Batch size, array shape, iso-x comparison,

area breakdown, multi-node scaling studies

e How much disk space required (approximately)?: 1.5GB

e How much time is needed to prepare workflow (ap-
proximately)?: 1 hour

e How much time is needed to complete experiments
(approximately)?: 1-4 hours

e Publicly available?: Yes

e Code licenses (if publicly available)?: MIT License

Workflow framework used?: in-house simulation frame-

work

Archived (provide DOI)?: 10.5281/zenodo.10553038

A.3 Description

A.3.1 How to access. First, obtain the zip file from https:
//zenodo.org/records/10553038. Then, extract the zip file and
follow the instruction in README .md or Section A.4 and A.5.

A.3.2 Hardware dependencies. A x86_64 machine is re-
quired for building the docker image to run experiments.

A.3.3 Software dependencies. Docker ° is required to
build the image and run the container.

A.3.4 Data sets. Our evaluation is on the MLPerf bench-
mark suite. The user does not need to access the benchmark
as the extracted layer shapes are already included in our
simulator framework.

A.3.5 Models. The models used in our simulation frame-

work include a cycle-level performance model and an event-
based cost model.

3 Available at https://docs.docker.com/engine/install/ubuntu/.
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A.4 Installation

After the zip file is extracted and docker is installed, one may
follow the following steps, also available in README . md, to
run the artifact.

1. Build the docker image. The build process installs all
the software dependencies and automatically runs all
the experiments. Note that depending on the machine
configuration, this step may take a few hours. For 12th
Gen Intel 19-12900 3.4GHz CPU with 64GB RAM, it
takes one hour to build the image.
docker build -t carat .

2. Create a container called asplos24 from the built im-
age by
docker create --name asplos24 carat

3. Retrieve all the generated figures from the container
by
docker cp asplos24:/artifact/result_plot .

4. Finally, to terminate the docker container, run
docker stop asplos24

A.5 Experiment workflow

We use scripts to automatically run the workflow for re-
sults production. To produce a figure, the evaluation scripts
first generate all the hardware configurations based on a
set of provided templates. Then, the simulation is run using
the specified hardware configuration and benchmark. More
specifically, both the performance model and cost model
are run. Note that the automated workflow launches these
simulations in parallel. Finally, the scripts parse the gener-
ated result log and aggregate results across runs from all the
configurations to generate figures.

A.6 Evaluation and expected results

After running the steps in Section A.4, the generated figures
can be found locally in result_plot directory. Each figure is
labeled as figX-Y.pdf that corresponds to what is included
in Section 6.

A.7 Methodology
Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-
badging

e http://cTuning.org/ae/submission-20201122.html

e http://cTuning.org/ae/reviewing-20201122.html
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