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Introduction

Untreated mental health conditions are a leading cause of
disability in the world [1, 2], accounting for more than 30%
of years lived with disability [1]. However, the staggering
impact of mental health likely extends far beyond this
statistic [3]. Mental health problems, if left untreated, predict
the development of some of the most significant physical
ailments impacting society including obesity, diabetes, heart
disease, and stroke [4-6]. With a global shift in healthcare
practices from reactive models of care to more preventative,
wellness-focused models, we have a unique opportunity to
address mental health as a key, upstream determinant of
morbidity and mortality [3]. Societal acceptance of mental
health is at an all-time high. Shifting healthcare incentives
and improved mental health acceptance combine to provide
a unique opportunity for systemic change in the way we
practice mental healthcare. If successful, there is a chance
that we can build healthier societies, with equitable and early
access to mental healthcare, that are better prepared to
address the pressing problems of our age.

However, to realize this vision for societal health through
improved mental health, there are several significant
challenges that we must overcome. For example, there is a
critical shortage of mental healthcare providers. Large
geographic areas (e.g., rural and urban medical deserts [7])
and patient groups (e.g., children [8]) do not have access to
effective mental healthcare options. These access challenges
are further compounded by a lack of demographic repre-
sentation in current mental health services leaving many
patients from underserved and underrepresented groups
without culturally tailored resources, negatively impacting
participation and outcomes [9].

Digital health technologies (DHTSs) that move mental
health assessment and treatment outside the footprint of
traditional brick-and-mortar healthcare infrastructure may
provide compelling solutions to many of these challenges
[10]. With the COVID pandemic, treatment approaches
that leverage telehealth strategies to connect patients with
providers have been accelerated, enabling access to care
even in medical deserts [11, 12]. Prescription digital ther-
apeutics have been developed that can augment this virtual
care model or even, for some conditions, allow effective
mental health management without direct oversight from a
healthcare provider [13]. With broader access to digital
mental health treatments, there are now opportunities to
match patients with providers (e.g., Spring health [14])
which has been shown to dramatically improve outcomes
while also reducing costs [15].
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Fig. 1. DHTSs capable of providing accurate real-time digital biomarkers are increasingly coming in a variety of
form factors, including smartphones, smartwatches, smart rings, and wearable patches.

Digital mental health assessment has, to some extent,
lagged advances in digital mental health treatment. This is
most likely due to inherent challenges in how mental health
diagnoses are defined, based on how people present and not
underlying etiology, thus creating inherent problems with
reliability of assessment [16]. The emergence of digital
medicine frameworks and the explosive growth in smart-
phone and wearable device ownership now enable objective
measurement of patient physiology and behavior at an
unprecedented scale. Digital biomarkers extracted from
these technologies (shown in Fig. 1) are increasingly being
combined using advanced artificial intelligence and ma-
chine learning approaches into digital phenotypes that
could hold the key for improving mental health assessment

Digital Biomarkers in Mental Health

[17, 18]. Despite a small handful of early examples, digital
biomarkers and phenotypes of mental health are still in their
infancy. In this editorial, we make the case for why digital
biomarkers and phenotypes should be a key component of
mental health assessment and highlight several compelling
areas for future work.

The Case for Digital Biomarkers and Phenotypes of
Mental Health

Recent efforts and more long-term trends have primed
the community of mental health researchers, providers,
and patients for a shift to assessment inclusive of objective
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data. Psychologists and psychiatrists have been studying
the physiology and behavior of mental health disorders
for decades. In fact, nearly 15 years ago, the US National
Institute for Mental Health advanced a new model for
studying mental health based on Research Domain
Criteria [19, 20]. This model takes a translational ap-
proach to identifying the mechanisms underlying mental
health conditions. Operationalization of Research Do-
main Criteria includes behavioral and physiology units of
measurement that can serve as key targets for DHTs.

However, the context for those measurements is key.
Under very specific laboratory conditions, we know that
affected individuals react differently to stimuli [21-28], and
those reactions are mechanistically linked to their mental
health conditions [29]. Mental health researchers have
painstakingly trained teams for months to perform be-
havioral coding of reactions considered “behavioral fear
responses” in young children as they are administered a
series of brief fear inducing tasks [30]. Researchers have also
had preteens wait 30 min in a laboratory so their stress levels
normalize enough from the novelty of coming into the
laboratory to detect stimuli reactivity, and then wait 60 min
after the stimuli to assess recovery [31], and have in-
strumented participants to detect eyeblink magnitude
within milliseconds after acoustic startle probes [32, 33]. We
need to exercise this level of control because, unlike a height
or a weight, the physiology and behavior underlying mental
health is highly variable within individuals over years,
months, days, and even minutes; is highly variable across
individuals in terms of symptomology and impairment even
within the same diagnosis; and is often context dependent
such that other people, situations, and spaces can signifi-
cantly alter impairment in the moment.

Digital biomarkers extracted from DHTs give us the
ability to capture the inherent variability of mental health
symptoms, behavior, and physiology in a way that a single
office visit or clinical interview cannot while also tagging
and integrating important contextual features. DHTSs
such as smartphones and wearables are a gateway into
what’s happening inside the body and how mental health
impacts behavior and functioning. These technologies
allow us to isolate specific stimuli as we do in controlled
laboratory experiments, to examine baseline, reactivity,
peak, and recovery [21-28]. For instance, we can answer
questions like, how does your body react when you re-
ceive an urgent text message? Do affected individuals
recover differently from a poor night of sleep, or a period
of louder than typical ambient noise? By isolating nat-
urally occurring clinically relevant stimuli and engi-
neering digital features that represent stimuli reactivity,
we can investigate how the outcomes of years of research
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in the laboratory can extend to remote settings with more
ecological validity (Fig. 2). With these naturalistic ex-
periments enabled by DHTs, we can ensure that we are
studying the right constructs for discovering mechanistic
biomarkers and phenotypes of mental health.

Importantly, DHTs allow more equitable representa-
tion in research and access to clinical resources. We no
longer need to require laboratory visits with adminis-
trator interaction. If we are trying to understand lethargy
in chronic depression, there is significant burden put on
individuals affected by requiring them to drive into a
laboratory and be administered hours of testing. DHT's
can reach participants in their homes, enabling longi-
tudinal access to better examine fluctuations of symptoms
and impairment over time [34], and for more people than
can realistically be achieved through in-person laboratory
experiments. For example, a recent study demonstrated
the ability to deploy Oura Rings to capture longitudinal
HRV and sleep metrics nearly every night for over
6 months from more than 900 college students in less
than 2 years [35-37]. As another example, researchers
have used accelerometer data collected from over 100,000
individuals as part of the UK Biobank study to better
understand links between physical activity and mental
health conditions [38, 39]. There is a compelling op-
portunity to unravel the physiology and behaviors un-
derlying mental health conditions with DHTSs, but doing
so requires that we ensure representation extends beyond
those who already own smartphones and wearables.
Recent efforts have suggested hybrid study designs that
are intentional about recruitment and device provi-
sioning to ensure adequate representation [40-42]. DHT's
are enabling large scale, representative studies of mental
health-relevant physiology and behavior, and the dis-
covery of mechanistic mental health biomarkers and
phenotypes that generalize outside their studies of origin
and provide compelling targets for translation to clinical
practice.

By providing ecologically valid measurements of the
physiology and behavior underlying mental health con-
ditions, and the mental health-relevant context from
which they are sampled, from large representative
samples of participants over long periods of time, DHT's
promise to revolutionize mental health research. The
outcomes of this research, which can provide nearly
continuous monitoring of fluctuations in mental health
symptoms through digital biomarkers and phenotypes,
provide endless possibilities for a paradigm shift in
clinical practice where mental healthcare can work to
predict symptom changes, and suggest interventions to
reduce symptoms and prevent negative outcomes.

McGinnis et al.
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Fig. 2. a Historically, researchers interested in collecting bi-
ological signals have had to rely on specialized equipment and
participants coming into a laboratory environment, a process
that is time consuming and not conducive to collecting
longitudinal data from many participants. b As DHTs have

The Future of Digital Biomarkers in Mental Health

As we push toward the future of digital biomarkers
in mental health, there are several areas where critical
investment is needed. These include the consideration

Digital Biomarkers in Mental Health

become more affordable and ubiquitous, they have allowed
researchers to employ an alternative paradigm in which they
are able to collect a large amount of data from many par-
ticipants over long periods of time with the added context of
real-world settings.

of multi-modal phenotypes, advancing new mental
health-relevant sensing modalities, including histori-
cally understudied groups in research, using the right
types of AI, and embracing new approaches for
intervention.
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Digital phenotypes must be built from multi-modal
biomarkers. Especially in remote, unstandardized set-
tings, we must understand biomarkers in relation to one
another as they can provide additional context. Take, for
example, an elementary school child taking a math test.
Even when we have isolated a clinically relevant stimulus
(the test) and examine relevant features underlying
anxiety (heart rate reactivity), we still have other bio-
markers to control for and other possibilities to rule out.
For instance, a child may have heightened heart rate
reactivity because they just saw a bird outside the window
and jumped up out of their chair. By examining the ratio
of the child’s heart rate reactivity to the child’s motion, we
may better detect the likelihood of anxiety than heart rate
reactivity alone. We must better understand the rela-
tionship between biomarker modalities to provide situ-
ational context and improve precision of assessment.

New sensing modalities could provide even more
salient data. For instance, new technologies are capable of
measuring cortisol in sweat [43]. Prior to this innovation,
there were decades of promising data relating cortisol
reactivity to mental health disorders [44]; however,
methods were mixed, yielding challenges in summarizing
interpretation across the literature. Methods changed to
accommodate challenges to data collection feasibility
which required multiple or continuous blood, urine, or
saliva samples and to analyze as samples required to be
assayed-often sent to specialized laboratories to do so.
Additionally, there were many unmodeled drivers of
cortisol that were not always accounted for (i.e., time of
day, food intake, exercise recency). New sweat sensing
patches that provide more continuous and passive
measures of cortisol levels could help resolve many of
these measurement challenges when paired with DHTs
for providing measurement context and potentially at
scale.

Mental health, like many health conditions, has not
always been studied with representative samples,
limiting the generalizability of conclusion. There are
many hard-to-reach populations wherein getting into a
laboratory is not feasible, including for those without
geographic access to research laboratories, physical
ability, or trust in research or healthcare systems [45].
One example for which mental health biomarker work
has been historically challenging is in childhood.
Equipment is rarely developed for children, and
studies with high data missingness demonstrate the
reality of getting kids to be behaviorally compliant with
cumbersome technology for long periods of time in a
laboratory setting [46]. Wearable technologies open
research opportunities with young children by in-
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creasing feasibility. However, user-centered design for
child wearables should be a focus [47-49]. Once more
pediatric DHTSs are available, we are poised to accel-
erate the accumulation of digital mental health
knowledge in early childhood and better understand
digital phenotype differences from adults due to fac-
tors like symptom presentation, level of insight, au-
tonomy over schedules, and accommodations, many of
which may be better captured outside a laboratory
environment.

Discovering digital phenotypes of mental health is an
ideal use case for explainable artificial intelligence, and
particularly machine learning [50]. These techniques
excel at resolving complex relationships, like those linking
longitudinal measures of digital biomarkers, their context
of measurement, and mental health conditions and
symptoms. However, because of the sensitive nature of
the resulting phenotypes and their potential use in
managing mental healthcare, it is critical that we do not
fall victim to black box techniques that do not allow us to
leverage those models to also advance our understanding
of mental health. Moreover, we need to focus on engi-
neering features that are clinically relevant, so that the
conclusions that these models enable are clinically in-
terpretable. Investment in explainable Al techniques in
the context of mental health is thus a critical area of future
work and can be most readily leveraged by multi-
disciplinary teams inclusive of those with domain and
Al expertise.

Finally, it is critical that we undertake future work in
digital biomarker and phenotype development that en-
ables advanced approaches to intervention [51]. DHTSs
provide a compelling opportunity to capture a better
picture of a patient’s mental health, but they also enable
remote delivery of intervention wherever and whenever it
is needed. Mental health disorders are ripe for just-in-
time adaptive interventions delivered via DHTs because
of the contextual fluctuations over time, to be alerted,
within moments of your reactivity, to intervention rec-
ommendations such as additional supports during a
depressive episode [52], when faced with a trigger for
alcohol use disorder [53], or when experiencing a panic
attack [54-56]. DHTSs grant users access to data, but also
services when they are most useful to them. It is very
challenging to have the insight to engage in even known
interventions at the moment when our conditions are
most activated (e.g., [54]), thus interventions (e.g., alerts,
reminders) based on personalized metrics that are
grounded in human-computer interaction research
[57-61], could help remind us when to deploy the
management strategies we already know.

McGinnis et al.
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Digital Biomarkers to Help Enable Mental Healthcare
for All

We are at a unique moment in time where strategic
investment in the development of DHTs for mental
health could lead directly to dramatic health improve-
ments. DHTs that provide objective measurement of
mental health related physiology and behavior, as well as
the context of the measurement are most likely to lead to
effective digital mental health assessments. Investment in
multi-modal phenotypes, advancing new mental health-
relevant sensing modalities, enhancing the representation
of historically underrepresented groups in research, and
using the right types of Al are likely to help us accelerate
the development of new digital mental health assessment
even further. These new assessments can open the door
for further innovation in intervention and ultimately lead
to a paradigm shift in the way we practice mental
healthcare and a healthier society as a result.
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