
Information and Computation 301 (2024) 105202

Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Detecting arrays for effects of multiple interacting factors

Charles J. Colbourn ∗, Violet R. Syrotiuk
Computing and Augmented Intelligence, Arizona State University, P.O. Box 878809, Tempe, AZ 85287, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 September 2019
Received in revised form 31 May 2023
Accepted 29 January 2024
Available online 31 July 2024

Keywords:
Combinatorial testing
Detecting array
Covering array
Finite field

Detecting arrays provide test suites for complex engineered systems in which many factors
interact. The determination of which interactions have a significant impact on system
behaviour requires not only that each interaction appear in a test, but also that its effect
can be distinguished from those of other significant interactions. In this paper, compact
representations of detecting arrays using vectors over the finite field are developed.
Covering strong separating hash families exploit linear independence over the field, while
the weaker elongated covering perfect hash families permit some linear dependence.
For both, probabilistic analyses are employed to establish effective upper bounds on the
number of tests needed in a detecting array for a wide variety of parameters. The analyses
underlie efficient algorithms for the explicit construction of detecting arrays.

 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI
training, and similar technologies.

1. Introduction

Complex engineered systems are pervasive. Evidently a major design goal is to ensure that the system, once deployed,
not only operates correctly but also meets specified performance objectives. The operation of such a system is dictated by
many factors; some are controllable by the system operator, while others are environmental. We consider systems in which
the number of factors, k, is known. The factors are F1, . . . , Fk . An individual factor may be set to a level, such as ‘on’ or ‘off’;
‘green’, ‘blue’, or ‘red’; or a numerical value such as the temperature, for example. When a set of possible levels is infinite,
category partitioning identifies a discrete subset of allowed levels that are meant to be representative [40]. The selection
of categories and representative levels can be challenging (e.g., [26]), but it is not possible to check each of infinitely many
levels. Here we assume that, for a specific system, each factor Fi has a set Si = {vi1, . . . , visi } of si allowed levels. The type
of the system is (s1, . . . , sk).

Setting each factor Fi to a level νi ∈ Si yields a particular configuration of the system; we call (ν1, . . . , νk) a test or a
run. Executing a test (that is, executing the system as configured by the test) results in a test response. In some settings the
response is the binary ‘failed’ or ‘operating’; when it is more complicated, typically one classifies the responses as binary.
For example, when the response is a metric such as throughput, a threshold value is chosen so that performance that is at
least the threshold value is acceptable and performance below is unacceptable. A primary objective is to determine how the
factors and their levels impact the correctness or performance of the system by examining the test responses from a number
of tests. Here we consider nonadaptive testing, in which all tests are selected before any are executed. The tests selected
form a test suite or experimental design; the size of the test suite is the number of tests that it contains. To implement testing
in this way, two main problems must be addressed:

* Corresponding author.
E-mail addresses: charles.colbourn@asu.edu (C.J. Colbourn), syrotiuk@asu.edu (V.R. Syrotiuk).

https://doi.org/10.1016/j.ic.2024.105202
0890-5401/ 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.ic.2024.105202
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2024.105202&domain=pdf
mailto:charles.colbourn@asu.edu
mailto:syrotiuk@asu.edu
https://doi.org/10.1016/j.ic.2024.105202

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

Design: Given k and (S1, . . . , Sk), choose a number N of tests, and a test suite of size N .
Analysis: Execute all N tests to obtain the N test responses. From the test responses (and without further testing), deter-

mine the causes of failure (if any) in the system.

Design and analysis are tied together by the possible causes of failure. To give a simple example, if setting a particular factor
to a specific level triggers a system failure, the design step must emit at least one test in which the particular factor is set
to the specific level, for otherwise the analysis receives no evidence of the failure. It is therefore necessary that the potential
causes of failure be known prior to design.

Here we suppose that failures (when present) can be attributed to the level selections for a ‘small’ number of factors. This
is the province of combinatorial interaction testing; see [31,32,37,38] and references therein, particularly for the empirical
justification for considering level-wise interactions among few factors. To make matters more precise, when {i1, . . . , it} ⊆
{1, . . . , k} and σi j ∈ Si j , the set T = {(i j, σi j) : 1 ≤ j ≤ t} is an interaction of strength t , or t-way interaction. A test (ν1, . . . , νk)
covers the t-way interaction T = ((i1, σi1), . . . (it , σit)) when νi j = σi j for 1 ≤ j ≤ t .

Often a test suite is written as an N × k array A = (ai, j) in which ai, j ∈ S j when 1 ≤ i ≤ N and 1 ≤ j ≤ k. For a test
suite A = (ai, j) of size N and type (s1, . . . , sk) and a t-way interaction T = {(i j, σi j) : 1 ≤ j ≤ t}, denote by ρA(T) the set of
indices of rows of A in which T is covered. That is,

ρA(T) := {r : ar,i j = σi j ,1 ≤ j ≤ t}
If an interaction T has ρA(T) = ∅, no test in A incorporates the possible effect of T ; if T would trigger a fault, no

evidence of this is found. Hence the basis of combinatorial interaction testing is that every interaction that may cause
a fault (typically, every interaction of strength at most t) is covered in at least one test of A. Formally, a covering array
CAδ(N; t, k, (s1, . . . , sk)) of size N , type (s1, . . . , sk), index δ, and strength t is an N × k array A for which every t-way
interaction T has |ρA(T)| ≥ δ. The notation CAδ(N; t, k, v) is used when the type is uniform. Covering arrays have been
studied extensively when δ = 1 (see [7,9,27,31,38,53] and references therein), but more recently for δ > 1 as well [22].

When a covering array of strength t is adopted as the test design, the test responses certify the presence or absence of a
faulty interaction of strength at most t . Indeed when δ > 1, this can be done even when a small number of test responses
are missing or inaccurate. However, isolating particular interactions causing faults may not be possible. A simple example
arises when two interactions T and T ′ have ρA(T) = ρA(T ′). If the test responses exhibit faulty behaviour exactly in rows
ρA(T), we cannot tell whether T causes the fault or T ′ does (or both).

When T is a set of interactions, ρA(T) denotes ∪T ∈T ρA(T). Suppose that the set of interactions triggering a fault is
T . Then the set of tests whose responses show a fault is precisely ρA(T). The analysis of the test results asks that we
determine T given ρA(T). Without limitations on T , this cannot be done. Consider the situation when every test response
indicates a fault, for example. More generally, see [35]. For this reason, we only ask to determine T given ρA(T) when
there are at most d faulty interactions, i.e., when |T | ≤ d. (This restriction is analogous to the one made in the related
problem of combinatorial group testing [23,28].)

In the remainder of the paper we treat testing arrays to isolate faults when few faults of small strength are present. In
§2, we provide the necessary combinatorial foundation for detecting arrays. In §3, we describe the construction of uniform
detecting arrays when the number of symbols is a prime power. First we introduce elongated covering perfect hash families
to produce covering arrays of index greater than 1. Then we enforce further conditions to define covering strong separating
hash families to produce detecting arrays. In §4, we explore probabilistic methods for both types of covering hash family and
illustrate the upper bounds obtained on the corresponding detecting arrays. We further comment on efficient construction
algorithms meeting the bounds obtained. Conclusions are given in §5.

2. Detecting arrays

Following [11,12,44], we formally define certain test suites. Let It denote the set of t-way interactions for an array of
type (s1, . . . , sk). An N × k array A of type (s1, . . . , sk) is (d, t, δ)-locating if

|ρA(R) ∩ ρA(T)| < δ ⇔ R = T whenever R,T ⊆ It, |R| ≤ d, and |T | ≤ d.

Numerous variants on this basic theme are developed in [11]; except when d is ‘small’, no such array exists [11,35]. For
this reason, in [29], the definition is relaxed to require that the condition holds only when R and T are distinguishable, i.e.,
there exists an array B with ρB(R) ,= ρB(T). This agrees with the original definition when d is small enough. In principle,
when δ ≥ 1, test responses from such a locating array enable one to uniquely determine the set of interactions that trigger
faults provided that there are at most d, and each has strength t . However, in practice no efficient analysis algorithm is
known. Naturally, any interaction that is covered in a test whose response indicates no fault cannot itself trigger a fault. But
using a locating array, this may not suffice to isolate the faults.

In order to obtain an efficient analysis technique, we strengthen the conditions on the design, again following [11]. An
N × k array A of type (s1, . . . , sk) is (d, t, δ)-detecting if

|ρA(T) \ ρA(T)| < δ ⇔ T ∈ T whenever T ⊆ It and |T | = d.

2

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

The notation DAδ(N; d, t, k, (s1, . . . , sk)) is used when different factors may have different numbers of levels (i.e., a mixed
detecting array). Because a covering array CAδ(N; t, k, (s1, . . . , sk)) is equivalent to a DAδ(N; 0, t, k, (s1, . . . , sk)), detecting
arrays enforce coverage. The notation is simplified to DAδ(N; d, t, k, v) when all factors have the same number, v , of levels
(i.e., the array is uniform). The original definition from [11] sets δ = 1, and it is relaxed in [30] to enforce the condition only
when T is distinguishable from T . Rows in ρA(T) \ ρA(T) are witnesses for T that are not masked by interactions in T ;
the number of witnesses is the separation of the detecting array [44].

To support an operation known as fusion (see, e.g., [17]) for detecting arrays, in [13,14,16] a further parameter (corrob-
oration) is defined; however we do not pursue that in this paper.

Locating and detecting arrays have been employed in practical testing applications; examples include [3,19,43,44,49].
Moreover, it has been argued that they exhibit desirable statistical properties as experimental designs for level-wise screen-
ing [1].

Our interest here is in the effective construction of detecting arrays with few rows. A connection with covering arrays
(from [11]) gives us a launching pad:

Lemma 2.1. A CAλ(N; t, k, v) is

1. a DAδ(N; d, t − d, k, v, 1) with δ = λ(v − d)vd−1 , and
2. a DAδ(N; d, t − d, k, v, v − d) with δ = λ(d + 1)d−1

whenever 1 ≤ d < min(t, v).

Beyond the construction from covering arrays of higher strength, relatively few constructions are available. When the
number of factors is very small, see [46–48,50]. For larger values of k, algorithmic methods are developed in [44] that are
inspired by probabilistic methods using conditional expectations (similar to [5] for covering arrays) and random resampling
(similar to [18] for covering arrays). Although these methods produce (1, t)-mixed detecting arrays for a variety of separation
values, they have not been applied for d > 1. For an extension to larger d for locating (but not detecting) arrays, see [33].

When d = t = 1, detecting arrays can be constructed via a correspondence with a so-called Sperner partition system
[6,25,34,36]. When t = 1 and d ≥ 1, probabilistic methods are explored in [13,16]. An algebraic approach to treat higher
strengths is introduced in [15] and further generalized in §3. Related algebraic approaches are discussed in [14] and in [2].
See [12,30] for pointers to other work on detecting arrays.

3. Constructions over finite fields

3.1. Covering perfect hash families

Sherwood et al. [45] developed a construction of covering arrays using an analogue of perfect hash families whose entries
are vectors over a finite field. We employ a generalization of their definitions from [18]. Let q be a prime power, and let Fq
be the finite field of order q. Let Rt,q = {r0, . . . , rqt−1} be the set of all (row) vectors of length t with entries from Fq , and
let Tt,q be the set of all column vectors of length t with entries from Fq , not all 0. As noted in [45], when X = {x1, . . . , xt}
satisfies xi ∈ Tt,q for 1 ≤ i ≤ t , the array A = (aij) in which aij = rix j (the dot product of ri and x j) is a CA(qt; t, t, q) if and
only if the t × t matrix X = [x1 · · ·xt] is nonsingular.

For any nonzero µ ∈ Fq , substituting µxi for xi does not alter the non-singularity. Define 〈x〉 = {µx : µ ∈ Fq, µ ,= 0}. Let
Vt,q be a set of representatives of {〈x〉 : x ∈ Tt,q}. Then |Vt,q| = qt−1

q−1 = ∑t−1
i=0 qi .

A covering perfect hash family CPHF(n; k, q, t) is an n × k array C = (ci j) with entries from Vt,q so that, for every set
{γ1, . . . , γt} of distinct column indices, there is at least one row index ρ of C for which [cργ1 · · · cργt] is nonsingular; this is
a covering t-set and the t-set of columns is covered.

Suppose that C is a CPHF(n; k, q, t). Then there exists a CA(n(qt − 1) + 1; t, k, q). The proof is straightforward [18]: Re-
place each entry ci j of C by the column vector obtained by multiplying ci j by each r' ∈ Rt,q . This produces a CA(nqt; t, k, q);
because the all-zero row appears (at least) n times, n − 1 copies can be removed.

Because this CPHF construction of covering arrays employs a compact representation of certain covering arrays as cov-
ering perfect hash families, in practice it makes feasible the explicit construction of covering arrays for ‘large’ k and t
[18,51,52]. Surprisingly, the imposition of such structure yields covering array numbers among the best known at present.
Indeed CPHFs lead to the best current asymptotic existence upper bounds for covering array numbers with fixed strength
t [18,20] and to efficient (and practical) algorithms to construct covering arrays realizing the given bounds [10,18]. Specific
constructions of CPHFs also arise from constructions in projective geometries [41,54].

Combining this approach to construct covering arrays with Lemma 2.1 produces detecting arrays with large separation.
Thus it appears that we have found a method to make detecting arrays with desired separation. But a closer look reveals
that when d and v are large, the route via covering arrays results in far too many rows. We treat this next.

3

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

3.2. Covering strong separating hash families

An approach to construct detecting arrays over the finite field is outlined in [15]. We refine that approach here. Let d ≥ 0
and t ≥ 2. As before, let Rt+1,q = {r0, . . . , rqt+1−1} be the set of all (row) vectors of length t + 1 with entries from Fq . For a
subset S of Fq of cardinality g , let Rt+1,q,g be the set of all vectors in Rt+1,q whose entry in coordinate t + 1 belongs to S .
Let Wt+1,q be a set of representatives of all column vectors of length t + 1 with entries from Fq , so that at least one of the
first t coordinates is nonzero. (The latter condition eliminates precisely one vector from Vt+1,q .) When v ∈ Wt+1,q , denote
by ∂(v) the column vector of length t obtained from v by deleting the entry in coordinate t + 1.

An elongated covering perfect hash family ECPHFδ(n; k, q, t) is an n × k array C = (ci j) with entries from Wt+1,q so that,
for every set {γ1, . . . , γt} of distinct column indices, there are at least δ row indices ρ of C for which [∂(cργ1) · · · ∂(cργt)] is
nonsingular.

Lemma 3.1. Let q be a prime power, and let t, k, and g be integers with g ≤ q. Whenever an ECPHFδ(n; k, q, t) exists, a
CAδg(ngqt; t, k, q) exists.

Proof. Let R = Rt+1,q,g = {r1, . . . , rgqt } be a set of gqt row vectors. Let C = (ci j) be an ECPHFδ(n; k, q, t). Form a ngqt × k
array A with rows indexed by {1, . . . , gqt} × {1, . . . , n} and columns indexed by {1, . . . , k}. In the cell in row (σ , ρ) and
column κ of A, place the entry rσ cρ,κ . Then A has ngqt rows, k columns, and q symbols. For a row ρ of C , denote by Aρ

the gqt × k array generated by row ρ . We show that

A =




A1
...

An





is a CAδg(ngqt; t, k, q).
Let T = {(γ1, ν1), . . . , (γt , νt)} be a t-way interaction. There are δ rows D = {'1, . . . , 'δ} of C in which [∂(c' jγ1) · · · ∂(c' jγt)]

is nonsingular. For each row ' j ∈ D , A' j contains exactly g rows that cover T , because the unique solution r to

r[∂(c'γ1) · · · ∂(c'γt)] = (ν1, · · · ,νt)

yields g solutions for R. It follows that |ρA' (T)| = g whenever ' ∈ D , and hence that |ρA(T)| = gδ. !

Lemma 3.1 can increase coverage of interactions, but does not guarantee that different interactions appear in differ-
ent sets of rows. To obtain detecting arrays, we can impose a further condition. A covering strong separating hash family
CSSHFδ(n; k, q, d, t) is an ECPHFδ(n; k, q, t) so that, for every set {γ1, . . . , γt} ∪ {a1, . . . , ad} of distinct column indices, there
are at least δ row indices ρ of C for which [cργ1 · · · cργt cρai] is nonsingular whenever 1 ≤ i ≤ d. The nomenclature combines
the notions of ‘strong separating’ hash families [39,42] and CPHFs. Increased separation can arise both by selecting larger δ
or by increasing g (when possible).

The following is straightforward:

Proposition 3.2. Let C = (ci j) be an n × k array with entries from Wt+1,q. Then when d ≥ 1 and C is a CSSHFδ(n; k, q, d, t), C is
both a CSSHFδ(n; k, q, d − 1, t) and a CPHFδ(n; k, q, t + 1).

Theorem 3.3. Let q be a prime power, and let t, d, and k be integers with t + d ≤ k and 1 ≤ d < q. Whenever a CSSHFδ(n; k, q, d, t)
exists and d < g ≤ q, a DAδ(g−d)(ngqt; d, t, k, q) exists.

Proof. Let R = Rt+1,q,g = {r1, . . . , rgqt } be a set of gqt row vectors. Let C = (ci j) be a CSSHFδ(n; k, q, d, t). Because C
is an ECPHFδ(n; k, q, t), we can construct A1, . . . , An and A as in the proof of Lemma 3.1. We shall show that A is a
DAδ(g−d)(ngqt; d, t, k, q).

Consider a t-way interaction T = {(γ1, ν1), . . . , (γt , νt)} and a set of d other t-way interactions, T = {T1, . . . , Td}. Without
loss of generality, no Ti has the same column support as T , for if it did, ρA(T) ∩ ρA(Ti) = ∅. Let ai be a column in Ti that
does not appear in T for 1 ≤ i ≤ d. (It is not required that {a1, . . . , ad} be all distinct.) By the statement of the theorem, there
are δ rows ρ ∈ {'1, . . . , 'δ} of C in which [∂(cργ1) · · · ∂(cργt)] is nonsingular, and [cργ1 · · · cργt cρai] is nonsingular whenever
1 ≤ i ≤ d. Following the proof of Lemma 3.1, when 1 ≤ j ≤ δ, there are g rows of A' j that cover T . For each column ai ,
because [c' jγ1 · · · c' jγt c' jai] is nonsingular, the symbols in column ai in the g rows that cover T in A' are all distinct. Hence
when ' ∈ {'1, . . . , 'δ}, we have |ρA'(T) \ ρA' (T)| ≥ g − d. !

4

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

3.3. Elongated covering perfect hash families

Covering strong separating hash families impose conditions that suffice to generate detecting arrays, but in a sense the
conditions are more stringent than needed. To explore this, suppose that C = (ci j) is an ECPHFδ(n; k, q, t). Consider a t-
tuple G = (γ1, . . . , γt) of columns, and a row ρ for which [∂(cργ1) · · · ∂(cργt)] is nonsingular. According to Lemma 3.1, each
interaction T on column tuple G is covered the same number (g) of times in Aρ . For a different column a, [cργ1 · · · cργt cρa]
may be singular (because C need not be a CSSHF). When this occurs, the g symbols in the rows covering T in Aρ are
not all distinct. Indeed they are all the same! More precisely, it must happen that cρa = ∑t

i=1 µicργi for µ1, . . . , µt ∈ Fq .
Then when column γi contains νi in a row of Aρ , column a must contain the symbol

∑t
i=1 µiνi . Hence by focussing on Aρ

alone, no detection of T is possible despite the repeated coverage.
This overlooks an important point, however. The particular symbol that arises repeatedly in the additional column a

depends entirely on the coefficients µ1, . . . , µt specifying the linear combination. A second such row ρ ′ may have column a
being a different linear combination of the t columns in G; then it can happen that T appears with one symbol in column a
in Aρ but with a different symbol in Aρ ′ . When this happens, separation is possible. Unfortunately, this does not overcome
the issue for all interactions. Suppose, for example, that the interaction has νi = 0 for each 1 ≤ i ≤ t . Then the symbol in
column a must also be 0, no matter the linear combination.

To address this, we pursue a different approach. Let R = Rt+1,q,g = {r1, . . . , rgqt } be a set of gqt row vectors. Let C = (ci j)
be an ECPHFδ(n; k, q, t). Let F = (αi j) be an n ×k array with entries from Fq; entries in F are adders. Form a ngqt ×k array
A with rows indexed by {1, . . . , gqt} × {1, . . . , n} and columns indexed by {1, . . . , k}. In the cell in row (σ , ρ) and column
κ of A, place the entry (rσ cρ,κ) + αρ,κ . In effect, we have modified the construction of Lemma 3.1 by permuting symbols
within each column of each of the Aρ arrays. Lemma 3.1 and Theorem 3.3 continue to hold with this modification. Moreover,
for a column tuple G and another column a, when G carries a nonsingular array in row ρ , we find g different entries in
column a when G ∪ {a} is also nonsingular, or a single entry when it is singular. But the adders ensure that in the latter
case, for any t-way interaction T , two such rows can lead to different entries in column a.

One might therefore choose the ECPHFδ(n; k, q, t) and the adders so as to ensure detection even when the array is not
a CSSHFδ(n; k, q, d, t). This appears to be a challenging problem; in the next section, we explore a probabilistic analysis.

4. Asymptotics and existence

To apply Theorem 3.3 directly, CSSHFs are needed. The same strategy might be useful even for certain ECPHFs that
need not be CSSHFs. In either case, our aim is to construct detecting arrays with few rows and many columns, to support
testing for many factors with few tests. A probabilistic analysis of the more restrictive situation for CPHFs underlies the
best known general asymptotic existence results for covering arrays [18,20]. These approaches also lead to many covering
arrays having the fewest rows known for practical sizes [8,18].

Here we extend this to construct CSSHFs and ECPHFs. We start with CSSHFs (see also [15]) and later generalize.

4.1. The basic probabilistic method for CSSHFs

Elements of an n × k array are chosen uniformly at random from Wt+1,q . Let G be a set of t distinct columns, and D
be a set of d distinct columns disjoint from G . Focus on a particular row, and consider the selections in the columns of G
sequentially. Check that after σ columns are examined, the t × σ matrix thus far has rank σ . The σ columns generate a
space of qσ column vectors. None of these can be adjoined if the selections on G are to be nonsingular. Hence the next
column has probability qt−qσ

qt−1 of maintaining full rank. After the t × t matrix on G is guaranteed to be nonsingular, for
each column of D , only the last coordinate of the vector chosen matters. Columns of D can now be treated independently.
For each one, the entry chosen in the last coordinate leads to full rank of the corresponding (t + 1) × (t + 1) matrix with
probability q−1

q , because only one choice from Fq can make the matrix singular. The probability that both conditions are
met for G and D in the row under consideration is therefore

ψd,t,q =
(∏t−1

i=0(qt − qi)
(
qt − 1

)t

)(
q − 1

q

)d

.

Rows are selected independently. Therefore the probability that the conditions are met fewer than δ times within n rows is
δ−1∑

i=0

(
n
i

)
(1 − ψd,t,q)

i(ψd,t,q)
n−i .

Using linearity of expectations, when

(
k
t

)(
k − t

d

)
(ψd,t,q)

n

[
δ−1∑

i=0

(
n
i

)(
1 − ψd,t,q

ψd,t,q

)i
]

< 1, (1)

5

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

Table 1
Upper bounds on N in a DA1(N; d, t, 100000, 7) by the basic prob-
abilistic method.

t ↓ d → 0 1 2 3

2 833 2450 6468 10584
3 8232 24010 58653 93296
4 72030 206486 497007 768320
5 605052 1714314 3983259 6050520
6 4823609 13882582 31412283 47059600

Table 2
Upper bounds on N in a DA1(N; d, t, 100000, 7) by oversampling.

t ↓ d → 0 1 2 3

2 588 1764 5145 8820
3 6517 19208 49392 80948
4 60025 172872 424977 681884
5 521017 1479016 3529470 5445468
6 4353013 12235496 28588707 43294832

a CSSHFδ(n; k, q, d, t) exists. This is the basic probabilistic method (see [4], for example). For CPHFs (with d = 0 and δ = 1)
[18], this simplifies to

(
k
t

)
(ψ0,t,q)

n < 1.

For fixed d, t , q, k, and δ, one can easily compute the smallest n for which (1) is satisfied; then Theorem 3.3 can be
applied to make a detecting array. We illustrate the consequences for various values of t and d when q = 7, k = 100000,
and δ = 1 (but note that the approach is fully general).

4.2. Oversampling for CSSHFs

Improvements using the Lovász local lemma [4,24] can be obtained in the same manner as for CPHFs [18]. Here we
pursue a different approach that appears to yield better bounds. The strategy that we explore is variously known as over-
sampling [18], postprocessing [55], and expurgation [21].

The left side of the inequality (1) is precisely the expected number of choices of a tuple G of t columns and d other
columns, for which not all interactions on columns in G can be detected because of choices on the d other columns. Call
such a bad event a blemish, so that the left side is the expected number of blemishes. By requiring that the expected number
of blemishes be less than 1, and observing that every array has an integral number of blemishes, the basic probabilistic
method ensures that at least one array has no blemishes. Then it is a CSSHF.

Given an n × k array that has at most b blemishes, one can choose one column from each of the blemishes. Then by
deleting the chosen columns (of which there are at most b), no blemishes remain and the resulting array is a CSSHF. To
make this effective, one wants to consider arrays on k + k′ columns having an expected number of blemishes less than
k′ + 1. Then choosing an array whose number of blemishes does not exceed the expectation, we can delete k′ columns to
produce an n × k CSSHF. The analysis parallels the basic probabilistic argument closely. When

(
k + k′

t

)(
k + k′ − t

d

)
(ψd,t,q)

n

[
δ−1∑

i=0

(
n
i

)(
1 − ψd,t,q

ψd,t,q

)i
]

< k′ + 1, (2)

a CSSHFδ(n; k, q, d, t) exists. Naturally, (2) leads to an upper bound on n for each k′ ≥ 1. Guided by the discussion in [18],
we treat the bounds obtained when k′ = 2k/t3.

To contrast with the basic probabilistic method, in Table 2 we report results for the same parameters as in Table 1.
Evidently, oversampling can yield substantial improvements on the basic probabilistic argument.

4.3. Using ECPHFs

Until this point, our analyses have treated each row of a CSSHF independently. Within the corresponding array Aρ ,
suppose that some t-way interaction T is covered by d others. Then every interaction on the same columns as T is also
covered by the union of d others within Aρ . This symmetry allowed us to treat the rows of the CSSHF independently in
the probabilistic calculations, while focussing on the columns supporting the interaction rather than the symbols that it
contains. As discussed in §3.3, however, different rows may combine to support detection despite no single one sufficing.

6

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

In order to understand this, we treat the situation when d = 1 and δ = 1, using the adder method from §3.3. Suppose
that T = {(γ1, ν1), . . . , (γt , νt)} is a t-way interaction and a is another column. Let G = {γ1, . . . , γt} be the column support
of T . For a row ρ , one of three situations can arise.

1. [∂(cργ1) · · · ∂(cργt)] is singular.
2. [∂(cργ1) · · · ∂(cργt)] is nonsingular but [cργ1 · · · cργt cρa] is singular.
3. [∂(cργ1) · · · ∂(cργt)) and [cργ1 · · · cργt cρa] are both nonsingular.

If any row is in the third group, there is no blemish on columns G and a. We treat all rows in the first group as if they make
no contribution to coverage for G and a and instead focus on rows in the second group. We can determine, for 0 ≤ µ ≤ n,
the probability with which no row is in the third group, µ rows are in the second group, and the remaining n − µ are in
the first.

In this situation, a blemish is a set G of t columns and another column a so that at least one interaction with column
support G appears with at most one symbol in column a. A flaw for G and a is a specific interaction T with column support
G that appears with at most one symbol in column a. When none of the qt such interactions forms a flaw, there is no
blemish for G and a.

Our concern is to develop an upper bound on the expected number of blemishes. To do so, we consider flaws. Consider
a tuple G of t columns and another column a for which µ rows are in the second group and the remaining n −µ are in the
first. Let x1, . . . , xµ be the symbols in column a with which a specific interaction T with column support G appears in the
rows of the second group. Now there is a flaw for T and a only when all of {x1, . . . , xµ} are the same. Because adders are
chosen independently, there is a flaw for T and a with probability 1 if µ = 0 and q

qµ = 1
qµ−1 if µ ≥ 1. Then a naive upper

bound on the probability that there is a blemish for G and a is obtained by the union bound as min(1, qt

qµ−1).
An improvement is possible, as follows. When m ∈ Fq is nonzero, interactions

T = {(γ1,ν1), . . . , (γt ,νt)} and
T ′ = {(γ1,mν1), . . . , (γt ,mνt)}

are either both flaws for additional column a or neither is. Hence it suffices to check representatives of the qt symbol
vectors under multiplication, of which there are 1 + qt−1

q−1 . Again by the union bound, an upper bound on the probability
that there is a blemish for G and a is min(1, 1

qµ−1 (1 + qt−1
q−1)).

It is routine to adjust (1) and (2) to account for the reduced probability of a blemish. We call the resulting bounds the
ECPHF bounds. The analysis for d > 1 or δ > 1 is more involved, but can be carried out in a similar manner.

At first glance, it appears that small reductions in the probability of a blemish may not warrant the consideration of
ECPHFs that are not CSSHFs. In order to explore this, in Table 3 we present a large number of bounds with and without
oversampling, both for the initial analysis of CSSHFs and incorporating the additional detection of ECPHFs.

The ECPHF bounds appear to provide worthwhile improvements, at least for the parameters shown. Naturally our inter-
est lies in explicitly constructing a detecting array whose number of rows does not exceed the computed bound. For this
purpose, conditional expectation one-row-at-a-time algorithms can be used as for CPHFs [18,22]. One chooses elements in
a row being built so as to reduce the expected number of blemishes as much as possible. The correct computation of the
expected number of blemishes depends not only on the rows that have been built, but also on the number yet to build. We
do not give the details here, as they parallel the algorithm in [22] closely.

Because we have focussed on the detection provided by rows in the second group when none are in the third, it may be
possible to improve further by examining coverage of specific interactions within rows of the first group. We do not pursue
this extension here, but we believe that it can be useful when q is ‘small’, δ is ‘large’, or both.

5. Concluding remarks

Using arithmetic over the finite field, CSSHFs provide a compact representation for uniform detecting arrays for various
values of t , d, and k when the number of symbols is a prime power. Moreover, they support larger separation. While
weakening the conditions on CSSHFs, ECPHFs can also yield detecting arrays with fewer rows. We have established basic
probabilistic analyses both for CSSHFs and for ECPHFs, and treated extensions using oversampling. These provide effective
upper bounds on the sizes of detecting arrays. More importantly, they underlie efficient construction algorithms.

We do not expect that the detecting arrays produced have the fewest rows possible. Although random selections of a
covering hash family provide useful bounds and arrays, we expect that a disciplined method for selecting the array may
yield fewer rows. The structure of the finite field may be valuable in specifying a deterministic structure for the covering
hash family. For CPHFs, this has been fruitful for some specific parameters [41,54]. For detecting arrays, such deterministic
constructions would be of interest.

7

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

Table 3
Upper bounds on N in a DA1(N; 1, t, k, 5).

Basic Oversampling

t k CSSHF ECPHF CSSHF ECPHF

2 102 600 500 500 450
2 103 950 750 700 600
2 104 1250 950 900 750
2 105 1550 1200 1150 900
2 106 1900 1400 1350 1000
2 107 2200 1600 1550 1150

3 102 4250 3750 3750 3250
3 103 6750 5500 5500 4750
3 104 9000 7250 7250 6000
3 105 11500 9000 9000 7250
3 106 13750 10750 10750 8500
3 107 16250 12250 12500 9750

4 102 26250 23750 23750 21250
4 103 42500 35000 36250 31250
4 104 57500 46250 48750 40000
4 105 72500 57500 60000 48750
4 106 87500 68750 72500 57500
4 107 102500 80000 85000 66250

5 102 156250 137500 143750 131250
5 103 243750 212500 218750 187500
5 104 337500 281250 293750 250000
5 105 431250 350000 375000 306250
5 106 525000 412500 450000 362500
5 107 612500 481250 525000 412500

6 102 875000 781250 812500 750000
6 103 1406250 1218750 1281250 1125000
6 104 1937500 1625000 1718750 1468750
6 105 2468750 2000000 2187500 1812500
6 106 3031250 2406250 2656250 2125000
6 107 3562500 2781250 3125000 2468750

CRediT authorship contribution statement

Charles J. Colbourn: Conceptualization and design of the study, writing the first draft of the manuscript, commenting on
previous versions of the manuscript and contributing improvements, reading and approving the final manuscript. Violet R.
Syrotiuk: Conceptualization and design of the study, commenting on previous versions of the manuscript and contributing
improvements, reading and approving the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Declaration of generative AI and AI-assisted technologies in the writing process

No AI-assisted tools were used in the writing of this paper.

Acknowledgments

Research supported by NSF grants #1421058 and #1813729.
Thanks to Yasmeen Akhtar, Randy Compton, Ryan Dougherty, Erin Lanus, and Stephen Seidel for helpful discussions.

References

[1] Y. Akhtar, F. Zhang, C.J. Colbourn, J. Stufken, V.R. Syrotiuk, Scalable level-wise screening experiments using locating arrays, J. Qual. Technol. 55 (5)
(2023) 584–597.

8

http://refhub.elsevier.com/S0890-5401(24)00067-1/bib193199C4AD5657BFCF22456E3C96F2C5s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib193199C4AD5657BFCF22456E3C96F2C5s1

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

[2] Y. Akhtar, C.J. Colbourn, V.R. Syrotiuk, Mixed-level covering, locating, and detecting arrays via cyclotomy, in: F. Hoffman, S. Holliday, Z. Rosen, F.
Shahrokhi, J. Wierman (Eds.), Combinatorics, Graph Theory and Computing, Springer International Publishing, Cham, 2024, pp. 37–50.

[3] A.N. Aldaco, C.J. Colbourn, V.R. Syrotiuk, Locating arrays: a new experimental design for screening complex engineered systems, Oper. Syst. Rev. 49 (1)
(2015) 31–40.

[4] N. Alon, J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., Hoboken, NJ, 2008.
[5] R.C. Bryce, C.J. Colbourn, A density-based greedy algorithm for higher strength covering arrays, Softw. Test. Verif. Reliab. 19 (1) (2009) 37–53.
[6] Y. Chang, C.J. Colbourn, A. Gowty, D. Horsley, J. Zhou, New bounds on the maximum size of Sperner partition systems, Eur. J. Comb. 90 (2020) 103165.
[7] C.J. Colbourn, Combinatorial aspects of covering arrays, Matematiche (Catania) 58 (2004) 121–167.
[8] C.J. Colbourn, Covering array tables: 2 ≤ v ≤ 25, 2 ≤ t ≤ 6, t ≤ k ≤ 10000, 2005–23, https://www.public .asu .edu /~ccolbou /src /tabby.
[9] C.J. Colbourn, Covering arrays and hash families, in: D. Crnković, V. Tonchev (Eds.), Information Security and Related Combinatorics, in: NATO Science

for Peace and Security Series - D: Information and Communication Security, vol. 29, 2011, pp. 99–136.
[10] C.J. Colbourn, E. Lanus, Subspace restrictions and affine composition for covering perfect hash families, Art Discrete Appl. Math. 1 (2) (2018) #P2.03.
[11] C.J. Colbourn, D.W. McClary, Locating and detecting arrays for interaction faults, J. Comb. Optim. 15 (1) (2008) 17–48.
[12] C.J. Colbourn, V.R. Syrotiuk, On a combinatorial framework for fault characterization, Math. Comput. Sci. 12 (4) (2018) 429–451.
[13] C.J. Colbourn, V.R. Syrotiuk, Detecting arrays for main effects, in: M. Ćirić, M. Droste, J.-É. Pin (Eds.), Algebraic Informatics. CAI 2019, in: Lecture Notes

in Computer Science, vol. 11545, Springer International Publishing, Cham, 2019, pp. 112–123.
[14] C.J. Colbourn, V.R. Syrotiuk, There must be fifty ways to miss a cover, in: F. Chung, R.L. Graham, F. Hoffman, R.C. Mullin, L. Hogben, D.B. West (Eds.),

50 Years of Combinatorics, Graph Theory, and Computing, CRC Press, 2019, pp. 319–333.
[15] C.J. Colbourn, V.R. Syrotiuk, Covering strong separating hash families, in: J.A. Davis (Ed.), Finite Fields and Their Applications, De Gruyter, Berlin, Boston,

2020, pp. 189–198.
[16] C.J. Colbourn, V.R. Syrotiuk, Detecting arrays for effects of single factors, in: European Congress of Mathematics, EMS Press, Berlin, 2023, pp. 693–718.
[17] C.J. Colbourn, G. Kéri, P.P. Rivas Soriano, J.-C. Schlage-Puchta, Covering and radius-covering arrays: constructions and classification, Discrete Appl. Math.

158 (11) (2010) 1158–1180.
[18] C.J. Colbourn, E. Lanus, K. Sarkar, Asymptotic and constructive methods for covering perfect hash families and covering arrays, Des. Codes Cryptogr.

86 (4) (2018) 907–937.
[19] R. Compton, M.T. Mehari, C.J. Colbourn, E. De Poorter, V.R. Syrotiuk, Screening interacting factors in a wireless network testbed using locating arrays,

in: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2016, pp. 650–655.
[20] S. Das, T. Mészáros, Small arrays of maximum coverage, J. Comb. Des. 26 (10) (2018) 487–504.
[21] D. Deng, D.R. Stinson, R. Wei, The Lovász local lemma and its applications to some combinatorial arrays, Des. Codes Cryptogr. 32 (1–3) (2004) 121–134.
[22] R.E. Dougherty, K. Kleine, M. Wagner, C.J. Colbourn, D.E. Simos, Algorithmic methods for covering arrays of higher index, J. Comb. Optim. 45 (1) (2023)

28.
[23] D.-Z. Du, F.K.-M. Hwang, D. Ding-Zhu, Combinatorial Group Testing and Its Applications, 2 edition, Series on Applied Mathematics, World Scientific

Publishing, Singapore, 1999.
[24] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, North-Holland, Amster-

dam, 1975, pp. 609–627.
[25] A. Gowty, D. Horsley, More constructions for Sperner partition systems, J. Comb. Des. 29 (9) (2021) 579–606.
[26] D. Hamlet, R. Taylor, Partition testing does not inspire confidence (program testing), IEEE Trans. Softw. Eng. 16 (12) (1990) 1402–1411.
[27] A. Hartman, Software and hardware testing using combinatorial covering suites, in: M.C. Golumbic, I.B.A. Hartman (Eds.), Graph Theory, Combinatorics

and Algorithms, Springer, Boston, MA, 2005, pp. 237–266.
[28] T.B. Idalino, L. Moura, A survey of cover-free families: constructions, applications, and generalizations, in: New Advances in Designs, Codes and Cryp-

tography, Springer Nature, Switzerland, Cham, 2024, pp. 195–239.
[29] H. Jin, T. Tsuchiya, Constrained locating arrays for combinatorial interaction testing, J. Syst. Softw. 170 (2020) 110771.
[30] H. Jin, C. Shi, T. Tsuchiya, Constrained detecting arrays: mathematical structures for fault identification in combinatorial interaction testing, Inf. Softw.

Technol. 153 (2023) 107045.
[31] D.R. Kuhn, R. Kacker, Y. Lei, Introduction to Combinatorial Testing, CRC Press, Boca Raton, FL, 2013.
[32] V.V. Kuliamin, A.A. Petukhov, A survey of methods for constructing covering arrays, Program. Comput. Softw. 37 (3) (2011) 121–146.
[33] E. Lanus, C.J. Colbourn, D.C. Montgomery, Partitioned search with column resampling for locating array construction, in: 2019 IEEE Ninth International

Conference on Software Testing, Verification and Validation Workshops (ICSTW), IEEE Press, 2019.
[34] P.C. Li, K. Meagher, Sperner partition systems, J. Comb. Des. 21 (7) (2013) 267–279.
[35] C. Martínez, L. Moura, D. Panario, B. Stevens, Locating errors using ELAs, covering arrays, and adaptive testing algorithms, SIAM J. Discrete Math. 23 (4)

(2010) 1776–1799.
[36] K. Meagher, L. Moura, B. Stevens, A Sperner-type theorem for set-partition systems, Electron. J. Comb. 12 (1) (2005) N20.
[37] J. Morgan, Combinatorial testing: an approach to systems and software testing based on covering arrays, in: R.S. Kenett, F. Ruggeri, F.W. Faltin (Eds.),

Analytic Methods in Systems and Software Testing, John Wiley & Sons, Nashville, TN, 2018, pp. 131–178.
[38] C. Nie, H. Leung, A survey of combinatorial testing, ACM Comput. Surv. 43 (2) (2011) 1–29.
[39] X. Niu, H. Cao, Constructions and bounds for separating hash families, Discrete Math. 341 (9) (2018) 2627–2638.
[40] T.J. Ostrand, M.J. Balcer, The category-partition method for specifying and generating functional tests, Commun. ACM 31 (6) (1988) 676–686.
[41] S. Raaphorst, L. Moura, B. Stevens, A construction for strength-3 covering arrays from linear feedback shift register sequences, Des. Codes Cryptogr.

73 (3) (2014) 949–968.
[42] P. Sarkar, D.R. Stinson, Frameproof and IPP codes, in: Progress in Cryptology — INDOCRYPT 2001. INDOCRYPT 2001, in: Lecture Notes in Computer

Science, vol. 2247, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 117–126.
[43] S.A. Seidel, M.T. Mehari, C.J. Colbourn, E. De Poorter, I. Moerman, V.R. Syrotiuk, Analysis of large-scale experimental data from wireless networks, in:

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE Press, 2018, pp. 535–540.
[44] S.A. Seidel, K. Sarkar, C.J. Colbourn, V.R. Syrotiuk, Separating interaction effects using locating and detecting arrays, in: C. Iliopoulos, H. Leong, W.K. Sung

(Eds.), Combinatorial Algorithms. IWOCA 2018, in: Lecture Notes in Computer Science, Springer International Publishing, Cham, 2018, pp. 349–360.
[45] G.B. Sherwood, S.S. Martirosyan, C.J. Colbourn, Covering arrays of higher strength from permutation vectors, J. Comb. Des. 14 (3) (2006) 202–213.
[46] C. Shi, C.M. Wang, Optimum detecting arrays for independent interaction faults, Acta Math. Sin. Engl. Ser. 32 (2) (2016) 199–212.
[47] C. Shi, Y. Tang, J. Yin, The equivalence between optimal detecting arrays and super-simple OAs, Des. Codes Cryptogr. 62 (2) (2012) 131–142.
[48] C. Shi, Y. Tang, J. Yin, Optimum mixed level detecting arrays, Ann. Stat. 42 (4) (2014) 1546–1563.
[49] V.R. Syrotiuk, C.J. Colbourn, E. De Poorter, M.T. Mehari, I. Moerman, An efficient screening method for identifying parameters and interactions that

impact wireless network performance, in: New Advances in Designs, Codes and Cryptography, Springer Nature, Switzerland, 2023, pp. 409–425.
[50] Y. Tang, J.X. Yin, Detecting arrays and their optimality, Acta Math. Sin. Engl. Ser. 27 (12) (2011) 2309–2318.
[51] J. Torres-Jimenez, I. Izquierdo-Marquez, A simulated annealing algorithm to construct covering perfect hash families, Math. Probl. Eng. 2018 (2018)

1860673.

9

http://refhub.elsevier.com/S0890-5401(24)00067-1/bibC5333BFF4C1BBA46799720D80F3482F4s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibC5333BFF4C1BBA46799720D80F3482F4s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF33EC55145EB25BA9F504DDBEAB18CEBs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF33EC55145EB25BA9F504DDBEAB18CEBs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibC9CBEA5CA5FB10BCECCFDE32F0DEAAD1s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib6E89435F5F09D7119D63F02DD6ED62ADs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibA0A0983CC18F46FFF7815CFDC3170053s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibD7868A0964BEE6EF03F3A4AFF9215F77s1
https://www.public.asu.edu/~ccolbou/src/tabby
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib3B88414FFFA238AB25D4772AFF642D1Bs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib267640588A3983481A032894A50F0BE6s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib267640588A3983481A032894A50F0BE6s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibA29B698C87DCBE1DD384B279422EB421s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib55F2800F2B738D0269FF7E5635360272s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB1F0BE0605D9ABDDC904DA1B0880635Fs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib3E406B35E79BE1427B30FAEAB112E7F1s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib3E406B35E79BE1427B30FAEAB112E7F1s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE78BB5F4980A82056389E3D22A5013EEs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE78BB5F4980A82056389E3D22A5013EEs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibFBAE4C7A955F3C52C780BA7D319C1FFBs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibFBAE4C7A955F3C52C780BA7D319C1FFBs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib2D7C15E021D7D1AAC6C3204321BD3B2Ds1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibBEAC4219B05868D01C7866A9DE369510s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibBEAC4219B05868D01C7866A9DE369510s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib3917047054911C365AF85AC12594C92Cs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib3917047054911C365AF85AC12594C92Cs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib09A18584CEEECB892F3D6812F3F5D761s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib09A18584CEEECB892F3D6812F3F5D761s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib385CFAA48F38C3B7013652EC846486A4s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB23B909EE3C133A4BC2FC36681030989s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib29877314D0B59FFC7D114E80D31B7582s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib29877314D0B59FFC7D114E80D31B7582s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB93751D67E4C36C64EB149227B461C2Fs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB93751D67E4C36C64EB149227B461C2Fs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib5C1DF5AB11108C6187A1ED0C5D370749s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib5C1DF5AB11108C6187A1ED0C5D370749s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib79F4425FCB8C2DFA4F355E36B2BB5CD6s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib1726421A0F17749A4CDA8EBDBA560B92s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF8930BFDF3A748B115CD7D0F4E553724s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF8930BFDF3A748B115CD7D0F4E553724s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib35F01AD711B748F0FAF68260C8CB3D81s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib35F01AD711B748F0FAF68260C8CB3D81s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB8EC4E2695DD9C499DD3D28126D3598As1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibBB9787353067C8EEBD2E25DEBB90EA0Es1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibBB9787353067C8EEBD2E25DEBB90EA0Es1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib72155A47A3BECC880CC9A42832EF2DF4s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib36513C2B1870A9EA370D71A139FA8501s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib26AD36C03F254250607846789E59A419s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib26AD36C03F254250607846789E59A419s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib919250DCC9F4F10BB884B8BC7020C9D0s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibA6AB9F1FC2EF42B97F7F285CEA62301Es1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibA6AB9F1FC2EF42B97F7F285CEA62301Es1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib09C4A72BAB2AA218922BFB1C434D891As1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF7D6618507D5DF6A2957FEE5FA7BF36As1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF7D6618507D5DF6A2957FEE5FA7BF36As1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib21AB83B2DFD3D5D07B504565F84F8FEDs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibFE1FD88815B2DD2C73CCFBBC17330361s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibDC1D1A3A8205D23537C084D4E0E142FFs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib6FC18599669C22BD6C1520C6FBDF449Ds1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib6FC18599669C22BD6C1520C6FBDF449Ds1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB75C7F619ECABE2F3E50C0A7062B5059s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibB75C7F619ECABE2F3E50C0A7062B5059s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE6E66105D366FF1CE31A83CDCD456C9Ds1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE6E66105D366FF1CE31A83CDCD456C9Ds1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE38A1BBFB28B781A02D126D440D53312s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE38A1BBFB28B781A02D126D440D53312s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib381F153A0E6E6DC7D3BF5DBEF251B370s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib49B33116C82DB3D6EEF37A7259D0802Ds1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib065FB4C04568EB64218F2AD12A104F54s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib95FFD523DB60AEB1C3B005F0AA52F3EEs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibD6426BFD0202E6D8AEAE4244835BFBBEs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibD6426BFD0202E6D8AEAE4244835BFBBEs1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib2CC58E27112694D490860C8536845CE5s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib2B5A2F7BD81C5A10BB1B397918D807D0s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib2B5A2F7BD81C5A10BB1B397918D807D0s1

C.J. Colbourn and V.R. Syrotiuk Information and Computation 301 (2024) 105202

[52] J. Torres-Jimenez, I. Izquierdo-Marquez, Covering arrays of strength three from extended permutation vectors, Des. Codes Cryptogr. 86 (11) (2018)
2629–2643.

[53] J. Torres-Jimenez, I. Izquierdo-Marquez, H. Avila-George, Methods to construct uniform covering arrays, IEEE Access 7 (2019) 42774–42797.
[54] G. Tzanakis, L. Moura, D. Panario, B. Stevens, Constructing new covering arrays from LFSR sequences over finite fields, Discrete Math. 339 (3) (2016)

1158–1171.
[55] E. van den Berg, E. Candès, G. Chinn, C. Levin, P.D. Olcott, C. Sing-Long, Single-photon sampling architecture for solid-state imaging sensors, Proc. Natl.

Acad. Sci. 110 (30) (2013).

10

http://refhub.elsevier.com/S0890-5401(24)00067-1/bib230DB9BF6C0B3DA9FBE89F004B679B04s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bib230DB9BF6C0B3DA9FBE89F004B679B04s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibF27C56FD8F0722E59D322CF5A9911C80s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE3D22E83592B6B231827B70CE2A47297s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibE3D22E83592B6B231827B70CE2A47297s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibDA85E2AAF4F9131A169F13F32B82BD50s1
http://refhub.elsevier.com/S0890-5401(24)00067-1/bibDA85E2AAF4F9131A169F13F32B82BD50s1

	Detecting arrays for effects of multiple interacting factors
	1 Introduction
	2 Detecting arrays
	3 Constructions over finite fields
	3.1 Covering perfect hash families
	3.2 Covering strong separating hash families
	3.3 Elongated covering perfect hash families

	4 Asymptotics and existence
	4.1 The basic probabilistic method for CSSHFs
	4.2 Oversampling for CSSHFs
	4.3 Using ECPHFs

	5 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	References

