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ON MEDIAN FILTERS FOR MOTION BY MEAN CURVATURE

SELIM ESEDOGLU, JIAJIA GUO, AND DAVID LI

ABSTRACT. The median filter scheme is an elegant, monotone discretization of
the level set formulation of motion by mean curvature. It turns out to evolve
every level set of the initial condition precisely by another class of methods
known as threshold dynamics. Median filters are, in other words, the natural
level set versions of threshold dynamics algorithms. Exploiting this connection,
we revisit median filters in light of recent progress on the threshold dynamics
method. In particular, we give a variational formulation of, and exhibit a
Lyapunov function for, median filters, resulting in energy based unconditional
stability properties. The connection also yields analogues of median filters
in the multiphase setting of mean curvature flow of networks. These new
multiphase level set methods do not require frequent redistancing, and can
accommodate a wide range of surface tensions.

1. INTRODUCTION

Motion by mean curvature of an interface, or networks of interfaces (curves
in 2, or surfaces in  3) arises in a great variety of applications. Formally, it
can be seen as gradient flow (steepest descent) dynamics associated with surface
tension, i.e. perimeter (length in 2, or surface area in 3). At any point on
an interface, away from free boundaries known as triple junctions in the network
case, the interface moves in the normal direction with speed proportional to its
mean curvature at that point. If the interface is parametrized, the evolution is
described by a system of parabolic partial differential equations satisfied by the time
dependent parametrization. Prominent among the applications this dynamics plays
a central role in are materials science (evolution of microstructure in polycrystalline
materials, see e.g. [19-21,29]) and computer vision (variational models for image
segmentation, see e.g. [6,30,39]). In both, as well as in many others, the more
challenging network (also known as the multiphase) case of the problem is relevant.
Here, there is the additional complication of enforcing natural boundary conditions
at triple junctions along which three distinct interfaces intersect.

Both in the scalar two-phase and especially in the vectorial multi-phase case, the
evolution can entail singularities and topological changes. All these features make
efficient and accurate simulation of the dynamics challenging. Numerical methods
that rely on explicit, parametrized representation of the interfaces face the daunting
task of detecting, classifying, and “manually carrying out topological changes that
are all but inevitable in the long run. Implicit methods, such as phase field, level
set [32], and threshold dynamics [27], on the other hand, have to contend with
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nonlinear, degenerate, or singular PDE descriptions, and have to ensure correct
conditions at free boundaries are indirectly enforced.

In this paper, we focus on two related approaches that represent the interfaces
implicitly: The level set method [32], and threshold dynamics [27,28]. The former
has a complete theory in the scalar (two-phase) case for which elegant, convergent
(with proof) numerical methods have also been developed that are, nevertheless,
typically low order accurate in time and come with oppressive time step restrictions.
A major advantage is spatial accuracy on uniform grids: The interface can be
located at sub-grid precision via interpolation. Its main weakness is in extension
to networks (the multi-phase case) at the generality demanded by applications,
where verifying that correct junction conditions hold at free boundaries remains
far from obvious. The latter is unconditionally stable, with very low per time
step cost, and has a fairly complete theory even in the network (multi-phase) case,
including the verification of the correct junction conditions along free boundaries.
Its main drawback is low accuracy when implemented naively on uniform spatial
grids: Because it represents interfaces by characteristic functions, the interface
cannot be located at subgrid precision via interpolation. As a result, even a smooth
interface the curvature of which is small enough compared to the choice of time step
size can get “pinned (stuck).

Exploiting a precise connection between a particularly elegant discretization of
the level set method known as the median filter scheme [16,31] and threshold
dynamics, the present study offers the following contributions:

(1) A new, variational formulation of median filter schemes for the level set
method, in any dimension. In particular, a Lyapunov functional is given in
Section 4 that implies unconditional energy stability. A minimizing move-
ments interpretation is also offered. In earlier work, the comparison prin-
ciple had been the main tool for investigating stability. A potential appli-
cation is indicated.

(2) A new, fast and accurate algorithm for approximating median filters in
two dimensions (three dimensions viable, left to future work), in Section
5. In the scalar (two-phase) case, convergence of this approximation to the
unique viscosity solution is verified.

(3) A new, monotone discretization of the level set equation for mean curvature
motion that is second order accurate in time in dimension two. Convergence
to the unique viscosity solution is again ensured; Section 6.

(4) Some barriers to finding second order accurate in time versions of median
filter schemes in dimensions three and higher; Section 7.

(5) New, multiphase analogues of median filter schemes in any dimension, based
entirely on exploiting the connection to threshold dynamics and our rather
complete understanding of the latter in the multiphase context of networks
[11,22,23]; Section 8. This results in a new level set method for multiphase
mean curvature motion that allows locating the interface via interpolation
and enforces the correct junction condition at the free boundaries, at the
generality demanded by applications (e.g. the unequal, non-additive surface
tension case [11]).

In addition to presenting new analysis and extensions of median filters (and hence
the level set method) as summarized above, the present work can also be seen as a
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contribution to threshold dynamics, in addressing its difficulties on uniform grids
by finding natural level set versions of it.

2. BACKGROUND

The level set formulation of two-phase motion by mean curvature is described by
the partial differential equation

(2.1) b = VIV - (%) .

A complete well-posedness theory is developed in [7,13] in the framework of vis-
cosity solutions. Discretization of the equation, which is degenerate parabolic, and
singular wherever V¢ = 0, has been an interesting problem of numerical analysis.
Preserving qualitative features of the viscosity solution, such as the comparison
principle that forms its backbone, is an important challenge in the design of nu-
merical schemes.

Among the many interesting contributions to the numerical treatment of (2.1),
the local median filter based algorithm proposed in [31] is one of the most elegant
(see also [16] and references therein for earlier related work). If we denote by
M,.¢"(x) the median of the level set values at time step n around the periphery
0B,.(x) of the ball B,(z) of radius r centered at z, the scheme is simply

(2.2) o (2) = M,.¢" (x).

It was derived from the level set formulation (2.1) based on the observation that
the right hand side can be written, at least when ¢ is sufficiently differentiable
and V¢(z) # 0, as the Laplacian of ¢ in the tangent plane of its level set passing
through x:

(23 Vol (ge ) = dota) — (Do) o £ )

Based on this, scheme (2.2) can immediately be seen to be at least plausible in
dimension d = 2 by observing that
VL¢($) > 3
2.4 qS(xj:ir =M,¢(z)+O(r°)asr 0
(24) ST () +0()

so that

(2.5) <D2¢<x>

Vig(x) V() > ~ Mro(z) — 2¢(x) + M,¢(z)
IVEg(z)] " [V4g(a)| r? ‘

Equation (2.2) then implies

Vo (z) 2
2.6 " (x) = " (x) + k|VP" (x V~(7>+Ok
(26) (@) = 6" (@) + MY @I - (o ) + O
provided we choose the time step size k as k = %rz.

A desirable and most helpful property of scheme (2.2) is its monotonicity:
(2.7) V() > ¢5(x) for all x => ¢ (x) > ¢pi(x) for all z and n,

which of course also holds for the viscosity solutions of the PDE (2.1). Another use-
ful property, especially for numerical implementation, is that any global Lipschitz
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bound is preserved:

8) 8@ =W _ - 10°) = )]
z#y lz =yl z#y |z =y

This implies, in particular, that no steepening of the level-set function will take

place, which is to be expected since every level set approximates motion by mean

curvature, which is well known to enjoy a related property.

In practice, to implement scheme (2.2), we can choose m points y1,¥2, ..., Ym
that sample approximately uniformly the sphere 0B,.(0), with r = V2k. The value
of the level set function ¢, which is typically presented on a uniform grid, can be
evaluated at any z+y; via bilinear interpolation [38], which preserves monotonicity.
The algorithm is then as follows:

Algorithm 1 Median Filter for Motion by Mean Curvature [31]

1: sort the level set values {¢™(z + y1), " (x + y2),..., 0" (x + ym)} so that the
permutation p : {1,2,...,m}  {1,2,...,m} satisfies

2 671 (2) = §(6"(x + vy ) + 0@+ 1) ).

The main task in Algorithm 1 is sorting the values {¢"(z + y;)}jL;. In what
follows, it will be useful to regard this reliance on the sort operation (applied to
level set values) as the distinctive feature of median based scemes; doing so will
facilitate some of the extensions that will be introduced.

Algorithm 1 is discrete in time but continuous in space, save for the discrete set
of points y; sampled on 0B, (0). It is convenient to consider a discrete in time, but
fully continuous in space version that relies on the continuum median. In doing so,
it’s also worth discussing a slight generalization, namely the weighted local median.
To that end, let K be a positive, radially symmetric kernel with rapid decay; let
[|K|| denote its mass. We will informally allow K to be concentrated (a ¢ function)
on finitely many circles (d = 2) or spherical shells (d = 3) to cover algorithms such
as Algorithm 1. For r > 0, define

1 T
(2.9) Ky (2) = - K (;) .
For a bounded, continuous function ¢ and A € | let
(2.10) Trg={z : ¢(z) > \}.
Assume || K|| = 1. The function
(2.11) Vro(x,A) = K(z —y)dy
Txo

is decreasing (since K > 0) and left continuous in A, satisfying
)\lim Yrd(x,A) =0 and Alim Yrd(z,A) = 1.

Define the weighted median of ¢ at x with respect to the weight K as

(2.12) Mgk o(x) = sup {)\ D Yoz, N) > %} .
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